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ABSTRACT

Recent work has highlighted the scale and ubiquity of subject variability in observations from functional MRI data (fMRI). Furthermore, it is highly likely that
errors in the estimation of either the spatial presentation of, or the coupling between, functional regions can confound cross-subject analyses, making accurate and
unbiased representations of functional data essential for interpreting any downstream analyses. Here, we extend the framework of probabilistic functional modes
(PFMs) (Harrison et al., 2015) to capture cross-subject variability not only in the mode spatial maps, but also in the functional coupling between modes and in mode
amplitudes. A new implementation of the inference now also allows for the analysis of modern, large-scale data sets, and the combined inference and analysis package,
PROFUMO, is available from git.fmrib.ox.ac.uk/samh/profumo. A new implementation of the inference now also allows for the analysis of modern, large-scale data
sets. Using simulated data, resting-state data from 1000 subjects collected as part of the Human Connectome Project (Van Essen et al., 2013), and an analysis of 14
subjects in a variety of continuous task-states (Kieliba et al., 2019), we demonstrate how PFMs are able to capture, within a single model, a rich description of how
the spatio-temporal structure of resting-state fMRI activity varies across subjects.

We also compare the new PFM model to the well established independent component analysis with dual regression (ICA-DR) pipeline. This reveals that, under PFM
assumptions, much more of the (behaviorally relevant) cross-subject variability in fMRI activity should be attributed to the variability in spatial maps, and that,
after accounting for this, functional coupling between modes primarily reflects current cognitive state. This has fundamental implications for the interpretation of
cross-sectional studies of functional connectivity that do not capture cross-subject variability to the same extent as PFMs.

1. Introduction been a shift in what is required of analysis techniques, namely that they

must be both interpretable and sensitive to subject-level variability, and

One of the key changes to the landscape of the analysis of func- at the same time they need to scale to meet the computational demands
tional connectivity via rfMRI in recent years has been the prolifera- posed by large data sets.

tion of large population-level studies (Bamberg et al., 2015; Breteler
et al., 2014; Miller et al., 2016; Van Essen et al., 2012b) and multi-site
data-sharing initiatives (Biswal et al., 2010; Gorgolewski et al., 2017;
Kennedy et al., 2016; Mennes et al., 2013; Poldrack et al., 2013; Scott
et al., 2011; Thompson et al., 2014)". This has allowed investigations
into the population-level correlates of fine-grained changes in functional
connectivity (Allen et al., 2011; Dubois and Adolphs, 2016), with sev-
eral studies already finding strong links with a variety of behavioural,
genetic and lifestyle factors (Colclough et al., 2017; Elliott et al., 2018;
Finn et al., 2015; Smith et al., 2015); together, these findings augur well
for the search for clinically relevant, personalised predictions from func-
tional neuroimaging data (Abraham et al., 2017; Dubois and Adolphs, 2 For the rest of this paper, when we use the term variability in relation to
2016; Insel and Cuthbert, 2015; Stephan et al., 2017). In sum, there has functional measures, it can be assumed to relate to variability in static functional
connectivity over subjects or sessions. This does not consider, for example, the
moment-to-moment fluctuations characterised as dynamic functional connec-
tivity (Calhoun et al., 2014; Hutchison et al., 2013; Preti and Van De Ville,
2017). This encodes important within-subject state changes (Tagliazucchi and
Laufs, 2014), and there is growing evidence that this captures between-subject
trait differences too (Vidaurre et al., 2017).

1.1. Implications of variability over subjects

In this paper, we are primarily interested in the interpretation
of—and characterisation of the subject variability in—static functional
connectivity?. Ultimately, static functional connectivity is encapsulated
by the dense connectome—by which we mean the time-averaged voxels-
by-voxels connectivity matrix, as defined by the statistical relationships
between time courses as extracted from functional data (Friston, 2011;
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Friston et al., 1993). However, dense connectomes are cumbersome
computationally, and the natural spatial scale of the functional data
is likely to be much lower than the several hundred thousand voxels
present in a typical fMRI acquisition (Van Essen et al., 2012a). In prac-
tice, what we are seeking is a parsimonious summary of the static func-
tional connectivity that is both readily interpretable and captures key
forms of variability.

The canonical approach for analyses of static functional connectivity
is to summarise the high-dimensional data in terms of a comparatively
small number of either parcels or functional systems®. These are usu-
ally defined in terms of their spatial configuration, at which point it is
possible to extract representative time courses from functional data and
analyse these. There will naturally be variability in functional connec-
tivity in several domains, though based on the above framework we will
focus on two key ones here: firstly, we will refer to variability in the size,
shape and location of functional regions as subject variability in spatial or-
ganisation; secondly, we will use subject variability in temporal features to
denote the changes in summary measures based on said time courses—in
particular, the strength of functional connectivity between regions (i.e.
functional connectomes). Finally, note that for clarity we will use the
term functional coupling to specifically refer to the functional connec-
tivity between regions as described by these low-dimensional connec-
tomes®.

The assumption that is implicit in either the parcel or system-level
analyses is that registration to a common space means that the time
courses we extract based on group-level spatial descriptions are an ac-
curate, or at least unbiased, description of each subject’s data. How-
ever, given that it is by no means uncommon to observe three-fold
variation in the areal extent of regions of primary visual cortex across
subjects (Andrews et al., 1997; Dougherty et al., 2003); or that non-
homeomorphic morphological changes, such as subjects exhibiting dif-
ferent number of gyri and sulci, are prevalent (Amiez and Petrides,
2014; Shackman et al., 2011) even in identical twins (Bartley et al.,
1997; Hasan et al., 2011); or that macroscale anatomical features are
poor predictors of cytoarchitectonic borders (Amunts et al., 2007); then
we should expect there to be substantial disparities in the presentation
of functionally homologous regions across subjects, even after nonlin-
ear registration (Brett et al., 2002; Devlin and Poldrack, 2007; Mueller
et al., 2013; Van Essen and Dierker, 2007). Recent observations have
confirmed this for functional data, where it has been shown that this
subject variability in spatial organisation ’can give rise to divergent
connectivity estimates from the same seed region in different subjects’
(Gordon et al., 2017a)—with the results from several studies also sug-
gesting that reorganisations of functionally homologous regions that
cannot be represented by diffeomorphic warps seem to be common-
place (Braga and Buckner, 2017; Glasser et al., 2016a; Gordon et al.,
2016; 2017b; Hacker et al., 2013; Harrison et al., 2015; Kong et al.,
2018; Laumann et al., 2015). Furthermore, these differences have a sub-
stantial impact on the data: cross-subject differences in static functional
connectivity have been shown to be much larger than either cross-site
effects (Noble et al., 2017) or cross-condition, within-subject changes
(Gratton et al., 2018).

Loosely speaking, these spatial differences in functional connectivity
after registration can arise for four reasons: there will naturally be some
errors in the registration process, resulting in structural features that are
not brought into correspondence; there will be locations where anatom-
ical landmarks bear little relation to functional subdivisions, meaning
structural similarity is not a sufficient condition for accurate registra-
tion; there will be genuine non-homotopic reorganisations, whereby the
standard registration approaches based on diffeomorphic warps could

3 Resting-state networks, intrinsic connectivity networks, etc.

4 We make this distinction as the spatial maps, which characterise the location
of functional regions, also capture aspects functional connectivity and organisa-
tion.
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never succeed®; and there will be dynamic—either moment-to-moment
or state-dependent—changes in the functional connectivity structure
(Buckner et al., 2013; Krienen et al., 2014; Salehi et al., 2020). If these
different sources of variability in spatial organisation are not accounted
for, then one expects the inferred mode time courses to be a farrago
of contributions from the underlying ’true’ set of modes (Allen et al.,
2012; Smith et al., 2011). Worse still, if the structural differences cap-
ture meaningful cross-subject differences—which they almost certainly
will do (Llera et al., 2019)—then the amount of misalignment, and hence
the quality of the extracted time courses, will reflect information that is
anatomical rather than functional in origin (Bijsterbosch et al., 2018).
This breaks the central tenet of investigations into subject variability
in temporal features, as we can no longer assume that a group-level
description of the functional architecture is a reliable description of in-
dividual subjects, or even that we can use these to extract unbiased es-
timates of functional coupling. How then, do we proceed from here?

The first approach we could take is to improve the registrations, and
hope that better algorithms and utilising a richer feature set to drive the
alignment will push individual subjects ever closer towards the group
description (Robinson et al., 2018; 2014; Tong et al., 2017). Notably
however, the multiple recent observations that single functional regions
can be manifested as multiple disjoint regions in some subjects, is some-
thing that not even advanced functional registration algorithms reliant
on diffeomorphic warps can correct for. The minimum requirement for
this approach is therefore the use of advanced registration techniques
that can non-homotopically reorganise the spatial layout of functional
regions, as, for example, introduced by Conroy et al. (2013); Guntupalli
et al. (2018, 2016), or Langs et al. (2010).

The alternative approach, and the one that we take in this paper,
is to build algorithms that can extract estimates of subject variability
in temporal features while simultaneously accounting for the variable
presentation of functional regions at the subject level. Several methods
have been proposed to do exactly this, using both hierarchical models
of functional systems (Abraham et al., 2013; Harrison et al., 2015; Li
et al., 2017; Varoquaux et al., 2011) and parcels (Kong et al., 2018;
Langs et al., 2016; Liu et al., 2012). We provide a more fulsome de-
scription of these, and their counterparts that extract subject-specific
information given a fixed group template, in Appendix A.1. However,
the majority of these methods have what is potentially a major limita-
tion: the flow of information is almost exclusively from group to subject.
In other words, there are only relatively rudimentary efforts to tap into
what we might hope is a virtuous cycle: we should be able to use our
group-level estimates to infer accurate subject-level information, but,
crucially, we should also be able to utilise the observed variability at
the subject level to refine our group-level parameterisations. Further-
more, the same process should hold within subjects, such that accurate
estimation of the individual spatial presentations should improve eval-
uation of the temporal information, and vice versa.

Finally, while we have tended to focus on connectomes as the prin-
cipal temporal feature of interest in the above discussion, there are
other types of variability we are interested in. Recent work has shown
that, for example, amplitudes—by which we mean any metric which
represents the amount of fluctuation in activity of a functional region
over time—carry a substantial amount of information about subjects
(Bijsterbosch et al., 2017; Duff et al., 2008; Miller et al., 2016; Zang
etal., 2007; Zou et al., 2008), provided we are sufficiently careful in how
we distinguish changes from those in functional coupling (Duff et al.,
2018), and then how we interpret said changes (Qing and Gong, 2016).

5 It is somewhat contentious whether (structural) registration should be held
responsible for the latter two processes. Our definition of registration is some-
what broader, as we hold it responsible for bringing subjects into structural
and functional correspondence. While structural registration is unlikely to be
sufficient here, this is nevertheless a reasonable aim for multi-modal registra-
tion approaches. For a good discussion of these issues see e.g. Van Essen and
Dierker (2007).



S.J. Harrison, J.D. Bijsterbosch and A.R. Segerdahl et al.

Amplitudes are therefore another type of subject-specific information
that we would hope analysis methods could identify, and more impor-
tantly disambiguate from, the types of subject variability we have al-
ready discussed. This is an illustrative example of the complexity of the
task of characterising functional connectivity: at every level of any per-
ceptual hierarchy of features we impose (i.e. separation into spatial and
temporal features, or subdivision of temporal features into amplitudes
and coupling), we expect there to be multiple ways to identify the differ-
ent features, and substantial cross-subject variability that is correlated
across the different categories.

1.2. Outline

For the rest of this paper, we will outline our approach for simul-
taneously inferring group- and subject-level descriptions of functional
systems. We use the term mode to describe our mathematical descrip-
tion of a given system.

To begin with, we present our probabilistic model for these modes,
including the way we parameterise subject variability in both spatial and
temporal features, and our approach for inference. This is a significant
extension of the proof-of-concept method (Harrison et al., 2015) in sev-
eral key ways: we introduce a new hierarchical model to better capture
the functional coupling between modes, incorporate a model for mode
amplitudes to engender a cleaner separation between different types of
functional variability, and we overhaul the entire implementation to
help the inference scale to large data sets.

