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a b s t r a c t 

Connectomics is essential for understanding large-scale brain networks but requires that individual connection 

estimates are neurobiologically interpretable. In particular, a principle of brain organization is that reciprocal 

connections between cortical areas are functionally asymmetric. This is a challenge for fMRI-based connectomics 

in humans where only undirected functional connectivity estimates are routinely available. By contrast, whole- 

brain estimates of effective (directed) connectivity are computationally challenging, and emerging methods re- 

quire empirical validation. 

Here, using a motor task at 7T, we demonstrate that a novel generative model can infer known connectivity 

features in a whole-brain network ( > 200 regions, > 40,000 connections) highly efficiently. Furthermore, graph- 

theoretical analyses of directed connectivity estimates identify functional roles of motor areas more accurately 

than undirected functional connectivity estimates. These results, which can be achieved in an entirely unsuper- 

vised manner, demonstrate the feasibility of inferring directed connections in whole-brain networks and open 

new avenues for human connectomics. 
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. Introduction 

Understanding the human brain is a major scientific challenge of

ur time. Advances in analysis methods for data from non-invasive neu-

oimaging techniques have provided unprecedented opportunities for

tudying the human brain ( Friston, 2009 ; Poldrack and Farah, 2015 ).

n particular, system models tailored to functional magnetic resonance

maging (fMRI) data have enabled studying the living human brain as a

ynamic system of interconnected neuronal populations ( Park and Fris-

on, 2013 ). This has fueled the emergence of whole-brain connectomics,

 young discipline which is fundamentally important for understanding

he organizational principles of the brain and plays a central role in

etwork neuroscience ( Bassett and Sporns, 2017 ). 

Since the term “connectome ” was originally introduced

 Hagmann, 2005 ; Sporns et al., 2005 ), the field has grown rapidly

nd is now one of the most vibrant disciplines in neuroscience

 Craddock et al., 2013 ). One of the goals of connectomics is a com-

rehensive map of neuronal connections, covering the entire nervous

ystem. Seminal achievements include the specification of the complete

euronal wiring diagram in C. elegans ( White et al., 1986 ) or the
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isual system of Drosophila ( Takemura et al., 2013 ). In non-human

rimates and humans, particular emphasis has been placed on differ-

nces and individuality. For example, an important concept is that of

connectivity fingerprints ” – a term originally introduced to refer to

rea-specific patterns of connectivity ( Passingham et al., 2002 ) and

ore recently used to denote subject-specific connectivity patterns that

etermine inter-individual differences in brain function ( Tavor et al.,

016 ) and behavior ( Smith et al., 2015 ). Furthermore, connectomics

as begun incorporating changes in connectivity with cognitive context

r learning ( Froudist-Walsh et al., 2018 ). 

Connectomics is not only crucial for studying organizational princi-

les in the healthy human brain, but also in disease. Aberrant functional

ntegration has been observed in most psychiatric and neurological

isorders ( Baker et al., 2019 ; Buckholtz and Meyer-Lindenberg, 2012 ;

ornito et al., 2015 ; Stam, 2014 ). For example, psychiatric diseases like

chizophrenia, depression, and autism have all been associated with

athological alterations across the functional connectome. For this rea-

on, connectomes may serve as intermediate phenotypes situated be-

ween the domains of genetics/molecules and expressions of individual

pathological) behavior ( Fornito et al., 2015 ). 
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However, to render connectomics useful for understanding large-

cale brain networks and alterations thereof, individual connection esti-

ates have to be neurobiologically interpretable. A principle of brain

rganization are functional asymmetries of reciprocal connections –

.g., differences between ascending and descending connections in cor-

ical hierarchies ( Felleman and Van Essen, 1991 ; Zeki and Shipp, 1988 )

r asymmetries in interhemispheric interactions ( Frässle et al., 2016 ;

azzaniga, 2000 ; Stephan et al., 2007 ). This however represents a chal-

enge for fMRI-based connectomics in humans: routine measures of con-

ectivity are so far undirected; namely, structural and functional con-

ectivity among network nodes at a mesoscopic or macroscopic level.

n brief, structural connectivity refers to white-matter fiber tracts that

an be measured using diffusion weighted imaging (DWI; Schaefer et al.,

000 ), whereas functional connectivity relates to statistical interdepen-

encies between fMRI signals and is computed using simple correlation

nalyses or more sophisticated statistical techniques (for a comprehen-

ive review, see Karahanoglu and Van De Ville, 2017 ). 

Unfortunately, inferring directed estimates of functional interac-

ions (i.e., effective connectivity) at the whole-brain level has proven

hallenging, mainly due to computational limitations. Various mod-

ls of effective connectivity have been proposed over the last decade

 Bielczyk et al., 2019 ; Valdes-Sosa et al., 2011 ). For instance, dynamic

ausal models (DCMs; Friston et al., 2003 ) and biophysical network

odels (BNMs; Deco et al., 2013 ; Jirsa et al., 2016 ) are two widely used

pproaches and have proven useful. However, these methods are limited

n either the network size that can be considered (DCM) or the ability to

dentify individual connection strengths (BNM). While recent progress

as been made in both domains ( Gilson et al., 2017 ; Razi et al., 2017 ;

ang et al., 2019 ), computational efficiency and identifiability remain

roblematic and/or unknown for these models. 

Beyond DCM and BNM, several other approaches that infer di-

ected estimates of functional interactions from neuroimaging data have

een proposed. These include Multivariate Granger Causality (MVGC;

oebel et al., 2003 ; Roebroeck et al., 2005 ; Seth, 2010 ), Mesoscale Indi-

idualized Neurodynamic (MINDy) modeling ( Singh et al., 2020 ), corre-

ation generalizations ( Xu et al., 2017 ), Group Iterative Multiple Model

stimation (GIMME; Gates et al., 2014 ), Bayes net (directed acyclic

raphical) models ( Mumford and Ramsey, 2014 ; Ramsey et al., 2017 ;

anchez-Romero et al., 2019 ), and non-Gaussian models ( Sanchez-

omero et al., 2018 ). While promising, all of these approaches also have

imitations (e.g., some operate directly at the level of observed fMRI

ata, not at an underlying neuronal level), and their practical utility has

ot always been systematically tested in application to fMRI data from

eal-world scenarios. 

Beyond methodological assessments of methods using synthetic

ata with known ground truth (e.g., Frässle et al., 2018a ; Sanchez-

omero et al., 2019 ; Smith et al., 2011 ), empirical validation studies are

equired that challenge any given candidate model to rediscover known

ets of connections from whole-brain fMRI data. This paper presents

uch a validation study for regression dynamic causal modeling (rDCM;

rässle et al., 2018a , 2017 ). rDCM is a recently introduced generative

odel of fMRI data that enables connection-specific estimates of effec-

ive connectivity in whole-brain networks. This method is promising

or several reasons: First, rDCM is computationally highly efficient and

cales gracefully to large networks that comprise hundreds of nodes.

ore precisely, compute times of rDCM scale polynomially (as opposed

o exponentially) with the number of regions. Second, the model can

xploit structural connectivity information to constrain inference on di-

ected functional interactions or, where no such information is available,

nfer optimally sparse representations of whole-brain networks. Hence,

DCM provides two alternative modes of operation to derive individual

onnectivity fingerprints at the whole-brain level. Third, rDCM allows

o exploit knowledge about where and when experimental perturbations

e.g., sensory stimuli) affect network dynamics. This is important since

nown perturbations can greatly help constrain inference about directed

nfluences within systems ( Stephan et al., 2015 ). 
In this paper, we illustrate the practical benefits of rDCM for whole-

rain connectomics and network neuroscience in humans. For this, we

se ultra-high field 7T fMRI data acquired under a deliberately simple

aradigm (visually paced hand movements) in which relevant connec-

ions are well known and show clear hemispheric asymmetries. Later-

lized processes are particularly useful for this purpose as they provide

trong qualitative predictions ( Frässle et al., 2016 ; Stephan et al., 2007 )

hat concern both the location (hemisphere) where processes should oc-

ur (or, equally important, not occur) as well as the asymmetry (or mir-

or symmetry) of processes across hemispheres. Here, we demonstrate

he utility of rDCM by performing two types of whole-brain connectivity

nalyses in a network with over 200 regions and 40,000 directed con-

ections. These analyses are (i) anatomically guided by tractography

esults, and (ii) completely unconstrained by pruning fully (all-to-all)

onnected brain-wide graphs to those connections essential for explain-

ng whole-brain activity. 

. Methods and materials 

.1. Regression dynamic causal modeling 

.1.1. Basic framework 

Regression DCM (rDCM) is a novel variant of DCM for fMRI that has

pecifically been developed for effective connectivity analyses in large

whole-brain) networks ( Frässle et al., 2017 ). For this, rDCM applies sev-

ral modifications and simplifications to the original DCM framework

for a short summary of classical DCM, see Supplementary Material S1).

n brief, these include (i) translating state and observation equations

rom time to frequency domain using the Fourier transformation (under

tationarity assumptions), (ii) replacing the nonlinear biophysical model

f hemodynamics with a linear hemodynamic response function (HRF),

iii) applying a mean field approximation across regions (i.e., connec-

ivity parameters targeting different regions are assumed to be indepen-

ent), and (iv) specifying conjugate priors on neuronal (i.e., connectiv-

ty and driving input) parameters and noise precision to enable analytic

ariational Bayesian (VB) update equations. These modifications essen-

ially transform a linear DCM in the time domain into a Bayesian linear

egression ( Bishop, 2006 ) in the frequency domain: 

 

(
𝑌 |𝜃, 𝜏, 𝑋 

)
= 

𝑅 ∏
𝑟 =1 

 

(
𝑌 𝑟 ; 𝑋𝜃𝑟 , 𝜏

−1 
𝑟 

𝐼 𝑁×𝑁 

)

 𝑟 = 

(
𝑒 
2 𝜋𝑖 𝑚 

𝑁 − 1 
) 𝑦̂ 𝑟 

𝑇 

 = 

[
𝑦̂ 1 , ̂𝑦 2 , … , ̂𝑦 𝑅 , ̂ℎ ̂𝑢 1 , ̂ℎ ̂𝑢 2 , … , ̂ℎ ̂𝑢 𝐾 

]

