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Recent work has highlighted the scale and ubiquity of subject variability in observations from functional MRI data (fMRI). Furthermore, it is highly likely that 
errors in the estimation of either the spatial presentation of, or the coupling between, functional regions can confound cross-subject analyses, making accurate and 
unbiased representations of functional data essential for interpreting any downstream analyses. Here, we extend the framework of probabilistic functional modes 
(PFMs) ( Harrison et al., 2015 ) to capture cross-subject variability not only in the mode spatial maps, but also in the functional coupling between modes and in mode 
amplitudes. A new implementation of the inference now also allows for the analysis of modern, large-scale data sets, and the combined inference and analysis package, 
PROFUMO, is available from git.fmrib.ox.ac.uk/samh/profumo . A new implementation of the inference now also allows for the analysis of modern, large-scale data 
sets. Using simulated data, resting-state data from 1000 subjects collected as part of the Human Connectome Project ( Van Essen et al., 2013 ), and an analysis of 14 
subjects in a variety of continuous task-states ( Kieliba et al., 2019 ), we demonstrate how PFMs are able to capture, within a single model, a rich description of how 

the spatio-temporal structure of resting-state fMRI activity varies across subjects. 
We also compare the new PFM model to the well established independent component analysis with dual regression (ICA-DR) pipeline. This reveals that, under PFM 

assumptions, much more of the (behaviorally relevant) cross-subject variability in fMRI activity should be attributed to the variability in spatial maps, and that, 
after accounting for this, functional coupling between modes primarily reflects current cognitive state. This has fundamental implications for the interpretation of 
cross-sectional studies of functional connectivity that do not capture cross-subject variability to the same extent as PFMs. 
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2 For the rest of this paper, when we use the term variability in relation to 
functional measures, it can be assumed to relate to variability in static functional 
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. Introduction 

One of the key changes to the landscape of the analysis of func-
ional connectivity via rfMRI in recent years has been the prolifera-
ion of large population-level studies ( Bamberg et al., 2015; Breteler
t al., 2014; Miller et al., 2016; Van Essen et al., 2012b ) and multi-site
ata-sharing initiatives ( Biswal et al., 2010; Gorgolewski et al., 2017;
ennedy et al., 2016; Mennes et al., 2013; Poldrack et al., 2013; Scott
t al., 2011; Thompson et al., 2014 ) 1 . This has allowed investigations
nto the population-level correlates of fine-grained changes in functional
onnectivity ( Allen et al., 2011; Dubois and Adolphs, 2016 ), with sev-
ral studies already finding strong links with a variety of behavioural,
enetic and lifestyle factors ( Colclough et al., 2017; Elliott et al., 2018;
inn et al., 2015; Smith et al., 2015 ); together, these findings augur well
or the search for clinically relevant, personalised predictions from func-
ional neuroimaging data ( Abraham et al., 2017; Dubois and Adolphs,
016; Insel and Cuthbert, 2015; Stephan et al., 2017 ). In sum, there has
∗ Corresponding author. 
E-mail address: samuel.harrison@ndcn.ox.ac.uk (S.J. Harrison). 

1 For a more complete overview of data sharing initiatives, see the NeuroIm- 
ge special issues ( Eickhoff et al., 2016 ). 
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een a shift in what is required of analysis techniques, namely that they
ust be both interpretable and sensitive to subject-level variability, and

t the same time they need to scale to meet the computational demands
osed by large data sets. 

.1. Implications of variability over subjects 

In this paper, we are primarily interested in the interpretation
f —and characterisation of the subject variability in —static functional
onnectivity 2 . Ultimately, static functional connectivity is encapsulated
y the dense connectome —by which we mean the time-averaged voxels-
y-voxels connectivity matrix, as defined by the statistical relationships
etween time courses as extracted from functional data ( Friston, 2011;
onnectivity over subjects or sessions. This does not consider, for example, the 
oment-to-moment fluctuations characterised as dynamic functional connec- 

ivity ( Calhoun et al., 2014; Hutchison et al., 2013; Preti and Van De Ville, 
017 ). This encodes important within-subject state changes ( Tagliazucchi and 
aufs, 2014 ), and there is growing evidence that this captures between-subject 
rait differences too ( Vidaurre et al., 2017 ). 
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2  
riston et al., 1993 ). However, dense connectomes are cumbersome
omputationally, and the natural spatial scale of the functional data
s likely to be much lower than the several hundred thousand voxels
resent in a typical fMRI acquisition ( Van Essen et al., 2012a ). In prac-
ice, what we are seeking is a parsimonious summary of the static func-
ional connectivity that is both readily interpretable and captures key
orms of variability. 

The canonical approach for analyses of static functional connectivity
s to summarise the high-dimensional data in terms of a comparatively
mall number of either parcels or functional systems 3 . These are usu-
lly defined in terms of their spatial configuration, at which point it is
ossible to extract representative time courses from functional data and
nalyse these. There will naturally be variability in functional connec-
ivity in several domains, though based on the above framework we will
ocus on two key ones here: firstly, we will refer to variability in the size,
hape and location of functional regions as subject variability in spatial or-

anisation ; secondly, we will use subject variability in temporal features to
enote the changes in summary measures based on said time courses —in
articular, the strength of functional connectivity between regions (i.e.
unctional connectomes). Finally, note that for clarity we will use the
erm functional coupling to specifically refer to the functional connec-
ivity between regions as described by these low-dimensional connec-
omes 4 . 

The assumption that is implicit in either the parcel or system-level
nalyses is that registration to a common space means that the time
ourses we extract based on group-level spatial descriptions are an ac-
urate, or at least unbiased, description of each subject’s data. How-
ver, given that it is by no means uncommon to observe three-fold
ariation in the areal extent of regions of primary visual cortex across
ubjects ( Andrews et al., 1997; Dougherty et al., 2003 ); or that non-
omeomorphic morphological changes, such as subjects exhibiting dif-
erent number of gyri and sulci, are prevalent ( Amiez and Petrides,
014; Shackman et al., 2011 ) even in identical twins ( Bartley et al.,
997; Hasan et al., 2011 ); or that macroscale anatomical features are
oor predictors of cytoarchitectonic borders ( Amunts et al., 2007 ); then
e should expect there to be substantial disparities in the presentation
f functionally homologous regions across subjects, even after nonlin-
ar registration ( Brett et al., 2002; Devlin and Poldrack, 2007; Mueller
t al., 2013; Van Essen and Dierker, 2007 ). Recent observations have
onfirmed this for functional data, where it has been shown that this
ubject variability in spatial organisation ’can give rise to divergent
onnectivity estimates from the same seed region in different subjects’
 Gordon et al., 2017a ) —with the results from several studies also sug-
esting that reorganisations of functionally homologous regions that
annot be represented by diffeomorphic warps seem to be common-
lace ( Braga and Buckner, 2017; Glasser et al., 2016a; Gordon et al.,
016; 2017b; Hacker et al., 2013; Harrison et al., 2015; Kong et al.,
018; Laumann et al., 2015 ). Furthermore, these differences have a sub-
tantial impact on the data: cross-subject differences in static functional
onnectivity have been shown to be much larger than either cross-site
ffects ( Noble et al., 2017 ) or cross-condition, within-subject changes
 Gratton et al., 2018 ). 

Loosely speaking, these spatial differences in functional connectivity
fter registration can arise for four reasons: there will naturally be some
rrors in the registration process, resulting in structural features that are
ot brought into correspondence; there will be locations where anatom-
cal landmarks bear little relation to functional subdivisions, meaning
tructural similarity is not a sufficient condition for accurate registra-
ion; there will be genuine non-homotopic reorganisations, whereby the
tandard registration approaches based on diffeomorphic warps could
3 Resting-state networks, intrinsic connectivity networks, etc. 
4 We make this distinction as the spatial maps, which characterise the location 
f functional regions, also capture aspects functional connectivity and organisa- 
ion. 
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ever succeed 5 ; and there will be dynamic —either moment-to-moment
r state-dependent —changes in the functional connectivity structure
 Buckner et al., 2013; Krienen et al., 2014; Salehi et al., 2020 ). If these
ifferent sources of variability in spatial organisation are not accounted
or, then one expects the inferred mode time courses to be a farrago
f contributions from the underlying ’true’ set of modes ( Allen et al.,
012; Smith et al., 2011 ). Worse still, if the structural differences cap-
ure meaningful cross-subject differences —which they almost certainly
ill do ( Llera et al., 2019 ) —then the amount of misalignment, and hence

he quality of the extracted time courses, will reflect information that is
natomical rather than functional in origin ( Bijsterbosch et al., 2018 ).
his breaks the central tenet of investigations into subject variability

n temporal features, as we can no longer assume that a group-level
escription of the functional architecture is a reliable description of in-
ividual subjects, or even that we can use these to extract unbiased es-
imates of functional coupling. How then, do we proceed from here? 

The first approach we could take is to improve the registrations, and
ope that better algorithms and utilising a richer feature set to drive the
lignment will push individual subjects ever closer towards the group
escription ( Robinson et al., 2018; 2014; Tong et al., 2017 ). Notably
owever, the multiple recent observations that single functional regions
an be manifested as multiple disjoint regions in some subjects, is some-
hing that not even advanced functional registration algorithms reliant
n diffeomorphic warps can correct for. The minimum requirement for
his approach is therefore the use of advanced registration techniques
hat can non-homotopically reorganise the spatial layout of functional
egions, as, for example, introduced by Conroy et al. (2013) ; Guntupalli
t al. (2018, 2016) , or Langs et al. (2010) . 

The alternative approach, and the one that we take in this paper,
s to build algorithms that can extract estimates of subject variability
n temporal features while simultaneously accounting for the variable
resentation of functional regions at the subject level. Several methods
ave been proposed to do exactly this, using both hierarchical models
f functional systems ( Abraham et al., 2013; Harrison et al., 2015; Li
t al., 2017; Varoquaux et al., 2011 ) and parcels ( Kong et al., 2018;
angs et al., 2016; Liu et al., 2012 ). We provide a more fulsome de-
cription of these, and their counterparts that extract subject-specific
nformation given a fixed group template, in Appendix A.1 . However,
he majority of these methods have what is potentially a major limita-
ion: the flow of information is almost exclusively from group to subject.
n other words, there are only relatively rudimentary efforts to tap into
hat we might hope is a virtuous cycle: we should be able to use our
roup-level estimates to infer accurate subject-level information, but,
rucially, we should also be able to utilise the observed variability at
he subject level to refine our group-level parameterisations. Further-
ore, the same process should hold within subjects, such that accurate

stimation of the individual spatial presentations should improve eval-
ation of the temporal information, and vice versa. 

Finally, while we have tended to focus on connectomes as the prin-
ipal temporal feature of interest in the above discussion, there are
ther types of variability we are interested in. Recent work has shown
hat, for example, amplitudes —by which we mean any metric which
epresents the amount of fluctuation in activity of a functional region
ver time —carry a substantial amount of information about subjects
 Bijsterbosch et al., 2017; Duff et al., 2008; Miller et al., 2016; Zang
t al., 2007; Zou et al., 2008 ), provided we are sufficiently careful in how
e distinguish changes from those in functional coupling ( Duff et al.,
018 ), and then how we interpret said changes ( Qing and Gong, 2016 ).
5 It is somewhat contentious whether (structural) registration should be held 
esponsible for the latter two processes. Our definition of registration is some- 
hat broader, as we hold it responsible for bringing subjects into structural 
nd functional correspondence. While structural registration is unlikely to be 
ufficient here, this is nevertheless a reasonable aim for multi-modal registra- 
ion approaches. For a good discussion of these issues see e.g. Van Essen and 
ierker (2007) . 
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6 Eyes-open, eyes-closed, pre/post an intervention, various “active-state ”
paradigms etc. 

7 Cf. the noisy estimates of beta values from a GLM fit. 
mplitudes are therefore another type of subject-specific information
hat we would hope analysis methods could identify, and more impor-
antly disambiguate from, the types of subject variability we have al-
eady discussed. This is an illustrative example of the complexity of the
ask of characterising functional connectivity: at every level of any per-
eptual hierarchy of features we impose (i.e. separation into spatial and
emporal features, or subdivision of temporal features into amplitudes
nd coupling), we expect there to be multiple ways to identify the differ-
nt features, and substantial cross-subject variability that is correlated
cross the different categories. 

.2. Outline 

For the rest of this paper, we will outline our approach for simul-
aneously inferring group- and subject-level descriptions of functional
ystems. We use the term mode to describe our mathematical descrip-
ion of a given system. 

To begin with, we present our probabilistic model for these modes,
ncluding the way we parameterise subject variability in both spatial and
emporal features, and our approach for inference. This is a significant
xtension of the proof-of-concept method ( Harrison et al., 2015 ) in sev-
ral key ways: we introduce a new hierarchical model to better capture
he functional coupling between modes, incorporate a model for mode
mplitudes to engender a cleaner separation between different types of
unctional variability, and we overhaul the entire implementation to
elp the inference scale to large data sets. 

We then compare the performance of our method with existing ap-
roaches. We do this using both simulated and empirical data, namely
he complete set of rfMRI data as released by the Human Connectome
roject and “active-state ” fMRI data from a more conventionally sized
tudy. Finally, we offer some brief discussions as to the significance of
ur results. 

. Model 

Our approach infers subject-level probabilistic functional modes
PFMs) —each of which can be thought of as being described by a
ubject-specific spatial map and a set of time courses —across the whole
ohort simultaneously. Ensuring that there is correspondence between
he inferred modes across the cohort is a challenge ( Esposito et al.,
005 ), especially on resting-state data where we cannot assume any
ommon temporal structure. 

However, we can use the information at the group-level to inform the
ubject-specific decompositions: both the subject-specific spatial maps
nd the low-dimensional, between-mode functional connectomes are
onstrained to vary around their group-level descriptions, and we can
lso leverage the expected properties of the hæmodynamic response to
urther constrain the time courses. Moreover, we can use the subject-
pecific modes to learn about the variability of all these properties,
hereby allowing us to not only describe typical patterns of activity, but
o also quantify the extent to which observed patterns are atypical. We
o this by building, and then inferring upon, a hierarchical probabilistic
odel for rfMRI data as described by a set of modes, and it is this that
e outline in the following section. 