We then compare the performance of our method with existing ap-
proaches. We do this using both simulated and empirical data, namely
the complete set of rfMRI data as released by the Human Connectome
Project and “active-state” fMRI data from a more conventionally sized
study. Finally, we offer some brief discussions as to the significance of
our results.

2. Model

Our approach infers subject-level probabilistic functional modes
(PFMs)—each of which can be thought of as being described by a
subject-specific spatial map and a set of time courses—across the whole
cohort simultaneously. Ensuring that there is correspondence between
the inferred modes across the cohort is a challenge (Esposito et al.,
2005), especially on resting-state data where we cannot assume any
common temporal structure.

However, we can use the information at the group-level to inform the
subject-specific decompositions: both the subject-specific spatial maps
and the low-dimensional, between-mode functional connectomes are
constrained to vary around their group-level descriptions, and we can
also leverage the expected properties of the heemodynamic response to
further constrain the time courses. Moreover, we can use the subject-
specific modes to learn about the variability of all these properties,
thereby allowing us to not only describe typical patterns of activity, but
to also quantify the extent to which observed patterns are atypical. We
do this by building, and then inferring upon, a hierarchical probabilistic
model for rfMRI data as described by a set of modes, and it is this that
we outline in the following section.

2.1. Matrix factorisation models

Defining a mode in terms of a spatial map and time course means
that it is fundamentally a matrix factorisation approach, a mathematical
formulation which underpins principal component analysis, indepen-
dent component analysis, non-negative matrix factorisation, dictionary
learning and several other of the well established methods for extract-
ing modes from rfMRI data. For completeness, we briefly introduce our
notation for this class of models before introducing our extensions.

Firstly, each subject, s, from a cohort of S subjects, is scanned R;
times. Note that we do not assume that each of the runs for a given
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subject (i.e. r € {1,..., R,}) are identical from a modelling standpoint:
they could, for example, represent different time points in a longitudi-
nal study, or different conditions®, and we may therefore want to treat
them differently. The fMRI data are acquired in V voxels and at T time
points, which we reshape into a data matrix D € RV*T. We do all
our analyses after the data has been registered into a common space, so
the number of voxels is constant across subjects. We do however allow
the number of time points per run to vary (i.e. D" € RV*T®"), but for
notational simplicity we drop any superscripts on T.

The problem we are faced with is defining an extension to the stan-
dard matrix factorisation approach to account for these multiple data. In
the spatial domain, as discussed in the Introduction, we expect between-
subject variability in the locations of functional regions, even after regis-
tration, and we expect these effects to be amongst the dominant sources
of functional variability. We make the pragmatic decision to focus on
differences in the static configuration of functional systems specifically,
and we target our spatial approach towards what are essentially mis-
alignments.

Therefore, as in Harrison et al. (2015), we model subject and run
variability within the matrix factorisation framework as follows. We are
looking for a set of M modes, and we assume that the subject variabil-
ity in spatial organisation we observe across subjects, by virtue of it
being driven primarily by cortical reorganisations, is consistent across
all runs for a given subject. This gives a set of subject-specific spatial
maps, P® € RV*M | that will potentially be observed multiple times.
Furthermore, each run will have its own unique set of time courses,
A6 e RMXT a5 well as a set of mode amplitudes, h*” € RM . For conve-
nience we adopt the following convention: H*"” € RM*M = diag(h“").
Finally, note that in general we infer a small number of PFMs relative to
V and T, which gives a parsimonious description of the data. However,
this means that the factorisation will not be exact, so we express the data
as the contribution from the PFMs and a noise term, £ € RY*T, This
set of assumptions allows us to describe the complete model for one run
as

DG = p©) s AGr 4 glsr) )

In the following sections, we describe how we model the dependen-
cies between these run-specific decompositions, as well as the key prop-
erties of rfMRI data that we are trying to capture. For reference, a full
graphical model is provided in the Supplementary Material.

2.2. Spatial model

The spatial model remains conceptually similar to the approach we
used in Harrison et al. (2015). For each mode, there is a rich group-
level description capturing the mean group maps and typical subject
variability around these; as Van Essen and Dierker (2007) discuss, in
light of subject variability, it is essential that ’[regions are] represented
probabilistically whenever possible, in a way that reflects variability
in cortical convolutions and in [their] size, location, and internal (e.g.,
topographic) organization’. Similarly, subject maps are parameterised
such that they retain the key characteristics of the group maps, but al-
low for genuine variability while being robust to spurious correlations
induced by noise.

A key modification we make to the previous model is to change
the way we model the spatial map distribution, by relaxing the delta-
Gaussian mixture model to a double-Gaussian mixture model. Previ-
ously, the weights in voxels which were inferred to be outside of a given
mode were set to exactly zero. In reality however, essentially all voxels
will exhibit a weak correlation with a given mode time course’, and, par-
ticularly in studies like the Human Connectome Project with thousands

© Eyes-open, eyes-closed, pre/post an intervention, various “active-state”
paradigms etc.
7 Cf. the noisy estimates of beta values from a GLM fit.
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of time points per subject, there is often sufficient evidence a posteriori to
model this noise as small, but nevertheless non-zero, weights®. The new
model allows for exactly this type of ’spurious’ (i.e. statistically but not
biologically significant) correlation by including a noise distribution to
capture small deviations from zero in the spatial map weights. While we
are not interested in these small weights per se, if we do not include a
more explicit noise model then the model will erroneously include them
as signal thereby hindering our ability to detect genuine 'neural’ signal.

This contamination by noise happens for three main reasons. Firstly,
as Bright and Murphy (2015) recently showed, even well-characterised
functional modes can be identified from noise processes like sub-
ject motion. Conversely, this implies that even accurately identified
modes may well correlate with non-neural processes. Secondly, given
the complex, long-range spatial autocorrelations present in fMRI data
(Kriegeskorte et al., 2008), fMRI noise processes have a non-trivial struc-
ture. This is heightened by spatial smoothing, which is an often used
pre-processing step for fMRI data (though less so for modern high spatial
and temporal resolution data (Glasser et al., 2016b)). This is advanta-
geous as it ameliorates the problem of residual spatial mis-alignment af-
ter registration, but induces heightened spatial correlations in the noise.
While it would be possible to model this, estimating—and then correct-
ing for—the true number of spatial degrees of freedom in the data is no-
toriously difficult (Eklund et al., 2016; Worsley et al., 1996), and would
be computationally expensive over a large number of voxels. Finally,
in the section on the noise model itself, we demonstrate how unstruc-
tured noise can have a stabilising effect on matrix factorisation models.
Therefore, we make the pragmatic decision to account for these effects
in the spatial model, rather than trying to incorporate a more complex
mechanistic model for the noise.

The resulting model takes the following form. For voxel v in mode
m, the subject-specific spatial weights are distributed as follows:

(s) 3
p(PO1gl) =1) = N (PO |y 02,)
p(PG)|a5s) = 0) = M (PO 0, (1) 222)

)
)

p(45)) = ()i (1 = )14 ®
)

p(n) = N (n|0.72)

Where ¢ is a binary indicator variable which represents whether a
given voxel’s weight is drawn from the signal or the noise component.

This distribution is defined in terms of several group-level hyperpa-
rameters: the probability that a given weight is drawn from the signal
rather than the noise distribution, r,,; the mean and standard devia-
tion of the signal component, u,,, and o, respectively; and the new
parameters, the standard deviation of the noise component, which we
parameterise as 7"'¢, for reasons which we explain in detail later.

Note how much richer this description is than the single set of group-
level means that most currently used techniques infer. For example, the
o,, Parameters can capture the types of spatial non-uniformity in sub-
ject variability observed by Mueller et al. (2013). Therefore, when in-
ferring subject maps, the inference will automatically be informed by
the data more than the group mean in regions inferred to exhibit high
functional heterogeneity over subjects, and vice versa for regions with
low subject-to-subject variability.

The model also includes the set of distributions over the group-level
hyperpriors (see the Supplementary Material for the way these, and
all subsequent, hyperparameters are specified). Starting with the hy-
perpriors on the ’signal’ component, we place a mixture model prior
over the group means, which, as in the previous work, is inspired by
the spike-slab distribution (George and McCulloch, 1993; Ishwaran and
Rao, 2005; Mitchell and Beauchamp, 1988; Titsias and Lazaro-Gredilla,
2011). This encourages sparsity in the group-level spatial maps, thereby

8 See Colclough et al. (2018) for a discussion of exactly this effect in relation
to inference of functional couplings between regions.
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encoding ideas about functional segregation, as well as allowing more
flexibility when specifying the distribution of the non-zero weights.
However, we introduce an extension and model the non-zero weights
with a combination of two Gaussians with different variances. This al-
lows the group-level distribution of non-zero spatial weights to have
heavier tails than the single Gaussian used in the previous incarnation
of the model.

p(”vm Pom = 2) = N(Mvm T/AZ’ yyZz)
P(”vm Pom = 1) = N(Mum Tulvyulz) (3)
p(”um Pom = O) = §(Mum)

p(pum) = Hi€(0,14’2] (/lm)[ﬂvnFi]

Where p,,, is the probability that a voxel in the group map is drawn from
each of the three distributions, and [p,,, = i] is the Iverson bracket.

The group signal standard deviations, o,,,, take an inverse-gamma
hyperprior:

P(0um) =T (07,

Returning to the hyperpriors on the 'noise’ component, in Eq. 2, the
standard deviation of the noise component of the subject-specific spatial
map distribution is parameterised as n,(,f)g“b.. The ¢, parameter encodes
spatial inhomogeneity in the noise variance: for example, we expect
more structured noise due to motion around the edges of the brain; sim-
ilarly, we expect more physiological noise in the brainstem. This group
noise standard deviation, ¢,, also takes an inverse-gamma hyperprior:

(&) =T(g?

However, we also expect different signal-to-noise ratios, both across
subjects and modes. Therefore, we include an extra parameter, nfj),
which captures variations in the noise level’. We place a weak prior
on n,(,f), as we want the overall scale of each spatial map to be deter-
mined by the signal rather than the noise, as this makes cross-subject

analyses more informative:
p()) = N (1m0 7,) ©

Finally, the last hyperprior to specify is that on the group member-
ship probabilities. This follows a beta distribution:

a,.b,) Q)

ag, be) ®

a;.b,) @)

p(”um) = ﬂ(ﬂbm

In summary, the model has rich descriptions of the spatial maps,
both at the group and subject level, and allows us to encode typical
patterns of variability. Furthermore, while we have included a weak
sparsity constraint at the group-level, there is no explicit constraint on,
for example, orthogonality of the spatial maps. Therefore, the model can
capture modes that are highly spatially overlapping in what is arguably a
more natural way than independent component analysis—even despite
a historic tendency to overstate those criticisms (Beckmann et al., 2005;
Calhoun et al., 2013; Smith et al., 2012).

One last point to note is that when we present our results, the group
maps we show are the marginal posterior means of the whole spatial
distribution, rather than the y parameters themselves. The group-level
maps are therefore E[x,,, u,,|D], which has the nice property that it
incorporates the uncertainty about whether each voxel is drawn from
the signal or the noise component.

2.3. Temporal model

In the temporal domain, the unconstrained nature of rfMRI data
means that we can say relatively little about the time courses from a
given run, as there are no external events from which we can search

9 See e.g. Gelman (2006) for a related discussion of redundant parameterisa-
tions of variance.
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for consistent time-locked patterns of mode activation. However, func-
tional connectomics has shown that, as well as having a consistent group
structure, both the interactions between modes and simple amplitude
measures encode interesting information about subjects. Similarly, the
hemodynamic processes lend neural processes a distinct temporal sig-
nature. That being the case, we wish to formulate a model that primarily
captures these two phenomena.

However, we expect the inferred time courses to be corrupted by
noise, even if we properly make allowances for the global noise process
€67, As mentioned in the Spatial Model section, there are likely to be
structured noise processes that violate our hemodynamic assumptions.
This needs to be accounted for before we can introduce the targeted
models of the BOLD signal.

