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A B S T R A C T

Patients with major depressive disorder (MDD) show heterogeneous treatment response and highly variable clinical trajectories: while some patients experience swift
recovery, others show relapsing-remitting or chronic courses. Predicting individual clinical trajectories at an early stage is a key challenge for psychiatry and might
facilitate individually tailored interventions. So far, however, reliable predictors at the single-patient level are absent. Here, we evaluated the utility of a machine
learning strategy – generative embedding (GE) – which combines interpretable generative models with discriminative classifiers. Specifically, we used functional
magnetic resonance imaging (fMRI) data of emotional face perception in 85 MDD patients from the NEtherlands Study of Depression and Anxiety (NESDA) who had
been followed up over two years and classified into three subgroups with distinct clinical trajectories. Combining a generative model of effective (directed) con-
nectivity with support vector machines (SVMs), we could predict whether a given patient would experience chronic depression vs. fast remission with a balanced
accuracy of 79%. Gradual improvement vs. fast remission could still be predicted above-chance, but less convincingly, with a balanced accuracy of 61%. Generative
embedding outperformed classification based on conventional (descriptive) features, such as functional connectivity or local activation estimates, which were
obtained from the same data and did not allow for above-chance classification accuracy. Furthermore, predictive performance of GE could be assigned to a specific
network property: the trial-by-trial modulation of connections by emotional content. Given the limited sample size of our study, the present results are preliminary
but may serve as proof-of-concept, illustrating the potential of GE for obtaining clinical predictions that are interpretable in terms of network mechanisms. Our
findings suggest that abnormal dynamic changes of connections involved in emotional face processing might be associated with higher risk of developing a less
favorable clinical course.

1. Introduction

Major depressive disorder (MDD) is one of the most burdening
mental disorders with a lifetime prevalence of 10–30% (Andrade et al.,
2003; de Graaf et al., 2012). Up to a fourth of MDD patients are at risk
of developing a chronic disease (Penninx et al., 2011), characterized by
severe negative impact on quality of life and high rates of psychiatric
comorbidities (Kohler et al., 2019). The diagnostic criteria of MDD in
ICD and DSM-5 (American Psychiatric Association, 2013) are not
grounded in pathophysiology, but refer to symptoms and signs (e.g.,

depressed mood, anhedonia, fatigue) that could have various causes.
The diagnostic label MDD likely subsumes patients with different dis-
ease mechanisms and has limited predictive validity: MDD patients
show highly variable clinical trajectories over time (Gueorguieva et al.,
2011; Musliner et al., 2016; Muthen et al., 2011), and the absence of
mechanistically interpretable predictors turns therapy into a trial-and-
error procedure (Cuthbert and Insel, 2013; Kapur et al., 2012;
Rush et al., 2006). This is not only costly and frustrating for patients,
but also bears the risk of long-term adverse events (McMahon and
Insel, 2012) and reduced treatment adherence (Velligan et al., 2010).
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This emphasizes the need for novel prognostic approaches to de-
pression that furnish predictors for clinical trajectories and treatment
outcomes. Predicting symptom trajectories in MDD at an early stage is
of high clinical relevance because identifying patients at risk of chronic
disease might guide the deployment of intensified early interventions
(MacQueen, 2009). To achieve this, successful tools may benefit from
being grounded in biology to enable a mechanistically relevant strati-
fication of the heterogeneous MDD spectrum (Stephan et al., 2017).
Using neuroimaging, some studies demonstrated that disease onset and
short-term treatment response prediction may be possible
(Dunlop et al., 2017; Mayberg et al., 1997; Pan et al., 2017;
Phillips et al., 2015). By contrast, it has proven more challenging to
predict long-term clinical outcome, such as symptom trajectories over
several years.

Schmaal et al. (2015) assessed the prognostic value of structural and
functional magnetic resonance imaging (fMRI) to classify disease tra-
jectories in MDD patients from the NEtherlands Study of Depression
and Anxiety (NESDA; Penninx et al., 2008), a multi-site longitudinal
study in a large naturalistic cohort. The authors demonstrated that fMRI
data from an emotional face perception paradigm allowed dis-
criminating patients who, over the course of two years, showed a
chronic disease trajectory from patients showing rapid remission of
depressive symptoms, with up to 73% accuracy. This result was ob-
tained by applying a supervised machine learning (ML) method,
Gaussian Process Classifiers (GPCs; Rasmussen and Williams, 2005), to
contrast images.

While an encouraging initial result, developing this approach fur-
ther with conventional ML techniques and towards clinically required
levels of accuracy faces several challenges (Brodersen et al., 2011).
First, achieving high classification accuracy robustly from whole-brain
fMRI data can be difficult, given the high dimensionality of the data
relative to the small sample sizes. Second, the results from “black-box”
ML operating on descriptive features (e.g., contrast images) do not
easily allow for mechanistic interpretations. The latter, however, is
increasingly recognized as critical for clinical applications of ML
(Itani et al., 2019; Woo et al., 2017), both to derive novel treatment
ideas from successful predictions but also to detect cases when ML goes
awry, e.g., predictions that derive from artefacts in the data.

Generative embedding (GE) represents a potentially attractive al-
ternative to “classical” ML (Shawe-Taylor and Cristianini, 2004). The
idea is simple but powerful: instead of selecting features from the ori-
ginal data, one applies a generative model to the data and uses the
ensuing model parameter estimates as features. Generative models

describe how observed data may have been “generated” from latent
(hidden) system states and thus often embody some degree of me-
chanistic interpretability. For example, in neuroimaging, GE uses
model-based estimates of physiological or cognitive parameters, such as
connection strengths (Brodersen et al., 2014, 2011), ion channel con-
ductances (Symmonds et al., 2018), prediction errors (Paulus, 2015), or
response inhibition (Wiecki et al., 2016). More technically, GE views a
generative model as a theory-driven dimensionality reduction device
that projects high-dimensional data onto neurobiologically meaningful
parameters that define a low-dimensional and interpretable space for
classification. Provided a plausible model exists, GE frequently yields
more accurate results than conventional ML (Brodersen et al., 2014,
2011), likely because the generative model separates signal (reflecting
the process of interest) from (measurement) noise.