.1. Matrix factorisation models 

Defining a mode in terms of a spatial map and time course means
hat it is fundamentally a matrix factorisation approach, a mathematical
ormulation which underpins principal component analysis, indepen-
ent component analysis, non-negative matrix factorisation, dictionary
earning and several other of the well established methods for extract-
ng modes from rfMRI data. For completeness, we briefly introduce our
otation for this class of models before introducing our extensions. 

Firstly, each subject, s , from a cohort of S subjects, is scanned R s 

imes. Note that we do not assume that each of the runs for a given
ubject (i.e. 𝑟 ∈ {1 , … , 𝑅 𝑠 } ) are identical from a modelling standpoint:
hey could, for example, represent different time points in a longitudi-
al study, or different conditions 6 , and we may therefore want to treat
hem differently. The fMRI data are acquired in V voxels and at T time
oints, which we reshape into a data matrix 𝑫 

( 𝑠𝑟 ) ∈ ℝ 

𝑉 ×𝑇 . We do all
ur analyses after the data has been registered into a common space, so
he number of voxels is constant across subjects. We do however allow
he number of time points per run to vary (i.e. 𝑫 

( 𝑠𝑟 ) ∈ ℝ 

𝑉 ×𝑇 ( 𝑠𝑟 ) ), but for
otational simplicity we drop any superscripts on T . 

The problem we are faced with is defining an extension to the stan-
ard matrix factorisation approach to account for these multiple data. In
he spatial domain, as discussed in the Introduction, we expect between-
ubject variability in the locations of functional regions, even after regis-
ration, and we expect these effects to be amongst the dominant sources
f functional variability. We make the pragmatic decision to focus on
ifferences in the static configuration of functional systems specifically,
nd we target our spatial approach towards what are essentially mis-
lignments. 

Therefore, as in Harrison et al. (2015) , we model subject and run
ariability within the matrix factorisation framework as follows. We are
ooking for a set of M modes, and we assume that the subject variabil-
ty in spatial organisation we observe across subjects, by virtue of it
eing driven primarily by cortical reorganisations, is consistent across
ll runs for a given subject. This gives a set of subject-specific spatial
aps, 𝑷 ( 𝑠 ) ∈ ℝ 

𝑉 ×𝑀 , that will potentially be observed multiple times.
urthermore, each run will have its own unique set of time courses,
 

( 𝑠𝑟 ) ∈ ℝ 

𝑀×𝑇 , as well as a set of mode amplitudes, 𝒉 ( 𝑠𝑟 ) ∈ ℝ 

𝑀 . For conve-
ience we adopt the following convention: 𝑯 

( 𝑠𝑟 ) ∈ ℝ 

𝑀×𝑀 ≡ 𝑑𝑖𝑎𝑔 
(
𝒉 ( 𝑠𝑟 ) 

)
.

inally, note that in general we infer a small number of PFMs relative to
 and T , which gives a parsimonious description of the data. However,

his means that the factorisation will not be exact, so we express the data
s the contribution from the PFMs and a noise term, 𝜺 ( 𝑠𝑟 ) ∈ ℝ 

𝑉 ×𝑇 . This
et of assumptions allows us to describe the complete model for one run
s 

 

( 𝑠𝑟 ) = 𝑷 ( 𝑠 ) 𝑯 

( 𝑠𝑟 ) 𝑨 

( 𝑠𝑟 ) + 𝜺 ( 𝑠𝑟 ) (1) 

In the following sections, we describe how we model the dependen-
ies between these run-specific decompositions, as well as the key prop-
rties of rfMRI data that we are trying to capture. For reference, a full
raphical model is provided in the Supplementary Material. 

.2. Spatial model 

The spatial model remains conceptually similar to the approach we
sed in Harrison et al. (2015) . For each mode, there is a rich group-
evel description capturing the mean group maps and typical subject
ariability around these; as Van Essen and Dierker (2007) discuss, in
ight of subject variability, it is essential that ’[regions are] represented
robabilistically whenever possible, in a way that reflects variability
n cortical convolutions and in [their] size, location, and internal (e.g.,
opographic) organization’. Similarly, subject maps are parameterised
uch that they retain the key characteristics of the group maps, but al-
ow for genuine variability while being robust to spurious correlations
nduced by noise. 

A key modification we make to the previous model is to change
he way we model the spatial map distribution, by relaxing the delta-
aussian mixture model to a double-Gaussian mixture model. Previ-
usly, the weights in voxels which were inferred to be outside of a given
ode were set to exactly zero. In reality however, essentially all voxels
ill exhibit a weak correlation with a given mode time course 7 , and, par-

icularly in studies like the Human Connectome Project with thousands
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f time points per subject, there is often sufficient evidence a posteriori to
odel this noise as small, but nevertheless non-zero, weights 8 . The new
odel allows for exactly this type of ’spurious’ (i.e. statistically but not

iologically significant) correlation by including a noise distribution to
apture small deviations from zero in the spatial map weights. While we
re not interested in these small weights per se, if we do not include a
ore explicit noise model then the model will erroneously include them

s signal thereby hindering our ability to detect genuine ’neural’ signal.
This contamination by noise happens for three main reasons. Firstly,

s Bright and Murphy (2015) recently showed, even well-characterised
unctional modes can be identified from noise processes like sub-
ect motion. Conversely, this implies that even accurately identified
odes may well correlate with non-neural processes. Secondly, given

he complex, long-range spatial autocorrelations present in fMRI data
 Kriegeskorte et al., 2008 ), fMRI noise processes have a non-trivial struc-
ure. This is heightened by spatial smoothing, which is an often used
re-processing step for fMRI data (though less so for modern high spatial
nd temporal resolution data ( Glasser et al., 2016b )). This is advanta-
eous as it ameliorates the problem of residual spatial mis-alignment af-
er registration, but induces heightened spatial correlations in the noise.

hile it would be possible to model this, estimating —and then correct-
ng for —the true number of spatial degrees of freedom in the data is no-
oriously difficult ( Eklund et al., 2016; Worsley et al., 1996 ), and would
e computationally expensive over a large number of voxels. Finally,
n the section on the noise model itself, we demonstrate how unstruc-
ured noise can have a stabilising effect on matrix factorisation models.
herefore, we make the pragmatic decision to account for these effects

n the spatial model, rather than trying to incorporate a more complex
echanistic model for the noise. 

The resulting model takes the following form. For voxel v in mode
 , the subject-specific spatial weights are distributed as follows: 

 

(
𝑷 ( 𝑠 ) 

𝑣𝑚 

|||𝑞 
( 𝑠 ) 
𝑣𝑚 = 1 

)
=  

(
𝑷 ( 𝑠 ) 

𝑣𝑚 

|||𝜇𝑣𝑚 , 𝜎
2 
𝑣𝑚 

)

 

(
𝑷 ( 𝑠 ) 

𝑣𝑚 

|||𝑞 
( 𝑠 ) 
𝑣𝑚 = 0 

)
=  

(
𝑷 ( 𝑠 ) 

𝑣𝑚 

|||0 , ( 𝜂
( 𝑠 ) 
𝑚 ) 2 𝜁2 𝑣 

)

𝑝 
(
𝑞 
( 𝑠 ) 
𝑣𝑚 

)
= ( 𝜋𝑣𝑚 ) 𝑞 

( 𝑠 ) 
𝑣𝑚 (1 − 𝜋𝑣𝑚 ) 1− 𝑞 

( 𝑠 ) 
𝑣𝑚 

𝑝 
(
𝜂
( 𝑠 ) 
𝑚 

)
=  

(
𝜂
( 𝑠 ) 
𝑚 
|||0 , 𝛾2 𝜂

)
(2)

Where 𝑞 ( 𝑠 ) 𝑣𝑚 is a binary indicator variable which represents whether a
iven voxel’s weight is drawn from the signal or the noise component. 

This distribution is defined in terms of several group-level hyperpa-
ameters: the probability that a given weight is drawn from the signal
ather than the noise distribution, 𝜋vm 

; the mean and standard devia-
ion of the signal component, 𝜇vm 

and 𝜎vm 

respectively; and the new
arameters, the standard deviation of the noise component, which we
arameterise as 𝜂( 𝑠 ) 𝑚 𝜁𝑣 for reasons which we explain in detail later. 

Note how much richer this description is than the single set of group-
evel means that most currently used techniques infer. For example, the

vm 

parameters can capture the types of spatial non-uniformity in sub-
ect variability observed by Mueller et al. (2013) . Therefore, when in-
erring subject maps, the inference will automatically be informed by
he data more than the group mean in regions inferred to exhibit high
unctional heterogeneity over subjects, and vice versa for regions with
ow subject-to-subject variability. 

The model also includes the set of distributions over the group-level
yperpriors (see the Supplementary Material for the way these, and
ll subsequent, hyperparameters are specified). Starting with the hy-
erpriors on the ’signal’ component, we place a mixture model prior
ver the group means, which, as in the previous work, is inspired by
he spike-slab distribution ( George and McCulloch, 1993; Ishwaran and
ao, 2005; Mitchell and Beauchamp, 1988; Titsias and Lázaro-Gredilla,
011 ). This encourages sparsity in the group-level spatial maps, thereby
8 See Colclough et al. (2018) for a discussion of exactly this effect in relation 
o inference of functional couplings between regions. 

g  

t

ncoding ideas about functional segregation, as well as allowing more
exibility when specifying the distribution of the non-zero weights.
owever, we introduce an extension and model the non-zero weights
ith a combination of two Gaussians with different variances. This al-

ows the group-level distribution of non-zero spatial weights to have
eavier tails than the single Gaussian used in the previous incarnation
f the model. 

 

(
𝜇𝑣𝑚 

|||𝜌𝑣𝑚 = 2 
)
=  

(
𝜇𝑣𝑚 

|||𝜏𝜇2 , 𝛾𝜇2 
2 )

 

(
𝜇𝑣𝑚 

|||𝜌𝑣𝑚 = 1 
)
=  

(
𝜇𝑣𝑚 

|||𝜏𝜇1 , 𝛾𝜇1 
2 )

 

(
𝜇𝑣𝑚 

|||𝜌𝑣𝑚 = 0 
)
= 𝛿

(
𝜇𝑣𝑚 

)

𝑝 
(
𝜌𝑣𝑚 

)
= 

∏
𝑖 ∈{0 , 1 , 2} 

(
𝜆𝜇𝑖 

)[ 𝜌𝑣𝑚 = 𝑖 ] 

(3) 

here 𝜌vm 

is the probability that a voxel in the group map is drawn from
ach of the three distributions, and [ 𝜌𝑣𝑚 = 𝑖 ] is the Iverson bracket. 

The group signal standard deviations, 𝜎vm 

, take an inverse-gamma
yperprior: 

 

(
𝜎𝑣𝑚 

)
= Γ

(
𝜎−2 

𝑣𝑚 

|||𝑎 𝜎 , 𝑏 𝜎
)

(4)

Returning to the hyperpriors on the ’noise’ component, in Eq. 2 , the
tandard deviation of the noise component of the subject-specific spatial
ap distribution is parameterised as 𝜂( 𝑠 ) 𝑚 𝜁𝑣 . The 𝜁v parameter encodes

patial inhomogeneity in the noise variance: for example, we expect
ore structured noise due to motion around the edges of the brain; sim-

larly, we expect more physiological noise in the brainstem. This group
oise standard deviation, 𝜁v , also takes an inverse-gamma hyperprior: 

 

(
𝜁𝑣 

)
= Γ

(
𝜁−2 
𝑣 

|||𝑎 𝜁 , 𝑏 𝜁
)

(5)

However, we also expect different signal-to-noise ratios, both across
ubjects and modes. Therefore, we include an extra parameter, 𝜂( 𝑠 ) 𝑚 ,

hich captures variations in the noise level 9 . We place a weak prior
n 𝜂( 𝑠 ) 𝑚 , as we want the overall scale of each spatial map to be deter-
ined by the signal rather than the noise, as this makes cross-subject

nalyses more informative: 

 

(
𝜂( 𝑠 ) 
𝑚 

)
=  

(
𝜇𝑣𝑚 

|||0 , 𝛾2 𝜂

)
(6)

Finally, the last hyperprior to specify is that on the group member-
hip probabilities. This follows a beta distribution: 

 

(
𝜋𝑣𝑚 

)
= 𝛽

(
𝜋𝑣𝑚 

|||𝑎 𝜋, 𝑏 𝜋
)

(7)

In summary, the model has rich descriptions of the spatial maps,
oth at the group and subject level, and allows us to encode typical
atterns of variability. Furthermore, while we have included a weak
parsity constraint at the group-level, there is no explicit constraint on,
or example, orthogonality of the spatial maps. Therefore, the model can
apture modes that are highly spatially overlapping in what is arguably a
ore natural way than independent component analysis —even despite
 historic tendency to overstate those criticisms ( Beckmann et al., 2005;
alhoun et al., 2013; Smith et al., 2012 ). 

One last point to note is that when we present our results, the group
aps we show are the marginal posterior means of the whole spatial
istribution, rather than the 𝜇 parameters themselves. The group-level
aps are therefore 𝐸[ 𝜋𝑣𝑚 𝜇𝑣𝑚 | ] , which has the nice property that it

ncorporates the uncertainty about whether each voxel is drawn from
he signal or the noise component. 

.3. Temporal model 

In the temporal domain, the unconstrained nature of rfMRI data
eans that we can say relatively little about the time courses from a

iven run, as there are no external events from which we can search
9 See e.g. Gelman (2006) for a related discussion of redundant parameterisa- 
ions of variance. 
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or consistent time-locked patterns of mode activation. However, func-
ional connectomics has shown that, as well as having a consistent group
tructure, both the interactions between modes and simple amplitude
easures encode interesting information about subjects. Similarly, the
æmodynamic processes lend neural processes a distinct temporal sig-
ature. That being the case, we wish to formulate a model that primarily
aptures these two phenomena. 

However, we expect the inferred time courses to be corrupted by
oise, even if we properly make allowances for the global noise process
 

( sr ) . As mentioned in the Spatial Model section, there are likely to be
tructured noise processes that violate our hæmodynamic assumptions.
his needs to be accounted for before we can introduce the targeted
odels of the BOLD signal. 