Analogously to the spatial model, we extend the model from
Harrison et al. (2015) by making the pragmatic decision to allow noisy
time courses. Therefore, our time course model contains two terms: the
first represents the clean BOLD time courses, B®", while the second rep-
resents the noise that corrupts these, £&57. This gives:

A(sr) — B(sr) + 5('”) ®)

There is an additional benefit of this explicit parameterisation of the
BOLD time courses. Recent work has claimed that the [fractional] Am-
plitude of Low Frequency Fluctuations ([f]ALFF) (Zang et al., 2007; Zou
et al., 2008; Zuo et al., 2010a), as derived from rfMRI data, captures
aspects of subject variability related to disease. Our parameterisation
allows us to derive a related quantity, which we term the fractional am-
plitude of BOLD time courses (fABT). This is simply defined as the power
in the clean BOLD time courses B®?, relative to the power in the noise
time courses £47, calculated for each mode and each run individually.
Conceptually, this is very closely related to fALFF, but it has the clear ad-
vantage that it does not require defining low’ frequencies in terms of an
arbitrary threshold; rather, the signal of interest is based on an explicit
model of the HRF. Secondly, the calculated fABT measures specifically
relate to the activity in different functional systems which makes the
measure more interpretable.

2.3.1. Hemodynamic model

We use the haamodynamic response function (HRF) based model that
we introduced in Harrison et al. (2015). This is a relatively simple, com-
putationally efficient, linear model that captures the gross properties of
the HRF via the temporal autocorrelations that it induces in the data.
We assume a white noise 'neuronal’ process convolved with a canonical
HRF!?, whose autocorrelation function we can capture using a full co-
variance matrix, Kz € R™T, for all the time points in a given run. As
the overall variance of the time courses is arbitrary given the explicit
amplitude parameters, we simply ensure that Kp is scaled such that all
entries on the main diagonal are unity.

2.3.2. Subject-level mode interactions

The major extension relative to the previous model is an explicit pa-
rameterisation of the functional coupling between modes. As discussed
earlier, we expect to observe temporal interactions between modes,
and this will lend some structure to the mode time courses. We define
these interactions in terms of the precision matrix between the mode
time courses. In other words, we combine the HRF-derived autocor-
relation structure with a prior on the between-mode precision matrix,
a”) € RM*XM ' in a matrix normal distribution.

The combined prior on the heemodynamic time course for all the
PFMs in a given run is then:

p(B(Sr) a(sr)) — MN(B(Sr) 0’ a(sr)_l’ KB) (9)

10 For adult populations, both the SPM double-gamma HRF (Friston et al.,
2007) or the principal component of the FLOBS basis in FSL (Woolrich et al.,
2004) are provided, though this can be replaced for different populations as
appropriate e.g. (Arichi et al., 2012).
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2.3.3. Group-level mode interactions

The temporal interactions between modes have been characterised
as having a consistent structure across the group (Shehzad et al., 2009),
so we introduce a hierarchical model to capture this. Subject- or run-
level variability will manifest itself as deviations from this set of group
interactions. This formulation we use is, in essence, the same model as
that proposed by Marrelec et al. (2006), but where we have two princi-
pal advantages: firstly, inference is informed by the full posteriors on the
rest of the model (i.e. rather than point estimates); and, secondly, that
the regularisation that arises from these priors will inform the inference
of the rest of the model parameters.

Starting at the subject level, we estimate the subject/run-specific
temporal precision matrix a®" to keep track of the functional connectiv-
ity between modes. These precision matrices follow a Wishart distribu-
tion, and we introduce a hyperparameter, § € RM*M that encourages
the interactions to be consistent across subjects and/or runs. This takes
the form of a hyperprior on the subject-specific scale matrices, and again
this follows a Wishart distribution.

p(@[8) =W(a]ag ) p(8) = W(Blap. By) (o

Furthermore, we can also place restrictions on the type of variabil-
ity we want the model to capture. If, for example, subjects are scanned
multiple times but always under the same conditions, then it may well
be appropriate to generate a consensus set of interactions for that sub-
ject by pooling over runs. We can do this straightforwardly by setting
al” = q¥, Alternatively, if the runs vary across the group in a consis-
tent way (e.g. ’before’ and ’after’ scans) then we may want to explicitly
model these conditions as separate entities. We can do this by introduc-
ing a family of group-level interactions, { ﬂ(’)}il, and selectively using
these as the hyperpriors on a®” as appropriate. This gives us enormous
flexibility and allows us to increase our statistical power by making tar-
geted assumptions about the key modes of variation.

2.3.4. Time course specific noise model

The noise time course of mode m at time t, £

mt
a Gaussian distribution with precision wE,’fr). This gives
s ! -
p(En7 @) = N (E,7]0. 07 an
Each »®" takes a gamma hyperprior:

p(0f”) = T(f”|ay, b,) (12)

is simply drawn from

2.4. Amplitude model

Again, the amplitude model is an extension to our previous work.
This has a straightforward formulation, with these parameters simply
designed to account for the run-to-run variations in the overall activity
of each mode. These are parameterised in terms of H"" = diag(h“"),
and follow a Gaussian distribution:

p(hS” | Zp) = N (S |1 i) (13)

The group-level parameters, u;, and X, capture any consistent
cross-subject relationships between the mode amplitudes. For example,
Bijsterbosch et al. (2017) recently reported that the amplitudes of sen-
sorimotor modes are correlated with one another, as are the amplitudes
of cognitive networks. It is exactly these types of effects that these hy-
perpriors are able to capture.

The hyperpriors are formulated as follows:

M
p(ua) = [T N (w72, (14)
m=1

P(Zn) = W(Z;"|an. By) (15)

Furthermore, we impose a post-hoc positivity constraint on these
variables as part of the inference procedure. As there is a multiplicative
ambiguity as to the signs of the components in a matrix factorisation
model, we can do this without loss of generality.
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2.5. Noise model
The final part of the model left to specify is the noise process, €57,

which we assume is zero-mean, white Gaussian noise, with an overall
precision for each run, w*". This specifies the likelihood:

P(ED) = MN (07

0, (W(Sr)rllv, IT)

(16)
— p(D(sr) _ P(S)H(SV)A(SV))
This noise precision then takes a standard gamma hyperprior:
p(w"”) =T (y""a,.b,) an

This relatively simple structure assumes that the noise variance is
the same in every voxel, which is particularly useful as it allows us to
exploit the properties of the matrix normal distribution, leading to very
computationally efficient inference (Stegle et al., 2011). We can prepro-
cess the data in such a way that this is a reasonable assumption to make,
and this is discussed in Appendix A.2.

What is perhaps more problematic is that this model does not ac-
knowledge the spatial smoothness of fMRI data, which means that the
noise is not truly independent over voxels. It would be possible to model
this, for example by inferring a full spatial covariance matrix for the
noise that acknowledged the dependencies between voxels that smooth-
ing introduces. Again, we decide that the benefits of this more com-
plex model are outweighed by the increased computational burden, and
again we discuss a way in which we can mitigate the effects of this model
misspecification via a relatively straightforward adjustment for the spa-
tial degrees of freedom introduced by Groves et al. (2011), as discussed
in Appendix A.4.

2.5.1. Spatially and temporally specific noise models

One of the key changes to the model as introduced here and its pre-
vious incarnation is the way we model noise on the spatial maps and
timecourses, as well as the overall noise described above. Interestingly,
these different sources of noise can be beneficial for matrix factorisation
models even in the absence of the fMRI-specific effects we postulated.

To demonstrate this, we use a simple, single-run version of our gener-
ative model, D = PA + ¢, and we assume the maps and timecourses are
full rank to simplify the derivations below. The ordinary-least-squares
single-regression estimator for the spatial maps, P[S,], given the ground-
truth timecourses is:

P =DA ' =P+eA”! (18)
If we instead run dual regression—using the Woodbury matrix iden-

tity for the key rearrangements—we find a different estimator for Pld,J:

Ay =P 'D=A+P'e

-1

Py, =DAy,
= (P+eA™) = (PA+e) A" P (T+6A7'P7) 'ea™! (19)
=(P+eA™")—eA™!
=P

What is surprising is that the dual regression estimator is closer to
the ground truth, even though the intermediate timecourses, A,,,, are
noisy. This unintuitive behaviour occurs because dual regression in-
volves two regressions on the same noise, and this has concrete impli-
cations for the PFM model. When we fit the hemodynamic model to
the timecourses, we exclude the temporally specific noise terms from
the estimation of the functional coupling between modes. However, we
need to include the temporal noise terms when using the timecourses to
estimate the subject-specific spatial maps, as removing it could increase
the variance of the inferred maps. The situation is directly analagous
with the model for spatial noise: while it is not a quantity of interest for
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cross-subject modelling, its inclusion can improve the stability of the
overall estimation.

In sum, the PROFUMO approach uses the spatially and temporally
specific noise where the stabilising effect on matrix factorisation models
means that it is expedient to do so, but seeks to avoid letting it confound
cross-subject analyses. By way of contrast, dual regression is not natu-
rally able to separate these types of noise.

2.6. Inference approach

We use a computationally efficient variational Bayesian approach
to infer upon the probabilistic model outlined above. This technique is
well established for graphical models that have a conjugate-exponential
structure, as is the mean-field approximation that renders the infer-
ence tractable (Attias, 2000; Blei et al., 2017; MacKay, 2003; Winn and
Bishop, 2005); as such, we will not cover the details of that here. In the
Appendices, we outline several of the implementation details, includ-
ing our data preprocessing pipeline, the way we handle large data sets,
tweaks to the model and the initialisation procedure.

The combined inference and analysis package, PROFUMO
(from PRObabilistic FUnctional MOdes) is available from
git.fmrib.ox.ac.uk/samh/profumo and is compatible with FSL

(Jenkinson et al., 2012). All subsequent analyses were performed
with version 0.11.1.

The model clearly has a large number of hyperparameters, but as
described in the Supplementary Material we can drastically reduce the
effective number given that the overall variance of the data is fixed by
the internal preprocessing. Furthermore, the vast majority of the param-
eters that need setting govern the group-level hyperpriors and, as such,
are several steps removed from the subject-level decompositions. This
means that we can use the same default hyperpriors for all the analyses
presented here, and that the inference generalises well across simulated,
volumetric, and surface-based data, as well as datasets with very differ-
ent numbers of subjects.

2.7. Model summary

In summary, we explicitly model many of the properties of rfMRI
data within the PROFUMO framework. In the spatial domain, we have a
complex group-level model that captures both mean effects and typical
patterns of variability, and use these to regularise the subject-specific
spatial maps. The temporal model is based around the physiological
properties of the BOLD signal, and includes another hierarchical model
for the functional coupling between modes. Similarly, we capture dif-
ferences in the overall activity levels of modes via the amplitude pa-
rameters. Finally, we can generate additional summaries by combining
parameters as desired, which includes, for example, the measures re-
lated to the fractional amplitudes of the BOLD signal.

3. Results

Here, we demonstrate the performance of PROFUMO using a set of
simulated data and two empirical datasets. All comparisons are with
spatial independent component analysis and dual regression (ICA-DR)
(Beckmann et al., 2005; Calhoun et al., 2001; Nickerson et al., 2017; Zuo
et al., 2010Db), as this is what has been used in previous publications on
the empirical data.

3.1. Simulations

The simulation framework is explicitly designed to be challenging,
such that it tests the various ways in which the assumptions the dif-
ferent models make are most likely to be violated. This includes spa-
tial and temporal correlations between components; spatial variability,
including a model for misalignments; amplitude variability across sub-
jects and components; a (weakly) nonlinear HRF that varies over both
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Fig. 1. Performance of different algorithms on simulated data.
For each metric, optimal performance is shown by the hori-
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subjects and space; and spatial and temporal smoothness in the resid-
uals. This extends previously published analyses (Bijsterbosch et al.,
2019; Harrison et al., 2015), and all simulation code is available from
git.fmrib.ox.ac.uk/samh/PFM_Simulations.

Specifically, we simulate data containing 15 components in a group
of 40 subjects, each with two runs containing 10,000 voxels and 500
timepoints at a TR of 2.0s. A more detailed overview of the data
generation procedure is provided in Appendix A.6. We then test how
well PROFUMO and ICA-DR can recover the ground-truth parame-
ters, pooling results across 10 different simulated datasets. Finally, to
give more detailed insights into the performance of ICA-DR we in-
clude several intermediate steps: firstly, to separate the performance
of ICA and dual regression, we include a dual regression analysis start-
ing from the group-level ground-truth spatial maps (GTg-DR); secondly,
we include the thresholded variant of dual regression proposed by
Bijsterbosch et al. (2019) which is designed to reduce the observed bias
in functional coupling (ICA-DRt, GTg-DRt).

