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Decisions regularly involve comparisons of several attributes 
of the choice options. Consider the example of deciding 
between foods that differ in two attributes: tastiness and 

healthiness. Often, these attributes are misaligned, creating a con-
flict between the goal of eating healthily and the desire to experience 
pleasant tastes. Typically, we assume that choices for the healthier or 
better tasting food are determined by the values of these attributes 
together with a subjective decision weight that the decision-maker 
assigns to healthiness and taste. The assumption that reward attri-
butes are subjectively weighted in the course of decision-making 
applies not only to food choices but also to many other types of deci-
sions. In fact, it is a core feature of the standard analysis approaches 
for intertemporal, social and risky decisions1–4. Here, we show that 
this common approach is incomplete because it overlooks the pos-
sibility that reward attributes can enter the decision process at dif-
ferent times (in addition to having different weighting strengths). 
Across several food choice paradigms, we find that there is consid-
erable asynchrony in when tastiness and healthiness attributes are 
taken into consideration. Furthermore, we demonstrate that the 
relative weighting strengths (that is, the degree to which an attribute 
influences the evidence accumulation rate) and the onset times for 
tastiness and healthiness attributes in the decision process have sep-
arable influences on whether people choose to eat healthier foods.

We used an adapted time-varying sequential sampling model 
that can separate attribute consideration onset times to better 
understand the dynamic decision processes underlying choices 
between rewards with multiple attributes. This model allows us 
to draw inferences on latent aspects of the decision process from 
the observable choice outcomes and response times (RTs). It is 
well established that direct measures and estimates of information 
acquisition, evaluation and comparison processes during choice 
provide a key means of testing predictions from different mod-
els of how stimulus and decision values are constructed or used. 

Uncovering such features of the decision process enables us to dis-
criminate between and evaluate the plausibility of different models 
that seek to explain choice behaviour5. For example, choice models 
utilizing not only decision outcomes but also RTs and eye-tracking 
or computer-mouse-tracking data have provided insights into how 
and why decision-making is influenced by visual attention, time 
delays or pressure, additional alternatives, and earlier versus later 
occurring external evidence6–13. Moreover, it has been shown that 
dynamic accumulation models utilizing RT data provide a deeper 
understanding of decisions and make better out-of-sample predic-
tions than reduced-form models such as logistic regressions14,15. 
Here, we show that we can also use RT data to determine when 
specific attributes enter the decision process, in addition to how 
strongly they influence the evidence accumulation rate. Moreover, 
incorporating this information into the model improves predictions 
about individual decision-making behaviour.

An important implication of the finding that different attributes 
can enter the choice process at separate times is that coefficients 
from traditional regression models (for example, linear, logit or 
probit) will represent a combination of both the true underlying 
weight or importance placed on each attribute and its relative dis-
advantage or advantage in processing time over the decision period. 
Therefore, any form of static or synchronous onset dynamic model 
will fail to fully capture the true underlying choice-generating pro-
cess. By static we mean models that treat values or value differences 
as fixed rather than being actively constructed. As a consequence, 
even though such models may explain multi-attribute choice pat-
terns relatively well if the relationship between attribute weighting 
and timing is fixed or sufficiently stable, they will fail to explain or 
predict alterations in decision behaviour if attribute weights and 
processing onset times can independently change in response to 
external environmental features or changes in internal cognitive 
strategies. The plausibility of this latter scenario is underlined by 
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mouse-tracking experiments16,17 showing that different attributes 
(taste and healthiness) of the same food reward can enter the deci-
sion process at separate times. However, the fundamental question 
of whether the relationship between attribute weighting strength 
and timing is stable or instead flexible and context-dependent has 
not yet been addressed.

We addressed this question using an adapted sequential sam-
pling model that quantifies both the weight given to each attribute 
and its temporal onset during the decision process. This allowed 
us to explicitly measure whether the weighting strength and tim-
ing with which different attributes affect choice are determined 
by a unitary process (or a set of consistently linked processes) or 
if, instead, attribute timing and weighting are the results of sepa-
rable processes. By modelling choices from four separate datasets, 
which measured decision behaviour under different experimental 
manipulations (Fig. 1), we show that attribute timing and weighting 
are determined by dissociable decision mechanisms. For example, 
we find that explicitly instructing individuals to consider either 
tastiness or healthiness during the choice process18 exerts sepa-
rate effects on attribute weighting strength and timing. In another 
experiment, we show that transcranial direct current stimulation 
(tDCS) over the left dorsolateral prefrontal cortex (dlPFC) during 
food decisions has a selective effect on attribute weighting strength 
but not timing, thus demonstrating the separability of the underly-
ing neural processes.

Results
We adapted the traditional drift diffusion modelling (DDM) frame-
work19–21 to allow for each attribute in a multi-attribute decision 
problem to enter the evidence accumulation process at separate 
times (Fig. 2a). We chose the DDM as a starting point because 
this type of sequential sampling model is relatively simple, yet has 
often been shown to be useful in explaining behaviour across many 
domains21 (see Supplementary Discussion). This modified model is 
a time-varying DDM (tDDM) because the separate consideration 
onset times for each attribute cause the drift rate to vary over time 
within a choice. Briefly, we added a free parameter (relative start 
time (RST)) to estimate how quickly one attribute begins to influ-
ence the rate of evidence accumulation relative to another.