Analogously to the spatial model, we extend the model from
arrison et al. (2015) by making the pragmatic decision to allow noisy

ime courses. Therefore, our time course model contains two terms: the
rst represents the clean BOLD time courses, B 

( sr ) , while the second rep-
esents the noise that corrupts these, 𝝃( sr ) . This gives: 

 

( 𝑠𝑟 ) = 𝑩 

( 𝑠𝑟 ) + 𝝃( 𝑠𝑟 ) (8)

There is an additional benefit of this explicit parameterisation of the
OLD time courses. Recent work has claimed that the [fractional] Am-
litude of Low Frequency Fluctuations ([f]ALFF) ( Zang et al., 2007; Zou
t al., 2008; Zuo et al., 2010a ), as derived from rfMRI data, captures
spects of subject variability related to disease. Our parameterisation
llows us to derive a related quantity, which we term the fractional am-
litude of BOLD time courses (fABT). This is simply defined as the power
n the clean BOLD time courses B 

( sr ) , relative to the power in the noise
ime courses 𝝃( sr ) , calculated for each mode and each run individually.
onceptually, this is very closely related to fALFF, but it has the clear ad-
antage that it does not require defining ’low’ frequencies in terms of an
rbitrary threshold; rather, the signal of interest is based on an explicit
odel of the HRF. Secondly, the calculated fABT measures specifically

elate to the activity in different functional systems which makes the
easure more interpretable. 

.3.1. Hæmodynamic model 

We use the hæmodynamic response function (HRF) based model that
e introduced in Harrison et al. (2015) . This is a relatively simple, com-
utationally efficient, linear model that captures the gross properties of
he HRF via the temporal autocorrelations that it induces in the data.

e assume a white noise ’neuronal’ process convolved with a canonical
RF 10 , whose autocorrelation function we can capture using a full co-
ariance matrix, 𝑲 𝑩 ∈ ℝ 

𝑇×𝑇 , for all the time points in a given run. As
he overall variance of the time courses is arbitrary given the explicit
mplitude parameters, we simply ensure that K B is scaled such that all
ntries on the main diagonal are unity. 

.3.2. Subject-level mode interactions 

The major extension relative to the previous model is an explicit pa-
ameterisation of the functional coupling between modes. As discussed
arlier, we expect to observe temporal interactions between modes,
nd this will lend some structure to the mode time courses. We define
hese interactions in terms of the precision matrix between the mode
ime courses. In other words, we combine the HRF-derived autocor-
elation structure with a prior on the between-mode precision matrix,
( 𝑠𝑟 ) ∈ ℝ 

𝑀×𝑀 , in a matrix normal distribution. 
The combined prior on the hæmodynamic time course for all the

FMs in a given run is then: 

( ( 𝑠𝑟 ) | ( 𝑠𝑟 ) ) ( ( 𝑠𝑟 ) | ( 𝑠𝑟 ) −1 )

 𝑩 ||𝜶 =  𝑩 ||𝟎 , 𝜶 , 𝑲 𝑩 (9) 

10 For adult populations, both the SPM double-gamma HRF ( Friston et al., 
007 ) or the principal component of the FLOBS basis in FSL ( Woolrich et al., 
004 ) are provided, though this can be replaced for different populations as 
ppropriate e.g. ( Arichi et al., 2012 ). 

𝑝  

 

v  

a  

m

.3.3. Group-level mode interactions 

The temporal interactions between modes have been characterised
s having a consistent structure across the group ( Shehzad et al., 2009 ),
o we introduce a hierarchical model to capture this. Subject- or run-
evel variability will manifest itself as deviations from this set of group
nteractions. This formulation we use is, in essence, the same model as
hat proposed by Marrelec et al. (2006) , but where we have two princi-
al advantages: firstly, inference is informed by the full posteriors on the
est of the model (i.e. rather than point estimates); and, secondly, that
he regularisation that arises from these priors will inform the inference
f the rest of the model parameters. 

Starting at the subject level, we estimate the subject/run-specific
emporal precision matrix 𝜶( sr ) to keep track of the functional connectiv-
ty between modes. These precision matrices follow a Wishart distribu-
ion, and we introduce a hyperparameter, 𝜷 ∈ ℝ 

𝑀×𝑀 , that encourages
he interactions to be consistent across subjects and/or runs. This takes
he form of a hyperprior on the subject-specific scale matrices, and again
his follows a Wishart distribution. 

 

(
𝜶( 𝑠𝑟 ) |||𝜷

)
=  

(
𝜶( 𝑠𝑟 ) |||𝑎 𝜶 , 𝜷

)
𝑝 
(
𝜷
)
=  

(
𝜷
|||𝑎 𝜷 , 𝑩 𝜷

)
(10)

Furthermore, we can also place restrictions on the type of variabil-
ty we want the model to capture. If, for example, subjects are scanned
ultiple times but always under the same conditions, then it may well

e appropriate to generate a consensus set of interactions for that sub-
ect by pooling over runs. We can do this straightforwardly by setting
( sr ) ≡ 𝜶( s ) . Alternatively, if the runs vary across the group in a consis-

ent way (e.g. ’before’ and ’after’ scans) then we may want to explicitly
odel these conditions as separate entities. We can do this by introduc-

ng a family of group-level interactions, 
{
𝜷( 𝑟 ) }𝑅 

𝑟 =1 , and selectively using
hese as the hyperpriors on 𝜶( sr ) as appropriate. This gives us enormous
exibility and allows us to increase our statistical power by making tar-
eted assumptions about the key modes of variation. 

.3.4. Time course specific noise model 

The noise time course of mode m at time t , 𝝃( 𝑠𝑟 ) 
𝑚𝑡 

, is simply drawn from

 Gaussian distribution with precision 𝜔 

( 𝑠𝑟 ) 
𝑚 . This gives 

 

(
𝝃
( 𝑠𝑟 ) 
𝑚𝑡 

|||𝜔 

( 𝑠𝑟 ) 
𝑚 

)
=  

(
𝝃
( 𝑠𝑟 ) 
𝑚𝑡 

|||0 , 𝜔 

( 𝑠𝑟 ) 
𝑚 

−1 )
(11)

Each 𝜔 

( 𝑠𝑟 ) 
𝑚 takes a gamma hyperprior: 

 

(
𝜔 

( 𝑠𝑟 ) 
𝑚 

)
= Γ

(
𝜔 

( 𝑠𝑟 ) 
𝑚 

|||𝑎 𝜔 , 𝑏 𝜔 
)

(12)

.4. Amplitude model 

Again, the amplitude model is an extension to our previous work.
his has a straightforward formulation, with these parameters simply
esigned to account for the run-to-run variations in the overall activity
f each mode. These are parameterised in terms of 𝑯 

( 𝑠𝑟 ) ≡ 𝑑𝑖𝑎𝑔 
(
𝒉 ( 𝑠𝑟 ) 

)
,

nd follow a Gaussian distribution: 

 

(
𝒉 ( 𝑠𝑟 ) 

𝑚 

|||𝝁𝒉 , 𝚺𝒉 

)
=  

(
𝒉 ( 𝑠𝑟 ) 

𝑚 

|||𝝁𝒉 , 𝚺𝒉 

)
(13)

The group-level parameters, 𝝁
h 

and 𝚺
h 

capture any consistent
ross-subject relationships between the mode amplitudes. For example,
ijsterbosch et al. (2017) recently reported that the amplitudes of sen-
orimotor modes are correlated with one another, as are the amplitudes
f cognitive networks. It is exactly these types of effects that these hy-
erpriors are able to capture. 

The hyperpriors are formulated as follows: 

 

(
𝝁𝒉 

)
= 

𝑀 ∏
𝑚 =1 

 

(
( 𝝁𝒉 ) 𝑚 

|||𝜏𝝁𝒉 , 𝛾2 𝝁𝒉 
)

(14)

 

(
𝚺𝒉 

)
=  

(
𝚺−1 
𝒉 

|||𝑎 𝒉 , 𝑩 𝒉 

)
(15)

Furthermore, we impose a post-hoc positivity constraint on these
ariables as part of the inference procedure. As there is a multiplicative
mbiguity as to the signs of the components in a matrix factorisation
odel, we can do this without loss of generality. 
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.5. Noise model 

The final part of the model left to specify is the noise process, 𝜺 ( sr ) ,
hich we assume is zero-mean, white Gaussian noise, with an overall
recision for each run, 𝜓 

( sr ) . This specifies the likelihood: 

 

(
𝜺 ( 𝑠𝑟 ) 

)
=  

(
𝜺 ( 𝑠𝑟 ) 

|||𝟎 , ( 𝜓 

( 𝑠𝑟 ) ) −1 𝑰 𝑉 , 𝑰 𝑇 
)

= 𝑝 
(
𝑫 

( 𝑠𝑟 ) − 𝑷 ( 𝑠 ) 𝑯 

( 𝑠𝑟 ) 𝑨 

( 𝑠𝑟 ) ) (16)

This noise precision then takes a standard gamma hyperprior: 

 

(
𝜓 

( 𝑠𝑟 ) ) = Γ
(
𝜓 

( 𝑠𝑟 ) |||𝑎 𝜓 , 𝑏 𝜓 
)

(17)

This relatively simple structure assumes that the noise variance is
he same in every voxel, which is particularly useful as it allows us to
xploit the properties of the matrix normal distribution, leading to very
omputationally efficient inference ( Stegle et al., 2011 ). We can prepro-
ess the data in such a way that this is a reasonable assumption to make,
nd this is discussed in Appendix A.2 . 

What is perhaps more problematic is that this model does not ac-
nowledge the spatial smoothness of fMRI data, which means that the
oise is not truly independent over voxels. It would be possible to model
his, for example by inferring a full spatial covariance matrix for the
oise that acknowledged the dependencies between voxels that smooth-
ng introduces. Again, we decide that the benefits of this more com-
lex model are outweighed by the increased computational burden, and
gain we discuss a way in which we can mitigate the effects of this model
isspecification via a relatively straightforward adjustment for the spa-

ial degrees of freedom introduced by Groves et al. (2011) , as discussed
n Appendix A.4 . 

.5.1. Spatially and temporally specific noise models 

One of the key changes to the model as introduced here and its pre-
ious incarnation is the way we model noise on the spatial maps and
imecourses, as well as the overall noise described above. Interestingly,
hese different sources of noise can be beneficial for matrix factorisation
odels even in the absence of the fMRI-specific effects we postulated. 

To demonstrate this, we use a simple, single-run version of our gener-
tive model, 𝑫 = 𝑷 𝑨 + 𝜺 , and we assume the maps and timecourses are
ull rank to simplify the derivations below. The ordinary-least-squares
ingle-regression estimator for the spatial maps, �̂� [ 𝑠𝑟 ] , given the ground-
ruth timecourses is: 

̂
 [ 𝑠𝑟 ] = 𝑫 𝑨 

−1 = 𝑷 + 𝜺 𝑨 

−1 (18)

If we instead run dual regression —using the Woodbury matrix iden-
ity for the key rearrangements —we find a different estimator for �̂� [ 𝑑𝑟 ] :

�̂� [ 𝑑𝑟 ] = 𝑷 −1 𝑫 = 𝑨 + 𝑷 −1 𝜺 

̂
 [ 𝑑𝑟 ] = 𝑫 ̂𝑨 

−1 
[ 𝑑𝑟 ] 

= 

(
𝑷 + 𝜺 𝑨 

−1 ) − 

(
𝑷 𝑨 + 𝜺 

)
𝑨 

−1 𝑷 −1 
(
𝑰 + 𝜺 𝑨 

−1 𝑷 −1 
)−1 

𝜺 𝑨 

−1 

= 

(
𝑷 + 𝜺 𝑨 

−1 ) − 𝜺 𝑨 

−1 

= 𝑷 

(19)

What is surprising is that the dual regression estimator is closer to
he ground truth, even though the intermediate timecourses, �̂� [ 𝑑𝑟 ] , are
oisy. This unintuitive behaviour occurs because dual regression in-
olves two regressions on the same noise, and this has concrete impli-
ations for the PFM model. When we fit the hæmodynamic model to
he timecourses, we exclude the temporally specific noise terms from
he estimation of the functional coupling between modes. However, we
eed to include the temporal noise terms when using the timecourses to
stimate the subject-specific spatial maps, as removing it could increase
he variance of the inferred maps. The situation is directly analagous
ith the model for spatial noise: while it is not a quantity of interest for
ross-subject modelling, its inclusion can improve the stability of the
verall estimation. 

In sum, the PROFUMO approach uses the spatially and temporally
pecific noise where the stabilising effect on matrix factorisation models
eans that it is expedient to do so, but seeks to avoid letting it confound

ross-subject analyses. By way of contrast, dual regression is not natu-
ally able to separate these types of noise. 

.6. Inference approach 

We use a computationally efficient variational Bayesian approach
o infer upon the probabilistic model outlined above. This technique is
ell established for graphical models that have a conjugate-exponential

tructure, as is the mean-field approximation that renders the infer-
nce tractable ( Attias, 2000; Blei et al., 2017; MacKay, 2003; Winn and
ishop, 2005 ); as such, we will not cover the details of that here. In the
ppendices, we outline several of the implementation details, includ-

ng our data preprocessing pipeline, the way we handle large data sets,
weaks to the model and the initialisation procedure. 

The combined inference and analysis package, PROFUMO
from PRObabilistic FUnctional MOdes) is available from
it.fmrib.ox.ac.uk/samh/profumo and is compatible with FSL
 Jenkinson et al., 2012 ). All subsequent analyses were performed
ith version 0.11.1. 

The model clearly has a large number of hyperparameters, but as
escribed in the Supplementary Material we can drastically reduce the
ffective number given that the overall variance of the data is fixed by
he internal preprocessing. Furthermore, the vast majority of the param-
ters that need setting govern the group-level hyperpriors and, as such,
re several steps removed from the subject-level decompositions. This
eans that we can use the same default hyperpriors for all the analyses
resented here, and that the inference generalises well across simulated,
olumetric, and surface-based data, as well as datasets with very differ-
nt numbers of subjects. 