Four key performance metrics are shown in Fig. 1, and a much more
detailed set of comparisons is included in the Supplementary Material.
PROFUMO is able to accurately recover spatial maps, amplitudes and
functional coupling network matrices (netmats), and much more so than
either ICA-DR or the improved thresholded variant (ICA-DRt).

Crucially, the inferred PFMs are also unbiased in the presence of
spatio-temporal correlations between components, unlike ICA-DR. What
Bijsterbosch et al. (2019) demonstrated was that inaccurate estimation
of the group-level spatial correlation structure—an inevitable conse-
quence of the orthogonality constraints of ICA—leads to biased esti-
mates of functional coupling. What we show here is a stronger result:
this effect is present even when starting from the correct group-level
spatial maps (GTg-DR). In this case, the effect is driven by the mismatch
between the true subject-level spatial correlations and those between

interactions (cross-subject)

the group-level maps. In other words, this bias will be present for all
dual regression analyses, however the group-level maps are generated.

Furthermore, in the Supplementary Material, we repeat the simula-
tions but with the addition of structured noise, including subject-specific
artefacts that can be either spatially specific or global. While the differ-
ences between methods are less pronounced, there are still clear ben-
efits to using PROFUMO. However, performance does suffer, and, as
such, we strongly recommend ICA-based artefact removal before run-
ning PROFUMO, as is the case for the two empirical datasets presented
here.

3.2. Human connectome project data

To evaluate the ability of PROFUMO to detect subtle subject-specific
variations in functional connectivity, we use data from the Human Con-
nectome Project (HCP) (Van Essen et al., 2013; 2012b). This is for two
main reasons. Firstly, the most recent data release includes high-quality
functional data from over 1000 subjects and, as such, is an ideal test for
methods that purport to be suitable for population-level studies as men-
tioned in the Introduction. Secondly, the functional pipeline has been
published (Smith et al., 2013a) and the results are available to down-
load—thereby offering a comparison that is independently verifiable.
The pipeline uses spatial ICA and dual regression to characterise subject
variability in both spatial and temporal features. While it would also be
possible to examine the equivalent pipeline based on temporal ICA, this
has not been used so extensively: for example, the HCP’s MegaTrawl
analyses are based on the spatial ICA pipeline!!. Similarly, this pipeline
does not make use of the new thresholded variant of dual regression.

11 https://db.humanconnectome.org/megatrawl/index.html.
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Based on the simulated data, this would improve the results slightly,
though PROFUMO still outperforms this variant on essentially all of the
metrics we tested. Again, the aim is to use the existing, publicly avail-
able results as a baseline.

A key aim of modern, large-scale studies of functional connectivity
is to relate neurobiological changes to individual differences in genetic,
lifestyle and behavioural factors. Using the HCP data also allows us to
do this by comparing our results with a wide range of information about
subjects. The data involves a battery of cognitive tests, and also records a
range of metrics based on health and lifestyle: we will refer to differences
in these as subject variability in behavioural measures. We can indirectly
assess the effects of genetics and environement by calculating the heri-
tability of key imaging metrics; we do this by utilising the fact that many
twins and siblings were involved in the study. Finally, we can examine
subject variability in structural measures by relating functional measures to
the thicknesses, areas and volumes of key cortical and subcortical struc-
tures as derived from the structural MRI scans (Glasser et al., 2013). In
this way, we can quantify to what extent different methods are able to
capture key aspects of functional variability, and if there are meaningful
relationships with other measures.

A more detailed overview of the data, and the tests we carry out
here, can be found in Appendix A.7.

3.2.1. Analyses

Both PROFUMO and spatial ICA were run at a dimensionality of 50,
at which point the modes were reordered for visualisation and noise
components—or, in the case of PROFUMO, modes eliminated by the
Bayesian model complexity penalties—were removed. Even on the ex-
tensive and high-quality HCP data, PROFUMO does not identify more
than 50 PFMs: when run at higher dimensionalities, more PFMs are sim-
ply eliminated from the model. We discuss why PROFUMO is likely to
be conservative in this regard in more detail later.

For the full HCP data, PROFUMO therefore infers the posterior over
approximately 25,000,000,000 parameters (1000 subjects, 100,000
grayordinates, 50 modes, 5 parameters per grayordinate). In terms
of computational requirements, this analysis took approximately 110
hours using 18 cores on a single compute node, and memory usage
peaked at 350GB.

Finally, note that subsequent figures display spatial maps on the cor-
tical surface for simplicity and concision. However, all grayordinates

Neurolmage 222 (2020) 117226

Fig. 2. Group-level spatial maps for four example PFMs, as in-
ferred from the HCP data. The PFMs are (a) the default mode
network (DMN) (Buckner et al., 2008; Greicius et al., 2003;
Raichle et al., 2001; Shulman et al., 1997); (b) a mode de-
scribed as a variant of the DMN by Braga and Buckner (2017);
(c) a mode with strong spatial anticorrelations with the DMN;
and (d) the mode containing functional activity within POS2
(Glasser and Van Essen, 2011).

(comprising approximately 60,000 cortical vertices and 30,000 subcor-
tical voxels (Glasser et al., 2013)) were used in all analyses.

3.2.2. Overview of the PFM spatial model

To begin with, in Figs. 2 and 3 we show examples of the group-
and subject-level spatial maps for four PFMs in order to demonstrate
the richness of information contained within the PFM model. We do
this to emphasise that PROFUMO is able to identify PFMs with strong
spatial relationships with one another (in terms of overlap and anti-
correlations), while at the same time being able to identify complex,
subject-specific reorganisations of the group templates.

The most striking feature of the subject maps in Fig. 3 is simply
how much variability relative to the group maps there is. These results
are from data already aligned using surface-based registration driven
by functional features, which arguably represent the current ’gold-
standard; for warp-based registrations (Coalson et al., 2018; Glasser
et al., 2016b). Despite this, and as we and several others have demon-
strated, there are pronounced differences between subjects, with both
shifts in the relative location of functional regions over surprisingly large
distances, and complex, non-homotopic splittings and reorganisations of
the regions themselves. Furthermore, as highlighted in the figure, even
though the PFM itself is large, there are several subject-specific features
that are too small to be accurately represented at the typical spatial scale
of parcellations applied to fMRI.

However, while the descriptions of modes in terms of the mean
group- or subject-level spatial maps are familiar, a key advantage of
the PFM framework is the more detailed group-level parameterisation.
In other words, we can go beyond simply noting the degree of subject
variability: we can now quantify it in detail on a per-mode level. In
Fig. 4 we again take the default mode network [Figs. 2 and 3] as an
example and plot the four key group-level spatial parameters: the prob-
ability that a given voxel belongs to the DMN, the mean and variability
over subjects of the signal component of the DMN’s voxelwise weights,
and the standard deviation of the spatial noise component. The informa-
tion encoded by the mean weights is familiar, but the other parameters
add novel and complementary information.

For example, the memberships [Panel (b)] demonstrate that default
mode activity is distributed over a surprisingly large area, with con-
sistently detected activity across much of the lateral prefrontal cortex.
This is an effect that has been captured by several recent, high-powered
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single-subject analyses (Gonzalez-Castillo et al., 2012; Huth et al., 2016;
Laumann et al., 2015; Poldrack et al., 2015). However, while the activ-
ity is widespread, it is also distinct: the areas of high and low proba-
bility are sharply delineated. Similarly, the standard deviations [Panel
(c)] add extra information by telling us about variability in the size of
the weights—that is, in the strength of the detected activity—and we
can see that, in this instance, the activity in the inferior parietal lob-
ule is much more variable in strength across subjects than that in the
precuneus.

This detailed characterisation of non-homogeneous variability across
the cortex is a key advantage of the more complex group-level model
we have adopted, and we expand upon this in Fig. 5. This summarises
the membership probabilities and weight standard deviations across
all modes. There is a clear pattern whereby association cortex con-
tains more overlapping modes than sensory cortices [Panel (a)], and
that the spatial weights are also more variable in association cor-

® 999

o
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Fig. 3. Subject-level equivalents of the default mode network
shown in Panel (a) of Fig. 2.

Fig. 4. Example of the key group-level spatial parameters for
the PFM representing the default mode network [Panel (a) of
Fig. 2 and Fig. 3], as inferred from the HCP data. The parame-
ters are the (a) posterior means of the signal component, y,,,,;
(b) posterior memberships, =,,,; (¢) posterior standard devi-
ations of the signal component, o,,; (d) posterior standard
deviations of the noise component, ¢,.

Z

tex [Panel (b)]—note how this is in agreement with the results of
Mueller et al. (2013). Finally, the uncertainty in the memberships them-
selves [Panel (c)] tells us about shifts in locations between subjects. For
example, note the very clear area of variability in medial frontal cortex
between SMA and pre-SMA (Johansen-Berg et al., 2004). This metric is
presumably particularly sensitive to this region because variability here
tends to manifest itself as relatively simple anterior-posterior shifts of
the SMA/pre-SMA boundary, whereas more complicated 2D rearrange-
ments of overlapping PFMs are present elsewhere.

In summary, the PFM spatial model captures familiar group-level
modes, and exhibits many of the complex subject-specific rearrange-
ments already described in the literature. However, the key advantage
is the way in which we have parameterised this model. Crucially, the
richness of the group description allows us to make specific claims about
the patterns of variability across the population that are ordinarily hard
to tease apart.
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Fig. 5. Summaries of the group-level spatial parameters encoding different aspects of variability across subjects. The panels are (a) mode overlap; (b) variability
in mode strength; (¢) variability in mode memberships. Mode overlap is defined as the posterior memberships averaged across all modes, ﬁ D vm Tom- Variability in

mode strength is captured by the weighted average of the posterior standard deviations, (Y, 7,uGum)/( Xy 7o )- Finally, variability in mode memberships is given

by the average entropy, in bits, of the membership distributions, ﬁ Yvm H(mpm)-
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3.2.3. Comparison with spatial ICA

To begin with, we examine the performance of the different mod-
els in terms of their inference of the group-level spatial descriptions. In
Fig. 6 we plot the similarity between these group-level descriptions.

There are several key points to note. Firstly, there are strong spatial
correlations between the PFM maps, especially within the different cate-
gories. By way of contrast, the independence assumptions in spatial ICA
preclude this. Secondly, PROFUMO is relatively conservative: it only
infers 36 signal modes compared to the 48 found by ICA, and the differ-
ence is particularly pronounced in the subcortical regions. This subcorti-
cal difference is predominantly driven by the different signal properties
of the HCP data between cortical and subcortical grayordinates, and the
different data normalisation strategies the two algorithms use. The result
is that ICA tends to find subcortical regions appearing in components
without much cortical involvement, whereas PROFUMO tends to find
subcortical regions appearing in components with cortical involvement.
Finally, despite the above differences, there is fundamentally a strong
relationship between the two sets of maps. Most cortical modes appear
in both decompositions, and often look fairly similar; this is encourag-
ing, as we do not expect a radically different patterns of functional con-
nectivity at the group level given how many published methods have
converged on similar descriptions.

Fig. 6. Spatial similarity between the sets of group-level spa-
tial maps as inferred by PROFUMO and ICA. Modes were split

0.8 into five categories and reordered: visual (Vis); motor (Mot);
auditory (Aud); cognitive (Cog); and subcortical (Sub). This
ordering is used for all subsequent sections.
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3.2.4. Properties of subject variability in spatial organisation

Given that the group-level descriptions are fairly similar between
PFMs and sICA, the obvious question are to what extent does the extra
group-level information in the PFM model regularise the subject-specific
decompositions, and in what ways do the subject-specific maps diverge
from the group-level representations? We deal with the former first, and
in Fig. 7 we look at that the consistency of the subject maps as inferred
by PROFUMO and the ICA-DR pipeline. As expected given the regular-
isation from the more complex group-level priors, the PFM maps are
much more consistent across subjects.

However, this increase in consistency could also be explained if the
subject-specific PFM spatial maps were simply pushed closer to the
group maps by the priors, thereby being less faithful to the ’true’ pat-
terns of functional connectivity at the subject level. While this does not
appear to be the case for the exemplar subject maps, what we really
want to quantify is whether they are capturing ’interesting’ aspects of
subject variability in spatial organisation. In other words, are the differ-
ences between the approaches meaningful, and do they make different
predictions about the subjects themselves?