𝑟 = 

[
𝑎 𝑟, 1 , 𝑎 𝑟, 2 , … , 𝑎 𝑟,𝑅 , 𝑐 𝑟, 1 , 𝑐 𝑟, 2 , … , 𝑐 𝑟,𝐾 

]
(1) 

here 𝑌 𝑟 is the Fourier transform of the temporal derivative of the BOLD

ignal in region 𝑟 that is explained as a linear mixture of afferent connec-

ions from other regions and direct (driving) inputs, 𝑦 𝑟 is the measured

OLD signal in region 𝑟 , 𝑋 is the design matrix (comprising a set of

egressors and explanatory variables), and 𝑢 𝑘 is the k th experimental in-

ut. Additionally, 𝑁 represents the number of data points, 𝑇 the time

nterval between subsequent points, 𝒎 = [ 0 , 1 , … , 𝑁 − 1 ] is a vector of

requency indices, and h denotes the fixed hemodynamic response func-

ion (HRF). Furthermore, 𝜃𝑟 represents the parameter vector comprising

ll connections 𝑎 𝑟, 1 , ..., 𝑎 𝑟,𝑅 and all driving input parameters 𝑐 𝑟, 1 , … , 𝑐 𝑟,𝐾 
argeting region 𝑟 . Effective connectivity parameters in DCM represent

ate constants and are given in Hz (for details, please see Supplemen-

ary Material S1). Finally, 𝜏𝑟 denotes the noise precision parameter for

egion 𝑟 and 𝐼 𝑁×𝑁 

is the identity matrix (where 𝑁 denotes the number

f data points). Under this formulation, inference can be done very effi-

iently by (iteratively) executing a set of analytical VB update equations

oncerning the sufficient statistics of the posterior density. In addition,
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1 Early theoretical work demonstrated that the intrinsic SNR depends approxi- 

mately linearly on the static magnetic field strength ( Hoult and Lauterbur, 1979 ; 

Edelstein et al., 1986 ). In theory, the strength of the signal from an oscillat- 

ing magnetization is proportional to the square of the magnetic field strength, 

whereas the strength of the noise scales (under certain assumptions) only lin- 

early with the magnetic field strength. This theoretical prediction was later con- 

firmed empirically, for instance, Vaughan et al. (2001) demonstrated an almost 

twofold increase in SNR at 7T as compared to 4T. 
2 More specifically, the present task only has a single experimental condition 

that can be adequately modeled using a linear model like rDCM. By contrast, 

experiments with multiple task conditions in a single experimental run require 

models like the original bilinear DCM ( Friston et al., 2003 ) which allows for task- 

dependent perturbations of endogenous connectivity (A matrix) via modulatory 

influences (B matrix). 
ne can derive an expression for the negative (variational) free energy

 Friston et al., 2007 ). The negative free energy represents a lower-bound

pproximation to the log model evidence that accounts for both model

ccuracy and complexity. Hence, the negative free energy offers a sen-

ible metric for scoring model goodness and thus serves as a criterion

or comparing competing hypotheses ( Bishop, 2006 ). A comprehensive

escription of the generative model underlying rDCM can be found else-

here ( Frässle et al., 2017 ). 

.1.2. Sparsity constraints 

The standard rDCM framework has recently been augmented with

parsity constraints to enable automatic pruning of fully (all-to-all) con-

ected networks to a degree of optimal sparsity ( Frässle et al., 2018a ).

his is achieved by introducing an additional set of binary indicator vari-

bles as feature selectors in the likelihood function. In particular, each

onnectivity and driving input parameter 𝑖 in a fully connected model

s multiplied with a specific binary indicator variable 𝜉𝑖 which takes the

alue of 1 if the connection is present (i.e., contributes to explaining the

bserved signal) and 0 if the connection is absent (i.e., not involved in

enerating the observed signal). The Bayesian sparse linear regression

odel in the frequency domain takes the form: 

 ( 𝑌 |𝜃, 𝜏, 𝑋 ) = 

𝑅 ∏
𝑟 =1 

 

(
𝑌 𝑟 ; 𝑋𝑍 𝑟 𝜃𝑟 , 𝜏

−1 
𝑟 

𝐼 𝑁×𝑁 

)

 𝑟 = 

(
𝑒 
2 𝜋𝑖 𝑚 

𝑁 − 1 
) 𝑦̂ 𝑟 

𝑇 

 = 

[
𝑦̂ 1 , ̂𝑦 2 , … , ̂𝑦 𝑅 , ̂ℎ ̂𝑢 1 , ̂ℎ ̂𝑢 2 , … , ̂ℎ ̂𝑢 𝐾 

]

𝑟 = 

[
𝑎 𝑟, 1 , 𝑎 𝑟, 2 , … , 𝑎 𝑟,𝑅 , 𝑐 𝑟, 1 , 𝑐 𝑟, 2 , … , 𝑐 𝑟,𝐾 

]

 𝑟 = diag 
([
𝜉𝑟, 1 , 𝜉𝑟, 2 , … , 𝜉𝑟,𝑅 , 𝜉𝑟,𝑅 +1 , 𝜉𝑟,𝑅 +2 , … , 𝜉𝑟,𝑅 + 𝐾 

])
(2)

here 𝑍 𝑟 is a diagonal matrix comprising the binary indicator variables

for all connections and driving inputs targeting region 𝑟 . All other vari-

bles in Eq. (2) are defined as above. For this framework, one can again

erive a VB update scheme for model inversion to obtain estimates of

i) the posterior distribution over neuronal connectivity, noise preci-

ion and binary indicator parameters, and (ii) the negative free energy.

s in the basic rDCM framework, model inversion then boils down to

teratively solving a set of update equations. For a comprehensive de-

cription of the generative model, we refer the reader to previous work

 Frässle et al., 2018a ). 

Notably, a Bernoulli prior is specified on the binary indicator vari-

bles 𝜉𝑖 where the Bernoulli distribution is parameterized by a single

arameter 𝑝 𝑖 0 . In other words, the 𝑝 𝑖 0 is a hyperparameter that deter-

ines the a priori belief about the network’s degree of sparseness. When

o strong prior knowledge is available regarding the sparseness of the

etwork, a principled approach to determine the optimal 𝑝 𝑖 0 is to sys-

ematically vary 𝑝 𝑖 0 within a range of plausible values and select the

yperparameter with the highest negative free energy ( Frässle et al.,

018a ). 

.2. Empirical data 

Here, we assess the utility of rDCM for inferring the effective con-

ectivity pattern in a realistic whole-brain network based on empirical

ata from an fMRI study with a simple paradigm of visually paced hand

ovements. We chose this dataset for the following reasons: (i) the sim-

le and robust nature of the task, (ii) the extensive knowledge available

bout the cortical network supporting hand movements ( Ledberg et al.,

007 ; Rizzolatti and Luppino, 2001 ; Witt et al., 2008 ), (iii) the engage-

ent of distributed cortical networks related to visual and motor aspects

f the task, (iv) the high signal-to-noise ratio (SNR) of the data afforded
y the 7 Tesla MR scanner on which the data was acquired, 1 and (v)

he absence of modulatory influences, 2 which appeals to the linearity

ssumptions in rDCM. This allowed us to probe the plausibility of the

hole-brain connectivity patterns inferred by rDCM. 

.2.1. Participants 

Thirty right-handed individuals (14 females, 16 males; mean age:

9.2 ± 9.5 years, age range: 39–74 years) participated in this method-

logical study. Five participants had to be excluded from the analysis

ue to non-compliance with the task, missing data, or incorrect scanner

ettings, resulting in a final sample of 25 participants (13 females, 12

ales; mean age: 58.2 ± 9.7 years, age range: 39–71 years). All were

ealthy with no history of psychiatric or neurological disease, brain

athology or abnormalities in brain morphology as indicated by their

1-weighted anatomical image. All participants were fluent German

peakers. Half of the participants were regularly taking low-dose aspirin

100 mg per day). This is because the dataset used in this paper consists

f two groups from a larger study that was purely observational (i.e.,

articipants already took aspirin independently from our study). In the

ollowing, we treat participants with and without aspirin intake as one

roup, given that the present study is not interested in potential aspirin

ffects but merely serves to test the construct validity of rDCM for a sim-

le paradigm. For completeness, we examined potentially confounding

ffects of aspirin on connectivity estimates and found that none of the

hole-brain connectivity estimates presented below showed any signif-

cant differences between the two groups. For each participant, written

nformed consent was obtained prior to the experiment. The experimen-

al protocol was in compliance with the Declaration of Helsinki and was

erformed with approval by the Cantonal Ethics Commission of Zurich

EK 09-2006 ETH). 

.2.2. Experimental procedure 

The task used in this study was similar to the paradigm by

refkes et al. (2008) in which participants had to perform visually syn-

hronized whole-hand fist closings with either their left or right hand.

and movements of different conditions (i.e., left or right) were sepa-

ated into two scanning sessions (which deviates from the work by Gre-

kes and colleagues, where left- and right-hand movements were per-

ormed in alteration within a single session). 

In each session, the experimental paradigm was a blocked de-

ign as follows: At the beginning of each block, an arrow was pre-

ented in the middle of the screen, indicating which hand to use in

he upcoming block. The arrow then started blinking at a rate of

.25 Hz for 16 s, dictating the rhythm of participants’ hand move-

ents (i.e., 20 fist closings per block). The stimulus onset time was

00 ms and the inter-stimulus interval was set to 500 ms. Subse-

uent blocks were interleaved with a resting period of the same length

here participants did not perform hand movements but kept fixa-

ion in the center of the screen. Stimuli were presented using Cogent

000 (v1.33; http://www.vislab.ucl.ac.uk/Cogent/index.html ). Since

ach session comprised fist closings of only one condition, this dataset

http://www.vislab.ucl.ac.uk/Cogent/index.html
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s particularly suitable for probing the current implementation of rDCM

ince no modulatory influences are required. 

As mentioned before, the task was chosen because it affords clear hy-

otheses about the putative network supporting visually synchronized

and movements ( Ledberg et al., 2007 ; Rizzolatti and Luppino, 2001 ;

itt et al., 2008 ). Specifically, simple unilateral hand movements (i)

esult from lateralized brain activity ( Kim et al., 1993 ) and (ii) involve

nteractions between well-known brain regions. We briefly comment on

hese properties in more detail. 

Lateralized processes are particularly useful to evaluate models of

onnectivity as they provide strong qualitative predictions (for previous

xamples, see Frässle et al., 2016 ; Stephan et al., 2007 ). These predic-

ions concern the location (hemisphere) where processes should occur

or, equally important, not occur) as well as the asymmetry (or mirror

ymmetry) of processes across hemispheres. In our paradigm, unilat-

ral hand movements should be accompanied by enhanced connectivity

etween motor areas in the contralateral hemisphere ( Kraskov et al.,

011 ). Given the visual pacing input, one would also expect lateral-

zed connectivity from visual (e.g., motion-sensitive area V5/MT) to

otor areas via parietal areas ( Ledberg et al., 2007 ; Rizzolatti and Lup-

ino, 2001 ); the effect of lateralization may be less strong, however,

ince the visual input was presented centrally and thus did not specifi-

ally enter one hemisphere. In the motor domain, an additional advan-

age of our paradigm is that contrasting left and right unilateral hand

ovements allows for mirror-symmetric predictions: right-hand move-

ents should lead to enhanced connectivity between left-hemispheric

but not the corresponding right-hemispheric) motor regions and vice

ersa. This offers an opportunity to test the replicability of our connec-

ivity findings across hemispheres. 