The drift rate determining the evidence update at each time step 
(dt = 8 ms) if taste enters first is as follows:

Et ¼ Et�1 þ ωtaste ´TDþ t> RST
dt

�� ��� �
´ωhealth ´HD

� �
´ dt

þnoise
ð1Þ

While if healthiness enters first, it is as follows:

Et ¼ Et�1 þ t> RST
dt

�� ��� �
´ωtaste ´TDþ ωhealth ´HD

� �
´ dt

þnoise
ð2Þ

Where E is decision evidence, t is the time step, RST is in ms, 
dt = 8 ms, TD is the tastiness difference, HD is the healthiness dif-
ference, and ωtaste and ωhealth are subjective weights for taste and 
health, respectively. Thus, the times at which the weighted value 
differences in tastiness and healthiness attributes begin to influence 
the evidence accumulation rate are determined by the RST. When 
the conditional statement t> RST

dt

�� ��� �

I
 is false, it equals 0, while if true 

it equals 1. Multiplying one of the two weighted attribute values by 
0 until t> RST

dt

�� ��� �

I
 is true means that this attribute does not factor 

into the evidence accumulation process for the initial time period 
determined by |RST|. The RST parameter is defined as the consider-
ation start time for healthiness minus the starting time for tastiness. 
Note that the standard, synchronous onset DDM is equivalent to the 
specific case of RST = 0.

We found that the attribute timing asynchrony estimated from 
RTs by our tDDM was significantly associated with the results from 

a previously reported mouse response trajectory (MRT) analysis16. 
Participants in that study made choices by moving a computer 
mouse from the bottom centre to the upper left or right corners 
of the screen to indicate their choices. Sullivan et al.16 analysed the 
response trajectories to determine the relative times at which health 
and taste attributes enter the decision process. We compared their 
estimates with those we computed using the tDDM for the same 
data (Table 1). The time at which healthiness attributes were con-
sidered was significantly correlated across the two analysis meth-
ods (r = 0.503, posterior probability of the correlation being positive 
(PP(r > 0)) = 0.991, 95% highest density interval (HDI) = [0.157, 
0.811], Bayes factor (BF) = 7.86), thereby establishing face validity 
for the tDDM estimates.

In total, we tested the tDDM in 272 participants across four 
datasets from the following different experimental conditions: MRT 
choices, standard binary choices in a combined gambling and food 
choice (GFC) task that was repeated 2 weeks apart, choices following 
instructed attention cues (IACs) towards taste or healthiness, and 
choices under tDCS (Fig. 1). The tDDM yielded a better fit to choices 
and RT distributions than the standard formulation of a DDM with a 
single, synchronous onset time (overall tDDM Bayesian information 
criterion = 280,632 versus overall standard DDM Bayesian informa-
tion criterion = 281,909) (Fig. 3; Supplementary Table 1). Parameter 
recovery tests demonstrated that choice and RT patterns simulated 
using known values of the standard DDM and the tDDM could 
be recovered in each case (Extended Data Fig. 1; Supplementary 
Fig. 1; Supplementary Results). In other words, our estimation 
procedures for the tDDM yielded accurate parameter estimates. 
Critically, the parameter recovery tests also showed that earlier 
(later) onset of evidence accumulation can be distinguished from 
stronger (weaker) weighting of evidence (Extended Data Fig. 1e).  
Furthermore, the tDDM with separate onset times also generated 
significantly better out-of-sample predictions for food choices than 
the standard DDM. The mean squared error for this tDDM (0.163) 
was lower than that of the standard DDM (0.170) (PP of greater 
accuracy for this tDDM versus a standard DDM = 0.97; see also 
Supplementary Table 2). Thus, fitting the tDDM results in more 
accurate predictions about out-of-sample dietary choices.

Adding the separate onset time feature allows the model to cap-
ture important choice and RT patterns. Specifically, different onset 
times for the two attributes can explain the fact that the relative con-
tribution of the tastiness and healthiness attributes to the evidence in 
favour of one food changes during the decision process. This change 
in the relative weighting of taste versus healthiness in our data was 
also seen in simulations (depicted in Fig. 2b–d) and in computing 
a logistic regression model. This model calculated the influences of 
taste and healthiness on choices made by participants before or after 
both attributes were estimated to have begun being considered (Fig. 
3; Supplementary Tables 3 and 4). Shared onset time DDMs did not 
replicate the effect shown in Figs. 2 and 3, Extended Data Fig. 2 and 
Supplementary Table 5. We note that separate attribute consider-
ation onset timing is a general feature that could be added to many 
other types of sequential sampling models in addition to the DDM 
(for examples, see refs. 12,22–28).

This feature of our tDDM differs in important ways from other 
types of multiprocess sequential sampling models that include a 
combination of fast automatic processes and slower deliberate pro-
cesses (for example, dual process, fast guess, Ulrich diffusion model 
for conflict tasks)29–32. These other frameworks can account for 
changes in the way evidence is accumulated over time in certain 
cognitive tasks, but are fundamentally inconsistent with our food 
choice data. First, responses made before the second attribute is 
considered are similarly or even more sensitive to the level of the 
first attribute relative to choices made after both attributes begin 
to be considered. This indicates that these choices are not random 
guesses or prepotent or habitual responses. Second, the data from 
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the IAC experiment described below show that whether tastiness 
or healthiness is considered first is not automatic. Thus, modifying 
sequential sampling models to allow different attributes to enter a 
deliberate consideration process at separate times is more appropri-
ate to explain the outcomes and RTs from the goal-directed choice 
process studied here.