Model-based estimates of brain connectivity might be particularly
informative for predicting clinical trajectories in MDD, given that dys-
connectivity has been postulated as a hallmark of depression
(Greicius et al., 2007; Mayberg, 1997; Wang et al., 2012). Here, we
used a generative model of fMRI data, dynamic causal modeling (DCM;
Friston et al., 2003), to infer effective (directed) connectivity and test
the utility of GE for predicting individual clinical trajectories in MDD
patients from the NESDA study. For this purpose, we combined DCMs of
the emotional face perception network with linear support vector ma-
chines (SVMs). We then compared the cross-validated predictive ac-
curacy of GE with more conventional approaches, such as classification
based on functional connectivity and local BOLD activity, testing
whether a biologically plausible generative model would be superior for
predicting naturalistic disease courses from fMRI data.

We emphasize that the present work is not meant to provide an
ultimate prognostic tool for outcomes in MDD since this may require a
substantially larger dataset than currently available. Instead, the pre-
sent study provides proof-of-concept that illustrates the potential ben-
efits of GE relative to conventional approaches in neuroimaging studies
of MDD, with regard to predictive power and interpretability.

2. Materials and methods

2.1. Participants

The data used here were acquired in the NESDA study
(Penninx et al., 2008), a multi-site longitudinal study on the long-term
course of depression and anxiety disorders in a large naturalistic cohort.
In total, 2981 participants (18–65 years) were recruited from

Table 1
Demographic and clinical characteristics of participants included in the generative embedding analyses.

Characteristic REM (n = 39) IMP (n = 31) CHR (n = 15) Statistic p-value

Age, Years 35.90 (11.50) 35.03 (10.00) 44.00 (10.01) F = 3.92 0.02
Gender, n (%)
Female 28 (72) 20 (65) 9 (60) χ2=0.83 0.66
Male 22 (28) 11 (35) 6 (40)

Education, Years 11.74 (3.30) 12.26 (3.00) 12.00 (2.36) F = 0.25 0.78
Scan Location, n (%)
AMC Amsterdam 5 (13) 5 (16) 4 (27) χ2=3.81 0.43
LUMC Leiden 13 (33) 15 (48) 5 (33)
UMCG Groningen 21 (54) 11 (35) 6 (40)

IDS Total T1 31.44 (10.76) 32.77 (8.35) 33.72 (7.91) F = 0.37 0.69
IDS Total T2 14.72 (9.06) 22.29 (9.93) 29.60 (7.17) F = 15.87 < 0.001
IDS Change (T2-T1) −16.72 (11.33) −10.48 (10.56) −4.13 (8.10) F = 8.35 < 0.001
BAI Total T1 14.90 (9.25) 15.77 (9.42) 14.27 (6.93) F = 0.16 0.85
Antidepressant Use T1, n (%)
No 27 (69) 22 (71) 8 (53) χ2=1.58 0.45
Yes 12 (31) 9 (29) 7 (47)

Antidepressant Use T2, n (%)
No 25 (64) 22 (71) 9 (60) χ2=0.64 0.73
Yes 14 (36) 9 (29) 6 (40)
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community, primary care and specialized mental health organizations.
From this cohort, 301 participants (156 with MDD diagnosis) were
included in the MRI experiment. For detailed descriptions of the full
sample, see van Tol et al. (2010). For the current study, only those
participants were included that had: (i) a DSM-IV diagnosis of MDD, as
established using the structured Composite International Diagnostic
Interview (CIDI; Robins et al., 1988) in the 6 months prior to baseline,
(ii) reported symptoms in the month before baseline as confirmed by
either the CIDI or the Life Chart Interview (LCI; Lyketsos et al., 1994),
(iii) availability of 2-year follow-up of depressive symptoms from the
LCI, and (iv) no other exclusion criteria related to, e.g., poor data
quality, non-compliance with task instructions, or deficient perfor-
mance. For details, see Schmaal et al. (2015). This yielded a final
sample of 85 participants (for an overview of the demographic and
clinical characteristics, see Table 1).

Based on the two-year follow-up clinical trajectories derived from
CIDI and LCI information, MDD patients were divided into different
categories with distinct courses of symptom severity. This division was
informed by a latent class growth analysis (Rhebergen et al., 2012), as
reported by Schmaal et al. (2015). The three classes were: (i) MDD-
remitted, showing a rapid remission of symptoms (REM: n = 39), (ii)
MDD-improved, showing a slow but gradual improvement of symptoms
from baseline to follow-up (IMP: n = 31), and (iii) MDD-chronic,
showing no improvement of symptoms from baseline to follow-up
(CHR: n = 15).

2.2. Experimental procedure

For fMRI, an event-related emotional face perception paradigm was
used. Participants viewed color images of angry, fearful, sad, happy,
and neutral facial expressions, as well as scrambled faces. Stimuli were
shown for 2.5 s, with an inter-stimulus interval varying between
0.5–1.5 s. Participants were instructed to indicate the gender of the
presented face via button press. For scrambled images, participants had
to press buttons in accordance with an arrow pointing to the left or
right. Stimuli were presented using E-prime (Psychological Software
Tools, Pittsburgh, PA; https://pstnet.com/products/e-prime/). For de-
tails, see Demenescu et al. (2011).

2.3. Functional magnetic resonance imaging

2.3.1. Image acquisition
For NESDA, structural and functional MRI data were acquired at the

University Medical Center Groningen (UMCG), Amsterdam Medical
Center (AMC), and Leiden University Medical Center (LUMC).
Participants were scanned on 3-Tesla MR scanners (Philips Healthcare,
Best, The Netherlands) with SENSE 8-channel (LUMC, UMCG) or 6-
channel (AMC) receiver head coils. For details, see Supplementary
Material S1.