The key cortical components of the motor network underlying

isually synchronized unilateral hand movements are well known

 Grefkes et al., 2008 ; Witt et al., 2008 ). These include primary mo-

or (M1) and somatosensory cortex (SM1), supplementary motor area

SMA), and lateral premotor cortex (PMC). In brief, M1 represents the

ain executive locus, with corticospinal projections which directly tar-

et lateral motor nuclei in the spinal cord ( Evarts, 1981 ). PMC is in-

olved in the execution of hand movements under sensory guidance

 Goldberg, 1985 ), and was found to be crucial for transforming sensory

nformation into appropriate motor behavior ( Halsband and Passing-

am, 1982 ). SMA represents an integral component for planning and

nitiating voluntary hand movements ( Grefkes et al., 2008 ; Rao et al.,

993 ). Furthermore, SM1 relates to somatosensory and proprioceptive

spects of motor acts ( Penfield and Boldrey, 1937 ). In addition to the

omponents mentioned above, the anterior cerebellum is involved in

imple unilateral hand movements ( Witt et al., 2008 ). Furthermore,

iven the visual pacing input, one would also expect visual areas such

s the primary visual cortex and the motion-sensitive area V5/MT to be

ngaged. 

.2.3. Data acquisition 

Functional images were acquired using a 7T MR scanner (Philips

chieva) with a 16-channel head matrix receiver coil. Images were

btained using a T 2 
∗ -weighted gradient echo-planar imaging (EPI) se-

uence (36 axial slices, TR = 2000 ms, TE = 25 ms, field of view (FoV)

20 × 220 × 108mm 

3 , voxel size 1.77 × 1.77 × 3 mm 

3 , flip angle

0°, SENSE factor 4) sensitive to the blood oxygen level dependent

BOLD) signal. Images covered the entire brain. In each session, 230

unctional images were acquired, representing either brain activity dur-

ng left- or right-hand fist closings. For each participant, an additional

igh-resolution anatomical image was acquired using a T1-weighted

nversion-recovery turbo field echo (3D IR-TFE) sequence (150 slices,

R = 7.7 ms, TE = 3.5 ms, volume TR = 4000 ms, inversion time 1200 ms,

eld of view (FoV) 240 × 240 × 135 mm 

3 , voxel size 0.9 × 0.9 × 0.9mm 

3 ,

ip angle 7°, SENSE factor 2 in phase and 1.5 in slice direction). 
In addition to the MRI data, physiological recordings related to heart

eats and breathing were recorded during scanning with a 4-electrode

lectrocardiogram (ECG) and a breathing belt, respectively. 

.2.4. Data processing and analysis 

Functional images were analyzed using SPM12 (Statistical Paramet-

ic Mapping, version R6553, Wellcome Trust Centre for Neuroimaging,

ondon, UK, http://www.fil.ion.ucl.ac.uk ) and Matlab R2015a (Math-

orks, Natick, MA, USA). Individual images were realigned to the

ean image, unwarped, coregistered to the participant’s high-resolution

natomical image, and normalized to the Montreal Neurological Insti-

ute (MNI) standard space using the unified segmentation-normalization

pproach. During spatial normalization, functional images were resam-

led to a voxel size of 2 × 2 × 2 mm 

3 . Finally, normalized functional

mages were spatially smoothed using an 8 mm FWHM Gaussian kernel.

Model-based physiological noise correction based on peripheral

ecordings of cardiac (heart beat) and respiratory (breathing) cycles was

erformed using the PhysIO toolbox ( Kasper et al., 2017 ). Specifically,

he periodic effects of pulsatile motion and field fluctuations were mod-

led using Fourier expansions (i.e., sine and cosine basis functions) of

ifferent order for the estimated phases (RETROICOR) of cardiac pulsa-

ion (3rd order), respiration (4th order) and cardio-respiratory interac-

ions (1st order). This resulted in 18 physiological noise regressors. The

hysIO toolbox is available as open source code as part of the TAPAS

oftware suite ( www.translationalneuromodeling.org/software ). 

Preprocessed functional images of every participant entered first-

evel General Linear Model analyses (GLM) to identify brain activity

elated to the experimental manipulation. The GLM comprised one task

egressor, representing the periods when participants performed visu-

lly paced fist closings. The regressor was convolved with SPM’s stan-

ard canonical hemodynamic response function. Additionally, we in-

luded the temporal and dispersion derivative of the canonical HRF ("in-

ormed basis set"; Friston et al., 1998 ). To control for movement-related

nd physiological artefacts, respectively, motion parameters (obtained

rom rigid-body realignment of the functional volumes) and physiolog-

cal measures (obtained from physiological noise modeling in PhysIO)

ere included as nuisance regressors in the GLM. Finally, a high-pass

lter was applied to remove low-frequency fluctuations (e.g., scanner

rifts) from the data (cut-off frequency: 1/128 Hz). 

Brain activity related to visually paced unilateral hand movements

as then identified from the respective baseline contrasts of left- or

ight-hand movements. The individual contrast images were entered

nto random effects group level analyses (one-sample t -tests) for left-

nd right-hand fist closings, separately. Group-level BOLD activity was

hresholded at p < 0.05, family-wise error (FWE)-corrected at the peak

evel. 

.2.5. Time series extraction 

We used the Human Brainnetome atlas ( Fan et al., 2016 ) as a

hole-brain parcellation scheme to define regions of interest for subse-

uent effective connectivity analyses. The Brainnetome atlas represents

 connectivity-based parcellation derived from non-invasive structural

euroimaging data obtained from DWI ( http://atlas.brainnetome.org ).

he atlas comprises 246 distinct parcels (123 per hemisphere), includ-

ng 210 cortical and 36 subcortical regions. We chose the Brainnetome

tlas as a parcellation scheme for the following reasons: (i) the atlas

s sufficiently fine-grained to allow for meaningful effective connectiv-

ty analyses at the whole-brain level, (ii) provides robust parcels across

he population as demonstrated using cross-validation, and (iii) includes

ot only a parcellation of the human brain but also information on the

tructural connectivity among the 246 brain regions. In a first analy-

is, we used this structural information to inform the architecture of

ur network – that is, the endogenous connectivity matrix. Notably, the

rainnetome atlas (like most other state-of-the-art parcellation schemes)

ocusses on the cortex and does not cover the cerebellum. Hence, in the

resent study, we made the deliberate choice to focus on the cortex in

http://www.fil.ion.ucl.ac.uk
http://www.translationalneuromodeling.org/software\051
http://atlas.brainnetome.org
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rder to capitalize on the advantages of the Brainnetome atlas outlined

bove. 

Due to signal dropouts in the raw functional images (especially in

he parahippocampal gyrus and inferior temporal regions near the skull

ase), BOLD signal time series could not be extracted for all regions

efined by the Brainnetome atlas. In summary, 215 regions could be

xtracted in all participants for both hand movement conditions. We

urther restricted this set to ensure interhemispheric consistency of the

etwork – that is, if a region was present in one hemisphere but not the

ther, both parcels were discarded from further analysis (for a complete

ist of included and excluded regions, see Supplementary Table S1). This

ielded a total of 208 brain regions from which sensible BOLD signal

ime series could be obtained in every participant (for a visualization

f the individual mean coordinates of each parcel, see Supplementary

igure S1). 

It is worth highlighting that a number of regions had to be excluded

ue to signal dropouts. This is likely due to several reasons: First, the

ata were not acquired with accelerated fMRI methods, such as in-

erse imaging or multiband techniques ( Feinberg and Setsompop, 2013 ;

in et al., 2012 ; Xu et al., 2013 ). Hence, in order to achieve a short TR,

s is beneficial for effective connectivity analyses, relatively thick slices

3 mm) were acquired, exacerbating susceptibility-related dropouts

n orbitofrontal and inferior temporal cortex. Second, susceptibility-

elated dropouts in the aforementioned regions are known to be more

ronounced at ultra-high (7T) main field strengths ( Balchandani and

aidich, 2015 ). Third, the required 3rd-order shim procedure to reduce

eld inhomogeneities is sensitive to head motion between pre-scans and

unctional runs. Finally, slice orientation (about − 15 deg RL axis) and

hase encoding blip direction (anterior to posterior) were not optimized

o reduce dropouts in those regions. Having said this, we verified that

one of the excluded regions represented a key component of the cere-

ral network supporting visually paced hand movements ( Ledberg et al.,

007 ; Rizzolatti and Luppino, 2001 ; Witt et al., 2008 ). 

Time series were then extracted as the principal eigenvariate of all

oxels within a parcel. Time series were mean-centered and corrected

or variance related to head movement, physiological noise, and deriva-

ives of the hemodynamic response with regard to time and dispersion

 Friston et al., 1998 ). The latter served to address a limitation of the

urrent rDCM implementation which employs a fixed hemodynamic

esponse function and therefore does not capture hemodynamic vari-

bility across brain regions and individuals (see Discussion). Extracted

OLD signal time series then entered effective connectivity analysis us-

ng rDCM. 

.2.6. rDCM analysis 

For the rDCM analysis, we first used the structural connectome pro-

ided by the DWI data of the Brainnetome atlas to inform the connec-

ivity architecture (i.e., the presence or absence of connections among

rain regions in the A matrix) of the network (model 1; Fig. 1 A). As DWI

ata contains no information on the directionality of fibers, connected

odes were always coupled by reciprocal connections. Additionally, the

riving input (representing visually synchronized left- or right-hand fist

losing movements) was allowed to elicit activity in all regions. This

ielded a total of 16,868 free parameters (including 16,452 connectiv-

ty parameters, 208 inhibitory self-connections and 208 driving input

arameters) to be estimated. To test the benefit of informing effective

onnectivity analyses by tractography-based measures, we further con-

tructed two alternative networks: (i) a randomly permuted version of

he Brainnetome structural connectome, discarding any regional speci-

city of connections while leaving the overall density of the network

nchanged (model 2; Fig. 1 B), and (ii) a fully (all-to-all) connected net-

ork where all 208 brain regions are linked via reciprocal connections

model 3; Fig. 1 C). 