In the paragraphs above, we established the face validity (that is, 
correspondence to the mouse trajectory analysis), accuracy (that is, 
good parameter recovery) and predictive utility (that is, improved 
out-of-sample predictive accuracy relative to the standard DDM) of 
our modelling approach. Next, we used a tDDM to test several fun-
damental questions about how attribute timing and weighting work 

together, or potentially separately, to influence choice outcomes 
during healthy choice challenges.

Are more abstract attributes considered later in the choice pro-
cess?. One may assume that for dietary choices, the RST of the more 
abstract attribute (healthiness) will lag behind the more concrete 
and immediately gratifying attribute of taste. However, our results 
indicated that this is not the case. Pooling the data across all stud-
ies, we found that the PP that healthiness is taken into consider-
ation later than tastiness was only 0.48 (mean difference in starting 
times = 0.001 s, 95% HDI = [−0.05, 0.06, BF (for RST > 0) = 0.21). In 
total, only 130 out of 272 participants (48%) had RSTs for healthiness 
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Fig. 1 | Details of the different food choice tasks used in each study. a, For each trial in the MRT task used by Sullivan et al.16, participants first saw a start 
screen and had to respond by continuously moving the mouse towards the option they wanted to choose until they reached the box that contained the 
desired item. b, In our GFC study, participants chose between two foods without being instructed to think about healthiness. They had up to 3 s to make 
their choice on a four-point scale ranging from ‘strongly prefer left’ to ‘strongly prefer right’. Intermixed between the food choices were trials in which 
participants had to select between decks of cards for monetary rewards. c, In the IAC task used by Hare et al.18, cues to consider a specific attribute or 
to choose naturally were depicted for 5 s before each choice block of ten trials. participants then had 3 s to make their choice on a four-point scale from 
‘strong no’ to ‘strong yes’. d, In our tDCS study, the reference food for the upcoming block was shown for 3 s before each block began. During each block, a 
series of ten different foods were shown together with a four-point scale from ‘strong no’ to ‘strong yes’ (in favour of eating the item shown compared with 
the reference). The identity of the reference food was written in text below each alternative shown on the screen as depicted.
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attributes that were delayed relative to those for tastiness (Extended 
Data Fig. 3). We used the linear regression model in equation (4) 
(Methods) to test the relationship between RST and other tDDM 
parameters. The RST parameter was related to both the tastiness and 
healthiness weights as well as to the starting point bias parameter 
(Supplementary Tables 6 and 7), but overall, the linear combination 
of other tDDM parameters explained only 30% of the variability in 
RSTs across participants.

Are individual RSTs and attribute weights stable over time?. We 
tested whether tDDM parameters provide good estimates of stable 
individual characteristics by comparing parameters estimated from 
food choices made by the same participants 2 weeks apart. Previous 
work has shown that the test–retest reliability of choice outcomes 
in the food choice task is high when participants repeat the same 
incentivized choices a few days or 1 month apart33. In contrast, 
within each session of our GFC study, participants (n = 37) faced 
150 trials consisting of a choice between two randomly paired 
food items. In other words, participants did not complete the exact 
same set of trials on the two visits, but instead the food pairings 
randomly varied. This precludes a direct comparison of choice out-
comes in the two sessions. Nevertheless, individual characteristics 
inferred from the tDDM parameter fits were consistent over time. 
The relative weighting of taste and healthiness attributes (that is, 

taste > health or vice versa) was the same for 92% of the partici-
pants across both visits, while the attribute considered first (that is, 
RST) was consistent in 76% of the participants. Furthermore, tDDM 
parameters fit to choices in session one accurately predicted new 
food choices made in session two 2 weeks later 77% of the time. In 
comparison, in-sample predictions for session two choices based on 
tDDM parameters fit to those same choices were correct 78% of the 
time. These results indicate that taste versus health weighting and 
consideration onset times may be relatively stable individual char-
acteristics, at least in the absence of experimental manipulations or 
interventions designed to alter these choice processes.

Effects of attention cues on attribute weights and RSTs. Next, we 
examined whether directing attention towards either healthiness 
or tastiness could change the time at which those attributes enter 
the decision process and whether changes in timing were linked to 
changes in weighting strength. This analysis was motivated by pre-
vious findings18 that directing attention to the healthiness aspects 
of a food item resulted in substantial changes in choice patterns  
(Fig. 4a). In this IAC experiment, instructive cues highlighted 
health, taste or neither attribute for explicit consideration during the 
upcoming block of ten food choices. We refer to these three block 
types as health cued (HC), taste cued (TC) and natural cued (NC). 
The original analysis of these choice data focused on the regression 
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weights for taste and health attributes in each choice condition, but 
did not consider that the cues might change the relative times at 
which these attributes entered the choice process. Our goal was to 
determine how potential alterations in attribute timing and weight-
ing contributed to the observed changes in choice behaviour during 
HC relative to NC blocks.