2.3.2. Image data processing
Some of the functional images were affected by a “column” or

“pencil beam” artifact caused by imperfect fat suppression pulses. The
artifact was most apparent in temporal signal-to-noise ratio (tSNR)
maps and manifested as vertical stripes, primarily in frontal gyrus and
anterior temporal lobe (see https://github.com/dinga92/stripe_
cleaning_scripts). This was corrected by regressing out artifact-related
independent components prior to the routine preprocessing steps.
Artifact correction was done within FMRIB's Software Library (FSL;
http://www.fmrib.ox.ac.uk/fsl) as follows: First, the Multivariate
Exploratory Linear Optimized Decomposition into Independent
Components (melodic) algorithm was used to identify independent
components associated with the artifact, and second, regfilt was used to
regress out the artifact-related components.

After artifact correction, functional images were analyzed using
SPM12 (version R7487, Wellcome center for Human Neuroimaging,

London, UK, http://www.fil.ion.ucl.ac.uk) and Matlab (Mathworks,
Natick, MA, USA). Individual images were realigned to the mean image,
coregistered with the high-resolution anatomical image, and normal-
ized to the Montreal Neurological Institute (MNI) standard space using
the unified segmentation-normalization approach. During spatial nor-
malization, functional images were resampled to a voxel size of
2 × 2 × 2 mm3. Finally, normalized functional images were spatially
smoothed using an 8 mm FWHM Gaussian kernel.

Preprocessed and artifact-corrected functional images from each
participant entered first-level General Linear Model (GLM) analyses.
Each condition (i.e., angry, fearful, happy, sad, neutral, and scrambled
faces) was modeled as an individual regressor, consisting of a train of
stimulus onsets convolved with a canonical hemodynamic response
function (HRF). Additionally, temporal and dispersion derivatives of
the canonical HRF were included to account for variability in shape and
timing of hemodynamic responses (Friston et al., 1998). Realignment
parameters were included as nuisance regressors to control for move-
ment-related artifacts. Importantly, we assessed whether groups dif-
fered in the amount of head movements as this could potentially con-
found subsequent classification analyses. However, using a one-way
between-subject analysis of variance (ANOVA) with the factor group, we
found that the MDD groups did not significantly differ in their mean
framewise displacement (FD; Power et al., 2012) computed from the six
realignment parameters (F(2,82) = 0.68, p = 0.51). Additionally, low-
frequency fluctuations in the data were removed using a high-pass filter
(cut-off 1/128 Hz).

2.3.3. Time series extraction
We selected six regions of interest (ROIs) that represent key com-

ponents of the extended face perception network (Haxby et al., 2000),
bilateral occipital face area (OFA; Puce et al., 1996), fusiform face area
(FFA; Kanwisher et al., 1997), and amygdala (Breiter et al., 1996). To
account for inter-subject variability in their exact location, center co-
ordinates were defined for each participant individually: First, we
identified the most likely MNI coordinates of these regions from a meta-
analysis of 720 studies using Neurosynth (Yarkoni et al., 2011) with the
search criterion “face”. Relying on this external information from
Neurosynth helped ensure independence of feature selection (i.e., de-
finition of ROI coordinates) and subsequent prediction. Generally, we
prevented any cross-talk between training and test samples which
might otherwise positively bias classification accuracy (see Supple-
mentary Material S2). Second, individual peak activation coordinates
were defined as the subject-specific local maximum closest to the
Neurosynth coordinates within a 12 mm sphere for the linear contrast
comparing faces (regardless of emotional valence) against scrambled
images. Individual coordinates are illustrated in Supplementary Figure
S1. While no group information was used to define ROI coordinates, in
principle, some bias could still exist if the identification of individual
peak activation coordinates had been influenced by systematic group
differences. We examined this potential issue for the present analysis,
using a multivariate analysis of variance (MANOVA), but did not find
any significant group differences in the subject-specific peak activation
coordinates for any of the regions (all p > 0.05). Third, BOLD signal
time series were extracted from the subject-specific ROIs as the first
eigenvariate of all voxels within an 8 mm sphere centered around the
individual coordinates. Time series were mean-centered and move-
ment-related variance was removed (by regression using the realign-
ment parameters).

2.4. Dynamic causal modeling

Dynamic causal modeling (DCM; Friston et al., 2003) is a generative
model that enables inference on hidden (latent) neuronal states from
measured neuroimaging data. For fMRI, dynamics of neuronal activity
are described as a function of the effective (directed) connectivity
among neuronal populations:
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A B u x Cu
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where x represents neuronal states, A encodes endogenous connectivity
among brain regions, B(j) represents the modulatory influence that
input uj exerts on endogenous connections, and C quantifies the
strength of experimentally controlled inputs (perturbations) on brain
regions. Integrating Eq. (1) yields a predicted neuronal time course
which is then passed through a nonlinear hemodynamic model that
translates neuronal signal into predicted BOLD signal (Buxton et al.,
1998; Friston et al., 2000; Stephan et al., 2007). This yields a complete
forward mapping from hidden neuronal states to observable fMRI data
and, under Gaussian assumptions about the measurement noise, spe-
cifies the likelihood function. By specifying prior distributions over
model parameters (neuronal, hemodynamic) and hyperparameters
(measurement noise), DCM becomes a fully generative model. Model
inversion then proceeds with approximate Bayesian schemes, most
commonly variational Bayes under the Laplace approximation (VBL;
Friston et al., 2007).