In a second step, we tested whether rDCM also yielded sensible re-

ults in the absence of any a priori restrictions on model architecture

y utilizing the embedded sparsity constraints of the method to auto-
atically prune both connections and driving inputs. To this end, we

ssumed a fully connected network, where all 208 brain regions were

oupled to each other via reciprocal connections. Additionally, the driv-

ng input was again allowed to elicit activity in all regions. This yielded a

otal of 43,472 free parameters to be estimated (including 43,056 con-

ectivity parameters, 208 inhibitory self-connections and 208 driving

nput parameters). Starting from this fully connected network, model

nversion then automatically pruned connection and driving input pa-

ameters to yield a sparse whole-brain effective connectivity pattern.

ince exact a priori knowledge about the degree of sparseness of the

etwork was not available, we followed the procedure described in

rässle et al. (2018a) to determine the optimal 𝑝 𝑖 0 . More specifically,

or each participant, we systematically varied 𝑝 𝑖 0 within a range of 0.4

o 0.95 in steps of 0.05 and performed model inversion for each 𝑝 𝑖 0 value.

he optimal 𝑝 𝑖 0 value was then determined for each participant by se-

ecting the model that yielded the highest negative free energy. Note

hat we did not test smaller values of 𝑝 𝑖 0 for two reasons: (i) Due to

he multimodal nature of the task (engaging motor, visual, somatosen-

ory, proprioceptive, and top-down control regions) and the widespread

OLD activation pattern observed, a substantial degree of connectedness

n the network was expected, and (ii) the structural connectome utilized

n the previous anatomically informed analysis suggests a network den-

ity of approximately 0.4, which was used as the lower bound of our

 

𝑖 
0 -range. 

.2.7. Graph-theoretical analyses 

Based on the inferred effective connectivity patterns underlying

nilateral hand movements, we applied graph-theoretical measures

 Bullmore and Sporns, 2009 ) to corroborate the pivotal role of motor

egions in the pre- and postcentral gyrus during our task, as well as the

nown hemispheric lateralization of the network. We thus computed

raph-theoretical measures that capture the relevance of each node and

hat have frequently been used in the field of connectomics: “between-

ess centrality ” and “node strength (in & out) ”. Betweenness centrality

s defined as the fraction of all shortest paths in the network that con-

ain a given node ( Brandes, 2001 ; Freeman, 1977 ) and is given by the

ollowing expression: 

 𝐵 ( 𝑖 ) = 

1 
( 𝑁 − 1 ) ( 𝑁 − 2 ) 

∑
ℎ ≠𝑖,ℎ ≠𝑗,𝑖 ≠𝑗 

𝜌ℎ𝑗 ( 𝑖 ) 
𝜌ℎ𝑗 

(3) 

here 𝜌ℎ𝑗 ( 𝑖 ) is the number of shortest paths between ℎ and 𝑗 that pass

hrough node 𝑖 , 𝜌ℎ𝑗 is the number of all shortest paths between ℎ and 𝑗,

is the number of nodes in the graph, and ( 𝑁 − 1 )( 𝑁 − 2 ) is the number

f node pairs that do not include node 𝑖 . 

Node strength (in & out) refers to the sum of weights of all affer-

nt (incoming) and efferent (outgoing) links connected to a node and is

omputed using the following expression: 

 𝑖𝑛 & 𝑜𝑢𝑡 ( 𝑖 ) = 

∑
𝑖 ≠𝑗 

𝑤 𝑖𝑗 + 

∑
𝑖 ≠𝑗 

𝑤 𝑗𝑖 (4)

here 𝑤 𝑖𝑗 is the weight of the connection from 𝑗 to 𝑖 . The first term

aptures the sum of all afferent (incoming) connections and the second

erm captures the sum of all efferent (outgoing) connections of node 𝑖 . 

Both graph-theoretical measures were computed using the im-

lementations in the Brain Connectivity toolbox ( Rubinov and

porns, 2010 ). 

. Results 

.1. BOLD activity during unilateral hand movements 

Brain activity related to visually synchronized whole-hand fist

losings was assessed using random effects group analyses (one-sample

 -tests). Consistent with previous findings, we observed significant

ctivation in a widespread cortical network during left- and right-hand

ovements ( Fig. 2 ; Supplementary Table S2), mainly lateralized to the



S. Frässle, Z.M. Manjaly, C.T. Do et al. NeuroImage 225 (2021) 117491 

Fig. 1. Connectivity architecture of the whole-brain networks used to model effective connectivity during unilateral hand movements. The alternative models 

encode a network architecture that (A) was informed by the structural connectome provided by the Human Brainnetome atlas (model 1), (B) was a randomly 

permuted version of the Brainnetome structural connectome; thus, discarding any regional specificity of connections while leaving the overall density of the network 

unchanged (model 2), or (C) was a fully (all-to-all) connected network, where all regions were reciprocally connected (model 3). For each of the three models, the 

network architecture of the DCM is graphically projected onto a whole-brain volume ( left ) and shown as an adjacency matrix ( middle ). Regions are separated in left 

hemisphere (L) and right hemisphere (R). For each hemisphere, regions are divided into different sets, including frontal (FRO; blue ), temporal (TEM; green ), parietal 

(PAR; yellow ), insular (INS; purple ), cingulate 3 (CNG; orange ), occipital (OCC; red ), and subcortical (SUB; grey ); as specified by the Brainnetome atlas. Additionally, 

we have explicitly highlighted regions of the precentral gyrus (PreC; dark blue ) in the frontal lobe, as well as regions of the postcentral gyrus (PosC; dark yellow ) 

in the parietal lobe as these are key components of the motor network. Finally, we also show exemplarily the sub-regional connectogram for the primary motor 

cortex (M1) in the precentral gyrus (Brainnetome parcel name: A4ul ) ( right ). The labels on the outermost ring of the connectogram show again the anatomical set for 

each of the nodes: frontal, insula, cingulate, temporal, parietal, occipital, and subcortical. For each brain region defined by the Brainnetome atlas, an abbreviation 

and color are defined. Inside the parcellation ring, we show the outgoing connections from M1 in blue. The whole-brain volume representation was created using 

the BrainNet Viewer ( Xia et al., 2013 ), which is freely available ( http://www.nitrc.org/projects/bnv/ ). The connectogram was created using Circos, which is also 

publicly available (http://www.circos.ca/software/). L = left hemisphere; R = right hemisphere. 

H

3 In the Brainnetome nomenclature, this set of regions is called “LIM ” (limbic). 

owever, as the term “limbic ” is not well-defined ( Kötter & Stephan, 1997 ) and 

s

r

ince “LIM ” exclusively consists of cingulate areas, we prefer to call this set of 

egions “CNG ” (cingulate). 

http://www.nitrc.org/projects/bnv/
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Fig. 2. BOLD activation during visually synchronized unilateral hand movements at the group level ( N = 25). Left-hand ( left ) and right-hand fist closings ( right ) 

elicited activation in a distributed network, mainly lateralized to the contralateral hemisphere. Results are significant at a voxel-level threshold of p < 0.05 (family- 

wise error (FWE)-corrected). Results were rendered onto the surface of an anatomical template volume. L = left hemisphere; R = right hemisphere; A = anterior; 

P = posterior. 
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ontralateral hemisphere. In particular, BOLD activation was located

n the primary motor cortex (M1), premotor cortex (PMC), supplemen-

ary motor area (SMA), and the motion-sensitive area V5/MT in the

xtrastriate cortex ( p < 0.05, FWE-corrected at peak level). Addition-

lly, we observed BOLD activation in the ipsilateral cerebellum. As

entioned before, for the subsequent effective connectivity analyses,

e utilized the Brainnetome atlas ( Fan et al., 2016 ) as a whole-brain

arcellation scheme which focuses on the cortex and does not cover the

erebellum. 

.2. Regression DCM constrained by anatomical connectivity 

.2.1. Whole-brain effective connectivity during hand movements 

Individual connectivity parameters were estimated using rDCM

here, in a first step, the network architecture of the DCMs was in-

ormed by the structural connectome from the Brainnetome atlas (model

; Fig. 1 A). Model inversion resulted in biologically plausible connec-

ivity ( Fig. 3 B, left) and driving input patterns ( Fig. 3 B, right), suggest-

ng pronounced functional integration in a widespread cortical network

uring visually paced unilateral hand movements. Consistent with our

ypotheses (see Methods), rDCM revealed pronounced clusters of exci-

atory connections among motor and visual regions. Specifically, strong

onnections were observed among motor regions in the precentral

Brainnetome parcel name: A4ul ) and postcentral gyrus ( A1/2/3ulhf,

2 ), as well as the dorsal PMC ( A6cdl ) and the dorsal part of area 4

 A4t ). Similarly, prominent functional integration was observed for the

MA ( A6m ) located in the superior frontal gyrus, as well as regions in

he lateral occipital cortex, including the middle occipital gyrus ( mOccG )

nd the motion-sensitive area ( V5/MT ). We also observed pronounced

onnections among regions in the parietal lobe (e.g., A7c, A7m, A5m ), as

ell as excitatory connections from the parietal cortex to the visuomotor

etwork highlighted above. Finally, connectivity was observed among

rontal regions (e.g., A8m, A6cvl, A44v ), as well as between frontal re-

ions and all other components mentioned above. Overall, the major-

ty of connections had positive weights (i.e., excitatory effects), which

s consistent with the fact that our model describes changes of activ-

ty from baseline (i.e., activity induced by hand movements compared

o rest). More precisely, positive weights are consistent with the fact

hat the GLM analyses revealed exclusively positive BOLD activations by

ur task (i.e., hand movements > rest) and no significant deactivations

i.e., rest > hand movements) when correcting for multiple comparisons.
urthermore, functional integration was strongest within hemispheres;

owever, pronounced interhemispheric connections were also observed,

ainly among homotopic regions. 

With regard to driving inputs (representing visually synchronized

and movements), we observed strong excitatory inputs to the motor

nd visual regions mentioned above ( Fig. 3 B, right). Driving inputs to

otor-related regions were stronger for nodes in the contralateral as

ompared to the ipsilateral hemisphere. 

Notably, the directedness of connectivity estimates obtained by

DCM is demonstrated by the fact that, for the present dataset, there are

symmetries between the afferent (incoming) and efferent (outgoing)

arts of reciprocal connections. To provide an intuition of the degree

f directedness in the connectivity estimates, it is instructive to inspect

he degree of asymmetry in relation to the magnitude of the connection

trengths themselves. This is because the degree of asymmetry can be

aximally twice the magnitude of the strongest (in absolute terms) con-

ection. On the contrary, the degree of asymmetry can be much smaller

n scenarios where connections are strong; yet, differences between af-

erent and efferent parts are negligible. Here, we observed that differ-

nces in the strengths of afferent and efferent connections were compa-

able in magnitude with the connection strengths themselves ( Fig. 3 C).

his suggested that rDCM goes beyond undirected measures like func-

ional connectivity and can infer directedness in the connectivity pat-

erns. 