To investigate this, we use the fact that the HCP includes data from
twins and siblings to investigate the influence of genetics and environ-
ment. We estimate the voxelwise broad-sense heritability of the subject-
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specific spatial maps we observe: in each voxel and each subject, we
extract the vector of PFM or ICA map weights, and look to see if these
weight vectors are more consistent in monozygotic than dizygotic twins
(see Appendix A.7 for full methodological details). The results of this
analysis are shown in Fig. 8.

The results show a clear increase in heritability for the PFM spa-
tial maps, suggesting that they are more sensitive to subject variability
that we can attribute to genetic factors. Furthermore, this is not simply
attributable to a reduction in noise or as the result of the priors push-
ing the subject maps closer to the group. While the PFM maps are more
consistent across subjects than ICA-DR [Fig. 7], the heritability relates to
the difference in consistency between monozygotic and dizygotic twins
and, as such, a global increase in consistency is not enough to explain
the increased heritability.

We can also gain further insights into this observation by utilising
the HCP’s retest data. 46 subjects underwent the full HCP imaging and
behavioural testing protocol twice, of which there is full rfMRI data
from 42. This allows us to examine how the algorithms perform on the
hitherto unseen retest scans. The group-level representations from the
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Fig. 7. Similarity between the subject-specific spatial maps,
for both PFMs and ICA-DR, as inferred from the HCP data. For
each voxel and in every pair of subjects, we compute the Pear-
son correlation coefficient between the two M-dimensional
vectors of mode weights. The maps shown here are the cor-
relation coefficients averaged over every pair of subjects.

Fig. 8. Analyses of the heritability of the subject-
specific mode maps, for both PFMs and ICA-DR, as in-
ferred from the HCP data. In (a) and (b) we display the
voxelwise estimates of broad-sense heritability (H,f),
and in (c) we compare the two as a scatter plot.

H2: ICA-DR

full data (i.e. the ICA spatial maps, and the group-level PFM posteriors)
were used to derive new subject maps from the independently acquired
retest data.

In Fig. 9 we compare subject-specific realisations of the language
mode as derived by PROFUMO and the ICA-DR pipeline. This particular
mode was chosen because a characteristic split in area 55b in some sub-
jects was reported and examined in some detail by Glasser et al. (2016a).
In terms of a comparison between PROFUMO and ICA-DR, both are
clearly sensitive to the same gross re-organisations that occur. For exam-
ple, both can detect the rearrangement of area 55b in the original and
retest data for the subject shown here. However, the most marked differ-
ence is in the noise-level and appearance of anticorrelations. Relative to
ICA-DR, the PFMs show much reduced background noise in regions not
associated with the networks, and do not exhibit anticorrelations (indi-
cated by negative weights, shown in blue) tightly interposed between
positive weights. This is presumably a simple consequence of dual re-
gression’s inability to separate signal from noise, as we discussed in the
section on noise modelling. By way of contrast, the information encoded
by the group-level parameters in the PFM model suppresses the back-



S.J. Harrison, J.D. Bijsterbosch and A.R. Segerdahl et al.

Neurolmage 222 (2020) 117226

Group 149337 Retest Fig. 9. Example spatial maps fo.r the language mode,
for both PFMs and ICA-DR, as inferred from the full
HCP data and the HCP retest data for subject 149337.
Only the left lateral surface is shown.
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ground noise in regions that are not part of the language network, but
in a way that does not preclude inferring complicated rearrangements
of functional regions.

To assess the reliability of the different decompositions on the retest
data more quantitatively, we assess the specificity of the inferred spa-
tial maps as ’fingerprints’ that uniquely identify different subjects (Finn
et al., 2015; Horien et al., 2019). This is shown in Fig. 10.

Firstly, we compute the spatial similarity between the new subject-
specific spatial maps from the retest data, and the original set from the
full data, for every pair of subjects. We pool these retest results over all
modes and subjects, and this is shown in Panel (a). Again, the subject-
specific PFM maps are much more consistent across the two acquisitions.

Secondly, we assess whether this leads to more specific fingerprints.
In Panel (b) we show that the fingerprint specificity (i.e. the amount
by which the two sets of maps from the same subject are more similar
than paired maps from different subjects) is also higher for the PFMs.
In other words, not only are the maps generally more consistent across
subjects, but there is an increase in subject specificity above and beyond
this effect.

Retest subject

In summary, the comparisons with ICA-DR have demonstrated that
while the group-level descriptions are similar, the more complex hier-
archical modelling in PROFUMO allows us to infer spatial maps that
are more consistent—on both the original data and the held-out retest
data—as well as being more specific and capturing more informative
aspects of cross-subject variability.

3.2.5. Overview of the PFM temporal model

Here, we briefly give a summary of the key temporal param-
eters—that is, the amplitudes and the functional coupling between
modes—as inferred by PROFUMO on the HCP data. Note again that
these are new parameters: in other words, it was only possible to in-
vestigate these in a post-hoc fashion based on the previous PFM model.
Firstly, in Fig. 11 we plot the cross-subject correlations between the
mode amplitudes, as captured by the X, parameter. Encouragingly, we
see a clear replication of the results of Bijsterbosch et al. (2017), who
reported strong correlations between the amplitudes of sensorimotor
modes, as well as between cognitive modes, but relatively weak cor-
relations across the two categories. However, the crucial difference be-
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Fig. 11. Cross-subject relationships between the am-
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Fig. 12. Group- and subject-level functional coupling between the PFMs, as inferred from the HCP data. For visualisation purposes, we display the posterior
parameters f (group-level) and a® (subject-level) as partial correlation coefficients. As in Figs. 3 and 9, subject 149337 is chosen as the exemplar.

tween this result and the original observation is that this behaviour was
initially demonstrated from a purely post-hoc analysis of the ICA-DR
results, whereas it is explicitly parameterised and inferred within the
PFMs model. What this means is that this knowledge of the systematic
relationship between mode amplitudes is available during inference, and
it is therefore naturally incorporated as an extra factor regularising the
subject-specific decompositions.

Secondly, in Fig. 12 we plot the PFM functional coupling param-
eters, g and a® (these represent the group- and subject-level tempo-
ral network matrices respectively). What is striking is how weak the
functional coupling is between modes in the group-level network matrix
(netmat), especially given that we have an explicit hierarchical model
to allow for just these interactions. This is not trivial to explain away as
a spatial effect either: despite the fact that these interactions are more
similar to what we would expect from temporal ICA, the PFM spatial
maps are similar to those inferred by spatial ICA which typically infers
strong functional coupling between modes. We quantify the implications
of this different view on functional coupling from the PFM model in the
following section.

3.2.6. Multivariate relationships with behavioural variables

How then, are we to interpret the differences between the PFM and
ICA-DR approaches? Do they simply represent a different trade-off be-
tween sensitivity and specificity in the spatial and temporal domains,
or are they telling us something fundamentally different about brain
activity?

To probe this further, we performed a series of multivariate analyses
to investigate the different ways in which the two models encode cross-
subject information. Like in Smith et al. (2015), canonical correlation
analysis (CCA)—a multivariate analysis technique used to find the linear
relationships between sets of variables (Hotelling, 1936)—was used to
summarise the key correspondences (see Appendix A.7 for methodolog-
ical details). Furthermore, as some sets exhibit more than one strong lin-
ear relationship, we use the RV coefficient (Robert and Escoufier, 1976)

to give a principled summary of the multivariate information reported
by the CCA. In Fig. 13, we examine the full set of pairwise relationships
between the behavioural and structural variables from the HCP, and the
spatial maps, amplitudes and network matrices from both PROFUMO
and ICA-DR.

There are several key results we can glean from this analysis. Firstly,
the cross-subject information captured by the different aspects of the
PFM model is relatively distinct. Comparing the similarity between the
PFM measures with those for the ICA-DR variables (i.e. the on-diagonal
blocks), we can see that the scores are typically lower for the PFMs. In
other words, the temporal measures derived from the PFMs carry rela-
tively different information from the spatial measures about the subjects
themselves, at least compared to their ICA-DR equivalents.

Secondly, if we examine the relationships with the behavioural and
structural measures in the bar graph on the right, there are several strik-
ing differences between the methods. As we would expect from our ear-
lier analyses, the PFM spatial maps are the best predictors of structural
variables. They are also good predictors of the behavioural variables,
though slightly less so than the ICA-DR netmats. However, the stories
for the temporal information are very different. The PFM amplitudes,
fABT and netmats are relatively poor predictors of both behavioural and
structural variables, though, intriguingly, they are better predictors of
behaviour than structure. By way of contrast, the ICA-DR amplitudes
and netmats are better behavioural predictors, though surprisingly they
are also good predictors of structure (e.g. one can predict the sizes and
thicknesses of cortical areas better than behavioural measures from the
ICA-DR amplitudes).

Given the simulation results, the interpretation is relatively straight-
forward: the ICA-DR pipeline contains inherent biases that conflate spa-
tial and temporal information. Furthermore, even though we do not ex-
plicitly test it here, it is interesting to note that using the thresholded
version of dual regression to correct this bias also reduces the correlation
between temporal netmats and behaviour (Bijsterbosch et al., 2019). In
other words, and consistent with the results on simulated data, thresh-
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Fig. 13. Relationships between the cross-
subject information encoded by different anal-
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olded dual regression is an improvement on ICA-DR but is less accurate
than the full PROFUMO model. The question that remains however, is
what information, if any, is the PFM temporal model capturing if not
the trait-like behavioural variables examined here?

3.2.7. Summary

Given the full set of results presented on the HCP data, the impli-
cation is that the PFMs, by virtue of the improved spatial modelling
in particular, are better able to capture interesting information about
cross-subject variability in spatial organisation. However, this does not
address the relative lack of information encoded in the various temporal
measures that PFMs capture. We address this point using another data
set in the following section.

3.3. Active-state data

Given the way that subject variability in spatial and temporal fea-
tures simultaneously co-varies with a wide range of non-imaging derived
subject measures, it is very challenging to conclusively disambiguate
them from studies like the HCP. However, if we manipulate the func-
tional connectivity at the subject level, for example by changing the
cognitive state (Gratton et al., 2018; Kieliba et al., 2019; Krienen et al.,
2014; Salehi et al., 2020; Shirer et al., 2011; Vanderwal et al., 2017),
then we can begin to examine temporal differences in more detail. Cru-
cially, by looking at multiple conditions for the same subject we essen-
tially eliminate the influence of structural variability from the functional
data.

To do this, we use a dataset collected where subjects were scanned
when in different active states—these are induced by performing sim-
ple, continuous tasks in the scanner, of which rest (i.e. eyes-open fix-
ation) is just one (Duff et al., 2018; Kieliba et al., 2019; Sala-Llonch
et al., 2019). There are five runs for every subject, each collected un-
der different steady-state conditions: a standard resting-state acquisition
(Rest); a finger-tapping based motor task (Mot); a passive visual con-
dition (Vis); an independent combination of the visual stimulus and
motor task (V-M); and a condition where the specifics of the motor task
changed based on the visual stimulus (V+M). A more detailed descrip-
tions of the tasks and data itself can be found in Kieliba et al. (2019).
Furthermore, this dataset offers a validation of our method on data ac-
quired using a more conventional sequence and scan duration than the
HCP, with fewer subjects, shorter scan durations, and all analyses per-
formed on volumetric rather than surface-based data.

3.3.1. Analyses

As per the modelling assumptions, PROFUMO infers one consensus
spatial map per subject, but a separate set of time courses per run. We
choose to infer run-specific temporal precision matrices, ", with a
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consistent group-level hyperprior, 8, which is shared across all condi-
tions. Note that we could have chosen to use condition-specific group-
level priors, {ﬁ(’)}il, but this has the side-effect of invalidating the
assumptions behind any subject-level statistics where we compare be-
tween conditions. In short, it reduces the cross-subject, within-condition
variance which invalidates the typical null hypothesis we use. We leave
the problem of performing statistical inference on these types of models
for future investigations.

We infer 30 modes for both PROFUMO and ICA-DR, which again
seems to be close to the upper limit for PROFUMO on this relatively
small dataset. Again, artefactual modes were eliminated and those re-
maining were reordered for visualisation. In terms of computational re-
quirements, the PROFUMO analysis took approximately 12 hours using
15 cores on a single compute node, and memory usage peaked at 25GB.
Compared to the HCP analysis, the demands are higher than expected
given the number of subjects for two reasons: firstly, the volumetric
analysis contains over twice as many voxels as grayordinates; secondly,
we do not do within-subject data reduction for this analysis.