2.4.1. Definition of model space
Inference on effective connectivity is conditional on the underlying

model (e.g., assumptions about the network architecture). However,
there typically exist several a priori hypotheses about the likely net-
work structure. This model uncertainty leads to defining a model space,
a set of alternative plausible candidate models. Here, a total of seven
models were constructed, representing different possible connectivity
structures in the above-mentioned emotional face perception network.
For all models, endogenous connectivity and driving inputs were
identical. Driving inputs were set to elicit face-sensitive activation (i.e.,
containing all face stimuli regardless of whether an emotional or neu-
tral face was presented, but excluding scrambled faces) in left and right
OFA, consistent with their proposed role as the first stage in the face
perception network (Haxby et al., 2000; Pitcher et al., 2011). The sti-
mulus-evoked activity then propagated through the network via intra-
and interhemispheric connections. We assumed forward and backward
intrahemispheric connections between OFA and FFA, and between FFA
and amygdala, but not between OFA and amygdala – consistent with
the notion of a hierarchy in the face perception network (Fairhall and
Ishai, 2007; Haxby et al., 2000). Additionally, reciprocal interhemi-
spheric connections were set between homotopic regions (Catani and
Thiebaut de Schotten, 2008; Clarke and Miklossy, 1990; Van Essen
et al., 1982; Zeki, 1970; Zilles and Clarke, 1997), but omitted between
heterotopic regions (Catani and Thiebaut de Schotten, 2008; Hofer and
Frahm, 2006).

For this basic structure, seven different modulatory input patterns
were defined (Fig. 1), representing distinct hypotheses of how emotion
processing could modulate intra- and interhemispheric connections in
the extended face perception network (Fairhall and Ishai, 2007;
Frässle et al., 2016). Emotion processing could modulate either (i)
forward, (ii) backward, or (iii) forward and backward intrahemispheric
connections. Similarly, emotion processing could modulate interhemi-
spheric connections or not. This yielded six different models, re-
presenting all possible combinations of the above effects. Furthermore,
we included a “null” model (model 7) where none of the connections
were modulated.

Driving and modulatory inputs were not mean-centered. Model in-
version was performed using DCM12 (SPM12, version R7487). For
details, see Supplementary Material S3.

2.4.2. Bayesian model averaging
We computed individual parameter estimates by means of Bayesian

model averaging (BMA; Penny et al., 2010) across all models in our
model space within a pre-specified Occam's window ( = 0.05occ ). For
details, see Supplementary Material S4. BMA parameter estimates

represent a weighted average across the models considered, where each
model contributes according to its posterior model probability. In order
to prevent any cross-talk between training and test sample, BMA
parameters were computed for each participant individually.

2.5. Generative embedding

The posterior means of BMA parameter estimates (78 in total) from
each participant were used to create a generative score space for a
discriminative classification method. Within this space, a linear kernel
representing the inner product = < >k x x x x( , ) ,i j i j was used to compare
two instances (participants). A support vector machine (SVM) was ap-
plied for binary classification of pairwise combinations of the three
MDD groups (i.e., REM, IMP, and CHR). Specifically, we used the
fitcsvm routine in Matlab. Estimates of classification performance were
obtained by leave-one-out cross-validation. Here, in each fold, the
classifier is trained on n 1 participants (the training set) and tested on
the left-out participant. Using the training set only, the hyperpara-
meters of the SVM (box constraint and kernel scale; see Supplementary
Material S5) were optimized using in-built routines of fitcsvm. This
computes Bayes-optimal hyperparameters using the expected im-
provement acquisition function (Frazier, 2018) based on (inner) five-
fold cross validation. This approach is known as nested cross-validation
(Cawley and Talbot, 2010; Stone, 1974). By default, fitcsvm solves SVMs
using the Sequential Minimal Optimization algorithm (SMO; Fan et al.,
2005). Significance of the classification result was assessed using per-
mutation tests. Here, an empirical null distribution of the balanced
accuracy is computed by randomly permuting the participant labels and
re-fitting the entire classification model (i.e., training and testing) based
on these new labels (Good, 2000; Ojala and Garriga, 2010). For each
permutation, the balanced accuracy is re-evaluated. Here, we used
1000 permutations. The p-value is then computed as the rank of the
original balanced accuracy in the distribution of permutation-based
balanced accuracies, divided by the total number of permutations.

3. Results

3.1. Group differences in effective connectivity

Effective connectivity among the regions of the extended face per-
ception network (i.e., OFA, FFA, and amygdala, each in both hemi-
spheres) was assessed using DCM for fMRI (Friston et al., 2003). First,
we provide a brief summary of the group differences in DCM parameter
estimates as assessed using classical statistics (a comprehensive de-
scription of the classical analyses is provided in Supplementary Material
S7).

Random-effects Bayesian model selection (Rigoux et al., 2014;
Stephan et al., 2007) suggested model 3 to be the winning model at the
group level with an expected posterior probability of 0.49 and a pro-
tected exceedance probability close to 1 (Supplementary Figure S4B).
Nevertheless, at the single-subject level, other models received non-
negligible posterior probabilities as well. To account for this variability,
individual connectivity parameters were estimated using BMA
(Penny et al., 2010) over all seven models in the model space within the
default Occam's window ( = 0.05occ ).

When testing for group differences in the BMA parameter estimates
(two-sample t-tests), no significant differences were found when cor-
recting for multiple comparisons based on the false discovery rate
(Benjamini and Yekutieli, 2001). At a more liberal threshold (p< 0.05,
uncorrected), some differences between the patient subgroups were
observed (see Supplementary Figure S6). In brief, effective connectivity
patterns differed mainly in how emotions modulated functional in-
tegration among the face-processing (i.e., bilateral OFA and FFA) and
emotion-sensitive regions (i.e., bilateral amygdala). Overall, emotions
tended to exert stronger modulatory influences in patients showing fast
remission as compared to patients with a chronic disease trajectory
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(Supplementary Figure S6, left) and patients with gradual improvement
of symptoms (Supplementary Figure S6, right). For the comparison
between CHR and IMP patients, the pattern was more ambiguous
(Supplementary Figure S6, middle).