.7. Model summary 

In summary, we explicitly model many of the properties of rfMRI
ata within the PROFUMO framework. In the spatial domain, we have a
omplex group-level model that captures both mean effects and typical
atterns of variability, and use these to regularise the subject-specific
patial maps. The temporal model is based around the physiological
roperties of the BOLD signal, and includes another hierarchical model
or the functional coupling between modes. Similarly, we capture dif-
erences in the overall activity levels of modes via the amplitude pa-
ameters. Finally, we can generate additional summaries by combining
arameters as desired, which includes, for example, the measures re-
ated to the fractional amplitudes of the BOLD signal. 

. Results 

Here, we demonstrate the performance of PROFUMO using a set of
imulated data and two empirical datasets. All comparisons are with
patial independent component analysis and dual regression (ICA-DR)
 Beckmann et al., 2005; Calhoun et al., 2001; Nickerson et al., 2017; Zuo
t al., 2010b ), as this is what has been used in previous publications on
he empirical data. 

.1. Simulations 

The simulation framework is explicitly designed to be challenging,
uch that it tests the various ways in which the assumptions the dif-
erent models make are most likely to be violated. This includes spa-
ial and temporal correlations between components; spatial variability,
ncluding a model for misalignments; amplitude variability across sub-
ects and components; a (weakly) nonlinear HRF that varies over both

https://git.fmrib.ox.ac.uk/samh/profumo
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Fig. 1. Performance of different algorithms on simulated data. 
For each metric, optimal performance is shown by the hori- 
zontal green line. The metrics are accuracy in recovery of the 
subject-specific spatial maps, recovery of the run-specific net- 
work matrices (netmats), recovery of cross-subject differences 
in amplitudes (as different approaches normalise the data dif- 
ferently, we look at relative changes in amplitudes across 
subjects), and any biases in the recovered temporal correla- 
tions towards the spatial correlation structure. As well as PRO- 
FUMO and ICA-DR, we test dual regression starting with the 
group-level ground-truth spatial maps (GTg-DR) and thresh- 
olded dual regression (ICA-DRt, GTg-DRt). 
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11 https://db.humanconnectome.org/megatrawl/index.html . 
ubjects and space; and spatial and temporal smoothness in the resid-
als. This extends previously published analyses ( Bijsterbosch et al.,
019; Harrison et al., 2015 ), and all simulation code is available from
it.fmrib.ox.ac.uk/samh/PFM_Simulations . 

Specifically, we simulate data containing 15 components in a group
f 40 subjects, each with two runs containing 10,000 voxels and 500
imepoints at a TR of 2.0s. A more detailed overview of the data
eneration procedure is provided in Appendix A.6 . We then test how
ell PROFUMO and ICA-DR can recover the ground-truth parame-

ers, pooling results across 10 different simulated datasets. Finally, to
ive more detailed insights into the performance of ICA-DR we in-
lude several intermediate steps: firstly, to separate the performance
f ICA and dual regression, we include a dual regression analysis start-
ng from the group-level ground-truth spatial maps (GTg-DR); secondly,
e include the thresholded variant of dual regression proposed by
ijsterbosch et al. (2019) which is designed to reduce the observed bias

n functional coupling (ICA-DRt, GTg-DRt). 
Four key performance metrics are shown in Fig. 1 , and a much more

etailed set of comparisons is included in the Supplementary Material.
ROFUMO is able to accurately recover spatial maps, amplitudes and
unctional coupling network matrices (netmats), and much more so than
ither ICA-DR or the improved thresholded variant (ICA-DRt). 

Crucially, the inferred PFMs are also unbiased in the presence of
patio-temporal correlations between components, unlike ICA-DR. What
ijsterbosch et al. (2019) demonstrated was that inaccurate estimation
f the group-level spatial correlation structure —an inevitable conse-
uence of the orthogonality constraints of ICA —leads to biased esti-
ates of functional coupling. What we show here is a stronger result:

his effect is present even when starting from the correct group-level
patial maps (GTg-DR). In this case, the effect is driven by the mismatch
etween the true subject-level spatial correlations and those between
he group-level maps. In other words, this bias will be present for all
ual regression analyses, however the group-level maps are generated. 

Furthermore, in the Supplementary Material, we repeat the simula-
ions but with the addition of structured noise, including subject-specific
rtefacts that can be either spatially specific or global. While the differ-
nces between methods are less pronounced, there are still clear ben-
fits to using PROFUMO. However, performance does suffer, and, as
uch, we strongly recommend ICA-based artefact removal before run-
ing PROFUMO, as is the case for the two empirical datasets presented
ere. 

.2. Human connectome project data 

To evaluate the ability of PROFUMO to detect subtle subject-specific
ariations in functional connectivity, we use data from the Human Con-
ectome Project (HCP) ( Van Essen et al., 2013; 2012b ). This is for two
ain reasons. Firstly, the most recent data release includes high-quality

unctional data from over 1000 subjects and, as such, is an ideal test for
ethods that purport to be suitable for population-level studies as men-

ioned in the Introduction. Secondly, the functional pipeline has been
ublished ( Smith et al., 2013a ) and the results are available to down-
oad —thereby offering a comparison that is independently verifiable.
he pipeline uses spatial ICA and dual regression to characterise subject
ariability in both spatial and temporal features. While it would also be
ossible to examine the equivalent pipeline based on temporal ICA, this
as not been used so extensively: for example, the HCP’s MegaTrawl
nalyses are based on the spatial ICA pipeline 11 . Similarly, this pipeline
oes not make use of the new thresholded variant of dual regression.

https://git.fmrib.ox.ac.uk/samh/PFM_Simulations
https://db.humanconnectome.org/megatrawl/index.html
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Fig. 2. Group-level spatial maps for four example PFMs, as in- 
ferred from the HCP data. The PFMs are (a) the default mode 
network (DMN) ( Buckner et al., 2008; Greicius et al., 2003; 
Raichle et al., 2001; Shulman et al., 1997 ); (b) a mode de- 
scribed as a variant of the DMN by Braga and Buckner (2017) ; 
(c) a mode with strong spatial anticorrelations with the DMN; 
and (d) the mode containing functional activity within POS2 
( Glasser and Van Essen, 2011 ). 
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ased on the simulated data, this would improve the results slightly,
hough PROFUMO still outperforms this variant on essentially all of the
etrics we tested. Again, the aim is to use the existing, publicly avail-

ble results as a baseline. 
A key aim of modern, large-scale studies of functional connectivity

s to relate neurobiological changes to individual differences in genetic,
ifestyle and behavioural factors. Using the HCP data also allows us to
o this by comparing our results with a wide range of information about
ubjects. The data involves a battery of cognitive tests, and also records a
ange of metrics based on health and lifestyle: we will refer to differences
n these as subject variability in behavioural measures . We can indirectly
ssess the effects of genetics and environement by calculating the heri-
ability of key imaging metrics; we do this by utilising the fact that many
wins and siblings were involved in the study. Finally, we can examine
ubject variability in structural measures by relating functional measures to
he thicknesses, areas and volumes of key cortical and subcortical struc-
ures as derived from the structural MRI scans ( Glasser et al., 2013 ). In
his way, we can quantify to what extent different methods are able to
apture key aspects of functional variability, and if there are meaningful
elationships with other measures. 

A more detailed overview of the data, and the tests we carry out
ere, can be found in Appendix A.7 . 

.2.1. Analyses 

Both PROFUMO and spatial ICA were run at a dimensionality of 50,
t which point the modes were reordered for visualisation and noise
omponents —or, in the case of PROFUMO, modes eliminated by the
ayesian model complexity penalties —were removed. Even on the ex-
ensive and high-quality HCP data, PROFUMO does not identify more
han 50 PFMs: when run at higher dimensionalities, more PFMs are sim-
ly eliminated from the model. We discuss why PROFUMO is likely to
e conservative in this regard in more detail later. 

For the full HCP data, PROFUMO therefore infers the posterior over
pproximately 25,000,000,000 parameters (1000 subjects, 100,000
rayordinates, 50 modes, 5 parameters per grayordinate). In terms
f computational requirements, this analysis took approximately 110
ours using 18 cores on a single compute node, and memory usage
eaked at 350GB. 

Finally, note that subsequent figures display spatial maps on the cor-
ical surface for simplicity and concision. However, all grayordinates
comprising approximately 60,000 cortical vertices and 30,000 subcor-
ical voxels ( Glasser et al., 2013 )) were used in all analyses. 

.2.2. Overview of the PFM spatial model 

To begin with, in Figs. 2 and 3 we show examples of the group-
nd subject-level spatial maps for four PFMs in order to demonstrate
he richness of information contained within the PFM model. We do
his to emphasise that PROFUMO is able to identify PFMs with strong
patial relationships with one another (in terms of overlap and anti-
orrelations), while at the same time being able to identify complex,
ubject-specific reorganisations of the group templates. 

The most striking feature of the subject maps in Fig. 3 is simply
ow much variability relative to the group maps there is. These results
re from data already aligned using surface-based registration driven
y functional features, which arguably represent the current ’gold-
tandard; for warp-based registrations ( Coalson et al., 2018; Glasser
t al., 2016b ). Despite this, and as we and several others have demon-
trated, there are pronounced differences between subjects, with both
hifts in the relative location of functional regions over surprisingly large
istances, and complex, non-homotopic splittings and reorganisations of
he regions themselves. Furthermore, as highlighted in the figure, even
hough the PFM itself is large, there are several subject-specific features
hat are too small to be accurately represented at the typical spatial scale
f parcellations applied to fMRI. 

However, while the descriptions of modes in terms of the mean
roup- or subject-level spatial maps are familiar, a key advantage of
he PFM framework is the more detailed group-level parameterisation.
n other words, we can go beyond simply noting the degree of subject
ariability: we can now quantify it in detail on a per-mode level. In
ig. 4 we again take the default mode network [ Figs. 2 and 3 ] as an
xample and plot the four key group-level spatial parameters: the prob-
bility that a given voxel belongs to the DMN, the mean and variability
ver subjects of the signal component of the DMN’s voxelwise weights,
nd the standard deviation of the spatial noise component. The informa-
ion encoded by the mean weights is familiar, but the other parameters
dd novel and complementary information. 

For example, the memberships [Panel (b)] demonstrate that default
ode activity is distributed over a surprisingly large area, with con-

istently detected activity across much of the lateral prefrontal cortex.
his is an effect that has been captured by several recent, high-powered
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Fig. 3. Subject-level equivalents of the default mode network 
shown in Panel (a) of Fig. 2 . 

Fig. 4. Example of the key group-level spatial parameters for 
the PFM representing the default mode network [Panel (a) of 
Fig. 2 and Fig. 3 ], as inferred from the HCP data. The parame- 
ters are the (a) posterior means of the signal component, 𝜇vm ; 
(b) posterior memberships, 𝜋vm ; (c) posterior standard devi- 
ations of the signal component, 𝜎vm ; (d) posterior standard 
deviations of the noise component, 𝜁 v . 
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ingle-subject analyses ( Gonzalez-Castillo et al., 2012; Huth et al., 2016;
aumann et al., 2015; Poldrack et al., 2015 ). However, while the activ-
ty is widespread, it is also distinct: the areas of high and low proba-
ility are sharply delineated. Similarly, the standard deviations [Panel
c)] add extra information by telling us about variability in the size of
he weights–that is, in the strength of the detected activity —and we
an see that, in this instance, the activity in the inferior parietal lob-
le is much more variable in strength across subjects than that in the
recuneus. 

This detailed characterisation of non-homogeneous variability across
he cortex is a key advantage of the more complex group-level model
e have adopted, and we expand upon this in Fig. 5 . This summarises

he membership probabilities and weight standard deviations across
ll modes. There is a clear pattern whereby association cortex con-
ains more overlapping modes than sensory cortices [Panel (a)], and
hat the spatial weights are also more variable in association cor-
ex [Panel (b)] —note how this is in agreement with the results of
ueller et al. (2013) . Finally, the uncertainty in the memberships them-

elves [Panel (c)] tells us about shifts in locations between subjects. For
xample, note the very clear area of variability in medial frontal cortex
etween SMA and pre-SMA ( Johansen-Berg et al., 2004 ). This metric is
resumably particularly sensitive to this region because variability here
ends to manifest itself as relatively simple anterior-posterior shifts of
he SMA/pre-SMA boundary, whereas more complicated 2D rearrange-
ents of overlapping PFMs are present elsewhere. 

In summary, the PFM spatial model captures familiar group-level
odes, and exhibits many of the complex subject-specific rearrange-
ents already described in the literature. However, the key advantage

s the way in which we have parameterised this model. Crucially, the
ichness of the group description allows us to make specific claims about
he patterns of variability across the population that are ordinarily hard
o tease apart. 
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Fig. 5. Summaries of the group-level spatial parameters encoding different aspects of variability across subjects. The panels are (a) mode overlap; (b) variability 
in mode strength; (c) variability in mode memberships. Mode overlap is defined as the posterior memberships averaged across all modes, 1 

𝑀 

∑
∀𝑚 𝜋𝑣𝑚 . Variability in 

mode strength is captured by the weighted average of the posterior standard deviations, 
(∑

∀𝑚 𝜋𝑣𝑚 𝜎𝑣𝑚 

)
∕ 
(∑

∀𝑚 𝜋𝑣𝑚 

)
. Finally, variability in mode memberships is given 

by the average entropy, in bits, of the membership distributions, 1 
𝑀 

∑
∀𝑚 H 

(
𝜋𝑣𝑚 

)
. 

Fig. 6. Spatial similarity between the sets of group-level spa- 
tial maps as inferred by PROFUMO and ICA. Modes were split 
into five categories and reordered: visual (Vis); motor (Mot); 
auditory (Aud); cognitive (Cog); and subcortical (Sub). This 
ordering is used for all subsequent sections. 
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.2.3. Comparison with spatial ICA 

To begin with, we examine the performance of the different mod-
ls in terms of their inference of the group-level spatial descriptions. In
ig. 6 we plot the similarity between these group-level descriptions. 