For the ICA-DR pipeline, we use MELODIC (Beckmann et al., 2005;
Beckmann and Smith, 2004) to infer a set of group maps, followed by
dual regression to generate the run-specific time courses.

3.3.2. Overview of the PFM model

In Fig. 14 we show the group-level properties of the default mode as
inferred from this data set. This is directly comparable with Fig. 4 and
simply demonstrates that we are able to infer similar summaries of the
mode itself, and heterogeneous variability, from fourteen subjects rather
than one thousand.

In Fig. 15, we demonstrate some of the properties of the inferred time
courses from the PFMs. This data is more challenging than the HCP in
that the runs are shorter, and the data has not benefited from resampling
onto the cortical surface. Nevertheless, the HRF-based prior constraint
results in a temporally smooth timecourse, which we are able to cleanly
separate from the high-frequency noise which contaminates them. Fur-
thermore, this is stable when we undo the temporal blurring that the
HRF induces, with straightforward estimation of the underlying 'neural’
process via whitening with respect to the autocorrelation induced by the
HRF.

Finally, in Fig. 16, we display examples of the network matrices to
illustrate the typical patterns of, and subject variability in, the functional
coupling between PFMs. Interestingly, in this data, PROFUMO infers
PFMs with much stronger functional coupling between them than at the
run level from the HCP data.

3.3.3. Comparison with ICA-DR

One would hope that the PFM model allows us to more accurately in-
fer the true functional coupling between modes. To begin with, we look
at the relationships between the condition-specific network matrices as
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Fig. 14. Example of the key group-level spatial parameters for the PFM representing the default mode network, as inferred from the active-state data. The parameters
are as per Fig. 4, along with the group map. The panels are the (a) group map; (b) posterior means, u,,; (c) posterior memberships, r,,,; (d) posterior standard
deviations, o,,,; (e) posterior noise standard deviations, ¢,.
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Fig. 15. Example PFM time courses, and observed frequency
content, from the active-state data. Panel (a): Example time
course for one mode in one run. ’Combined’ refers to the time
course which includes the noise terms (A®" = B“" 4+ g0,
’clean’ refers to the BOLD portion specifically (B®?), while
’decorrelated’ refers to the clean time course after correct-
ing for the temporal autocorrelation induced by the HRF

1

(B“"K ;*). Panels (b) & (c): Frequency content of the com-
bined and clean time courses respectively, pooled over all runs
and subjects. The magnitude of the DFT coefficients are calcu-
lated for each time course, and for visualisation purposes, we
fit a gamma distribution to the histogram of observed magni-
tudes for each frequency bin. The mode of this distribution is
plotted in red, and the grey region represents the 95% highest
density interval (Kruschke, 2014).
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Fig. 16. Example PFM network matrices, capturing the functional coupling between the mode timeseries. We display the group network matrix alongside the network
matrices from subject 25 in the rest, motor and visual conditions. As in Fig. 12, we display the posterior precision matrices (i.e. f for the group level and a®” at
the run level) as partial correlations. Modes were split into three categories and reordered for visualisation of the network matrices: visual (Vis); motor (Mot); and
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inferred by PROFUMO and ICA-DR. These are shown in Fig. 17. While
the PFM network matrices are less consistent between conditions and
subjects than their ICA-DR counterparts, there is some indication that
there is condition-specific modulation across subjects (as indicated by
the block diagonal). By way of contrast, the ICA-DR network matrices
are dominated by the subjects themselves (i.e. the multiple strong off-
diagonal lines in the ICA-DR plot), with no real indication of condition-
specific modulations.

In summary, ICA-DR computes netmats that are more similar within
subjects than they are within conditions across subjects. By way of con-
trast, PROFUMO infers netmats that are somewhat more similar within
conditions than within subjects. Again, this suggests that the different
models for subject variability in spatial organisation have a profound
influence on downstream estimates of functional connectivity.

Next, we test whether the different conditions induce focal changes
to the between-mode patterns of functional connectivity. The results
of a statistical analysis that looks for modulations at the level of in-
dividual network matrix edges are shown in Fig. 18. Both the PFM
and ICA-DR pipelines detect changes in the coupling of visual regions
induced by the visual stimulus, and it appears they both have simi-
lar sensitivity to the changes in coupling induced by the changes in
cognitive state. There are some differences between the methods: for
example, the visual changes detected by PROFUMO are more consis-
tent across the three conditions with visual stimuli than for ICA-DR.
Similarly, the types of changes for the combined visuo-motor condi-
tion are somewhat different, with ICA-DR finding changes in ampli-
tude predominantly, whereas there are more changes in coupling for
PROFUMO.

However, the results are fundamentally fairly similar and the num-
bers of edges that exhibit significant changes is relatively low—and,
perhaps, lower than we might expect given the strong manipulations

Fig. 17. Correlations between the network matrices,
0.8 for both PFMs and ICA-DR, as inferred from the active-
state data. The network matrices are grouped by condi-
tion, and the subjects have a consistent ordering within
each block. Correlation is the Pearson correlation co-
efficient between the unwrapped upper-triangle of the
network matrices.
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of cognitive state!>—suggesting that the statistical power might be the
limiting factor here, especially given that there are only 14 subjects in-
cluded in this analysis. Finally therefore, we do one further set of tests
to probe whether the multivariate information in the network matrices
and amplitudes captures condition-specific information. Repeating the
analysis of Sala-Llonch et al. (2019), we investigate whether a support
vector machine (SVM) can be trained to distinguish between network
matrices from different conditions. The accuracy of the SVM classifica-
tion is tested using a leave-one-subject-out cross-validation framework
(Varoquaux et al., 2017), of which we provide more methodological de-
tails in Appendix A.8.

As well as comparing PROFUMO and ICA-DR in this way, we ad-
ditionally examine the effect that the hemodynamic model has on the
temporal information that we infer. In other words, can the changes
to estimates of functional connectivity be attributed to the advanced
spatial modelling alone, or does the regularisation in the time domain
improve our estimates too? As well as the explicitly inferred PFM net-
work matrices, we do a post-hoc estimation of the temporal network
matrices based on both the BOLD time courses and the combined time
courses (i.e. A®?, which includes both the BOLD and noise time courses)
to assess what, if any, effect the modelling hierarchy has.

The results from the SVM analysis are presented in Fig. 19. The SVM
achieves a significantly better classification accuracy when trained on
the PFM netmats, as opposed to those estimated by ICA-DR. Again, this
suggests that by correcting for subject variability in spatial organisation
the PFM framework allows us to estimate state-induced changes in func-

12 Note also that Fig. 2 from Sala-Llonch et al. (2019) uses FDR with g = 0.2
for the background, whereas the tests here use a more stringent FWE p < .05 test
for significance.
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Fig. 18. Changes in between-mode functional connectivity as induced by different active states relative to the rest condition. The raw difference between the group
mean network matrix during the active condition and during rest is shown above the diagonal, and any significant changes (p<0.05) are highlighted by blue or red
squares, for increases and decreases in coupling respectively, below the diagonal. Changes in amplitudes are shown on the diagonal. All tests were family-wise error
corrected and computed using the accelerated permutation inference in PALM (Winkler et al., 2016; 2014). The black dots denote elements that were significant
under an f-test over all contrasts. As per Fig. 16, modes were split into three categories and reordered for visualisation of the network matrices: visual (Vis); motor

(Mot); and cognitive (Cog).

tional coupling with greater fidelity. By way of contrast, the conflation
of spatial and temporal information by ICA-DR masks these more sub-
tle state-related changes in functional coupling. Finally, there appears
to be a distinct performance improvement when using the inferred PFM
network matrices, suggesting that the hierarchical temporal modelling is
advantageous and that we are not discarding relevant information by fo-
cusing on the predominantly low-frequency HRF-derived time courses.

4. Discussion

In summary, the results presented above demonstrate three key at-
tributes of PROFUMO. Firstly, the algorithm is applicable to modern,
large-scale data, whereby it is exquisitely sensitive to cross-subject vari-
ability in spatial organisation. Secondly, the joint inference framework
allows estimation of subject variability in temporal features that does
not appear to be confounded by spatial differences, which at times leads
to a radically different view of functional connectivity. Finally, the im-
plication of these results is that after accounting for spatial variability,
the functional coupling between modes is much more reflective of cur-
rent cognitive state rather than trait-like qualities.

Furthermore, we have shown that there is significant value added in
terms of interpretability from the practitioner’s point of view in using
models of this form. To give a few concrete examples, we can only make
the claims pertaining to the dissociation of non-homogeneous spatial
variability—as illustrated in Fig. 5—if we can both consistently identify
equivalent functional systems across multiple subjects and model the
different ways in which variability can arise. Similary, the ability to
capture cross-subject amplitude effects (Fig. 11) or use the model to
define alternatives to, for example, fALFF-type measures (Fig. 13) means
that many of what would have been post-hoc analyses can be simplified
and made more interpretable.

4.1. Group- versus subject-level approaches

The comparisons in this paper have been with ICA-DR, as this
is probably the most common method for finding functional modes
from resting-state data and is a key part of the HCP’s pipelines. How-

ever, while PROFUMO and ICA-DR try and infer on many of the same
quantities, they make fundamentally—and not necessarily compati-
ble—assumptions about the data itself.

The key difference between the two is the way PROFUMO entails
a holistic model for group- and subject-level representations, whereas
ICA-DR assumes they are separately estimable. The majority of group-
level ICA methods assume all subjects are in a common space, and pro-
ceed to analyse the data without recourse to individual decompositions.
This formulation gives much more flexibility for the group-level decom-
position to utilise the extra statistical power that concatenating over sub-
jects affords, which means that the ICA modes depart—at times fairly
radically—away from what we can resolve at the subject level. As such,
ICA seems to be able to identify up to several hundred plausible compo-
nents, that ultimately begin to resemble a parcellation (Kiviniemi et al.,
2009; Smith et al., 2013b).

However, what we show here is that group-level representations are
not enough. In the simulated data, even if the ground truth is known at
the group-level, the subject-level information inferred by dual regression
will be biased and noisy.

What PROFUMO attempts to do is to model as many different facets
of multi-subject rfMRI data together as is plausible. Here, we expand on
two concrete implications of this approach as compared to other meth-
ods.

Firstly, the implication of the joint subject-level modelling in PRO-
FUMO is that for a mode to appear at the group-level it has to be resolv-
able in the majority of individual subjects. Therefore, this engenders a
fundamentally different view on what the dimensionality of the data is.
The Bayesian model complexity penalties seem to result in no more than
thirty or forty PFMs being identified, essentially regardless of the pre-
specified model dimensionality. While more subjects do offer increased
regularisation of the subject-level modes, this can only do so much. This
is why the inferred number of PFMs is on the same order as the number
of signal components as inferred by ICA-FIX (23.3 + 6.6 at the run-level
for HCP data (Marcus et al., 2013)).

Secondly, we have demonstrated the importance of modelling dif-
ferent characteristics of the data together. In the simulated data, even
if the ground truth is known and thresholded dual regression is used
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Fig. 19. Posterior classification rates for a multi-class SVM trained to distin-
guish between the different active-state conditions. The results on the left are
when the off-diagonal elements of the network matrices are fed in, and the re-
sults on the right are when the amplitudes are used as features. Posterior den-
sities are based on the number of correct and incorrect classifications out of
the full set of 70 tests (14 subjects; 5 conditions), combined with Haldane’s
uninformative beta prior (Haldane, 1932). The modes of the distributions are
shown by the black bars, and the chance level is shown by the dashed blue line.
The two p-values are calculated via McNemar’s test (mid-p variant) and Bonfer-
roni corrected (Fagerland et al., 2013). For the PFM netmats, the variants are:
PFMs: network matrices inferred as part of the PFM model, a“”. PFM (BT): net-
work matrices estimated as the partial correlations between the PFM BOLD time
courses B®". PFM (CT): network matrices estimated as the partial correlations
between the combined time courses A" = B¢ 4 g7,

to reduce the inherent spatiotemporal biases (Bijsterbosch et al., 2019),
PROFUMO is still more accurate than ICA-DR like approaches. Similarly,
in the classification of the active-state data, there are clear performance
benefits from modelling the netmats hierarchically, even after the spa-
tial variability has been accounted for. This is not to say that the PRO-
FUMO model is perfect, as it clearly contains many simplifying assump-
tions. However, it is at least an internally consistent framework within
which one can begin to explore the implications of different modelling
decisions.