First, we found that attention cues changed both the relative 
weighting and timing of taste and healthiness attributes. Compared 
to the natural choice blocks, 70% of the participants reversed their 
relative weighting of taste and healthiness in taste or health cue 
blocks (that is, went from taste > healthiness to taste < healthiness 
weight or vice versa), and 64% switched whether they considered 
tastiness or healthiness first. There was not a significant difference 
in how often participants reversed the order of relative weights 
(switching from ωtaste > ωhealth to ωtaste < ωhealth, or vice versa) com-
pared with how often they reversed the order of relative onset times 
(switching from taste first to healthiness first, or vice versa) when 
moving from attribute cued and natural choice blocks (PP(weight 
reversal more prevalent than timing reversal) = 0.70, BF = 1.4).

Focusing our analyses on the HC blocks that showed a significant 
change in choice outcomes compared to natural blocks (Fig. 4a), 
we found that on average, cueing attention to health attributes both 
significantly increased the magnitude of the weights for healthiness 
of the participants and sped up the time at which health entered 
the evidence accumulation process (relative to taste, that is, RSTs) 
(Fig. 4b,c; Table 2). These results demonstrate that both the timing 
and weighting of taste and healthiness attributes can be flexibly and 
rapidly changed in response to the attention cues preceding every 
block of ten choices.

Dissociating attribute weighting strengths and timing at the 
neural level. We next addressed the question of whether attribute 
weighting strength and timing are implemented by dissociable 
neural processes. We did so by analysing data from an experiment 

applying cathodal, anodal or sham tDCS over the left dlPFC during 
food choices (see Methods for details). Numerous neuroimaging 
and electrophysiological studies have reported correlational evi-
dence for a role of the dlPFC in multi-attribute choice34–37. There is 
also ample evidence showing that applying brain stimulation (both 
transcranial direct current and magnetic) over multiple different 
subregions of the left or right dlPFC is associated with changes 
in several different forms of multi-attribute decision-making38–44. 
Here, we applied tDCS over a region of the left dlPFC that is cor-
related with individual differences in health challenge success rates, 
and in multi-attribute decisions more generally18,45–55, to uncover the 
mechanistic changes in the choice process caused by tDCS over this 
particular region. Stimulation over this region of left dlPFC did not 
significantly change measures of working memory, response inhi-
bition or monetary temporal discounting in our participants (see 
Supplementary Results).

Previous studies have suggested that the effects of stimulation 
over the left dlPFC are strongest during trials in which the partici-
pant does not strongly favour one outcome over the other (that is, 
stimulation effects are greatest in difficult choices) and depend on 
baseline preferences over the rewards39,43. Therefore, we restricted 
our analysis of health challenge success to trials in which the pre-
dicted probability of choosing the healthier food was between 0.2 
and 0.8 and focused on the difference in behaviour between baseline 
and active-stimulation choice sessions. Specifically, we computed a 
Bayesian hierarchical logistic regression model that accounted for 
both stimulation type and the healthiness and tastiness differences 
for each trial in the tDCS dataset (see equation (5) in the Methods 
for details). We compared the interaction effects by measur-
ing changes in health challenge success for each participant from 
the pre-stimulation baseline to the active stimulation condition  
for cathodal and anodal versus sham simulation groups. This 
revealed a greater decrease in health challenge success under cath-
odal relative to sham stimulation (Supplementary Table 8; regression 

Table 1 | Fitted separate attribute onset tDDM parameters by study and condition

Dataset Parameter estimate

ωtaste ωhealth Thr nDT RST Bias

MRT

Keyboard trials 1.42 ± 0.45 0.12 ± 1.03 1.04 ± 0.28 0.65 ± 0.14 0.26 ± 0.36 0.11 ± 0.18

Mouse trials 0.94 ± 0.36 0.27 ± 0.32 1.36 ± 0.25 0.77 ± 0.16 0.14 ± 0.34 0.07 ± 0.19

GFC

Session one 1.11 ± 0.35 −0.07 ± 0.65 1.29 ± 0.17 0.84 ± 0.13 0.3 ± 0.37 −0.01 ± 0.08

Session two 1.19 ± 0.36 −0.29 ± 0.62 1.19 ± 0.22 0.75 ± 0.12 0.29 ± 0.37 −0.03 ± 0.12

IAC

NC 1.37 ± 0.79 0.33 ± 1.33 1.27 ± 0.28 0.86 ± 0.12 0.42 ± 0.54 0.00 ± 0 37

HC 0.98 ± 1.12 1.11 ± 0.60 1.39 ± 0.36 0.85 ± 0.14 −0.06 ± 0.55 −0.22 ± 0.33

TC 1.42 ± 0.96 0.47 ± 0.99 1.36 ± 0.36 0.83 ± 0.14 0.28 ± 0.49 0.00 ± 0.31

tDCS

Sham baseline 0.74 ± 0.67 1.01 ± 0.50 1.29 ± 0.23 0.77 ± 0.16 −0.21 ± 0.40 −0.11 ± 0.26