.2.2. Mirror symmetry of left- and right-hand movements 

Next, we investigated the effect of the hand movement condition

i.e., left vs. right hand) by testing, for each parameter, whether there

as a significant difference between left- and right-hand fist closings

two-sided paired t -test). We found the expected mirror-symmetric pat-

ern, with connections in the left hemisphere being increased during

ight-hand movements and, vice versa, connections in the right hemi-

phere being increased during left-hand movements ( Fig. 4 ). These ef-

ects were highly specific in that only connections among sensorimotor

reas showed significant hemispheric differences ( p < 0.05, false dis-

overy rate (FDR)-corrected for multiple comparisons across the 16,868

ree parameters). Specifically, as expected for the task we used, we found

ncreased intrahemispheric connectivity among regions in the contralat-

ral precentral (M1 ( A4ul ), dorsal PMC ( A6cdl )) and postcentral gyrus

SM1 ( A1/2/3ulhf, A2 )). Furthermore, intrahemispheric connectivity

as increased among the contralateral SMA ( A6m ) and M1 and SM1.



S. Frässle, Z.M. Manjaly, C.T. Do et al. NeuroImage 225 (2021) 117491 

Fig. 3. Whole-brain effective connectivity pattern underlying unilateral hand movements as assessed with rDCM when using structural connectivity to inform the 

network architecture. (A) For the given BOLD activation pattern during visually synchronized hand movements, the Human Brainnetome atlas ( Fan et al., 2016 ) 

was used as a whole-brain parcellation scheme. Region-wise BOLD signal time series were extracted for each participant individually as the principal eigenvariate 

and entered effective connectivity analyses using rDCM. (B) Mean posterior parameter estimates for connections ( left ) and driving inputs ( right ) during left-hand 

movements, averaged across participants. Regions are separated in left hemisphere (L) and right hemisphere (R). For each hemisphere, regions are divided into 

different sets, including frontal (FRO; blue ), temporal (TEM; green ), parietal (PAR; yellow ), insular (INS; purple ), cingulate (CNG; orange ), occipital (OCC; red ), and 

subcortical (SUB; grey ); as specified by the Brainnetome atlas. Additionally, we have explicitly highlighted regions of the precentral gyrus (PreC; dark blue ) in the 

frontal lobe, as well as regions of the postcentral gyrus (PosC; dark yellow ) in the parietal lobe as these are key components of the motor network. The colormap is scaled 

with respect to the strongest between-region connection. (C) Histogram of asymmetry between the afferent (incoming) and efferent (outgoing) part of reciprocal 

connections ( white ). This suggests that the asymmetry was comparable in magnitude with the connection strengths themselves ( red ). Note that connectivity and 

driving input parameters represent rate constants and are thus given in Hz. 
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inally, rDCM revealed increased interhemispheric connections among

MA and M1 and SM1 (although this was not significant for the con-

ections between right SMA and left pre- and postcentral gyrus when

orrecting for multiple comparisons). 

.2.3. Benefit of informing network architecture with structural 

nformation 

One might wonder whether utilizing the structural connectome from

he Brainnetome atlas ( Fan et al., 2016 ) to inform the network archi-

ecture of the whole-brain DCMs was beneficial for explaining the ob-

erved fMRI data. To this end, we constructed two alternative networks:

odel 2 ( Fig. 1 B) represents a randomly permuted version of the Brain-

etome structural connectome, and model 3 ( Fig. 1 C) assumes a fully

all-to-all) connected network where all regions are linked via recipro-

al connections. Since functional integration in the brain is constrained

but not fully determined) by anatomical connections ( Bullmore and

porns, 2009 ; Passingham et al., 2002 ), one would expect that effective

onnectivity analyses benefit from including tractography-based mea-

ures. 
We used random effects Bayesian model selection (BMS;

tephan et al., 2009b ) to compare the competing whole-brain models

ased on their log model evidence (approximated by the negative free

nergy). We found decisive evidence that the anatomically informed

odel 1 was the winning model with a protected exceedance proba-

ility of 1. This illustrates clearly that models of whole-brain effective

onnectivity profit from structural connectivity measures derived from

robabilistic tractography of DWI data. This is consistent with previous

ork in conventional (small-scale) DCMs that highlight the benefit

f anatomically informed priors ( Sokolov et al., 2019 ; Stephan et al.,

009c ). To avoid any misunderstanding, it is worth remembering

hat Bayesian model selection only assesses the relative evidence for

ompeting hypotheses (models) within a pre-specified model space and

herefore our results do not imply that model 1 represents the “true ”

natomical connectivity among the regions considered. Instead, our

esults simply demonstrate the benefit of using structural connectome

nformation over a random or fully connected network architecture for

xplaining the measured fMRI data. 
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Fig. 4. Mirror symmetry of the effect of hand movement condition (i.e., left vs. right hand) in the motor network as assessed with rDCM when using an anatomically 

informed (fixed) network architecture. The differential effect of hand movement condition was graphically projected onto a whole-brain volume ( left ). Green arrows 

indicate connections that were significantly increased during left-hand movements as compared to right-hand movements; red arrows indicate connections that were 

significantly increased during right-hand movements compared to left-hand movements ( p < 0.05, FDR-corrected for multiple comparisons). Note that edges in this 

graphical representation are directed. L = left hemisphere; R = right hemisphere; A = anterior; P = posterior. Results can also be inspected when graphically rendered 

as a connectogram ( right ). Solid lines represent the connections that showed a significant effect of the hand movement condition ( p < 0.05, FDR-corrected). Lines 

with faded colors represent the subsequent 500 connections with the strongest differential effect (highest absolute T values of the two-sided paired t -test). The labels 

on the outermost ring show the anatomical lobe for each of the nodes: frontal, insula, cingulate, temporal, parietal, occipital, and subcortical. For each brain region 

defined by the Brainnetome atlas, an abbreviation and color are defined. Inside the parcellation ring, connections showing a significant effect of the hand movement 

condition are displayed as edges, with the color code defined as above (i.e., green = LH > RH, red = RH > LH). 
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.3. Regression DCM with sparsity constraints 

.3.1. Whole-brain effective connectivity during hand movements 

Next, we asked whether sensible whole-brain effective connectivity

atterns could also be obtained in the absence of any a priori assump-

ions about the network’s architecture. For this, rDCM with embedded

parsity constraints was used to prune, for each participant individu-

lly, a fully connected model containing over 43,000 free connectivity

arameters ( Fig. 5 A). 

Model inversion resulted in sparse whole-brain connectivity patterns

ith varying degree of sparsity across participants (mean and stan-

ard deviation of the proportion of connections present during left-hand

ovements: 0.32 ± 0.17; and right-hand movements: 0.33 ± 0.17).

hese sparse connectivity patterns again revealed pronounced func-

ional integration in a widespread network ( Fig. 5 B). In brief, as ex-

ected and consistent with the anatomically constrained analysis, the

parse connectivity patterns revealed pronounced clusters of excitatory

onnections among regions in the motor (e.g., A4ul, A6cdl ) and so-

atosensory cortex (e.g., A1/2/3ulhf, A2 ), occipital lobe (e.g., mOccG,

5/MT ), as well as parietal cortex (e.g., A39rd/rv, A40rd / rv, A7m ), and

rontal lobe (e.g., A6vl, A8vl, A44v ). Again, the majority of connections

ere of positive sign (i.e., excitatory), reflecting the fact that our model

escribes activity changes relative to rest and that our task induced ex-

lusively positive BOLD activations (i.e., hand movements > rest) but

o significant deactivations (i.e., rest > hand movements) when cor-

ecting for multiple comparisons. With regard to driving inputs, excita-

ory effects were observed for regions in the contralateral precentral

 A4ul, A4t, A6cdl ) and postcentral gyrus ( A1/2/3ulhf, A2 ). Addition-

lly, we found driving inputs to SMA ( A6m ) and visual regions, includ-

ng the middle occipital gyrus ( mOccG ) and the motion-sensitive area

 V5/MT ). 

As for the tractography-guided application of rDCM, we tested

hether the sparse effective connectivity estimates showed asymme-

ries between afferent and efferent connections. As above, differences

n the strength between afferent and efferent connections were compa-

able in magnitude with the connection strengths themselves ( Fig. 5 C).

his demonstrates that rDCM estimates displayed directedness in the
onnectivity patterns also when embedded sparsity constraints were

sed. 

For rDCM under sparsity constraints, which in contrast to the

natomically informed analysis does not rely on a symmetric structural

onnectome, it is instructive to inspect the top 500 connections for both

eft- and right-hand movements ( Fig. 5 D-E). This plot illustrates the ex-

ected contralateral lateralization of the connectivity pattern – in par-

icular, for connections among pre- and postcentral gyrus, as well as for

onnections from superior frontal gyrus (e.g., A6m ) and parietal regions

o premotor and motor regions. Finally, for both left- and right-hand

ovements, one can observe strong interhemispheric connections that

ere most pronounced among homotopic areas in frontal and parietal

ortex. 

Similarly, for rDCM with embedded sparsity constraints, one can test

he prevalence of bidirectional as compared to unidirectional connec-

ions in the inferred functional connectome. We computed the percent-

ge of connections that – if present – also had a reciprocal connection

i.e., not considering cases where both afferent and efferent connec-

ions were pruned from the network). Collating over all participants, we

ound that the majority of connections were reciprocal (left-hand move-

ents: 82%; right-hand movements: 84%). By comparison, estimates

or cortical areas in non-human primates that are based on anatomical

ract tracing data range between approximately 80–100% (see Fig. 6 in

ötter and Stephan, 2003 ). 