4.2. Spatial representations

One of the key messages from this work, in line with other recent
reports (Braga and Buckner, 2017; Glasser et al., 2016a; Gordon et al.,
2016; 2017a; 2017b; Hacker et al., 2013; Harrison et al., 2015; Kong
et al., 2018; Laumann et al., 2015), is that complex rearrangements of
functional regions in individual subjects are ubiquitous and of a surpris-
ingly large spatial scale. Figs. 3 and 9 provide reasonable examples of
these effects. Even after the advanced multi-modal, surface-based regis-
tration employed by the HCP, one often observes spatial rearrangements
where subject-specific features are shifted relative to the group by many
millimetres.
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The difficulty we face when working at the group-level is that the
summary features we extract are not necessarily representative of those
at the subject-level; they are, and should always be thought of as, prob-
abilistic representations (Van Essen and Dierker, 2007). As discussed
in the previous section, we cannot automatically expect that it will be
straightforward to project group-level results back to meaningful charac-
terisations of functional connectivity at the subject level. Furthermore,
the characteristic size of misalignments probably represents a limit in
terms of the size of functional features we can project from the group
back to the subject-level; while the native resolution of the subject-level
data may well be higher, methods that work on the functional data alone
like ICA-DR or PROFUMO will always struggle in the absence of addi-
tional constraints if the misalignments are large enough to mean some
regions do not overlap with their group-level homologues at all.

In other words, misalignments are now often larger in scale than the
fundamental resolution limits imposed by the physics and physiology
that governs the properties of the data itself. Subject-level representa-
tions are limited by the properties of the data itself: 2mm isotropic vox-
els are now common, and the spatial characteristics of the HRF do not
appear to blur much beyond this (Shmuel et al., 2007); at the group-
level, the effective resolution of the data relates to the characteristic
size of these residual misalignments between subjects, and these are
likely to be larger. What this means is that functional MRI currently
occupies an interesting liminal space, where the spatial resolution of
high-powered single-subject analyses can now surpass that of studies
that employ multitudes of subjects. This probably explains the recent
resurgence of exploratory studies based on small numbers of subjects
(Braga and Buckner, 2017; Gonzalez-Castillo et al., 2012; Gordon et al.,
2017b; Huth et al., 2016; Laumann et al., 2015; Poldrack et al., 2015;
Raemaekers et al., 2014; Salehi et al., 2020). Fortunately, recent work
has suggested that there is scope to further reduce the size of the resid-
ual misalignments (Guntupalli et al., 2018), and use multi-modal data
to help identify regions at the subject-level (Glasser et al., 2016a), both
of which will be essential parts of the push towards finer spatial scales.

Finally, these observed spatial differences also have implications for
parcel-based analyses. Given the many fine-scale variations in the spa-
tial maps and the amount of overlap between PFMs, it may be that we
need multivariate analysis techniques that go beyond one summary time
course per parcel to capture the richness of the functional data at sub-
parcel spatial scales (Anzellotti and Coutanche, 2018; Geerligs et al.,
2016; Haak et al., 2018).

4.3. Interpreting spatiotemporal connectivity patterns

One of the striking differences between PROFUMO and ICA-DR is
their inferred patterns of functional coupling between regions. Not only
do these suggest fundamentally different group-level coupling strengths,
but the predictive power at the subject and run level is also different.
Whereas ICA-DR netmats primarily correlate with trait-like properties,
PROFUMO netmats are more sensitive to changes in cognitive state.
Here, we expand on these observations as a final discussion point.

Clearly, there is a complicated relationship linking spatial variabil-
ity and the functional coupling between modes, and indeed concerns
about the interpretability of functional connectivity in the presence of
anatomical variability are far from new (Brett et al., 2002). The effect
that subject variability in spatial organisation might have on its tem-
poral counterpart has been noted in simulation studies. For example,
Allen et al. (2012) observed a sharp decrease in the ability of a variant
of ICA-DR to detect subject-specific modes in the presence of subject
variability in spatial organisation, an effect which was compounded by
spatial overlap between modes'®. This links to functional coupling via
the work of Smith et al. (2011), who noted that if ROIs were misspeci-
fied such that the time courses contained a range of contributions from

13 Figures 4 and 5 in particular.
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the true underlying regions, then ’[t]he results are extremely bad’. It is
the latter result in particular which is particularly shocking: if we do not
extract accurate subject-level estimates of functional regions then it is
essentially impossible to characterise the functional coupling between
them.

Furthermore, a key claim of the related recent work on subject vari-
ability in functional connectivity by Bijsterbosch et al. (2018) is that
it is not possible to make meaningful claims about what drives cross-
subject changes in functional coupling between regions if said regions
are not properly delineated at the subject level. In other words, spa-
tial variabiality does not simply make it harder to estimate functional
coupling, it can also fundamentally bias our inferences. Again, the re-
sults here—particularly the simulations—extend these results, showing
that the way in which dual regression biases functional connectivity es-
timates away from the spatial correlation structure (Bijsterbosch et al.,
2019) is really an inherent property of mapping between group and sub-
ject levels in this way. While this bias can be reduced with the thresh-
olded variant of dual regression, the simulation results, and short theo-
retical analysis on the role of noise, suggest that the PFM model will be
much more performant than this variant.

What we show here with regards to the predictive power of the PRO-
FUMO netmats is that, in line with other work (Bijsterbosch et al., 2019;
2018; Pervaiz et al., 2020), they are relatively poor predictors of trait-
like quantities. Instead, we have shown that they are much more predic-
tive of current cognitive state. However, for analyses that try to use func-
tional coupling to make predictions about individual subjects (Abraham
et al., 2017; Dadi et al., 2019; Pervaiz et al., 2020), the ICA-DR netmats
are likely to produce more accurate predictions. In that case, one has to
contend with the fact that the induced biases reduce the interpretabil-
ity of the findings, which may or may not be desirable depending on
the specifics of the problem at hand (Stephan et al., 2015; 2017). Of
course, the presence of confounds that are themselves behaviourally
relevant—such as head motion (Couvy-Duchesne et al., 2014; Hodg-
son et al., 2017; Laumann et al., 2017; Power et al., 2012; Satterth-
waite et al., 2012; Van Dijk et al., 2012), physiological noise (Glasser
et al., 2018; Power et al., 2017) or brain volume (Bartley et al., 1997,
McDaniel, 2005; Qing and Gong, 2016)—makes this problem of inter-
pretability very challenging in practice for any method.

The results we have presented here suggest that the spatial infor-
mation encoded by PROFUMO is likely to give much better predictive
performance in this context. This is similar to other work which has
demonstrated increased performance of spatial features such as, for ex-
ample, task-based maps (Bijsterbosch et al., 2018) or parcel topogra-
phy (Kong et al., 2018), and, furthermore, that this has a close rela-
tionship with structural information (Llera et al., 2019). The obvious
questions are therefore why do spatial rearrangements of functional re-
gions seem to be so predictive in cross-subject analyses, and how do we
interpret them? One hypothesis is that this variability in spatial organi-
sation of functional regions is simply reflecting variability in the brain’s
macroscale structure, for which there are already well established links
between environmental, genetic and lifestyle factors (Douaud et al.,
2014; Elliott et al., 2018; Noble et al., 2015; Reiss et al., 1996; Shaw
et al., 2006; Stein et al., 2012).

However, it would be an enormous surprise if this reductionist read-
ing of these functional changes as simply reflecting structural variabil-
ity is the whole story, especially after the registration approaches used.
Rather, it is vitally important to understand both what mechanisms give
rise to these spatial changes, and, in particular, what unique information
does the functional variability carry over and above what can be derived
from other techniques and modalities.

5. Conclusions
All analyses of complex, multivariate functional data require us to

make simplifying assumptions, and, as such, the results we see are in-
evitably coloured by the modelling choices we make. This might involve,
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for example, deciding decide whether to run a parcel- or mode-based
analysis, or when choosing which specific method to use. As such, it is
essentially impossible to conclusively determine whether one method
more accurately characterises the general organisational principles or
subject variability from the functional data alone. However, we feel that
the above results demonstrate that PROFUMO and the PFMs model are
providing a novel and worthwhile perspective on the analysis and inter-
pretation of functional MRI data. We hope that this approach—by virtue
of having a model tailored to the properties of fMRI data, the enhanced
spatial sensitivity and specificity, and the way spatial variability is au-
tomatically accounted for when estimating functional coupling—proves
useful.
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Appendix A
Al. Alternative approaches

There are now several methods that characterise resting brain ac-
tivity in terms of functional modes, both at the group and subject level.
The standard pipeline is essentially a two-step process, where the group-
level modes are estimated before some form of back-projection is used
to extract subject-specific versions of these. Dual regression and related
variants thereof, typically combined or integrated with a group-level
spatial independent component analysis (ICA) (Beckmann et al., 2005;
Calhoun et al., 2001), have been the de facto standard for analyses of
the subject variability in spatial and, more recently, temporal features
of modes for at least the past decade. Dual regression proceeds by re-
gressing the group-level spatial maps into the data to get a set of time
courses—from which subject variability in temporal features may be es-
timated via any number of functional connectivity metrics—before re-
gressing the time courses back into the data to get subject-specific spatial
maps (Beckmann et al., 2009; Calhoun et al., 2001; Erhardt et al., 2011;
Nickerson et al., 2017; Zuo et al., 2010b).

This approach has been extended over the years, with several pro-
posed refinements to either the method for identifying group-level
modes (Allen et al., 2014; Damoiseaux et al., 2006; Dohmatob et al.,
2016; Hjelm et al., 2014; Karahanoglu and Van De Ville, 2015; Lee et al.,
2011; Smith et al., 2012; Varoquaux et al., 2010), or to the way subject-
specific information is extracted (Du and Fan, 2013; Hacker et al., 2013;
Zoller et al., 2019).

However, there have been several more extensive departures
from the above framework that are more similar in spirit to the
hierarchical PFMs model. For example, Abraham et al. (2013);
Varoquaux et al. (2011) proposed a more holistic model that finds a set
of systems regularised by not only the group-level properties, but also
by the consistency of both spatial and temporal information at the sub-
ject level. More recently, Li et al. (2017) introduced a model based on
non-negative matrix factorisation (NMF) that jointly optimises subject-
specific decompositions such that the spatial maps are both sparse and
consistent over subjects, though without explicitly leveraging any infor-
mation about temporal consistency.

As mentioned in the Introduction, these methods all have poten-
tial shortcomings in terms of the extent to which typical patterns of
variability are learnt from the multiple subject-specific decompositions.
These shortcomings are particularly apparent for dual regression type
approaches, where the estimation of subject variability is completely
post-hoc (and, moreover, the estimated subject variability in spatial or-
ganisation only indirectly informs the subject variability in temporal
features), but it is also problematic for the more complex models which
we have mentioned, for which no explicit parameterisation for the ob-
served variability over subjects is inferred.

More recent methodological work has focused on deriving subject-
specific parcellations, both based on a fixed group-level template (Chong
et al., 2017; Dhillon et al., 2014; Glasser et al., 2016a; Gordon et al.,
2017a; Salehi et al., 2017; Wang et al., 2015), and formulated as a hier-
archical model (Kong et al., 2018; Langs et al., 2016; Liu et al., 2012).
However, while both mode- and parcel-based approaches have shown
promise, our concern is that the subject variability in spatial organisa-
tion that has been reported often features reorganisations of a similar
scale to our current best estimates of the sizes of distinct functional re-
gions (Van Essen and Dierker, 2007; Van Essen et al., 2012a), and as
such, reliable identification at this scale is arguably beyond all but the
most sophisticated, multimodal approaches utilising high quality data
(Glasser et al., 2016a). Therefore, in this work, we stick to a system-level
description and base our method on a decomposition into a set of modes.
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Intuitively, a functional system is more protected from the deleterious
effects of misalignment than a functional region in two key ways: firstly,
functional systems have a greater spatial extent than parcels; secondly,
a reorganisation of one region within a larger system can be straightfor-
wardly corrected for if the other regions are relatively stable.