Sham stimulation 0.67 ± 0.61 1.03 ± 0.55 1.21 ± 0.21 0.71 ± 0.14 −0.10 ± 0.34 −0.14 ± 0.24

Cathodal baseline 0.63 ± 0.81 1.01 ± 0.62 1.26 ± 0.24 0.75 ± 0.14 −0.05 ± 0.44 −0.07 ± 0.24

Cathodal stimulation 0.92 ± 0.45 1.07 ± 0.73 1.19 ± 0.21 0.69 ± 0.11 −0.03 ± 0.38 −0.03 ± 0.22

Anodal baseline 0.60 ± 0.84 1.15 ± 0.48 1.25 ± 0.2 0.75 ± 0.13 −0.09 ± 0.41 −0.08 ± 0.24

Anodal stimulation 0.85 ± 0.6 1.19 ± 0.62 1.16 ± 0.2 0.70 ± 0.12 −0.09 ± 0.38 −0.04 ± 0.25

All parameters are reported as the mean ± s.d. See Methods for details of the parameters. ωtaste, weighting factor determining how much the difference in taste attributes contributes to the evidence 
accumulation rate; ωhealth, weighting factor determining how much the difference in health attributes contributes to the evidence accumulation rate; Thr, evidence threshold for responding; nDT, non-decision 
time, which corresponds to the starting time for taste in our model; RST, relative start time for health (timing relative to start of taste processing, where positive values denote that health enters the process 
later than taste); Bias, starting point bias for the evidence accumulation process (zero = no bias).
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coefficient = −0.32 ± 0.15, 95% HDI = [−0.58, −0.08], PP(cathodal 
polarity × active stimulation interaction coefficient < 0) = 0.98), but 
no change in health challenge success for anodal relative to sham stim-
ulation (regression coefficient = −0.03 ± 0.15, 95% HDI = [−0.28, 
0.22], PP(anodal polarity × active stimulation interaction coeffi-
cient > 0) = 0.4). There was also a main effect within the cathodal 
stimulation group, which indicates that these individuals had fewer 
health challenge successes when making food choices under active 
stimulation compared with their pre-stimulation baseline choices 

(regression coefficient = −0.31 ± 0.15, 95% HDI = [−0.55, −0.08], 
PP(active stimulation < 0) = 0.9999). Thus, we find that inhibitory 
stimulation over the left dlPFC leads to fewer health challenge suc-
cesses (see also Fig. 5a).

To elucidate the changes in choice processes caused by the stim-
ulation, we fit the separate attribute consideration onset tDDM to 
dietary choices made during the pre-stimulation baseline and active 
or sham tDCS sessions. When testing how the tDDM parameters 
changed between baseline and active stimulation sessions in each 
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group, we found that the cathodal group had increased weight-
ing of taste attributes under stimulation compared with baseline 
choices (mean difference = 0.14, HDI = [0.03, 0.25], PP(cathodal 
active > cathodal baseline) = 0.99, BF = 5.75; Fig. 5a) and that 
the change from baseline was greater under cathodal stimula-
tion than sham (mean difference = 0.21, 95% HDI = [0.01, 0.42], 
PP(∆cathodal > ∆sham) = 0.98, BF = 4.20). Crucially, the RST 
parameters were unaffected during left-dlPFC-targeted cathodal 
tDCS (Table 3; Fig. 5b). Moreover, the tDCS-induced changes in 
taste relative to health weighting parameters and RSTs were not 
significantly correlated (r = −0.07, 95% HDI = [−0.325, 0.188], 
PP(r > 0) = 0.30, BF = 0.210). Consistent with the lack of significant 
change in choice behaviour under anodal tDCS, we found no sig-
nificant changes in any tDDM parameter under anodal stimulation 
(Table 3). In summary, we found that cathodal tDCS over the left 
dlPFC changed the relative decision weight placed on taste attri-
butes, but not the speed with which taste, relative to healthiness, 
began to influence the choice process (Table 3).

Discussion
We have shown that separable mechanisms determine the degree to 
which an attribute affects the evidence accumulation rate (weight-
ing strength) and the relative speed with which it begins to do so 
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or taste) and taste–health combination of food under consideration (tasty or untasty crossed with healthy or unhealthy). In terms of mean choice 
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denote a significant change of the parameter estimate between the health and natural cue conditions.

Table 2 | Changes in separate attribute consideration onset 
tDDM parameters between attention-cued conditions

Mean 
difference

95% HDi PP BF

ωtaste

Natural – health 0.354 [−0.113, 0.832] 0.933 1.251

Taste – health 0.455 [−0.088, 1.003] 0.951 1.122

ωhealth

Health – natural 0.746 [0.188, 1.325] 0.995 12.818

Health – taste 0.633 [0.245, 1.028] 0.999 39.041

RST of health

Natural – health 0.469 [0.2, 0.748] 0.999 60.868

Taste – health 0.336 [0.121, 0.548] 0.999 26.655

This table shows the effects of attention cues on the tDDM parameters estimated from choice 
data in the IAC study. Changes in RSTs or weighting parameters (ωtaste, ωhealth) induced by the 
experimental conditions that are shown in bold were significantly different from zero. Mean 
differences and their 95% HDIs were computed based on 100,000 samples drawn from the 
posterior distributions of each parameter75. The third column displays the posterior probabilities 
that differences are greater than zero. All comparisons were made so that a priori predicted effects 
would be positive.
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(timing). Measuring each of these distinct processes helps to explain 
individual differences in dietary choices at baseline as well as how 
behavioural and neurophysiological manipulations effect changes 
in the decision process. Thus, both attribute timing and weight-
ing strength must be examined if we seek to better understand 
decision-making at the mechanistic level.