.3.2. Mirror symmetry of left- and right-hand movements 

As for the anatomically informed rDCM analysis, we explicitly as-

essed the effect of hand movement condition (i.e., left vs. right hand).

gain, we found the expected mirror-symmetric pattern, with connec-

ions in the left hemisphere being increased during right-hand move-

ents and, vice versa, connections in the right hemisphere being in-

reased during left-hand movements ( Fig. 6 ). Significant effects ( p <

.05, FDR-corrected for multiple comparisons across the 43,472 free

arameters) were again constrained to connections among sensorimo-

or regions. We observed an effect of the hand movement condition for

he intrahemispheric connections among M1 ( A4ul ), SM1 ( A1/2/3ulhf,

2 ), and SMA ( A6m ). 
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Fig. 5. Sparse whole-brain effective connectivity pattern underlying unilateral hand movements as assessed with rDCM when embedded sparsity constraints were 

used to prune a fully (all-to-all) connected network. (A) For the given BOLD activation pattern during visually synchronized hand movements, the Human Brainnetome 

atlas ( Fan et al., 2016 ) was used as a whole-brain parcellation scheme. Region-wise BOLD signal time series were extracted for each participant individually as the 

principal eigenvariate and entered effective connectivity analyses using rDCM. A fully connected network was assumed and then pruned to an optimal (with respect 

to the negative free energy) degree of sparsity during model inversion. (B) Mean posterior parameter estimates for connections ( left ) and driving inputs ( right ) during 

left-hand movements, averaged across participants. Regions are separated in left hemisphere (L) and right hemisphere (R). For each hemisphere, regions are divided 

into different sets, including frontal (FRO; blue ), temporal (TEM; green ), parietal (PAR; yellow ), insular (INS; purple ), cingulate (CNG; orange ), occipital (OCC; red ), 

and subcortical (SUB; grey ); as specified by the Brainnetome atlas. Additionally, we have explicitly highlighted regions of the precentral gyrus (PreC; dark blue ) in 

the frontal lobe, as well as regions of the postcentral gyrus (PosC; dark yellow ) in the parietal lobe as these are key components of the motor network. The colormap 

is scaled with respect to the strongest between-region connection. (C) Histogram of asymmetry between the afferent (incoming) and efferent (outgoing) part of 

reciprocal connections ( white ). This suggests that the asymmetry was comparable in magnitude with the connection strengths themselves ( red ). (D) Lines represent 

the 500 connections with the strongest effect for left-hand movements (i.e., highest absolute T value of the two-sided one-sample t -test for LH vs. baseline) (E) and 

right-hand movements (i.e., RH vs. baseline). The labels on the outermost ring show the anatomical lobe for each of the nodes: frontal, insula, cingulate, temporal, 

parietal, occipital, and subcortical. For each brain region defined by the Brainnetome atlas, an abbreviation and color are defined. L = left hemisphere; R = right 

hemisphere. 
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Fig. 6. Mirror symmetry of the effect of hand movement condition (i.e., left vs. right hand) in the motor network as assessed using rDCM with embedded sparsity 

constraints to prune a fully (all-to-all) connected network. The differential effect of hand movement condition was graphically projected onto a whole-brain volume 

( left ). Green arrows indicate connections that were significantly increased during left-hand movements as compared to right-hand movements; red arrows indicate 

connections that were significantly increased during right-hand movements compared to left-hand movements ( p < 0.05, FDR-corrected for multiple comparisons). 

Note that edges in this graphical representation are directed. L = left hemisphere; R = right hemisphere; A = anterior; P = posterior. Results can also be inspected 

when graphically rendered as a connectogram ( right ). Solid lines represent the connections that showed a significant effect of the hand movement condition ( p < 0.05, 

FDR-corrected). Lines with faded colors represent the subsequent 500 connections with the strongest differential effect (highest absolute T values of the two-sided 

paired t -test). The labels on the outermost ring show the anatomical lobe for each of the nodes: frontal, insula, cingulate, temporal, parietal, occipital, and subcortical. 

For each brain region defined by the Brainnetome atlas, an abbreviation and color are defined. Inside the parcellation ring, connections showing a significant effect 

of the hand movement condition are displayed as edges, with the color code defined as above (i.e., green = LH > RH, red = RH > LH). 
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.3.3. Graph-theoretical analyses 

In a next step, we applied graph-theoretical measures ( Bullmore and

porns, 2009 ) to the sparse whole-brain effective connectivity patterns

nderlying unilateral hand movements. Specifically, using graph theory,

e intended to corroborate the pivotal role of motor regions in the pre-

nd postcentral gyrus during our task, as well as the known hemispheric

ateralization of the network. To this end, we chose graph-theoretical

easures that capture the importance/relevance of each node and that

ave frequently been used in the field of connectomics: “betweenness

entrality ” and “node strength (in & out) ”. We tested whether graph-

heoretical measures would more faithfully reflect known functional

roperties of the motor system when applied to directed as compared to

ndirected connectivity measures. 

Fig. 7 shows the betweenness centrality for each of the 208 parcels

rom the Brainnetome atlas (projected onto a whole-brain volume) for

eft- and right-hand movements. The expected contralateral dominance

f the motor regions is clearly visible: For left-hand movements, the

ode with the highest betweenness centrality was right M1; whereas,

or right-hand movements, left M1 showed one of the highest between-

ess centrality scores ( Fig. 7 A-B). We also found high betweenness cen-

rality scores during unilateral hand movements in regions located in

he contralateral somatosensory cortex ( A1/2/3ulhf, A2 ). Furthermore,

igh betweenness centrality in both left and right hemisphere, regard-

ess of the hand movement condition, was observed in the medial area 7

 A7m ), which represents the visuospatial/-motor part of the precuneus.

Hemispheric differences in betweenness centrality revealed the ex-

ected mirror-symmetric pattern within motor-related regions in the

recentral ( A4ul ) and postcentral gyrus ( A1/2/3ulhf, A2 ). Specifically,

emispheric asymmetry in these regions depended strongly on the hand

ovement condition ( Fig. 7 C-D): betweenness centrality was higher in

he right hemisphere during left-hand movements, and higher in the left

emisphere during right-hand movements. 

Notably, the mirror symmetry of functional integration during left-

nd right-hand movements was not a global finding, but was specific to

he motor network. In contrast, regions in the frontal (e.g., A6dl, A46,

8vl, A44d ) and parietal lobe (e.g., A7r ) showed higher betweenness
entrality in the right hemisphere, regardless of the hand movement

ondition. Furthermore, regions in the occipital lobe, such as the pri-

ary visual cortex in the occipital polar cortex ( OPC ) and the motion

ensitive area V5/MT , did not show marked hemispheric asymmetries,

onsistent with the central visual stimulation during both hand move-

ent conditions. 

For node strength, results were highly consistent with the pattern

bserved for betweenness centrality, again highlighting the contralat-

ral dominance of motor regions and the expected mirror symmetry of

he network for left- and right-hand movements (Supplementary Figure

2). 

.3.4. Sparsity constraints vs anatomical constraints 

In a final step, we compared the two general modes of operation for

DCM: fixed network architecture informed by a structural connectome

anatomical constraints) versus pruning a fully connected whole-brain

odel (sparsity constraints). First, one can observe that the effective

onnectivity pattern under anatomical constraints ( Fig. 3 B) is not dis-

imilar to the product of the fixed Brainnetome structural connectome

erving as prior ( Fig. 1 A) and the inferred pattern under sparsity con-

traints ( Fig. 5 B), which intuitively is plausible. Second, since rDCM

rovides a principled measure of model goodness, the log model evi-

ence, one can use BMS to ask which mode provided a better expla-

ation of the data. Random effects BMS indicated that the model with

natomically informed (fixed) network architecture was superior with a

rotected exceedance probability of 1. This suggests that – in this case –

xploiting available anatomical information to inform the architecture

f the model was clearly beneficial. 

.4. Computational burden 

Concerning computational efficiency, running model inversion on

 single processor core (without parallelization) on the Euler cluster at

TH Zurich ( https://scicomp.ethz.ch/wiki/Euler ), rDCM took on the or-

er of a minute or less when assuming structurally fixed connectivity

nd input structure. More specifically: for models 1 and 2 (16,868 free

https://scicomp.ethz.ch/wiki/Euler
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Fig. 7. Graph-theoretical analysis of the whole-brain effective connectivity patterns underlying unilateral hand movements as inferred using rDCM when embedded 

sparsity constraints were used to prune a fully (all-to-all) connected network. Betweenness centrality was evaluated for each parcel of the Human Brainnetome 

atlas for (A) left-hand and (B) right-hand fist closings and then graphically projected onto a whole-brain volume. (C) Hemispheric asymmetries in betweenness 

centrality for left-hand fist closings. Hemispheric asymmetries were assessed by evaluating the difference in betweenness centrality for homotopic parcels in the 

left and right hemisphere. Positive values ( red ) indicated right-hemispheric dominance in betweenness centrality for a set of homotopic parcels, whereas nega- 

tive values ( blue ) indicated left-hemispheric dominance in betweenness centrality for a set of homotopic parcels. (D) Hemispheric asymmetries in betweenness 

centrality for right-hand fist closings. Again, this clearly illustrates the mirror symmetry of the motor network in the pre- and postcentral gyrus. Betweenness 

centrality for directed and weighted adjacency matrices was computed using the Brain Connectivity toolbox ( Rubinov and Sporns, 2010 ), which is freely avail- 

able ( https://sites.google.com/site/bctnet/ ). Betweenness centrality values for each parcel were visualized using the Human Connectome Workbench, also publicly 

available ( https://www.humanconnectome.org/software/connectome-workbench ). L = left hemisphere; R = right hemisphere; LH = left hand; RH = right hand. 
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arameters), model inversion took around 20 s, whereas for model 3

43,472 free parameters), model inversion took roughly 100 s. 

Using sparsity constraints to prune fully connected networks is com-

utationally more demanding: on average (across participants), rDCM

ook roughly 4 h on a single processor core to infer sparse connectiv-

ty patterns under a given 𝑝 𝑖 0 value. This compares favorably to other

ethods of large-scale effective connectivity, like cross-spectral DCM,

or which 21–42 h of run-time on a high-performance computing cluster

or a network with 36 regions and 1260 connections has been reported

 Razi et al., 2017 ). 

Notably, these run-times were obtained using a language not opti-

ized for speed (Matlab) nor without any effort to speed the code up

y parallelization. The latter is a straightforward and powerful option

o further enhance the efficiency of rDCM ( Frässle et al., 2018a ). This

s due to the mean field approximation in rDCM which allows apply-

ng the VB update equations to each region independently. Specifically,

hen using 16 processor cores in parallel, the above run-time for infer-

ing sparse effective connectivity patterns could be reduced to around

0 min on average. The values reported here should only be treated as

 rough indication, as run-times will depend on the specific hardware

sed. 

.5. Comparison to undirected measures of brain connectivity 

In a final step, we compared the whole-brain effective connectiv-

ty estimates with measures of functional connectivity, which represent

he current standard in human connectomics. For this, we computed

or each participant Pearson correlation coefficients between exactly

he same 208 BOLD signal time series as used in the rDCM analysis.

earson correlations arguably represent the simplest and most widely

sed measures of functional connectivity. In contrast to the Bayesian

ramework of rDCM, Pearson correlations are not subject to any regu-

arization, which has advantages and disadvantages: they might be more
ensitive for detecting functional coupling, but are also very sensitive to

easurement noise ( Friston, 2011 ). 

Functional connectivity patterns for the unilateral hand movements

ere qualitatively similar to the effective connectivity patterns obtained

sing rDCM: we observed coupling among motor (i.e., precentral, SMA),

isual (occipital), somatosensory/proprioceptive (postcentral, parietal)

nd frontal regions ( Fig. 8 A). However, in contrast to effective connec-

ivity (cf. Fig. 3 C and 5 B), functional connectivity does not afford any

nformation on the directionality of influences, leading to symmetric

onnectivity matrices. 