There are several key points to note. Firstly, there are strong spatial
orrelations between the PFM maps, especially within the different cate-
ories. By way of contrast, the independence assumptions in spatial ICA
reclude this. Secondly, PROFUMO is relatively conservative: it only
nfers 36 signal modes compared to the 48 found by ICA, and the differ-
nce is particularly pronounced in the subcortical regions. This subcorti-
al difference is predominantly driven by the different signal properties
f the HCP data between cortical and subcortical grayordinates, and the
ifferent data normalisation strategies the two algorithms use. The result
s that ICA tends to find subcortical regions appearing in components
ithout much cortical involvement, whereas PROFUMO tends to find

ubcortical regions appearing in components with cortical involvement.
inally, despite the above differences, there is fundamentally a strong
elationship between the two sets of maps. Most cortical modes appear
n both decompositions, and often look fairly similar; this is encourag-
ng, as we do not expect a radically different patterns of functional con-
ectivity at the group level given how many published methods have
onverged on similar descriptions. 
.2.4. Properties of subject variability in spatial organisation 

Given that the group-level descriptions are fairly similar between
FMs and sICA, the obvious question are to what extent does the extra
roup-level information in the PFM model regularise the subject-specific
ecompositions, and in what ways do the subject-specific maps diverge
rom the group-level representations? We deal with the former first, and
n Fig. 7 we look at that the consistency of the subject maps as inferred
y PROFUMO and the ICA-DR pipeline. As expected given the regular-
sation from the more complex group-level priors, the PFM maps are
uch more consistent across subjects. 

However, this increase in consistency could also be explained if the
ubject-specific PFM spatial maps were simply pushed closer to the
roup maps by the priors, thereby being less faithful to the ’true’ pat-
erns of functional connectivity at the subject level. While this does not
ppear to be the case for the exemplar subject maps, what we really
ant to quantify is whether they are capturing ’interesting’ aspects of

ubject variability in spatial organisation. In other words, are the differ-
nces between the approaches meaningful, and do they make different
redictions about the subjects themselves? 

To investigate this, we use the fact that the HCP includes data from
wins and siblings to investigate the influence of genetics and environ-
ent. We estimate the voxelwise broad-sense heritability of the subject-
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Fig. 7. Similarity between the subject-specific spatial maps, 
for both PFMs and ICA-DR, as inferred from the HCP data. For 
each voxel and in every pair of subjects, we compute the Pear- 
son correlation coefficient between the two M -dimensional 
vectors of mode weights. The maps shown here are the cor- 
relation coefficients averaged over every pair of subjects. 

Fig. 8. Analyses of the heritability of the subject- 
specific mode maps, for both PFMs and ICA-DR, as in- 
ferred from the HCP data. In (a) and (b) we display the 
voxelwise estimates of broad-sense heritability ( 𝐻 

2 
𝑏 
), 

and in (c) we compare the two as a scatter plot. 
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pecific spatial maps we observe: in each voxel and each subject, we
xtract the vector of PFM or ICA map weights, and look to see if these
eight vectors are more consistent in monozygotic than dizygotic twins

see Appendix A.7 for full methodological details). The results of this
nalysis are shown in Fig. 8 . 

The results show a clear increase in heritability for the PFM spa-
ial maps, suggesting that they are more sensitive to subject variability
hat we can attribute to genetic factors. Furthermore, this is not simply
ttributable to a reduction in noise or as the result of the priors push-
ng the subject maps closer to the group. While the PFM maps are more
onsistent across subjects than ICA-DR [Fig. 7] , the heritability relates to
he difference in consistency between monozygotic and dizygotic twins
nd, as such, a global increase in consistency is not enough to explain
he increased heritability. 

We can also gain further insights into this observation by utilising
he HCP’s retest data. 46 subjects underwent the full HCP imaging and
ehavioural testing protocol twice, of which there is full rfMRI data
rom 42. This allows us to examine how the algorithms perform on the
itherto unseen retest scans. The group-level representations from the
ull data (i.e. the ICA spatial maps, and the group-level PFM posteriors)
ere used to derive new subject maps from the independently acquired

etest data. 
In Fig. 9 we compare subject-specific realisations of the language

ode as derived by PROFUMO and the ICA-DR pipeline. This particular
ode was chosen because a characteristic split in area 55b in some sub-

ects was reported and examined in some detail by Glasser et al. (2016a) .
n terms of a comparison between PROFUMO and ICA-DR, both are
learly sensitive to the same gross re-organisations that occur. For exam-
le, both can detect the rearrangement of area 55b in the original and
etest data for the subject shown here. However, the most marked differ-
nce is in the noise-level and appearance of anticorrelations. Relative to
CA-DR, the PFMs show much reduced background noise in regions not
ssociated with the networks, and do not exhibit anticorrelations (indi-
ated by negative weights, shown in blue) tightly interposed between
ositive weights. This is presumably a simple consequence of dual re-
ression’s inability to separate signal from noise, as we discussed in the
ection on noise modelling. By way of contrast, the information encoded
y the group-level parameters in the PFM model suppresses the back-
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Fig. 9. Example spatial maps for the language mode, 
for both PFMs and ICA-DR, as inferred from the full 
HCP data and the HCP retest data for subject 149337. 
Only the left lateral surface is shown. 

Fig. 10. Specificity of the subject-level spatial 
maps as inferred from both the original and 
retest HCP data by PROFUMO and ICA-DR. The 
group results from the full data are used to de- 
rive subject-specific spatial maps in the unseen 
retest data. In (a) we show the similarity of the 
inferred maps in the same subject, seperately 
for each mode. In (b) we calculate the finger- 
print specificity, or how much more similar the 
maps in the same subject are as compared to 
maps from non-matching pairs of subjects, av- 
eraged over modes. This is equivalent to the 
difference between the diagonal and the off- 
diagonal elements (calculated for each column 
separately) in the full simmilarity matrices as 
shown in (c) and (d) . 
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round noise in regions that are not part of the language network, but
n a way that does not preclude inferring complicated rearrangements
f functional regions. 

To assess the reliability of the different decompositions on the retest
ata more quantitatively, we assess the specificity of the inferred spa-
ial maps as ’fingerprints’ that uniquely identify different subjects ( Finn
t al., 2015; Horien et al., 2019 ). This is shown in Fig. 10 . 

Firstly, we compute the spatial similarity between the new subject-
pecific spatial maps from the retest data, and the original set from the
ull data, for every pair of subjects. We pool these retest results over all
odes and subjects, and this is shown in Panel (a). Again, the subject-

pecific PFM maps are much more consistent across the two acquisitions.
Secondly, we assess whether this leads to more specific fingerprints.

n Panel (b) we show that the fingerprint specificity (i.e. the amount
y which the two sets of maps from the same subject are more similar
han paired maps from different subjects) is also higher for the PFMs.
n other words, not only are the maps generally more consistent across
ubjects, but there is an increase in subject specificity above and beyond
his effect. 
r  
In summary, the comparisons with ICA-DR have demonstrated that
hile the group-level descriptions are similar, the more complex hier-
rchical modelling in PROFUMO allows us to infer spatial maps that
re more consistent —on both the original data and the held-out retest
ata —as well as being more specific and capturing more informative
spects of cross-subject variability. 

.2.5. Overview of the PFM temporal model 

Here, we briefly give a summary of the key temporal param-
ters —that is, the amplitudes and the functional coupling between
odes —as inferred by PROFUMO on the HCP data. Note again that

hese are new parameters: in other words, it was only possible to in-
estigate these in a post-hoc fashion based on the previous PFM model.
irstly, in Fig. 11 we plot the cross-subject correlations between the
ode amplitudes, as captured by the 𝚺

h 
parameter. Encouragingly, we

ee a clear replication of the results of Bijsterbosch et al. (2017) , who
eported strong correlations between the amplitudes of sensorimotor
odes, as well as between cognitive modes, but relatively weak cor-

elations across the two categories. However, the crucial difference be-
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Fig. 11. Cross-subject relationships between the am- 
plitudes of the PFMs, as inferred from the HCP data. 
For visualisation purposes, we display the posterior 
precision matrix, 𝚺

h 
, after transforming it to both full 

and partial correlation coefficients. 

Fig. 12. Group- and subject-level functional coupling between the PFMs, as inferred from the HCP data. For visualisation purposes, we display the posterior 
parameters 𝜷 (group-level) and 𝜶( s ) (subject-level) as partial correlation coefficients. As in Figs. 3 and 9 , subject 149337 is chosen as the exemplar. 
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o  
ween this result and the original observation is that this behaviour was
nitially demonstrated from a purely post-hoc analysis of the ICA-DR
esults, whereas it is explicitly parameterised and inferred within the
FMs model. What this means is that this knowledge of the systematic
elationship between mode amplitudes is available during inference, and
t is therefore naturally incorporated as an extra factor regularising the
ubject-specific decompositions. 

Secondly, in Fig. 12 we plot the PFM functional coupling param-
ters, 𝜷 and 𝜶( s ) (these represent the group- and subject-level tempo-
al network matrices respectively). What is striking is how weak the
unctional coupling is between modes in the group-level network matrix
netmat), especially given that we have an explicit hierarchical model
o allow for just these interactions. This is not trivial to explain away as
 spatial effect either: despite the fact that these interactions are more
imilar to what we would expect from temporal ICA, the PFM spatial
aps are similar to those inferred by spatial ICA which typically infers

trong functional coupling between modes. We quantify the implications
f this different view on functional coupling from the PFM model in the
ollowing section. 

.2.6. Multivariate relationships with behavioural variables 

How then, are we to interpret the differences between the PFM and
CA-DR approaches? Do they simply represent a different trade-off be-
ween sensitivity and specificity in the spatial and temporal domains,
r are they telling us something fundamentally different about brain
ctivity? 

To probe this further, we performed a series of multivariate analyses
o investigate the different ways in which the two models encode cross-
ubject information. Like in Smith et al. (2015) , canonical correlation
nalysis (CCA) —a multivariate analysis technique used to find the linear
elationships between sets of variables ( Hotelling, 1936 ) —was used to
ummarise the key correspondences (see Appendix A.7 for methodolog-
cal details). Furthermore, as some sets exhibit more than one strong lin-
ar relationship, we use the RV coefficient ( Robert and Escoufier, 1976 )
o give a principled summary of the multivariate information reported
y the CCA. In Fig. 13 , we examine the full set of pairwise relationships
etween the behavioural and structural variables from the HCP, and the
patial maps, amplitudes and network matrices from both PROFUMO
nd ICA-DR. 

There are several key results we can glean from this analysis. Firstly,
he cross-subject information captured by the different aspects of the
FM model is relatively distinct. Comparing the similarity between the
FM measures with those for the ICA-DR variables (i.e. the on-diagonal
locks), we can see that the scores are typically lower for the PFMs. In
ther words, the temporal measures derived from the PFMs carry rela-
ively different information from the spatial measures about the subjects
hemselves, at least compared to their ICA-DR equivalents. 

Secondly, if we examine the relationships with the behavioural and
tructural measures in the bar graph on the right, there are several strik-
ng differences between the methods. As we would expect from our ear-
ier analyses, the PFM spatial maps are the best predictors of structural
ariables. They are also good predictors of the behavioural variables,
hough slightly less so than the ICA-DR netmats. However, the stories
or the temporal information are very different. The PFM amplitudes,
ABT and netmats are relatively poor predictors of both behavioural and
tructural variables, though, intriguingly, they are better predictors of
ehaviour than structure. By way of contrast, the ICA-DR amplitudes
nd netmats are better behavioural predictors, though surprisingly they
re also good predictors of structure (e.g. one can predict the sizes and
hicknesses of cortical areas better than behavioural measures from the
CA-DR amplitudes). 

Given the simulation results, the interpretation is relatively straight-
orward: the ICA-DR pipeline contains inherent biases that conflate spa-
ial and temporal information. Furthermore, even though we do not ex-
licitly test it here, it is interesting to note that using the thresholded
ersion of dual regression to correct this bias also reduces the correlation
etween temporal netmats and behaviour ( Bijsterbosch et al., 2019 ). In
ther words, and consistent with the results on simulated data, thresh-
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Fig. 13. Relationships between the cross- 
subject information encoded by different anal- 
yses. The non-functional variables (NFVs) have 
been separated into variables from the HCP’s 
battery of behavioural tests, and variables de- 
rived from structural MRI relating to brain size 
and morphology. On the left we plot the log RV 

coefficient calculated between the subspaces of 
the top ten CCA components as calculated be- 
tween every pair of sets of variables, and on the 
right we reproduce the relationships with the 
non-functional variables (i.e. the top two rows 
/ two leftmost columns) as a bar chart for ease 
of visualisation. Higher values of the RV coef- 
ficient indicate that more similar cross-subject 
information is being captured. 
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lded dual regression is an improvement on ICA-DR but is less accurate
han the full PROFUMO model. The question that remains however, is
hat information, if any, is the PFM temporal model capturing if not

he trait-like behavioural variables examined here? 

.2.7. Summary 

Given the full set of results presented on the HCP data, the impli-
ation is that the PFMs, by virtue of the improved spatial modelling
n particular, are better able to capture interesting information about
ross-subject variability in spatial organisation. However, this does not
ddress the relative lack of information encoded in the various temporal
easures that PFMs capture. We address this point using another data

et in the following section. 

.3. Active-state data 

Given the way that subject variability in spatial and temporal fea-
ures simultaneously co-varies with a wide range of non-imaging derived
ubject measures, it is very challenging to conclusively disambiguate
hem from studies like the HCP. However, if we manipulate the func-
ional connectivity at the subject level, for example by changing the
ognitive state ( Gratton et al., 2018; Kieliba et al., 2019; Krienen et al.,
014; Salehi et al., 2020; Shirer et al., 2011; Vanderwal et al., 2017 ),
hen we can begin to examine temporal differences in more detail. Cru-
ially, by looking at multiple conditions for the same subject we essen-
ially eliminate the influence of structural variability from the functional
ata. 

To do this, we use a dataset collected where subjects were scanned
hen in different active states —these are induced by performing sim-
le, continuous tasks in the scanner, of which rest (i.e. eyes-open fix-
tion) is just one ( Duff et al., 2018; Kieliba et al., 2019; Sala-Llonch
t al., 2019 ). There are five runs for every subject, each collected un-
er different steady-state conditions: a standard resting-state acquisition
 Rest ); a finger-tapping based motor task ( Mot ); a passive visual con-
ition ( Vis ); an independent combination of the visual stimulus and
otor task ( V-M ); and a condition where the specifics of the motor task

hanged based on the visual stimulus ( V+M ). A more detailed descrip-
ions of the tasks and data itself can be found in Kieliba et al. (2019) .
urthermore, this dataset offers a validation of our method on data ac-
uired using a more conventional sequence and scan duration than the
CP, with fewer subjects, shorter scan durations, and all analyses per-

ormed on volumetric rather than surface-based data. 