While – as highlighted above – none of the group differences sur-
vived multiple comparisons correction, these findings suggest that
small alterations of different effective connectivity strengths exist be-
tween CHR, IMP and REM patients, which enable classification when
jointly considered as features.

3.2. Classification of clinical trajectories

3.2.1. Predictive accuracy of effective connectivity parameters
Our results suggest that DCM parameter estimates discriminated

patients with chronic disease trajectory from patients showing fast re-
mission, with a balanced accuracy of 79% (p< 0.001; Fig. 2, blue). We
then evaluated the underlying receiver-operating characteristic (ROC)
and precision-recall (PR) curves (Fig. 3A+B). From the ROC curve, the
area under the curve (AUC) for discriminating CHR from REM patients
evaluated to 0.87 (blue curve). Notably, high recall (sensitivity) might
come at the expense of low positive predictive value (PPV; also known
as “precision”) – particularly, in the presence of class imbalances. This
is problematic for clinical applications where one strives to maximize
sensitivity while at the same time keeping PPV high. Hence, we also
inspected the PR curves and found that our classifier achieved 97%
sensitivity at a PPV of 86% when discriminating CHR from REM pa-
tients.

Effective connectivity parameter estimates also discriminated

between IMP and REM patients, with a balanced accuracy of 61%
(p = 0.03; Fig. 2), although this did not reach significance when cor-
recting for multiple comparisons (αBonf = 0.0056). The AUC was 0.63
(Fig. 3A+B; red curve). In contrast, CHR patients could not be differ-
entiated from IMP patients above-chance level (balanced accuracy:
47%, p = 0.92; Fig. 2), corresponding to an AUC of 0.35. Table 2
provides a comprehensive summary of all classification results.

Since groups differed significantly in age (but no other variable;
Table 1), we repeated the analysis after regressing out age as a con-
found from the DCM parameter estimates. We found results to be highly
consistent (although with slightly decreased accuracies), suggesting
that our results are not confounded by age (Supplementary Material
S8).

3.2.2. Comparison to functional connectivity and fMRI activity
We compared the GE results to a conventional approach in which

the classifier operates on estimates of functional connectivity (FC).
Following standard practice, FC was computed in terms of Pearson's
correlations among the same BOLD signal time series that had pre-
viously been used for the DCMs. However, FC measures did not dis-
criminate between the different clinical trajectories above chance, with
balanced accuracies of 50% (p= 0.77) for CHR vs. REM patients, 42%
(p = 0.996) for CHR vs. IMP patients, and 50% (p = 0.37) for IMP vs.
REM patients (Fig. 2, light grey). Importantly, for discriminating CHR
from REM patients, GE significantly outperformed FC estimates
(p = 0.01; asymptotic McNemar test1 as implemented in MATLAB's

Fig. 1. Different plausible hypotheses of the effective connectivity pattern in the network mediating emotional face perception. Forward and backward in-
trahemispheric endogenous connections were set between OFA and FFA, and between FFA and amygdala (Amy). Additional, reciprocal interhemispheric connections
were set between bilateral OFA, bilateral FFA and bilateral amygdala. Driving inputs comprised all faces, regardless of the emotional valence, and were allowed to
drive neuronal activity in the left and right OFA. While endogenous connectivity and driving inputs were identical for all models, they differed in the assumed
modulatory influences of emotion processing. Emotion processing could either modulate (i) forward (models 1&4), (ii) backward (models 2&5), or (iii) forward and
backward intrahemispheric connections (models 3&6). Additionally, emotion processing (i) modulated (models 1–3) or (ii) did not modulate interhemispheric
connections among homotopic brain regions (models 4–6). Systematically varying all combinations resulted in six distinct models. Finally, we also included a “null”
model (i.e., model 7, not shown) where none of the intra- and interhemispheric connections was modulate by emotion processing.

1 The McNemar test is, strictly speaking, only valid when applied to a
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testcholdout function).
In addition, we tested whether the different clinical trajectories

could be distinguished based on measures of BOLD activity (CI) from
the same ROIs as utilized for the connectivity-based analyses. Local
BOLD activity was quantified in terms of the mean and standard de-
viation of the contrast estimates within the 8 mm spheres for all face-
related contrasts (i.e., contrasts representing the individual regressors
of angry, fearful, happy, sad, and neutral faces; see Methods). Under
this approach, the different clinical trajectories were indistinguishable,
with balanced accuracies of 50% (p= 0.72) for CHR vs. REM patients,
48% (p= 0.81) for CHR vs. IMP patients, and 48% (p= 0.51) for IMP
vs. REM patients (Fig. 2, dark grey). As for FC, GE significantly out-
performed local BOLD activity for distinguishing CHR from REM pa-
tients (p = 0.01).

Notably, these analyses are not meant to represent an optimal pre-
diction approach based on FC or CI measures. Higher accuracies for
classification based on FC/CI might be achieved by taking into account
the whole-brain information (e.g., Crowther et al., 2015; Fu et al., 2008;
Schmaal et al., 2015). Furthermore, it is worth pointing out that the
number of features that enter classification are different for GE, FC and
CI. However, the purpose of the above analysis was to compare pre-
dictions based on different fMRI-based features derived from the exact
same data (i.e., the BOLD activity from the ROIs of the emotional face
processing network).