We then tested for the differential effect of the hand movement con-

ition (i.e., left vs. right hand) using two-sided paired t -tests ( p < 0.05,

DR-corrected) after Fisher r-to-z transformation of the correlation co-

fficients. Consistent with rDCM, intrahemispheric functional connec-

ivity among M1 ( A4ul ) and SM1 ( A1/2/3ulhf, A2 ) of the contralateral

emisphere was increased ( Fig. 8 B). However, functional connectivity

id not show the expected mirror-symmetric pattern within the motor

etwork as clearly as in the case of rDCM: Various connections within

he motor network (and beyond) showed the opposite effect, resulting in

 more ambiguous pattern. Furthermore, no significant effect could be

bserved for connections between SMA ( A6m ) and regions in the pre-

nd postcentral gyrus when correcting for multiple comparisons. This

as slightly unexpected given the prominent role of the SMA in the ini-

iation of voluntary hand movements ( Grefkes et al., 2008 ; Rao et al.,

993 ). 

To compare functional and effective connectivity estimates more di-

ectly, we computed a congruence map between functional connectivity

nd rDCM, covering the 500 connections with the strongest effect of the

and movement condition (for details, see legend to Fig. 8 C). While

he majority of connections did not overlap between the two methods,

hose connections that showed strong differences between hand condi-

ions (mainly connections among motor-related regions) displayed the

ame sign for functional connectivity and rDCM estimates ( Fig. 8 C). This

ndicates that, at the level of undirected connections, functional and

https://sites.google.com/site/bctnet/
https://www.humanconnectome.org/software/connectome-workbench
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Fig. 8. Functional connectivity pattern underlying unilateral hand movements as assessed using the Pearson correlation coefficient among the same BOLD signal 

time series as utilized for the rDCM analysis. (A) For the given BOLD activation pattern during visually synchronized hand movements, the Human Brainnetome 

atlas ( Fan et al., 2016 ) was used as a whole-brain parcellation scheme. Region-wise BOLD signal time series were extracted for each participant individually as the 

principal eigenvariate and entered functional connectivity analyses using the Pearson correlation coefficients. To allow for comparability with rDCM results, the 

functional connectivity matrix is thresholded such that the sparsity of the matrix resembles the sparsity of the structural connectome from the Brainnetome atlas. 

Here shown is the mean functional connectivity matrix, averaged across participants. Regions are separated in left hemisphere (L) and right hemisphere (R). For each 

hemisphere, regions are divided into different sets, including frontal (FRO; blue ), temporal (TEM; green ), parietal (PAR; yellow ), insular (INS; purple ), cingulate (CNG; 

orange ), occipital (OCC; red ), and subcortical (SUB; grey ); as specified by the Brainnetome atlas. Additionally, we have explicitly highlighted regions of the precentral 

gyrus (PreC; dark blue ) in the frontal lobe, as well as regions of the postcentral gyrus (PosC; dark yellow ) in the parietal lobe as these are key components of the 

motor network. The colormap is scaled with respect to the strongest between-region connection. (B) Differential effect of hand movement condition on functional 

connectivity, projected onto a whole-brain volume ( left ). Green lines indicate connections that were significantly increased during left-hand movements as compared 

to right-hand movements; red lines indicate connections that were significantly increased during right-hand movements compared to left-hand movements ( p < 0.05, 

FDR-corrected). L = left hemisphere; R = right hemisphere; LH = left hand; RH = right hand. Results can also be rendered as a connectogram ( right ). Solid lines 

represent significant differential effects ( p < 0.05, FDR-corrected), faded colors represent the 500 connections with the next highest absolute T values of the two-sided 

paired t -test. The labels on the outermost ring show the anatomical lobe for each of node: frontal, insula, cingulate, temporal, parietal, occipital, and subcortical. 

Next, abbreviation and color for each region are shown. (C) Connections showing a congruent effect of hand movement condition on the functional and effective 

connectivity estimates. Congruency was established by logical AND of the connectomes in Figs. 4 and 8 B, where rDCM estimates were first converted into undirected 

connections before binarizing all connections as having positive and negative strengths. Lines indicate those of the top 500 connections of the functional and effective 

connectivity patterns that showed the same differential hand movement effect (i.e., LH > RH or RH > LH). 
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ffective connectivity estimates are qualitatively compatible for those

onnections that are expected to be most relevant for the task. 

We repeated the graph-theoretical analyses by evaluating between-

ess centrality and node strength for the undirected functional con-

ectivity patterns. In contrast to effective connectivity, functional con-

ectivity did not show the expected pattern of betweenness centrality.

pecifically, motor-related regions in the contralateral precentral ( A4ul )

nd postcentral gyrus ( A1/2/3ulhf, A2 ) did not yield high between-

ess centrality scores ( Fig. 9 A-B), in contradiction to their established

ole during unilateral hand movements. Furthermore, when testing for

emispheric differences in betweenness centrality, we did not observe

he expected mirror symmetry in the motor network ( Fig. 9 C-D). Sim-

larly, node strength did not capture the importance of motor-related

egions and yielded counterintuitive hemispheric asymmetries (Supple-
entary Figure S3), with a node strength pattern of motor-related re-

ions opposite to what one would expect. This result may have been

riven by connections between motor and more occipital regions that

howed unexpected effects of hand in the functional connectivity anal-

ses ( Fig. 8 B). These unexpected findings may reflect the known sensi-

ivity of correlation-based functional connectivity estimates to measure-

ent noise ( Friston, 2011 ). 

Finally, at the request of a reviewer, we have repeated all func-

ional connectivity analyses using regularized partial correlations

instead of Pearson’s correlations). To this end, we computed for

ach participant partial correlations between the same 208 BOLD

ignal time series as used in the previous analyses. Consistent with

he approach reported in Smith et al. (2011) , we here used an

pen-source MATLAB implementation referred to as “L1precision ”
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Fig. 9. Graph-theoretical analysis of the whole-brain functional connectivity patterns during unilateral hand movements as assessed using the Pearson correlation 

coefficient. Betweenness centrality was evaluated for each parcel of the Human Brainnetome atlas for (A) left-hand and (B) right-hand fist closings and then graphically 

projected onto a whole-brain volume. (C) Hemispheric asymmetries in betweenness centrality for left-hand fist closings. Hemispheric asymmetries were assessed 

by evaluating the difference in betweenness centrality for homotopic parcels in the left and right hemisphere. Positive values ( red ) indicated right-hemispheric 

dominance in betweenness centrality for a set of homotopic parcels, whereas negative values ( blue ) indicated left-hemispheric dominance in betweenness centrality 

for a set of homotopic parcels. (D) Hemispheric asymmetries in betweenness centrality for right-hand fist closings. 
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 https://www.cs.ubc.ca/~schmidtm/Software/L1precision.html ) to

ompute the regularized inverse covariance matrix, from which the reg-

larized partial correlation matrix can be computed ( Whittaker, 1990 ).

n this implementation, regularization is achieved by placing a Laplace

rior (i.e., L1-regularizer of the negative log-likelihood) on the values

f the inverse covariance matrix (or precision matrix), following the

rocedure described by Friedman et al. (2008) as the Graphical Lasso

r GLasso. 

In summary, regularized partial correlation patterns for the uni-

ateral hand movements were qualitatively similar to the patterns ob-

ained with rDCM and Pearson’s correlations. Specifically, partial cor-

elations showed coupling among the aforementioned motor-related re-

ions (Supplementary Figure S4A). Interestingly, by far the strongest

artial correlations were observed amongst BOLD signal time series from

omotopic brain regions in both hemispheres. Having said this, overall,

ssociations were much weaker as compared to Pearson’s correlations.

s for the previous functional connectivity analysis, partial correlations

o not afford information on the directionality of influences, leading

o symmetric connectivity matrices. The differential effect of the hand

ovement condition (i.e., left vs. right hand) showed the expected effect

n intrahemispheric functional connections among M1 ( A4ul ) and SM1

 A1/2/3ulhf ), consistent with rDCM and Pearson’s correlations (Supple-

entary Figure S4B). However, partial correlations were less sensitive

n delineating the effect of the hand movement condition and, similar

o Pearson’s correlations, did not show the expected mirror-symmetric

attern within the motor network as clearly as in the case of rDCM.

inally, the graph-theoretical analyses (i.e., betweenness centrality and

ode strength) were somewhat more similar to the results obtained from

ffective connectivity analyses as compared to Pearson’s correlations.

pecifically, regularized partial correlations did reveal the expected mir-

or symmetry in the motor network for betweenness centrality (Supple-

entary Figure S5); yet, this was less clear for node strength (Supple-

entary Figure S6). Furthermore, neither of the two graph-theoretical

easures revealed high scores for motor-related regions in the contralat-

ral precentral ( A4ul ) and postcentral gyrus ( A1/2/3ulhf, A2 ), which is

n contradiction to their established role during unilateral hand move-

ents. 
. Discussion 

In this paper, we assessed the construct validity of regression DCM

rDCM) for inferring whole-brain effective connectivity patterns from

MRI data. Using a hand movement dataset, we demonstrated that rDCM

an infer plausible effective connectivity patterns in a network com-

rising over 200 regions and 40,000 free parameters. Furthermore, we

pplied graph-theoretical measures to the whole-brain effective connec-

ivity patterns and demonstrate that they capture the expected pivotal

ole of motor-related regions, as well as the hemispheric asymmetries of

he network. 

In brief, rDCM identified pronounced functional integration among

ey components of the motor network – e.g., M1, SM1, and SMA. Fur-

hermore, when testing for effects of the hand movement condition

i.e., left vs. right hand), we found the expected mirror-symmetric pat-

ern: connections among key motor regions in the left hemisphere were

tronger during right-hand movements and, vice versa, connections in

he right hemisphere were stronger during left-hand movements. This

attern could not only be obtained when structural connectivity data

ere used to inform the network architecture of the whole-brain DCMs,

ut even in the case of complete absence of a priori assumptions about

he network’s architecture by automatically pruning fully connected

raphs to an optimal degree of sparsity. 

However, our method also failed to detect a characteristic of the mo-

or system that has been reported previously: interhemispheric inhibi-

ion of the ipsilateral M1 by the contralateral M1 during unilateral hand

ovements ( Ferbert et al., 1992 ). This may be due to the fact that hand

ovements of different conditions were separated into two scanning ses-

ions, potentially rendering interhemispheric inhibition less critical as

n paradigms that alternate between the two conditions ( Grefkes et al.,

008 ). 

We further demonstrated the application of graph-theoretical mea-

ures to the inferred whole-brain effective connectivity patterns. Specif-

cally, we show that measures that capture the relevance of a network

ode, i.e., betweenness centrality and node strength, correctly identify

otor-related regions in the pre- and postcentral gyrus as key com-

onents of the network and show the expected hemispheric asymme-

https://www.cs.ubc.ca/~schmidtm/Software/L1precision.html
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ry ( Levy, 1969 ; Roland and Zilles, 1996 ). Furthermore, our graph-

heoretical analyses are consistent with known functional characteris-

ics of the human brain, including the relevance of precuneus in direct-

ng spatial attention during preparation and execution of motor actions

 Cavanna and Trimble, 2006 ; Kawashima et al., 1995 ; Wenderoth et al.,

005 ) and its role as a central “small-world network ” hub ( Bullmore and

porns, 2009 ). Similarly, our analyses revealed the expected right-

emispheric lateralization of the fronto-parietal network underlying vi-

uospatial attention ( Fink et al., 2000 ; Mesulam, 1981 ). 