.3.1. Analyses 

As per the modelling assumptions, PROFUMO infers one consensus
patial map per subject, but a separate set of time courses per run. We
hoose to infer run-specific temporal precision matrices, 𝜶( sr ) , with a
onsistent group-level hyperprior, 𝜷, which is shared across all condi-
ions. Note that we could have chosen to use condition-specific group-

evel priors, 
{
𝜷( 𝑟 ) }𝑅 

𝑟 =1 , but this has the side-effect of invalidating the
ssumptions behind any subject-level statistics where we compare be-
ween conditions. In short, it reduces the cross-subject, within-condition
ariance which invalidates the typical null hypothesis we use. We leave
he problem of performing statistical inference on these types of models
or future investigations. 

We infer 30 modes for both PROFUMO and ICA-DR, which again
eems to be close to the upper limit for PROFUMO on this relatively
mall dataset. Again, artefactual modes were eliminated and those re-
aining were reordered for visualisation. In terms of computational re-

uirements, the PROFUMO analysis took approximately 12 hours using
5 cores on a single compute node, and memory usage peaked at 25GB.
ompared to the HCP analysis, the demands are higher than expected
iven the number of subjects for two reasons: firstly, the volumetric
nalysis contains over twice as many voxels as grayordinates; secondly,
e do not do within-subject data reduction for this analysis. 

For the ICA-DR pipeline, we use MELODIC ( Beckmann et al., 2005;
eckmann and Smith, 2004 ) to infer a set of group maps, followed by
ual regression to generate the run-specific time courses. 

.3.2. Overview of the PFM model 

In Fig. 14 we show the group-level properties of the default mode as
nferred from this data set. This is directly comparable with Fig. 4 and
imply demonstrates that we are able to infer similar summaries of the
ode itself, and heterogeneous variability, from fourteen subjects rather

han one thousand. 
In Fig. 15 , we demonstrate some of the properties of the inferred time

ourses from the PFMs. This data is more challenging than the HCP in
hat the runs are shorter, and the data has not benefited from resampling
nto the cortical surface. Nevertheless, the HRF-based prior constraint
esults in a temporally smooth timecourse, which we are able to cleanly
eparate from the high-frequency noise which contaminates them. Fur-
hermore, this is stable when we undo the temporal blurring that the
RF induces, with straightforward estimation of the underlying ’neural’
rocess via whitening with respect to the autocorrelation induced by the
RF. 

Finally, in Fig. 16 , we display examples of the network matrices to
llustrate the typical patterns of, and subject variability in, the functional
oupling between PFMs. Interestingly, in this data, PROFUMO infers
FMs with much stronger functional coupling between them than at the
un level from the HCP data. 

.3.3. Comparison with ICA-DR 

One would hope that the PFM model allows us to more accurately in-
er the true functional coupling between modes. To begin with, we look
t the relationships between the condition-specific network matrices as
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Fig. 14. Example of the key group-level spatial parameters for the PFM representing the default mode network, as inferred from the active-state data. The parameters 
are as per Fig. 4 , along with the group map. The panels are the (a) group map; (b) posterior means, 𝜇vm ; (c) posterior memberships, 𝜋vm ; (d) posterior standard 
deviations, 𝜎vm ; (e) posterior noise standard deviations, 𝜁 v . 

Fig. 15. Example PFM time courses, and observed frequency 
content, from the active-state data. Panel (a): Example time 
course for one mode in one run. ’Combined’ refers to the time 
course which includes the noise terms ( 𝑨 

( 𝑠𝑟 ) = 𝑩 

( 𝑠𝑟 ) + 𝝃( 𝑠𝑟 ) ), 
’clean’ refers to the BOLD portion specifically ( B ( sr ) ), while 
’decorrelated’ refers to the clean time course after correct- 
ing for the temporal autocorrelation induced by the HRF 

( 𝑩 

( 𝑠𝑟 ) 𝑲 

− 1 2 
𝑩 

). Panels (b) & (c): Frequency content of the com- 
bined and clean time courses respectively, pooled over all runs 
and subjects. The magnitude of the DFT coefficients are calcu- 
lated for each time course, and for visualisation purposes, we 
fit a gamma distribution to the histogram of observed magni- 
tudes for each frequency bin. The mode of this distribution is 
plotted in red, and the grey region represents the 95% highest 
density interval ( Kruschke, 2014 ). 
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Fig. 16. Example PFM network matrices, capturing the functional coupling between the mode timeseries. We display the group network matrix alongside the network 
matrices from subject 25 in the rest, motor and visual conditions. As in Fig. 12 , we display the posterior precision matrices (i.e. 𝜷 for the group level and 𝜶( sr ) at 
the run level) as partial correlations. Modes were split into three categories and reordered for visualisation of the network matrices: visual (Vis); motor (Mot); and 
cognitive (Cog). 

Fig. 17. Correlations between the network matrices, 
for both PFMs and ICA-DR, as inferred from the active- 
state data. The network matrices are grouped by condi- 
tion, and the subjects have a consistent ordering within 
each block. Correlation is the Pearson correlation co- 
efficient between the unwrapped upper-triangle of the 
network matrices. 
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12 Note also that Fig. 2 from Sala-Llonch et al. (2019) uses FDR with 𝑞 = 0 . 2 
for the background, whereas the tests here use a more stringent FWE 𝑝 < . 05 test 
nferred by PROFUMO and ICA-DR. These are shown in Fig. 17 . While
he PFM network matrices are less consistent between conditions and
ubjects than their ICA-DR counterparts, there is some indication that
here is condition-specific modulation across subjects (as indicated by
he block diagonal). By way of contrast, the ICA-DR network matrices
re dominated by the subjects themselves (i.e. the multiple strong off-
iagonal lines in the ICA-DR plot), with no real indication of condition-
pecific modulations. 

In summary, ICA-DR computes netmats that are more similar within
ubjects than they are within conditions across subjects. By way of con-
rast, PROFUMO infers netmats that are somewhat more similar within
onditions than within subjects. Again, this suggests that the different
odels for subject variability in spatial organisation have a profound

nfluence on downstream estimates of functional connectivity. 
Next, we test whether the different conditions induce focal changes

o the between-mode patterns of functional connectivity. The results
f a statistical analysis that looks for modulations at the level of in-
ividual network matrix edges are shown in Fig. 18 . Both the PFM
nd ICA-DR pipelines detect changes in the coupling of visual regions
nduced by the visual stimulus, and it appears they both have simi-
ar sensitivity to the changes in coupling induced by the changes in
ognitive state. There are some differences between the methods: for
xample, the visual changes detected by PROFUMO are more consis-
ent across the three conditions with visual stimuli than for ICA-DR.
imilarly, the types of changes for the combined visuo-motor condi-
ion are somewhat different, with ICA-DR finding changes in ampli-
ude predominantly, whereas there are more changes in coupling for
ROFUMO. 

However, the results are fundamentally fairly similar and the num-
ers of edges that exhibit significant changes is relatively low —and,
erhaps, lower than we might expect given the strong manipulations
 f
f cognitive state 12 —suggesting that the statistical power might be the
imiting factor here, especially given that there are only 14 subjects in-
luded in this analysis. Finally therefore, we do one further set of tests
o probe whether the multivariate information in the network matrices
nd amplitudes captures condition-specific information. Repeating the
nalysis of Sala-Llonch et al. (2019) , we investigate whether a support
ector machine (SVM) can be trained to distinguish between network
atrices from different conditions. The accuracy of the SVM classifica-

ion is tested using a leave-one-subject-out cross-validation framework
 Varoquaux et al., 2017 ), of which we provide more methodological de-
ails in Appendix A.8 . 

As well as comparing PROFUMO and ICA-DR in this way, we ad-
itionally examine the effect that the hæmodynamic model has on the
emporal information that we infer. In other words, can the changes
o estimates of functional connectivity be attributed to the advanced
patial modelling alone, or does the regularisation in the time domain
mprove our estimates too? As well as the explicitly inferred PFM net-
ork matrices, we do a post-hoc estimation of the temporal network
atrices based on both the BOLD time courses and the combined time

ourses (i.e. A 

( sr ) , which includes both the BOLD and noise time courses)
o assess what, if any, effect the modelling hierarchy has. 

The results from the SVM analysis are presented in Fig. 19 . The SVM
chieves a significantly better classification accuracy when trained on
he PFM netmats, as opposed to those estimated by ICA-DR. Again, this
uggests that by correcting for subject variability in spatial organisation
he PFM framework allows us to estimate state-induced changes in func-
or significance. 
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Fig. 18. Changes in between-mode functional connectivity as induced by different active states relative to the rest condition. The raw difference between the group 
mean network matrix during the active condition and during rest is shown above the diagonal, and any significant changes (p < 0.05) are highlighted by blue or red 
squares, for increases and decreases in coupling respectively, below the diagonal. Changes in amplitudes are shown on the diagonal. All tests were family-wise error 
corrected and computed using the accelerated permutation inference in PALM ( Winkler et al., 2016; 2014 ). The black dots denote elements that were significant 
under an f-test over all contrasts. As per Fig. 16 , modes were split into three categories and reordered for visualisation of the network matrices: visual (Vis); motor 
(Mot); and cognitive (Cog). 
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i  
ional coupling with greater fidelity. By way of contrast, the conflation
f spatial and temporal information by ICA-DR masks these more sub-
le state-related changes in functional coupling. Finally, there appears
o be a distinct performance improvement when using the inferred PFM
etwork matrices, suggesting that the hierarchical temporal modelling is
dvantageous and that we are not discarding relevant information by fo-
using on the predominantly low-frequency HRF-derived time courses. 

. Discussion 

In summary, the results presented above demonstrate three key at-
ributes of PROFUMO. Firstly, the algorithm is applicable to modern,
arge-scale data, whereby it is exquisitely sensitive to cross-subject vari-
bility in spatial organisation. Secondly, the joint inference framework
llows estimation of subject variability in temporal features that does
ot appear to be confounded by spatial differences, which at times leads
o a radically different view of functional connectivity. Finally, the im-
lication of these results is that after accounting for spatial variability,
he functional coupling between modes is much more reflective of cur-
ent cognitive state rather than trait-like qualities. 

Furthermore, we have shown that there is significant value added in
erms of interpretability from the practitioner’s point of view in using
odels of this form. To give a few concrete examples, we can only make

he claims pertaining to the dissociation of non-homogeneous spatial
ariability —as illustrated in Fig. 5 —if we can both consistently identify
quivalent functional systems across multiple subjects and model the
ifferent ways in which variability can arise. Similary, the ability to
apture cross-subject amplitude effects ( Fig. 11 ) or use the model to
efine alternatives to, for example, fALFF-type measures ( Fig. 13 ) means
hat many of what would have been post-hoc analyses can be simplified
nd made more interpretable. 

.1. Group- versus subject-level approaches 

The comparisons in this paper have been with ICA-DR, as this
s probably the most common method for finding functional modes
rom resting-state data and is a key part of the HCP’s pipelines. How-
ver, while PROFUMO and ICA-DR try and infer on many of the same
uantities, they make fundamentally —and not necessarily compati-
le —assumptions about the data itself. 

The key difference between the two is the way PROFUMO entails
 holistic model for group- and subject-level representations, whereas
CA-DR assumes they are separately estimable. The majority of group-
evel ICA methods assume all subjects are in a common space, and pro-
eed to analyse the data without recourse to individual decompositions.
his formulation gives much more flexibility for the group-level decom-
osition to utilise the extra statistical power that concatenating over sub-
ects affords, which means that the ICA modes depart —at times fairly
adically —away from what we can resolve at the subject level. As such,
CA seems to be able to identify up to several hundred plausible compo-
ents, that ultimately begin to resemble a parcellation ( Kiviniemi et al.,
009; Smith et al., 2013b ). 

However, what we show here is that group-level representations are
ot enough. In the simulated data, even if the ground truth is known at
he group-level, the subject-level information inferred by dual regression
ill be biased and noisy. 

What PROFUMO attempts to do is to model as many different facets
f multi-subject rfMRI data together as is plausible. Here, we expand on
wo concrete implications of this approach as compared to other meth-
ds. 

Firstly, the implication of the joint subject-level modelling in PRO-
UMO is that for a mode to appear at the group-level it has to be resolv-
ble in the majority of individual subjects. Therefore, this engenders a
undamentally different view on what the dimensionality of the data is.
he Bayesian model complexity penalties seem to result in no more than
hirty or forty PFMs being identified, essentially regardless of the pre-
pecified model dimensionality. While more subjects do offer increased
egularisation of the subject-level modes, this can only do so much. This
s why the inferred number of PFMs is on the same order as the number
f signal components as inferred by ICA-FIX (23.3 ± 6.6 at the run-level
or HCP data ( Marcus et al., 2013 )). 

Secondly, we have demonstrated the importance of modelling dif-
erent characteristics of the data together. In the simulated data, even
f the ground truth is known and thresholded dual regression is used
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Fig. 19. Posterior classification rates for a multi-class SVM trained to distin- 
guish between the different active-state conditions. The results on the left are 
when the off-diagonal elements of the network matrices are fed in, and the re- 
sults on the right are when the amplitudes are used as features. Posterior den- 
sities are based on the number of correct and incorrect classifications out of 
the full set of 70 tests (14 subjects; 5 conditions), combined with Haldane’s 
uninformative beta prior ( Haldane, 1932 ). The modes of the distributions are 
shown by the black bars, and the chance level is shown by the dashed blue line. 
The two p-values are calculated via McNemar’s test (mid-p variant) and Bonfer- 
roni corrected ( Fagerland et al., 2013 ). For the PFM netmats, the variants are: 
PFMs : network matrices inferred as part of the PFM model, 𝜶( sr ) . PFM (BT) : net- 
work matrices estimated as the partial correlations between the PFM BOLD time 
courses B ( sr ) . PFM (CT) : network matrices estimated as the partial correlations 
between the combined time courses 𝑨 

( 𝑠𝑟 ) = 𝑩 

( 𝑠𝑟 ) + 𝝃( 𝑠𝑟 ) . 
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13 Figures 4 and 5 in particular. 
o reduce the inherent spatiotemporal biases ( Bijsterbosch et al., 2019 ),
ROFUMO is still more accurate than ICA-DR like approaches. Similarly,
n the classification of the active-state data, there are clear performance
enefits from modelling the netmats hierarchically, even after the spa-
ial variability has been accounted for. This is not to say that the PRO-
UMO model is perfect, as it clearly contains many simplifying assump-
ions. However, it is at least an internally consistent framework within
hich one can begin to explore the implications of different modelling
ecisions. 