3.3. Assessment of predictive confidence

Next, to assess the predictive confidence of our GE approach, we
computed accuracy-reject curves for the two binary classifiers that
achieved above-chance balanced accuracies (i.e., CHR vs. REM, IMP vs.
REM). Accuracy-reject curves illustrate a classifier's accuracy when only
predictions greater than a certain (relative) confidence threshold are
considered (Nadeem et al., 2010). Hence, this resembles classification
with a reject option (Bishop, 2006), where cases that do not meet a
certain confidence criterion can be deferred to a clinician. We found
that for distinguishing CHR from REM patients, the classifier yielded
perfect classification accuracy at a rejection threshold of 60% of par-
ticipants (Fig. 3C; blue curve). Furthermore, the accuracy-reject curve
overall increased as function of rejection rate, suggesting that partici-
pants further away from the decision hyperplane were more likely to be
assigned correctly to their respective class. In contrast, for distin-
guishing IMP from REM patients no such cut-off could be identified,
and the curve did not reveal a steady increase as a function of rejection
rate (Fig. 3C; red curve).

3.4. Inspection of the generative score space

One benefit of GE is that features represent model parameter esti-
mates, which, depending on the model, may be neurobiologically in-
terpretable. Hence, in a next step, we interrogated our generative score
space to illustrate which features contributed most to the classification
performance.

3.4.1. Inspection of individual predictive features
In a first step, we aimed to pinpoint the individual contribution of

each feature (i.e., DCM parameter estimate) separately for the two
significant classifiers (i.e., CHR vs. REM, IMP vs. REM). Importantly,
individual feature weights of linear classifiers are not directly inter-
pretable because high magnitudes of feature weights might either in-
dicate an association with the label or a “suppressor” variable that
cancels out noise or mismatch in other colinear variables (Haufe et al.,
2014; Naselaris et al., 2011). Therefore, we followed the procedure
described by Haufe et al. (2014) and first transformed all feature
weights into patterns based on a corresponding forward mapping.

For both classifiers, the features with the highest average (across
cross-validation folds) scores were situated along the dimension of
modulatory (emotional) influences (Fig. 4, top; for an alternative vi-
sualization, see Supplementary Figure S8), whereas the endogenous
connectivity and driving input parameters did not distinguish strongly
between the groups. Importantly, since averaging over cross-validation
folds might artificially smooth the weights due to correlations among
folds, we inspected the variability of the observed results across the
individual cross-validation folds. This suggested that the observed
pattern was highly consistent for both classifiers (Fig. 4, bottom).

In brief, for distinguishing CHR from REM patients, the modulatory
influence of happy faces on the connection from right amygdala to right
FFA received the highest score (Fig. 4A and Supplementary Figure
S8A). Furthermore, scores were high for modulatory influences of ne-
gative emotions (i.e., fear, anger, and sadness) on connections among
face-processing and emotion-sensitive regions. For instance, mod-
ulatory influences by angry faces on the connection from right amyg-
dala to right FFA and left amygdala, and on the connection from left
OFA to left FFA showed high loads. Similarly, the modulation of con-
nections from right OFA and left FFA to right FFA, as well as the con-
nection from right FFA to right amygdala by fearful faces received high
scores.

For distinguishing IMP from REM patients, the modulatory influ-
ence of happy faces on the connection from right FFA to right OFA
received the highest score (Fig. 4B and Supplementary Figure S8B).
Modulatory influences by angry and sad faces on this connection also
showed high loads. Similarly, modulation of connections among FFA

Fig. 2. Balanced accuracy for the binary classifiers as assessed using leave-one-
out cross validation for the three different subgroup comparisons – that is, CHR
vs. REM (left), CHR vs. IMP (middle), and IMP vs. REM (right). Balanced ac-
curacies are shown for the different features – namely, effective connectivity
parameters (DCM; blue), functional connectivity (FC; light grey), and local BOLD
activity (CI, dark grey). Asterisks above the bars indicate significant classifica-
tion performance as assessed by means of permutation tests where an empirical
null distribution of the balanced accuracy is computed by randomly permuting
the participant labels and re-evaluating the classifier based on these new labels.
Additionally, asterisks above the lines connecting two bars indicate significant
differences in classification performance between different data features as
assessed using the asymptotic McNemar test.

(footnote continued)
completely independent test set. Hence, comparing cross-validated classifiers
might yield somewhat optimistic results. Having said this, for scenaria like ours,
it is unclear what a statistically rigorous way would be to compare classifiers.
For a discussion on this issue, see Dietterich (1998)
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and amygdala in both hemispheres by angry faces scored highly, as well
as modulation of various endogenous connections (e.g., left amygdala
to left FFA, left to right OFA, left FFA to left OFA) by happy faces.

Overall, the most consistently important connections – that is, the
connections for which modulations received high scores for all emo-
tional valences and both classifiers – are the connections from left to
right OFA, right FFA to right OFA, right amygdala to right FFA, as well
as the reciprocal interhemispheric connections between bilateral FFA.

In summary, the model-based distinction between CHR/IMP pa-
tients from REM patients relied on the expression of trial-by-trial
modulation of connections (by emotional contents) within the face
perception network. Put simply, our results suggest that abnormal dy-
namic changes of connections involved in processing emotional faces
are associated with higher risk of developing a less favorable clinical
course (see also Supplementary Figure S6).

4. Discussion

This paper examines the utility of GE for predicting individual
clinical trajectories of MDD patients over a two-year period. Using fMRI
data from the NESDA study and DCM to infer effective connectivity
within the emotional face perception network, model parameter esti-
mates served as features for supervised learning. This GE approach
enabled the prediction of whether a given patient would show a chronic
disease course or fast remission, with a balanced accuracy of 79%.

Additionally, patients with gradual improvement in symptom severity
could be distinguished from those who remitted quickly with a ba-
lanced accuracy of 61%. GE outperformed SVM-based classification
based on more conventional (descriptive) features, i.e., FC or local ac-
tivation estimates derived from the same data within the network of
interest. Similar to previous studies (Brodersen et al., 2014, 2011),
these findings demonstrate that using a plausible generative model as
the basis for classification can enhance classification accuracy sig-
nificantly.