The clearest evidence that timing and weighting strength are 
dissociable comes from our tDCS experiment, which showed that 
stimulation over the left dlPFC caused a change in the weights 
placed on the taste factor, but not the timing of taste versus 

healthiness attributes during dietary choices. Moreover, changes 
in the relative weighting and the relative timing of each attribute 
between baseline and cathodal stimulation sessions were not 
significantly correlated, which further indicates that the neu-
ral mechanisms altered by our tDCS protocol were specifically 
related to attribute weighting (additional implications of these 
results are included in the Supplementary Discussion).

In our current work, for example, we found that the relative 
importance given to a specific attribute, as well as its speed in enter-
ing the choice process, could be altered by instructions that directed 
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attention to that attribute. Although a large body of work has estab-
lished that value construction and comparison processes are mal-
leable and subject to attention, perceptual constraints and other 
contextual factors9–11,56,57, the influence of attribute consideration 
timing within a given decision is rarely discussed or directly tested. 
Query theory58,59 is a notable exception in that it explicitly posits 
that the order in which attribute values are queried from memory or 
external sources will bias value construction and choice processes 
because the recall of initial attributes reduces the accessibility of 
subsequent attributes. Although the current data cannot be used to 
directly address the question, future experiments may address the 
important mechanistic question of whether memory retrieval is a 
driving factor in the consideration onset asynchronies revealed by 
the separate attribute consideration onset tDDM.

Despite open questions about the relationship between memory 
and relative starting times, our finding that attribute consideration 
start times are asynchronous lends strong support to the idea that 
choices are made based on comparisons of both separate attribute 
values as well as overall option values. Hunt and colleagues11 dem-
onstrated that a hierarchical sequential sampling process that oper-
ates over both separate attribute and overall option values explains 
risky choice behaviour and brain activity better than models operat-
ing only on integrated values. Reeck and colleagues10 showed that 
individual variation in temporal discounting can be explained by 
patterns of information acquisition that support attribute-wise or 
option-wise comparisons. Moreover, their study showed that an 
experimental manipulation that promotes attribute-wise com-
parisons compared with one promoting option-wise comparisons 
increased the patience level of participants when making choices. 
Together, these results and others (for example, refs. 27,57) indicate 
that attribute-level comparisons play an important role in determin-
ing choice outcomes. Hierarchical attribute and option-level com-
parisons are implicit in our specification of the separate attribute 
consideration onset tDDM because the choice outcome and RT are 

determined by a weighted sum of the differences in attribute val-
ues. However, we showed that attribute-level comparisons do not all 
begin at the same point in time, and that the magnitude of the dif-
ference in RSTs across attributes influences option-level compari-
sons and choice outcomes.

Our results raise important questions about how attribute 
weighting strengths and onset timing jointly influence choice out-
comes. How should we interpret choices in which the outcome 
is determined by the advantage in relative timing as opposed to 
weighted evidence? Could this be strategic use of cognitive flex-
ibility to align decision-making with current goals or should we 
consider such outcomes to be mistakes? Traditionally, a weighted 
combination of all attribute values is assumed to yield the ‘correct’ 
choice60. If the weighting strength on each attribute is appropriate, 
then any asynchrony in onset timing could produce suboptimal 
choices (that is, choices in favour of options with a lower weighted 
sum over all attribute values than another available alternative). In 
that sense, it is surprising that we find substantial attribute onset 
asynchrony in healthy young adults and that, in individuals striving 
to maintain a healthy lifestyle (that is, the sample recruited for our 
tDCS experiment), a higher level of asynchrony is associated with 
better health challenge success. However, this view is predicated on 
the assumption that the attribute weighting strengths are appropri-
ate for the current goal or context.

Conversely, it is possible that shifts in the timing of attribute 
consideration can be used to achieve the desired outcome. Suppose 
that a decision-maker knows (not necessarily explicitly) that her 
standard attribute weights are inconsistent with her current deci-
sion context or goal, and adjusting those weights by the necessary 
amount is costly or unlikely. In that case, shifting the relative onset 
timing could be an effective means of reducing effort and improv-
ing the chances of making a goal-consistent choice. In other words, 
altering the relative starting times may be a form of proactive con-
trol61,62. For example, a decision-maker who goes on a diet may find 