.2. Spatial representations 

One of the key messages from this work, in line with other recent
eports ( Braga and Buckner, 2017; Glasser et al., 2016a; Gordon et al.,
016; 2017a; 2017b; Hacker et al., 2013; Harrison et al., 2015; Kong
t al., 2018; Laumann et al., 2015 ), is that complex rearrangements of
unctional regions in individual subjects are ubiquitous and of a surpris-
ngly large spatial scale. Figs. 3 and 9 provide reasonable examples of
hese effects. Even after the advanced multi-modal, surface-based regis-
ration employed by the HCP, one often observes spatial rearrangements
here subject-specific features are shifted relative to the group by many
illimetres. 
The difficulty we face when working at the group-level is that the
ummary features we extract are not necessarily representative of those
t the subject-level; they are, and should always be thought of as, prob-
bilistic representations ( Van Essen and Dierker, 2007 ). As discussed
n the previous section, we cannot automatically expect that it will be
traightforward to project group-level results back to meaningful charac-
erisations of functional connectivity at the subject level. Furthermore,
he characteristic size of misalignments probably represents a limit in
erms of the size of functional features we can project from the group
ack to the subject-level; while the native resolution of the subject-level
ata may well be higher, methods that work on the functional data alone
ike ICA-DR or PROFUMO will always struggle in the absence of addi-
ional constraints if the misalignments are large enough to mean some
egions do not overlap with their group-level homologues at all. 

In other words, misalignments are now often larger in scale than the
undamental resolution limits imposed by the physics and physiology
hat governs the properties of the data itself. Subject-level representa-
ions are limited by the properties of the data itself: 2mm isotropic vox-
ls are now common, and the spatial characteristics of the HRF do not
ppear to blur much beyond this ( Shmuel et al., 2007 ); at the group-
evel, the effective resolution of the data relates to the characteristic
ize of these residual misalignments between subjects, and these are
ikely to be larger. What this means is that functional MRI currently
ccupies an interesting liminal space, where the spatial resolution of
igh-powered single-subject analyses can now surpass that of studies
hat employ multitudes of subjects. This probably explains the recent
esurgence of exploratory studies based on small numbers of subjects
 Braga and Buckner, 2017; Gonzalez-Castillo et al., 2012; Gordon et al.,
017b; Huth et al., 2016; Laumann et al., 2015; Poldrack et al., 2015;
aemaekers et al., 2014; Salehi et al., 2020 ). Fortunately, recent work
as suggested that there is scope to further reduce the size of the resid-
al misalignments ( Guntupalli et al., 2018 ), and use multi-modal data
o help identify regions at the subject-level ( Glasser et al., 2016a ), both
f which will be essential parts of the push towards finer spatial scales.

Finally, these observed spatial differences also have implications for
arcel-based analyses. Given the many fine-scale variations in the spa-
ial maps and the amount of overlap between PFMs, it may be that we
eed multivariate analysis techniques that go beyond one summary time
ourse per parcel to capture the richness of the functional data at sub-
arcel spatial scales ( Anzellotti and Coutanche, 2018; Geerligs et al.,
016; Haak et al., 2018 ). 

.3. Interpreting spatiotemporal connectivity patterns 

One of the striking differences between PROFUMO and ICA-DR is
heir inferred patterns of functional coupling between regions. Not only
o these suggest fundamentally different group-level coupling strengths,
ut the predictive power at the subject and run level is also different.
hereas ICA-DR netmats primarily correlate with trait-like properties,

ROFUMO netmats are more sensitive to changes in cognitive state.
ere, we expand on these observations as a final discussion point. 

Clearly, there is a complicated relationship linking spatial variabil-
ty and the functional coupling between modes, and indeed concerns
bout the interpretability of functional connectivity in the presence of
natomical variability are far from new ( Brett et al., 2002 ). The effect
hat subject variability in spatial organisation might have on its tem-
oral counterpart has been noted in simulation studies. For example,
llen et al. (2012) observed a sharp decrease in the ability of a variant
f ICA-DR to detect subject-specific modes in the presence of subject
ariability in spatial organisation, an effect which was compounded by
patial overlap between modes 13 . This links to functional coupling via
he work of Smith et al. (2011) , who noted that if ROIs were misspeci-
ed such that the time courses contained a range of contributions from
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he true underlying regions, then ’[t]he results are extremely bad’. It is
he latter result in particular which is particularly shocking: if we do not
xtract accurate subject-level estimates of functional regions then it is
ssentially impossible to characterise the functional coupling between
hem. 

Furthermore, a key claim of the related recent work on subject vari-
bility in functional connectivity by Bijsterbosch et al. (2018) is that
t is not possible to make meaningful claims about what drives cross-
ubject changes in functional coupling between regions if said regions
re not properly delineated at the subject level. In other words, spa-
ial variabiality does not simply make it harder to estimate functional
oupling, it can also fundamentally bias our inferences. Again, the re-
ults here —particularly the simulations —extend these results, showing
hat the way in which dual regression biases functional connectivity es-
imates away from the spatial correlation structure ( Bijsterbosch et al.,
019 ) is really an inherent property of mapping between group and sub-
ect levels in this way. While this bias can be reduced with the thresh-
lded variant of dual regression, the simulation results, and short theo-
etical analysis on the role of noise, suggest that the PFM model will be
uch more performant than this variant. 

What we show here with regards to the predictive power of the PRO-
UMO netmats is that, in line with other work ( Bijsterbosch et al., 2019;
018; Pervaiz et al., 2020 ), they are relatively poor predictors of trait-
ike quantities. Instead, we have shown that they are much more predic-
ive of current cognitive state. However, for analyses that try to use func-
ional coupling to make predictions about individual subjects ( Abraham
t al., 2017; Dadi et al., 2019; Pervaiz et al., 2020 ), the ICA-DR netmats
re likely to produce more accurate predictions. In that case, one has to
ontend with the fact that the induced biases reduce the interpretabil-
ty of the findings, which may or may not be desirable depending on
he specifics of the problem at hand ( Stephan et al., 2015; 2017 ). Of
ourse, the presence of confounds that are themselves behaviourally
elevant —such as head motion ( Couvy-Duchesne et al., 2014; Hodg-
on et al., 2017; Laumann et al., 2017; Power et al., 2012; Satterth-
aite et al., 2012; Van Dijk et al., 2012 ), physiological noise ( Glasser

t al., 2018; Power et al., 2017 ) or brain volume ( Bartley et al., 1997;
cDaniel, 2005; Qing and Gong, 2016 ) —makes this problem of inter-

retability very challenging in practice for any method. 
The results we have presented here suggest that the spatial infor-

ation encoded by PROFUMO is likely to give much better predictive
erformance in this context. This is similar to other work which has
emonstrated increased performance of spatial features such as, for ex-
mple, task-based maps ( Bijsterbosch et al., 2018 ) or parcel topogra-
hy ( Kong et al., 2018 ), and, furthermore, that this has a close rela-
ionship with structural information ( Llera et al., 2019 ). The obvious
uestions are therefore why do spatial rearrangements of functional re-
ions seem to be so predictive in cross-subject analyses, and how do we
nterpret them? One hypothesis is that this variability in spatial organi-
ation of functional regions is simply reflecting variability in the brain’s
acroscale structure, for which there are already well established links

etween environmental, genetic and lifestyle factors ( Douaud et al.,
014; Elliott et al., 2018; Noble et al., 2015; Reiss et al., 1996; Shaw
t al., 2006; Stein et al., 2012 ). 

However, it would be an enormous surprise if this reductionist read-
ng of these functional changes as simply reflecting structural variabil-
ty is the whole story, especially after the registration approaches used.
ather, it is vitally important to understand both what mechanisms give
ise to these spatial changes, and, in particular, what unique information
oes the functional variability carry over and above what can be derived
rom other techniques and modalities. 

. Conclusions 

All analyses of complex, multivariate functional data require us to
ake simplifying assumptions, and, as such, the results we see are in-

vitably coloured by the modelling choices we make. This might involve,
or example, deciding decide whether to run a parcel- or mode-based
nalysis, or when choosing which specific method to use. As such, it is
ssentially impossible to conclusively determine whether one method
ore accurately characterises the general organisational principles or

ubject variability from the functional data alone. However, we feel that
he above results demonstrate that PROFUMO and the PFMs model are
roviding a novel and worthwhile perspective on the analysis and inter-
retation of functional MRI data. We hope that this approach —by virtue
f having a model tailored to the properties of fMRI data, the enhanced
patial sensitivity and specificity, and the way spatial variability is au-
omatically accounted for when estimating functional coupling —proves
seful. 
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ppendix A 

1. Alternative approaches 

There are now several methods that characterise resting brain ac-
ivity in terms of functional modes, both at the group and subject level.
he standard pipeline is essentially a two-step process, where the group-

evel modes are estimated before some form of back-projection is used
o extract subject-specific versions of these. Dual regression and related
ariants thereof, typically combined or integrated with a group-level
patial independent component analysis (ICA) ( Beckmann et al., 2005;
alhoun et al., 2001 ), have been the de facto standard for analyses of
he subject variability in spatial and, more recently, temporal features
f modes for at least the past decade. Dual regression proceeds by re-
ressing the group-level spatial maps into the data to get a set of time
ourses —from which subject variability in temporal features may be es-
imated via any number of functional connectivity metrics —before re-
ressing the time courses back into the data to get subject-specific spatial
aps ( Beckmann et al., 2009; Calhoun et al., 2001; Erhardt et al., 2011;
ickerson et al., 2017; Zuo et al., 2010b ). 

This approach has been extended over the years, with several pro-
osed refinements to either the method for identifying group-level
odes ( Allen et al., 2014; Damoiseaux et al., 2006; Dohmatob et al.,
016; Hjelm et al., 2014; Karahano ğlu and Van De Ville, 2015; Lee et al.,
011; Smith et al., 2012; Varoquaux et al., 2010 ), or to the way subject-
pecific information is extracted ( Du and Fan, 2013; Hacker et al., 2013;
öller et al., 2019 ). 

However, there have been several more extensive departures
rom the above framework that are more similar in spirit to the
ierarchical PFMs model. For example, Abraham et al. (2013) ;
aroquaux et al. (2011) proposed a more holistic model that finds a set
f systems regularised by not only the group-level properties, but also
y the consistency of both spatial and temporal information at the sub-
ect level. More recently, Li et al. (2017) introduced a model based on
on-negative matrix factorisation (NMF) that jointly optimises subject-
pecific decompositions such that the spatial maps are both sparse and
onsistent over subjects, though without explicitly leveraging any infor-
ation about temporal consistency. 

As mentioned in the Introduction, these methods all have poten-
ial shortcomings in terms of the extent to which typical patterns of
ariability are learnt from the multiple subject-specific decompositions.
hese shortcomings are particularly apparent for dual regression type
pproaches, where the estimation of subject variability is completely
ost-hoc (and, moreover, the estimated subject variability in spatial or-
anisation only indirectly informs the subject variability in temporal
eatures), but it is also problematic for the more complex models which
e have mentioned, for which no explicit parameterisation for the ob-

erved variability over subjects is inferred. 
More recent methodological work has focused on deriving subject-

pecific parcellations, both based on a fixed group-level template ( Chong
t al., 2017; Dhillon et al., 2014; Glasser et al., 2016a; Gordon et al.,
017a; Salehi et al., 2017; Wang et al., 2015 ), and formulated as a hier-
rchical model ( Kong et al., 2018; Langs et al., 2016; Liu et al., 2012 ).
owever, while both mode- and parcel-based approaches have shown
romise, our concern is that the subject variability in spatial organisa-
ion that has been reported often features reorganisations of a similar
cale to our current best estimates of the sizes of distinct functional re-
ions ( Van Essen and Dierker, 2007; Van Essen et al., 2012a ), and as
uch, reliable identification at this scale is arguably beyond all but the
ost sophisticated, multimodal approaches utilising high quality data

 Glasser et al., 2016a ). Therefore, in this work, we stick to a system-level
escription and base our method on a decomposition into a set of modes.
ntuitively, a functional system is more protected from the deleterious
ffects of misalignment than a functional region in two key ways: firstly,
unctional systems have a greater spatial extent than parcels; secondly,
 reorganisation of one region within a larger system can be straightfor-
ardly corrected for if the other regions are relatively stable. 

2. Preprocessing 

The aim of the preprocessing pipeline is to normalise the data such
hat it has a consistent scale across subjects, and that the properties of
he unstructured noise follow the assumptions that are contained in the
enerative model. The approach is as follows. 

• Voxelwise normalisation. For each voxel independently, the time
course (i.e. 𝑫 

( 𝑠𝑟 ) 
𝑣 

) is set to zero mean and unit variance. This en-
sures that each voxel has a roughly equal contribution to the SVD in
the next step. 

• Voxelwise normalisation of the noise subspace. Each voxel is indepen-
dently normalised such that the variance of the unstructured noise
is unity. This matches the assumption of isotropic noise in the gen-
erative model. The unstructured noise subspace is estimated via the
SVD. The whole data matrix is decomposed and the M components
with the highest singular values are assumed to represent the struc-
tured signal subspace and are removed. The noise subspace is recon-
structed from the remaining components, the variance is calculated
in each voxel, and the data is renormalised on a voxelwise basis such
that the variance becomes unity. 