Apart from the superior classification accuracy, another advantage
of GE is that results can be interpreted in terms of the mechanisms
represented by the underlying generative model. To this end, one can
interrogate the generative score space to identify the features that are
most discriminative between the different classes (Brodersen et al.,
2011). Here, we addressed this by first transforming the feature weights
of the linear SVM into patterns, following previous recommendations
(Haufe et al., 2014). Inspecting these scores then allowed to pinpoint
those features contributing most to the classification between the dif-
ferent naturalistic courses (Fig. 4 and Supplementary Figure S8). This
analysis suggested that groups differed primarily along the dimension
encoded by the modulatory parameters, which represent trial-by-trial
changes in endogenous connections by emotional valence of faces. Put
differently, it is the dynamic modulation of connections by emotional
contents of faces that allows for predicting the clinical trajectory of an
individual patient – not the average connectivity across all trials. In

Fig. 3. Performance curves for the two binary classifiers that achieved above-chance balanced accuracies – that is, CHR vs. REM (blue curve) and IMP vs. REM (red
curve). (A) receiver-operating characteristic (ROC) curves, illustrating the trade-off between the true positive rate (sensitivity) and the false positive rate (1-speci-
ficity) across the entire range of detection thresholds, (B) precision-recall (PR) curves, illustrating the trade-off between the precision (positive predictive value) and
recall (true positive rate) for different thresholds, and (C) accuracy-reject curves, representing the accuracy of a classifier as a function of the rejection rate
(Nadeem et al., 2010). For a comprehensive summary of all classification results, see Table 2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Classification results for the generative embedding procedure. Shown are key performance measures of the classification algorithm,
including: balanced accuracy, area under the curve, sensitivity (recall), specificity, positive predictive value (precision), and negative
predictive value. Performance measures are shown for the three different binary classifications (i.e., CHR vs. REM, CHR vs. IMP, and
IMP vs. REM).

Classification CHR (n = 15)
vs. REM (n = 39)

CHR (n = 15)
vs. IMP (n = 31)

IMP (n = 31) vs.
REM (n = 39)

Accuracy 0.87 0.63 0.63
Balanced accuracy 0.79 0.47 0.61
Area under the curve (AUC) 0.87 0.35 0.63
Sensitivity (recall) 0.97 0.94 0.77
Specificity 0.60 0 0.45
Positive predictive value (Precision) 0.86 0.66 0.64
Negative predictive value 0.90 0 0.61
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conclusion, our analysis implies that it is the reactivity of the face
processing network to emotional stimuli – in terms of reconfiguring its
connection strengths trial-by-trial – which enables predicting future
clinical trajectories of individual patients.

These results are consistent with conventional group comparisons of
the connectivity patterns (see Results and Supplementary Material S7),
which, however, do not allow for single-subject predictions. Our results
are also consistent with previous work suggesting aberrant processing

and regulation of emotions as a key pathomechanism in MDD
(Harmer et al., 2009; Rive et al., 2013). For instance, an fMRI meta-
analysis demonstrated valence-dependent effects of emotional stimuli
on amygdala and fusiform gyrus in depression, with hyperactivation for
negative and hypoactivation for positive stimuli (Groenewold et al.,
2013; but see Muller et al., 2017). Reduced amygdala activity to posi-
tive emotional stimuli has also been associated with anhedonia
(Stuhrmann et al., 2013). Similarly, functional integration of the

Fig. 4. Illustration of the relevance of individual features. First, feature weights were transformed into feature patterns to allow for interpretability (Haufe et al.,
2014). The respective score of each individual feature (DCM parameter) is then shown as a polar plot for the classifier distinguishing (A) patients with a chronic
disease trajectory from patients that showed fast remission (CHR vs. REM), and (B) patients with gradual improvement of symptom severity from patients that
showed fast remission (IMP vs. REM). (Top) Magnitude of scores computed as the average across all cross-validation folds, (bottom) magnitude of scores for each
cross-validation fold individually, normalized to the maximum score within each fold for displaying purposes. The grey area represents endogenous connectivity and
driving input parameters, showing less pronounced scores as the modulatory parameters. Endogenous connectivity is colored in blue, modulatory influences of happy
faces in red, modulatory influences of angry faces in yellow, modulatory influences of fearful faces in violet, modulatory influences of sad faces in green, and driving
inputs (related to all faces regardless of the emotional valence) in cyan. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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emotion processing network is altered in MDD (Almeida et al., 2009;
Greicius et al., 2007; Mayberg, 1997). Alterations in emotion proces-
sing have also been suggested to have some clinical utility. For instance,
implicit processing of affective facial expressions related to a diagnosis
of MDD (Fu et al., 2007), and longitudinal neuroimaging studies re-
ported normalization of activations by emotion processing under
pharmacotherapy (Ai et al., 2019; Anand et al., 2007; Fu et al., 2004;
Godlewska et al., 2012; Murphy et al., 2009; Robertson et al., 2007;
Sheline et al., 2001).

Our classification accuracies are comparable to the results obtained
by Schmaal et al. (2015). For CHR vs. REM patients, GE yielded a
higher predictive accuracy than the best result reported by Schmaal and
colleagues (balanced accuracy: 73%) when not accounting for age.
When age was regressed out as a confound, the predictive accuracy of
GE (balanced accuracy: 74%) was on par with the result reported in
Schmaal et al. (2015). Otherwise, our procedure yielded somewhat
complementary results: while Schmaal and colleagues could distinguish
CHR from IMP patients but not IMP from REM patients, the opposite
held for GE. This may be due to differences in classification procedure
and features: Schmaal et al. used GPCs on whole-brain contrast images,
whereas we applied linear SVMs to DCM parameter estimates from a
small (six-region) network. Furthermore, their analysis used the arti-
fact-confounded MR data (see Methods); hence, it remains to be tested
whether classification accuracy would change when the artifact-cor-
rected images are used.