A2. Preprocessing

The aim of the preprocessing pipeline is to normalise the data such
that it has a consistent scale across subjects, and that the properties of
the unstructured noise follow the assumptions that are contained in the
generative model. The approach is as follows.

¢ Voxelwise normalisation. For each voxel independently, the time
course (i.e. D,(f’)) is set to zero mean and unit variance. This en-
sures that each voxel has a roughly equal contribution to the SVD in
the next step.

o Voxelwise normalisation of the noise subspace. Each voxel is indepen-
dently normalised such that the variance of the unstructured noise
is unity. This matches the assumption of isotropic noise in the gen-
erative model. The unstructured noise subspace is estimated via the
SVD. The whole data matrix is decomposed and the M components
with the highest singular values are assumed to represent the struc-
tured signal subspace and are removed. The noise subspace is recon-
structed from the remaining components, the variance is calculated
in each voxel, and the data is renormalised on a voxelwise basis such
that the variance becomes unity.

e Global normalisation of the signal subspace. There is one final de-
gree of freedom remaining. The generative model assumes isotropic
noise, but does not assume a fixed variance. Therefore we can
apply a global renormalisation to set the overall variance of the
modes we observe. As an approximation, if D = PH A and we as-
sume independence over modes, then we can say that E[Dit] =
>M  E[P? |E[h2] E[A2,]. In other words, if the maps, amplitudes
and time courses have unit variance then the signal variance will
be equal to M. Therefore we use another SVD decomposition and
set the overall variance of the assumed signal subspace (i.e. the first
M components) to match the above by applying exactly the same
normalisation to each voxel.

A3. Data reduction

The scale of modern rfMRI studies is now such that even manipu-
lating all the data in its raw form simultaneously is impossible. For ap-
proaches that start by inferring group-level descriptions of the data, such
as ICA, it is possible to use on-line algorithms that work by passing over
the data sequentially (Mensch et al., 2017; Smith et al., 2014), thereby
removing the dependence between memory required and the number
of subjects under study. However, our approach is explicitly designed
to simultaneously extract group- and subject-level features, and as such
we need the data from each subject to be available.

To facilitate analyses of large data-sets, we apply subject specific
data reductions, but do not collapse these down further to group-level
summaries. The approach we take is to approximate each run with a
low-rank singular value decomposition (SVD). As our model is defined
in terms of both spatial and temporal features, we have to retain both
the spatial and temporal singular vectors. However, as the PFM model
assumes that subject-specific spatial maps are conserved across all runs
for a given subject, we make further savings by only maintaining a single
set of spatial singular vectors per subject.

To do this, we calculate the SVD of the matrix formed by tempo-
rally concatenating all data from a given subject. This combined data
matrix, D € RV*R:T  is then represented by U, §©) and V. To ap-
proximate this with a low rank SVD, we simply only retain the singular
vectors associated with the top N singular values. For example, assum-
ing V> R,T and ignoring columns associated with singular values equal
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to zero, U € RV*RT isreplaced by 0¥ e RN, Finally, we can parti-
tion the temporal singular vectors, according to the order the individual
runs were concatenated, in order to reconstruct the data from each run
individually, or in other words, VY e RRIXN i decomposed into a set
of f/(m € R™N, In summary, each data matrix, D", has three approx-
imating matrices, namely 0¥ e RVN, § € RVXN and 1°” e RT*N,

The last thing we do is to combine these three matrices into two
matrices. This simply saves some computation each time we need to
calculate any expectations involving the data. The final form for the
approximate data is therefore

we = (0(”) (S,(s))%
X6n = (S(S))% (IA,(-W))T (20)
DO x WO x6n

We can simply substitute this approximate expression for D®? any
time we need access to the data in the inference procedure, and this has
the added bonus of being computationally, as well as space, efficient.
However, we explicitly calculate, and cache, the overall data variance
from the full data, rather than ignoring the contribution from the sub-
space of discarded singular values'*. This means that the estimate for
the noise precision, y*", will be comparable whether or not we choose
to utilise this low-rank approximation, or indeed across different values
of N.

We now have an explicit method for reducing large data-sets to a
more manageable size. However, there is one final complication: com-
putationally, calculating the SVD of every D® actually turns out to be
prohibitively expensive in most cases. In order to circumvent this, we
utilise the fact that we are explicitly looking for a low-rank approxi-
mation and implement an extremely efficient randomised algorithm to
directly calculate the truncated SVD. This approach is described in the
excellent review by Halko et al. (2011).

A4. Degrees of freedom correction

fMRI data has an inherent spatial smoothness—such that there are
non-trivial spatial autocorrelations in the noise processes—which is am-
plified by the spatial smoothing that is a standard pre-processing step
for most analyses. As discussed earlier, this is not acknowledged in our
specification of our model of the noise process. In essence, this means
that the model assumes that there are more independent spatial mea-
surements than actually exist.

Fortunately, as Groves et al. (2011) discuss, there is a simple way to
mitigate some of the effects of this within the Bayesian framework. In-
tuitively, if we have smoothed the data then we should be able to down-
sample it without loss of information. At some stage, this would result in
the noise becoming genuinely spatially independent again, thereby sat-
isfying the assumptions of the generative model. However, this presents
several practical problems, so rather than actually downsample the data,
we simply downweight the spatial information by a factor v. This rep-
resents the proportion of voxels that would be retained if we were to
optimally downsample. "This is analogous to fixing that only a random
fraction of the data points will be kept, but at each stage averaging over
all possible choices of decimated voxels’ (Groves et al., 2011).

While this approach still does not explicitly acknowledge the rela-
tionship between noise in nearby voxels, it does counter most of the
deleterious effects of this model misspecification, especially when com-
bined with the models for noise in the subject-specific spatial maps and
time courses. The main advantage of this approach, compared to a more
formal model for smoothness, is that it remains particularly computa-
tionally efficient.

14 More  explicitly, we use Tr((D“")TD®") rather  than

Tr(WOXC)TW® X)) whenever required.
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A5. Initialisation

With a model of this complexity, it is important that the algorithm
is appropriately initialised. By doing so, we can improve reliability and
computational stability whilst reducing the computational time required
for convergence. Our approach is to compute a consensus group-level set
of modes, and use these to initialise the full model.

To do this, we mimic the temporal concatenation approach em-
ployed by most existing algorithms and compute a consensus set of
spatial singular vectors (this can be done even more efficiently if we
have already utilised the data reduction technique described previously
(Calhoun et al., 2001)) using another randomised SVD algorithm that
streams over the data. These singular vectors are reweighted via an ad-
justed set of singular values. More specifically, we use the properties of
the Marchenko-Pastur distribution to find the noise level that ensures
the SNR at the group-level decomposition is similar to the SNR at the
subject level. We then run a Bayesian version of spatial ICA—with the
spatial priors set to mimic the group-level priors of the full model—to
generate the group-level modes. The SNR recalibration ensures we do
not get over-splitting of the modes at this stage. We can then propagate
this set of group-level modes through the rest of the algorithm, thereby
ensuring all parameters are initialised with plausible values.

A6. Simulations

The spatial model consists of two levels: parcels and modes. We sim-
ulate 100 spatially contiguous parcels within a one-dimensional space
comprising 10,000 voxels. We then apply a random diffeomorphic warp
to each subject separately as a model for residual misalignments after
registration. We then simulate a set of 15 modes consisting of blocks of
spatially adjacent parcels. There is variability in the mode weights over
subjects, and we introduce overlap such that, on average, each voxel is
a member of 1.4 modes.

In the temporal domain we simulate a set of sparse, correlated 'neu-
ral’ timecourses for each of the two runs per subject. There is variability
in the between-mode correlation structure at the run and subject level.
These are then convolved with a random draw from the FLOBS basis of
hemodynamic response functions (Woolrich et al., 2004), which intro-
duces variability over subjects and space. This results in 500 timepoints
at a TR of 2.0s.

The spatial maps and timecourses are combined via the outer prod-
uct model, and a nonlinear saturation is applied such that the highest
amplitude moments of instantaneous voxelwise activity are reduced. Fi-
nally, random noise is added with a degree of spatiotemporal smooth-
ness such that the overall SNR (expressed in terms of variance) is 0.1.
For the simulations presented in the Supplementary Material, we also
add some structured, subject-specific noise components, again using an
outer-product model. These can either be spatially specific or global, and
are designed to contribute a similar amount of variance per component
as the individual signal modes.

To allow inference algorithms to model the aforementioned arte-
facts, 18 modes are inferred. After inference, modes are paired to the
ground truth based on the similarity between both the spatial maps
and timecourses, averaged over runs and subjects. The full set of perfor-
mance metrics shown in the Supplementary Material is then calculated.

A7. Human connectome project data and analyses

For the HCP analyses, all data was from the 1200 Sub-
jects Data  Release: = humanconnectome.org/study/hcp-young-
adult/document/1200-subjects-data-release. We used the 1003
subjects for whom there was full behavioural, structural and
rfMRI data (i.e. 4 runs, each of 1200 volumes). All analyses
are of the MSMAIl and FIX cleaned data (i.e. rfMRI_REST1_
LR_Atlas_MSMA1ll_hp2000_clean.dtseries.nii Tr).
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ICA-DR results were taken from the Extensively Processed fMRI Data:
humanconnectome.org/study/hcp-young-adult/document/extensively-
processed-fmri-data-documentation. The amplitudes and netmats were
estimated from the time courses released by the HCP: the amplitudes
were taken as the standard deviations, while the netmats were the
partial correlation matrices. Tikhonov regularisation was used when
calculating the inverse of the full correlation matrices, with ' = 0.11.

Heritability was estimated via Falconer’s formula, Hb2 =2y, —raz)
(Falconer, 1960). We calculate the correlations, r,,,, and ry,, between
the voxelwise spatial map weights. In other words, for each subject and
each voxel we extract a length M vector of weights: P’ using the PFM
notation, and compute the correlation between these for every pair of
subjects.

For the CCA analyses, we used the full set of restricted informa-
tion released by the HCP. We first removed all variables relating to
study completion or quality control. The structural variables were
all the remaining variables in the FreeSurfer category; all others
were taken as behavioural. To preprocess the behavioural variables,
we first removed any variables that were either more than 20%
NaN, or those for which more than 95% of subjects had exactly
the same entries. We then imputed any missing values using the
Softimpute method (Mazumder et al., 2010) as implemented in the
fancyimpute Python package (github.com/iskandr/fancyimpute).
The following were regressed out as confounds (one-hot encoded where
necessary) in all subsequent analyses: Release, Acquisition,
fMRI_3T_ReconVrs, rfMRI_motion, Age, Gender,
Race, Ethnicity, Handedness, Height, Weight, BMI,
BPSystolic, BPDiastolic, Hematocrit_1, Hematocrit_2,
FS_IntraCranial_Vol, FS_BrainSeg_Vol. A detailed de-
scription of all variables can be found at wiki.humanconnectome.org/
display/PublicData/HCP + Data + Dictionary + Public- + Updated +
for +the + 1200 + Subject + Release.

For the CCA, all groups of variables were normalised and then re-
duced to their top 25 components via the SVD, before a CCA was run
on every pair of variable groups. The RV coefficient was then calculated
between the top 10 paired components from each CCA.

A8. Active-state data and analyses

Data was acquired from fifteen subjects, but for these analyses we
excluded Subject O7 due to potential artefacts in several of their scans.
Preprocessing was as previously published (i.e. brain extraction, BO un-
warping, high-pass temporal filtering, motion correction, and FIX clean-
ing) (Kieliba et al., 2019). However, we did not apply mean-based
intensity normalisation or low-pass filter the data. Finally, the pre-
processed functional scans were then registered to MNI space and spa-
tially smoothed (2mm FWHM).

As with the HCP data, the ICA-DR amplitudes and netmats were es-
timated from the time courses: the amplitudes were taken as the stan-
dard deviations, while the netmats were the partial correlation matri-
ces. Tikhonov regularisation was used when calculating the inverse of
the full correlation matrices, with I' = 0.11. The SVM was from scikit-
learn (sklearn.svm.SVC), and as this is a relatively small dataset
parameters were left at their defaults (Varoquaux et al., 2017).

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.neuroimage.2020.117226
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