Recently, graph theory has found widespread application in neuro-

cience and has provided valuable insights into the organization of the

rain ( Bullmore and Sporns, 2009 ; Fornito et al., 2013 ; Rubinov and

porns, 2010 ). However, to render graph-theoretical approaches, and

onnectomics in general, meaningful for understanding organizational

rinciples in large-scale networks, individual connection estimates need

o be neurobiologically interpretable. For instance, estimates need to

apture functional asymmetries of reciprocal connections – e.g., dif-

erences between ascending and descending connections in cortical

ierarchies ( Felleman and Van Essen, 1991 ; Zeki and Shipp, 1988 )

r asymmetries in interhemispheric interactions ( Frässle et al., 2016 ;

azzaniga, 2000 ; Stephan et al., 2007 ). This is not the case for currently

sed standard measures of connectivity in humans, such as DWI-derived

tructural connectivity and fMRI-based functional connectivity. These

easures are undirected and thus do not capture functional asymme-

ries of reciprocal connections. Extending graph-theoretical approaches

o effective (directed) connectivity may therefore be critical for exploit-

ng the information provided by graph-theoretical indices and for pro-

iding a more faithful assessment of the network topology underlying

rain dynamics. Indeed, our findings suggest that directed estimates of

onnectivity boost the explanatory power of network analyses: graph

heory applied to rDCM estimates better match known functional roles

f key motor regions than when undirected functional connectivity es-

imates are used. 

We would have liked to report a comparison between rDCM and

easures of directed functional connectivity, like multivariate Granger

ausality (GC; Roebroeck et al., 2005 ). However, for the data used here,

onditional GC estimates obtained using the “Causal Connectivity Anal-

sis ” toolbox ( Seth, 2010 ) did not show convergence, possibly due to

ssues like TR and the relatively short scanning time (i.e., low number

f data points per region) ( Roebroeck et al., 2005 ; Seth et al., 2013 ).

y contrast, the feasibility of obtaining meaningful estimates by rDCM

nderscores its potential suitability for clinical applications, where long

canning sessions are usually not possible. 

Our results suggest that rDCM confers important practical advan-

ages for human connectomics and network neuroscience. Several

trengths and innovations are worth highlighting. First, rDCM provides

ifferent modes of operation for deriving directed connectivity finger-

rints: it can exploit subject-specific anatomical connectivity informa-

ion for constraining inference; alternatively, when no such information

s available, rDCM can infer optimally sparse representations of whole-

rain networks. Second, by introducing sparsity constraints, rDCM cir-

umvents the need for arbitrary thresholding of connectivity matrices.

nstead, rDCM yields an optimal degree of sparsity by maximizing the

odel evidence. Finally, rDCM is computationally highly efficient with

un-times on the order of minutes for a fixed network architecture and

ew hours when using sparsity constraints per subject. This efficiency

enders rDCM a promising tool for clinical applications but also for

ime-consuming analyses of large-scale datasets like the Human Con-

ectome Project ( Van Essen et al., 2013 ). These developments provide

xciting new opportunities for moving human connectomics and net-

ork neuroscience towards directed measures of functional integration.

urthermore, rDCM may find useful application in the emerging fields of

omputational Psychiatry and Computational Neurology where compu-

ational readouts of directed connectivity in whole-brain networks are

f major relevance. For instance, in schizophrenia, the “dysconnection

ypothesis ” postulates that impairments in neuromodulatory regulation
f NMDA receptor dependent synaptic plasticity lead to dysconnectiv-

ty, particularly in circuits for perception and learning ( Friston et al.,

016 ; Friston, 1998 ; Stephan et al., 2006 , 2009a ). Similarly, for other

sychiatric disorders like depression or autism, global dysconnectivity

as been suggested as a hallmark of the disease, which points to the

linical utility of whole-brain models of directed connectivity ( Deco and

ringelbach, 2014 ; Frässle et al., 2018b ; Menon, 2011 ; Stephan et al.,

015 ). 

Despite these strengths, our study is also subject to limitations. First,

he Brainnetome atlas does not cover the cerebellum ( Fan et al., 2016 ),

hich plays an important role in preparation and execution of mo-

or actions ( Witt et al., 2008 ). This is similar to most other state-of-

he-art whole-brain parcellation schemes, like the Human Connectome

roject parcellation (HCP MMP 1.0; Glasser et al., 2016 ), which are

qually restricted to cortical regions (although recent work has extended

he Glasser atlas to subcortical structures as well; see Ji et al., 2019 ).

ther parcellation schemes, such as the Automated Anatomical Label-

ng (AAL) atlas, do include the cerebellum but have other shortcomings.

or example, purely anatomically defined parcellations like the AAL

tlas delineate areas based on macroscopic landmarks only ( Tzourio-

azoyer et al., 2002 ). Similarly, atlases that derive from tractography

r cytoarchitecture provide more fine-grained parcellations, while still

eglecting functional information. For the present analysis, we deliber-

tely focused on the cortex and chose the Brainnetome atlas for three

easons: (i) the atlas is sufficiently fine-grained to allow for meaningful

arge-scale effective connectivity analyses among cortical regions, (ii)

as been demonstrated to provide robust parcels across the population

s assessed using cross-validation, and (iii) provides not only a parcella-

ion of the brain but also tractography-based information on how these

arcels are anatomically connected (which informed the network archi-

ecture in our initial rDCM analysis). 

Second, rDCM is still in an early development stage and the current

mplementation is subject to methodological limitations ( Frässle et al.,

018a , 2017 ). In particular, the biophysically plausible hemodynamic

odel in classical DCM was replaced with a fixed HRF. Consequently,

DCM presently does not capture variability in the BOLD signal across

egions and individuals. In this work, we accounted for variability in

atency and duration of the hemodynamic responses by including tem-

oral and dispersion derivatives of the canonical HRF as confound re-

ressors in the GLM ( Friston et al., 1998 ). Nevertheless, replacing the

xed HRF with a flexible hemodynamic model represents a major future

evelopment of rDCM. 

It is worth highlighting that rDCM is not the only approach that

ims to infer effective connectivity in large-scale networks. Alternative

pproaches include BNMs ( Deco et al., 2013 ) and cross-spectral DCMs

 Razi et al., 2017 ). BNMs combine biophysical mean-field models of the

ocal neuronal dynamics with long-range connections informed by struc-

ural connectivity estimates. However, the complexity of these models

enders parameter estimation computationally extremely challenging,

estricting applications to relatively few free parameters ( Deco et al.,

014a , 2014b ; Demirtas et al., 2019 ); but see Wang et al. (2019) for

otable progress in this area. A platform for constructing and apply-

ng BNMs to a variety of neuroimaging modalities is the Virtual Brain

 Jirsa et al., 2010 ). 

Recently, a large-scale network model has been introduced that also

nables inference on individual connectivity parameters ( Gilson et al.,

017 ). Here, local dynamics of brain regions are described by an

rnstein-Uhlenbeck process. This model further differs from rDCM in

hat effective connectivity is not estimated within a Bayesian framework

ut by maximum likelihood, which does not enable automatic prun-

ng of fully connected networks. For “resting-state ” data, a variant of

ross-spectral DCM has been proposed, where the effective number of

ree parameters is reduced by constraining the prior covariance matrix

 Razi et al., 2017 ). In contrast to rDCM, cross-spectral DCM explicitly

aptures regional variability in hemodynamic responses ( Friston et al.,

000 ). However, this increase in physiological realisms comes at the ex-
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ense of non-optimal computational efficiency – resulting in run-times

etween 21 and 42 h for a single DCM with 36 regions ( Razi et al.,

017 ). Hence, in its current implementation, cross-spectral DCM is un-

ikely to scale to whole-brain networks with hundreds of regions. In

ddition to cross-spectral DCM, alternative variants of large-scale con-

ectivity analyses for “resting-state ” fMRI data have recently been pro-

osed that are inspired by rDCM and pursue a sparsity-inducing ap-

roach ( Prando et al., 2019 ). 

Besides DCM and BNM, other approaches that infer directed inter-

ctions in large-scale networks include MVGC ( Goebel et al., 2003 ;

oebroeck et al., 2005 ; Seth, 2010 ), MINDy ( Singh et al., 2020 ), cor-

elation generalizations ( Xu et al., 2017 ), GIMME ( Gates et al., 2014 ),

ayes nets ( Mumford and Ramsey, 2014 ; Ramsey et al., 2017 ; Sanchez-

omero et al., 2019 ), and non-Gaussian models ( Sanchez-Romero et al.,

018 ). A direct comparison of rDCM with a subset of these approaches

as recently presented by Frässle et al. (2018a) for synthetic data

here the ground truth (i.e., the data-generating model parameters and

etwork architecture) was known. In these simulations, rDCM outper-

ormed, in most cases, other directed connectivity methods, including (i)

VGC ( Seth, 2010 ), (ii) the Fast Adjacency Skewness (FASK; Sanchez-

omero et al., 2018 ) algorithm as a variant of non-Gaussian methods,

nd (iii) the Fast Greedy Equivalence Search (FGES; Chickering, 2003 ;

amsey et al., 2017 , 2010 ) algorithm as a case of Bayes nets. Having

aid this, more validation work can still be done. In future work, we

ould therefore like to compare rDCM to other emerging approaches

f whole-brain effective connectivity in application to empirical

atasets. 

In summary, in comparison to other methods for inferring effective

onnectivity in large-scale networks, rDCM provides estimates of the full

osterior distributions of individual connection strengths in networks

ith hundreds of nodes, with run-times on the order of minutes for a

xed network architecture and a few hours when using sparsity con-

traints on standard hardware. It allows for parallelization and scales

racefully (polynomially, as opposed to exponentially) with the number

f regions, an important property as methodological advances allow for

ncreasingly fine-grained parcellations of human cortex ( Eickhoff et al.,

018 ). Furthermore, its Bayesian formulation allows for a natural con-

ection to subject-specific anatomical connectivity data (e.g., tractogra-

hy). Finally, its speed and ability to prune whole-brain networks in the

bsence of anatomical connectivity information are important assets for

linical applications, potentially supporting time-sensitive clinical as-

essments with interpretable sparse whole-brain connectograms solely

ased on fMRI data. 
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A Matlab implementation of the regression dynamic causal mod-
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