Previous attempts to obtain single-patient predictions in MDD have
almost exclusively concerned short-term treatment responses to specific
interventions. For instance, seminal PET work demonstrated that cin-
gulate metabolism differentiated distinct treatment responses
(Mayberg et al., 1997). For fMRI, brain activity during the processing of
sad faces allowed predicting treatment outcome to antidepressant
medication in individual (Fu et al., 2008). Graph-theoretical measures
based on FC in the default mode network at baseline was associated
with changes in symptom severity after two weeks of medication
(Shen et al., 2015). Furthermore, activation (Siegle et al., 2012) and FC
(Crowther et al., 2015; Walsh et al., 2017) were predictive of psy-
chotherapy outcome. Similarly, FC of subcallosal cingulate cortex with
insula, dorsal midbrain and ventromedial prefrontal cortex was differ-
entially associated with remission and treatment failure to cognitive-
behavioral therapy and antidepressant medication (Dunlop et al.,
2017). Finally, clinical responses to transcranial direct current stimu-
lation of left prefrontal cortex could be predicted in unmedicated MDD
patients (Nord et al., 2019).

Arguably, the attempt to predict outcome after two years in a nat-
uralistic setting, as in NESDA, represents a greater challenge than
predicting short-term response to a particular treatment. NESDA (1)
recruited patients from a wide spectrum, including community, primary
care and specialized mental health organizations, (2) encompassed a
wide range of depressive phenotypes from very mild to severe, and (3)
did not standardize treatments or occurrence of life events over the 2-
year follow-up period (Penninx et al., 2008). This represents a strength
of the NESDA dataset since it allows testing the course of MDD in a
realistic setting which reflects the clinical heterogeneity that physicians
face on a daily basis.

Existing attempts to predict MDD trajectories have focused on
clinical or cognitive features (Gueorguieva et al., 2017; Kessler et al.,
2016; Vogelzangs et al., 2014; Vreeburg et al., 2013). Recently,
Dinga et al. (2018) systematically assessed the predictive value of non-
imaging data, using clinical, psychological and biological measures
from the NESDA study. They found that clinical measures performed
best with balanced accuracies around 66%, while endocrine and im-
munological measures (e.g., cortisol, inflammatory markers, metabolic
syndrome markers) did not distinguish between clinical trajectories.
Interestingly, consistent with our GE results, they could primarily dis-
criminate REM patients from the other two groups.

Our study is subject to several limitations. First, while our sample

size (n = 85) does not fare badly compared to previous imaging-based
prediction studies on MDD, the sample size is too modest for estab-
lishing predictions that can be expected to generalize robustly; parti-
cularly, the chronic group is small, comprising only 15 patients.
Unfortunately, we do not have access to a separate validation set at the
present time. Hence, our results should be understood as a proof-of-
concept regarding the potential benefits of GE for clinical predictions,
not as providing a mature prognostic tool for MDD. Second, the NESDA
sample utilized in the present work was acquired at multiple sites.
While the proportion of patients in the three clinical trajectory groups
did not significantly differ across sites (see Table 1) – rendering any
potential bias on the reported classification results unlikely – prediction
might still benefit from a more thorough data harmonization
(Fortin et al., 2017; Yu et al., 2018). Third, we here adopted the clas-
sical view on hierarchical processing in the face perception network
(Fairhall and Ishai, 2007; Haxby et al., 2000). This view could be ex-
tended, given that recent work suggested a direct subcortical pathway,
from the superior colliculus to the amygdala via the pulvinar, for rapid
threat detection during emotional face perception (McFadyen et al.,
2019). This could be accounted for by expanding the present model
space and allowing for additional driving inputs into the amygdala.
Fourth, the classical DCM approach employed here is restricted to small
networks to keep model inversion computationally feasible
(Daunizeau et al., 2011; Frässle et al., 2018b). Consequently, we fo-
cused on a six-region network comprising only core regions of the face
perception network. However, depression is characterized by more
widely distributed network organization (Greicius et al., 2007;
Mayberg, 1997; Wang et al., 2012) and, hence, inferring whole-brain
effective connectivity represents a promising next step. This could be
achieved by exploiting recent advances in generative models that are
computationally highly efficient (Frässle et al., 2018a, 2017).

Furthermore, in line with Schmaal et al. (2015), we used binary
classifiers which can only distinguish between two disease trajectories.
However, this approach does not allow for single-class predictions,
which rests on multi-class classification (Bishop, 2006). Extending our
classification scheme beyond binary classification is likely to be of
clinical relevance, as multi-class prediction more faithfully resembles
the decision process that physicians routinely engage in. In addition, an
attractive alternative for future analyses is to predict continuous mea-
sures, such as time-to-recovery, rather than the discrete classes defined
by the latent class growth analysis (Rhebergen et al., 2012). On a si-
milar note, we anticipate that predicting the entire disease trajectories
rather than discrete classes or continuous outcome measures will con-
stitute an important future test of the predictive utility of effective
connectivity patterns in MDD.

Finally, on a more general note, any biomarker in psychiatry will
always yield imperfect predictions. This is because the course of psy-
chiatric disorders is affected by a plethora of environmental factors
which cannot be foreseen from physiological data, including the oc-
currence of stressful life events like loss, bereavement, or trauma
(Horesh et al., 2008). Such external perturbations likely upper-bound
the predictive accuracy of any biomarker, whether derived from neu-
roimaging or genetics.

Despite these limitations, the present study demonstrates the po-
tential of GE for predicting clinical outcomes of MDD in a way that
combines enhanced accuracy with biological interpretability of pre-
dictions. More generally, as illustrated by recent successful clinical
applications (Symmonds et al., 2018), generative models offer an at-
tractive strategy for establishing computational assays that could in-
form clinical decision-making in psychiatry (Frässle et al., 2018b). A
critical condition for the future success (or failure) of this strategy will
be the availability of large prospective patient datasets that, like
NESDA, offer clinically relevant outcome data and allow for testing the
generalizability and robustness of model-based clinical predictions in
real-world settings.
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