Table 3 | effects of tDCS over the left dlPFC on tDDM parameters

Mean difference 95% HDi PP BF

ωtaste

Baseline – Anodal tDCS −0.094 [−0.23, 0.043] 0.081 0.047

Cathodal tDCS – Baseline 0.138 [0.027, 0.248] 0.993 5.748

Baseline – Sham tDCS 0.072 [−0.087, 0.23] 0.815 0.33

ΔSham – ΔAnodal −0.185 [−0.41, 0.047] 0.053 0.091

ΔCathodal – ΔSham 0.215 [0.014, 0.42] 0.982 8.333

ωhealth

Anodal tDCS – Baseline 0.098 [−0.023, 0.221] 0.941 0.267

Baseline – Cathodal tDCS −0.074 [−0.246, 0.102] 0.197 0.094

Sham tDCS – Baseline 0.025 [−0.082, 0.13] 0.685 0.188

ΔAnodal – ΔSham 0.063 [−0.093, 0.223] 0.787 0.261

ΔSham – ΔCathodal −0.039 [−0.241, 0.164] 0.349 0.149

RST

Baseline – Anodal tDCS −0.002 [−0.098, 0.093] 0.484 0.144

Cathodal tDCS – Baseline 0.021 [−0.095, 0.135] 0.648 0.193

Baseline – Sham tDCS −0.103 [−0.225, 0.018] 0.047 0.056

ΔSham – ΔAnodal 0.098 [−0.057, 0.251] 0.895 0.764

ΔCathodal – ΔSham −0.081 [−0.25, 0.086] 0.171 0.106

This table reports changes in the separate attribute consideration onset tDDM RSTs or weighting parameters (ωtaste, ωhealth) as a result of tDCS over the left dlpFC. Rows in bold indicate changes that are 
significantly different from zero. The Δ symbol always indicates a difference score equal to the value in the stimulation minus the baseline session within a given condition. Rows containing this symbol 
report differences of differences across conditions. Mean differences (or differences of differences) and their 95% HDI were computed based on 100,000 samples drawn from the posterior distributions of 
each parameter. The third column displays the pps that differences are greater than zero. All comparisons were made so that a priori predicted effects would be positive.
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it difficult to convince herself that she does not like the taste of ice 
cream and/or to constantly trade-off this delicious taste against the 
downsides of excess sugar and fat. An alternative way to bring about 
health challenge success in this situation may be to adjust the pro-
cess (or processes) that determine RSTs for healthiness and tastiness 
and to focus on the healthiness of each alternative option alone for a 
brief period to forgo extremely unhealthy options (without putting 
in time or effort to compare taste benefits to health costs).

The use of timing differences as described above would be 
consistent with at least two existing theories on the role of atten-
tion in cognition. First, it is consistent with the idea that rational 
inattention strategies63–65 can be employed as a means of reducing 
effort costs. Specifically, if the time advantage for healthiness is 
large enough, then one could theoretically decide against eating an 
unhealthy food before even considering its tastiness and thus not 
experience temptation or conflict. Second, the idea that distinct pro-
cesses determine consideration onset times and weights for differ-
ent attributes is paralleled in theories of emotion and food-craving 
regulation that posit separate attention deployment and stimulus 
appraisal steps (for examples, see refs. 35,66,67). However, we do not 
yet know whether strategic use of attribute consideration onsets or 
related processes actually happen or whether adjusting the process 
determining relative onset times is, in fact, less effortful or more 
likely to succeed than strategies that attempt to alter the attribute 
weighting strengths.

Altering the processes that determine the relative onset times 
could be a means or a result of delaying and reducing attention. 
However, although we found that both cueing attention to healthi-
ness and having the goal of maintaining a healthy lifestyle (tDCS 
sample versus all others) were associated with faster average onset 
times for healthiness attributes, we do not know yet whether relative 
onset times can be manipulated as part of a deliberate strategy. It is 
also important to note that the response to healthiness cues was het-
erogeneous in the sense that although most participants made healthy 
choices more often following those cues, some participants changed 
only attribute weights or only attribute start times in favour of healthy 
choices rather than both. Further research is needed to understand 
why individuals responded to these cues in different ways.

The ability to understand or predict how an intervention or pol-
icy change will affect choice processes and their outcomes for spe-
cific individuals or groups of people is important for any programme 
hoping to promote behavioural change, for example, in domains 
such as health, crime or financial stability. Greater knowledge of the 
cognitive and neural mechanisms that drive choices in specific indi-
viduals is an important step towards this understanding68. Our find-
ings demonstrate that when a specific attribute begins to influence 
the decision process—a factor that has been generally neglected—is 
an important determinant of choice outcomes. They also suggest 
that examining relative differences in attribute start times may 
prove useful in understanding why interventions and policies work 
in some cases (for example, for specific individuals or groups) but 
not in others, and may help to increase their effectiveness. Overall, 
the work we present here provides both a concrete advancement in 
our knowledge of multi-attribute choice processes and a functional 
set of computational modelling tools that can be applied to extract 
deeper mechanistic insights from data on choice outcomes and RTs.

Methods
For all datasets in which we relied on published studies, we included the final 
reported sample in our analyses. For these studies, we describe the methodological 
details relevant for our analyses and refer the reader to the published papers for any 
further details. All participants provided written informed consent in accordance 
with the procedures of the Institutional Review Board of the California Institute of 
Technology, the Institutional Review Board of the Faculty of Business, Economics 
and Informatics at the University of Zurich, or the Ethics Committee of the Canton 
of Zurich. All participants received a flat fee to compensate for their time in 
addition to the food they chose.

Dataset 1—MRTs. We use the choice and RT data from the study of Sullivan et al.16 
to test the face validity of our time-varying sequential sampling model. These data 
are openly available at https://osf.io/jmiwn/. All participants in the MRT sample 
were healthy adults and had no specific dietary restrictions. Before making any 
choices, they were reminded of the importance of healthy eating by reading a short 
excerpt from WebMD.com before starting the choice task.