• Global normalisation of the signal subspace. There is one final de-
gree of freedom remaining. The generative model assumes isotropic
noise, but does not assume a fixed variance. Therefore we can
apply a global renormalisation to set the overall variance of the
modes we observe. As an approximation, if 𝑫 = 𝑷 𝑯 𝑨 and we as-
sume independence over modes, then we can say that 𝐸 

[
𝑫 

2 
𝑣𝑡 

]
=∑𝑀 

𝑚 =1 𝐸 

[
𝑷 2 

𝑣𝑚 

]
𝐸 

[
𝒉 2 

𝑚 

]
𝐸 

[
𝑨 

2 
𝑚𝑡 

]
. In other words, if the maps, amplitudes

and time courses have unit variance then the signal variance will
be equal to M . Therefore we use another SVD decomposition and
set the overall variance of the assumed signal subspace (i.e. the first
M components) to match the above by applying exactly the same
normalisation to each voxel. 

3. Data reduction 

The scale of modern rfMRI studies is now such that even manipu-
ating all the data in its raw form simultaneously is impossible. For ap-
roaches that start by inferring group-level descriptions of the data, such
s ICA, it is possible to use on-line algorithms that work by passing over
he data sequentially ( Mensch et al., 2017; Smith et al., 2014 ), thereby
emoving the dependence between memory required and the number
f subjects under study. However, our approach is explicitly designed
o simultaneously extract group- and subject-level features, and as such
e need the data from each subject to be available. 

To facilitate analyses of large data-sets, we apply subject specific
ata reductions, but do not collapse these down further to group-level
ummaries. The approach we take is to approximate each run with a
ow-rank singular value decomposition (SVD). As our model is defined
n terms of both spatial and temporal features, we have to retain both
he spatial and temporal singular vectors. However, as the PFM model
ssumes that subject-specific spatial maps are conserved across all runs
or a given subject, we make further savings by only maintaining a single
et of spatial singular vectors per subject. 

To do this, we calculate the SVD of the matrix formed by tempo-
ally concatenating all data from a given subject. This combined data
atrix, 𝑫 

( 𝑠 ) ∈ ℝ 

𝑉 ×𝑅 𝑠 𝑇 , is then represented by U 

( s ) , S ( s ) and V 

( s ) . To ap-
roximate this with a low rank SVD, we simply only retain the singular
ectors associated with the top N singular values. For example, assum-
ng V > R T and ignoring columns associated with singular values equal
s 



S.J. Harrison, J.D. Bijsterbosch and A.R. Segerdahl et al. NeuroImage 222 (2020) 117226 

t  

t  

r  

i  

o  

i  

 

m  

c  

a

𝑫

 

t  

t  

H  

f  

s  

t  

t  

o
 

m  

p  

p  

u  

m  

d  

e

A

 

n  

p  

f  

s  

t  

s
 

m  

t  

s  

t  

i  

s  

w  

r  

o  

f  

a
 

t  

d  

b  

t  

f  

t

𝑇

A

 

i  

c  

f  

o
 

p  

s  

h  

(  

s  

j  

t  

t  

s  

s  

g  

n  

t  

e

A

 

u  

c  

t  

r  

s  

s  

a
 

r  

i  

T  

h  

d  

a
 

u  

a  

n  

n  

F  

a  

o  

a  

a
 

f  

g  

a  

m  

A

 

j  

a  
o zero, 𝑼 

( 𝑠 ) ∈ ℝ 

𝑉 ×𝑅 𝑠 𝑇 is replaced by �̂� 

( 𝑠 ) ∈ ℝ 

𝑉 ×𝑁 . Finally, we can parti-
ion the temporal singular vectors, according to the order the individual
uns were concatenated, in order to reconstruct the data from each run

ndividually, or in other words, �̂� 
( 𝑠 ) ∈ ℝ 

𝑅 𝑠 𝑇×𝑁 is decomposed into a set

f �̂� 
( 𝑠𝑟 ) ∈ ℝ 

𝑇×𝑁 . In summary, each data matrix, D 

( sr ) , has three approx-

mating matrices, namely �̂� 

( 𝑠 ) ∈ ℝ 

𝑉 ×𝑁 , �̂� 

( 𝑠 ) ∈ ℝ 

𝑁×𝑁 and �̂� 
( 𝑠𝑟 ) ∈ ℝ 

𝑇×𝑁 .
The last thing we do is to combine these three matrices into two

atrices. This simply saves some computation each time we need to
alculate any expectations involving the data. The final form for the
pproximate data is therefore 

𝑾 

( 𝑠 ) = 

(
�̂� 

( 𝑠 ) )(
�̂� 

( 𝑠 ) ) 1 
2 

𝑿 

( 𝑠𝑟 ) = 

(
�̂� 

( 𝑠 ) ) 1 
2 
(
�̂� 

( 𝑠𝑟 ) )𝑇 

 

( 𝑠𝑟 ) ≈ 𝑾 

( 𝑠 ) 𝑿 

( 𝑠𝑟 ) 

(20) 

We can simply substitute this approximate expression for D 

( sr ) any
ime we need access to the data in the inference procedure, and this has
he added bonus of being computationally, as well as space, efficient.
owever, we explicitly calculate, and cache, the overall data variance

rom the full data, rather than ignoring the contribution from the sub-
pace of discarded singular values 14 . This means that the estimate for
he noise precision, 𝜓 

( sr ) , will be comparable whether or not we choose
o utilise this low-rank approximation, or indeed across different values
f N . 

We now have an explicit method for reducing large data-sets to a
ore manageable size. However, there is one final complication: com-
utationally, calculating the SVD of every D 

( s ) actually turns out to be
rohibitively expensive in most cases. In order to circumvent this, we
tilise the fact that we are explicitly looking for a low-rank approxi-
ation and implement an extremely efficient randomised algorithm to
irectly calculate the truncated SVD. This approach is described in the
xcellent review by Halko et al. (2011) . 

4. Degrees of freedom correction 

fMRI data has an inherent spatial smoothness —such that there are
on-trivial spatial autocorrelations in the noise processes —which is am-
lified by the spatial smoothing that is a standard pre-processing step
or most analyses. As discussed earlier, this is not acknowledged in our
pecification of our model of the noise process. In essence, this means
hat the model assumes that there are more independent spatial mea-
urements than actually exist. 

Fortunately, as Groves et al. (2011) discuss, there is a simple way to
itigate some of the effects of this within the Bayesian framework. In-

uitively, if we have smoothed the data then we should be able to down-
ample it without loss of information. At some stage, this would result in
he noise becoming genuinely spatially independent again, thereby sat-
sfying the assumptions of the generative model. However, this presents
everal practical problems, so rather than actually downsample the data,
e simply downweight the spatial information by a factor 𝜈. This rep-

esents the proportion of voxels that would be retained if we were to
ptimally downsample. ’This is analogous to fixing that only a random
raction of the data points will be kept, but at each stage averaging over
ll possible choices of decimated voxels’ ( Groves et al., 2011 ). 

While this approach still does not explicitly acknowledge the rela-
ionship between noise in nearby voxels, it does counter most of the
eleterious effects of this model misspecification, especially when com-
ined with the models for noise in the subject-specific spatial maps and
ime courses. The main advantage of this approach, compared to a more
ormal model for smoothness, is that it remains particularly computa-
ionally efficient. 
14 More explicitly, we use 𝑇 𝑟 
(
( 𝑫 

( 𝑠𝑟 ) ) 𝑇 𝑫 

( 𝑠𝑟 ) ) rather than 
 𝑟 
(
( 𝑾 

( 𝑠 ) 𝑿 

( 𝑠𝑟 ) ) 𝑇 𝑾 

( 𝑠 ) 𝑿 

( 𝑠𝑟 ) ) whenever required. 
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5. Initialisation 

With a model of this complexity, it is important that the algorithm
s appropriately initialised. By doing so, we can improve reliability and
omputational stability whilst reducing the computational time required
or convergence. Our approach is to compute a consensus group-level set
f modes, and use these to initialise the full model. 

To do this, we mimic the temporal concatenation approach em-
loyed by most existing algorithms and compute a consensus set of
patial singular vectors (this can be done even more efficiently if we
ave already utilised the data reduction technique described previously
 Calhoun et al., 2001 )) using another randomised SVD algorithm that
treams over the data. These singular vectors are reweighted via an ad-
usted set of singular values. More specifically, we use the properties of
he Marchenko-Pastur distribution to find the noise level that ensures
he SNR at the group-level decomposition is similar to the SNR at the
ubject level. We then run a Bayesian version of spatial ICA —with the
patial priors set to mimic the group-level priors of the full model —to
enerate the group-level modes. The SNR recalibration ensures we do
ot get over-splitting of the modes at this stage. We can then propagate
his set of group-level modes through the rest of the algorithm, thereby
nsuring all parameters are initialised with plausible values. 

6. Simulations 

The spatial model consists of two levels: parcels and modes. We sim-
late 100 spatially contiguous parcels within a one-dimensional space
omprising 10,000 voxels. We then apply a random diffeomorphic warp
o each subject separately as a model for residual misalignments after
egistration. We then simulate a set of 15 modes consisting of blocks of
patially adjacent parcels. There is variability in the mode weights over
ubjects, and we introduce overlap such that, on average, each voxel is
 member of 1.4 modes. 

In the temporal domain we simulate a set of sparse, correlated ’neu-
al’ timecourses for each of the two runs per subject. There is variability
n the between-mode correlation structure at the run and subject level.
hese are then convolved with a random draw from the FLOBS basis of
æmodynamic response functions ( Woolrich et al., 2004 ), which intro-
uces variability over subjects and space. This results in 500 timepoints
t a TR of 2.0s. 

The spatial maps and timecourses are combined via the outer prod-
ct model, and a nonlinear saturation is applied such that the highest
mplitude moments of instantaneous voxelwise activity are reduced. Fi-
ally, random noise is added with a degree of spatiotemporal smooth-
ess such that the overall SNR (expressed in terms of variance) is 0.1.
or the simulations presented in the Supplementary Material, we also
dd some structured, subject-specific noise components, again using an
uter-product model. These can either be spatially specific or global, and
re designed to contribute a similar amount of variance per component
s the individual signal modes. 

To allow inference algorithms to model the aforementioned arte-
acts, 18 modes are inferred. After inference, modes are paired to the
round truth based on the similarity between both the spatial maps
nd timecourses, averaged over runs and subjects. The full set of perfor-
ance metrics shown in the Supplementary Material is then calculated.

7. Human connectome project data and analyses 

For the HCP analyses, all data was from the 1200 Sub-
ects Data Release: humanconnectome.org/study/hcp-young-
dult/document/1200-subjects-data-release . We used the 1003
ubjects for whom there was full behavioural, structural and
fMRI data (i.e. 4 runs, each of 1200 volumes). All analyses
re of the MSMAll and FIX cleaned data (i.e. rfMRI_REST1_
R_Atlas_MSMAll_hp2000_clean.dtseries.nii Tr). 

https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
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ICA-DR results were taken from the Extensively Processed fMRI Data:
umanconnectome.org/study/hcp-young-adult/document/extensively- 
rocessed-fmri-data-documentation . The amplitudes and netmats were
stimated from the time courses released by the HCP: the amplitudes
ere taken as the standard deviations, while the netmats were the
artial correlation matrices. Tikhonov regularisation was used when
alculating the inverse of the full correlation matrices, with 𝚪 = 0 . 1 𝑰 . 

Heritability was estimated via Falconer’s formula, 𝐻 

2 
𝑏 
= 2( 𝑟 𝑚𝑧 − 𝑟 𝑑𝑧 )

 Falconer, 1960 ). We calculate the correlations, r mz and r dz , between
he voxelwise spatial map weights. In other words, for each subject and
ach voxel we extract a length M vector of weights: 𝑷 ( 𝑠 ) 

𝑣 
using the PFM

otation, and compute the correlation between these for every pair of
ubjects. 

For the CCA analyses, we used the full set of restricted informa-
ion released by the HCP. We first removed all variables relating to
tudy completion or quality control. The structural variables were
ll the remaining variables in the FreeSurfer category; all others
ere taken as behavioural. To preprocess the behavioural variables,
e first removed any variables that were either more than 20%
aN, or those for which more than 95% of subjects had exactly

he same entries. We then imputed any missing values using the
oftImpute method ( Mazumder et al., 2010 ) as implemented in the
ancyimpute Python package (github.com/iskandr/fancyimpute).
he following were regressed out as confounds (one-hot encoded where
ecessary) in all subsequent analyses: Release , Acquisition ,
MRI_3T_ReconVrs , rfMRI_motion , Age , Gender ,
ace , Ethnicity , Handedness , Height , Weight , BMI ,
PSystolic , BPDiastolic , Hematocrit_1 , Hematocrit_2 ,
S_IntraCranial_Vol , FS_BrainSeg_Vol . A detailed de-
cription of all variables can be found at wiki.humanconnectome.org/
isplay/PublicData/HCP+Data+Dictionary+Public-+Updated+ 

or+the+1200+Subject+Release . 
For the CCA, all groups of variables were normalised and then re-

uced to their top 25 components via the SVD, before a CCA was run
n every pair of variable groups. The RV coefficient was then calculated
etween the top 10 paired components from each CCA. 

8. Active-state data and analyses 

Data was acquired from fifteen subjects, but for these analyses we
xcluded Subject 07 due to potential artefacts in several of their scans.
reprocessing was as previously published (i.e. brain extraction, B0 un-
arping, high-pass temporal filtering, motion correction, and FIX clean-

ng) ( Kieliba et al., 2019 ). However, we did not apply mean-based
ntensity normalisation or low-pass filter the data. Finally, the pre-
rocessed functional scans were then registered to MNI space and spa-
ially smoothed (2mm FWHM). 

As with the HCP data, the ICA-DR amplitudes and netmats were es-
imated from the time courses: the amplitudes were taken as the stan-
ard deviations, while the netmats were the partial correlation matri-
es. Tikhonov regularisation was used when calculating the inverse of
he full correlation matrices, with 𝚪 = 0 . 1 𝑰 . The SVM was from scikit-
earn ( sklearn.svm.SVC ), and as this is a relatively small dataset
arameters were left at their defaults ( Varoquaux et al., 2017 ). 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at 10.1016/j.neuroimage.2020.117226 
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