Participants. The experiment was approved by the Institutional Review Board of 
the California Institute of Technology. Twenty-eight (seven female) healthy adult 
participants completed the study.

Procedure. Participants were asked to fast for 4 h before the study. They first rated 
160 foods for taste and health on a five-point Likert scale with values from −2 
(very little) to +2 (very much). After these ratings, participants were asked to 
read a short text from WebMD.com on the beneficial effect of healthy eating to 
increase the frequency with which they tried to succeed in health challenges in 
the subsequent dietary choice task. In the choice paradigm, participants made 280 
choices between two foods on the screen (Fig. 1a). The selection ensured that food 
pairs would equally represent all possible combinations of taste and health ratings. 
After each block of 40 choices, participants could take a short break. In 240 trials, 
participants used a computer mouse to answer, while in the remaining 40 trials, 
they answered with a keyboard. For the mouse trials, participants had to click the 
‘start’ box at the bottom of the screen to initiate the trial. The cursor reappeared 
after a random waiting period of 0.2–0.5 s. From this point on, participants had 
to move the mouse continuously towards the food they wanted to select. They 
were instructed to answer as quickly and accurately as possible. A random fixation 
time of 0.4–0.7 s separated the trials. For the keyboard trials, participants selected 
food items by pressing the left or right choice keys. At the end of the study, one 
randomly selected trial was paid out, and participants were asked to stay in the 
laboratory for 30 min or until they had eaten their obtained food.

Dataset 2—GFC. Data for this behavioural GFC study were collected from the 
same individuals in two testing sessions 2 weeks apart. The two sessions were run 
on the same weekday and daytime in a 2-h visit in the afternoon. Participants in 
this study were healthy and did not have any specific dietary restrictions. During 
the study, they chose naturally and were neither reminded about eating a healthy 
diet nor encouraged to eat healthy in any way.

Participants. The study was approved by the Institutional Review Board of 
the University of Zurich’s Faculty of Business, Economics and Informatics. 
Thirty-seven participants (17 female, age = 22.6 ± 3 years (mean ± s.d.)) were 
included in this study. A prescreening procedure ensured that all participants 
regularly consumed sweets and other snack foods and were not currently 
following any specific diet or seeking to lose weight. All participants were 
healthy and had no current or recent acute illness (for example, cold or flu) at the 
time of the study. All participants complied with the following rules to ensure 
comparability across the study sessions: they got a good night’s sleep and did 
not consume alcohol the evening before the study. On the study day, they took 
a photograph of the small meal that they consumed 3 h before the appointment, 
and sent this photo to the experimenter. One day before the second study session, 
participants received a reminder about the rules (described above) and were asked 
to consume a small meal before their second appointment that was equivalent to 
their meal before the first test session. Participants received CHF37.5 (~US$39) 
for each session.

Procedure. Participants were asked to eat a small meal of approximately 400 calories 
3 h before their appointment and to consume nothing but water in the 2.5 h before 
the study started. In the laboratory, participants first rated 180 food items for taste 
and health. They then made 150 food choices, one of which was randomly selected 
to be received at the end of the experiment. For each trial, the screen showed two 
foods next to each other, and participants chose the food they wanted to eat using 
a four-point scale, picking either ‘strong left’, ‘left’, ‘right’ or ‘strong right’ (Fig. 1b). 
The pairing order and positions of the foods on the screen (left versus right) were 
completely randomized, and the allocation algorithm ensured that one of the 
foods would be rated as healthier than the other. Participants had 3 s to make their 
choice, with a jittered interval of 1–3 s of fixation between trials. Between blocks of 
dietary decisions, participants played a game in which they had to guess cards for 
monetary rewards. We ignored the card guessing choices for the analyses presented 
here. At the end of the experiment, participants stayed in the laboratory for an 
additional 30 min, during which they ate the food they obtained during the study. 
Note that participants on the second day saw a new set of choice options that was 
created based on the taste and health ratings they gave on that second day, using 
the same allocation algorithm as in session one.

Dataset 3—IACs. To determine how attention cues affected attribute timing and 
weighting, we reanalysed data from Hare et al.18. Participants in this study were not 
following a specific health or dietary goal in their everyday life, but received a cue 
to think about the healthiness or tastiness of the foods before deciding on a subset 
of choices in the study.

NATURe HUMAN BeHAvioUR | VOL 4 | SEpTEMBER 2020 | 949–963 | www.nature.com/nathumbehav958

https://osf.io/jmiwn/
http://www.nature.com/nathumbehav


ArticlesNaTurE HumaN BEHaviour

Participants. The study was approved by the Institutional Review Board of the 
California Institute of Technology. Thirty-three participants (23 female, age 
24.8 ± 5.1 years (mean ± s.d.)) were included. Screening ensured that they were 
not currently following any specific diet or seeking to lose weight. All participants 
were healthy, had no history of psychiatric diagnoses or neurological or metabolic 
illness, were not taking medication, had normal or corrected-to-normal vision, and 
were right-handed.

Procedure. Participants were instructed to fast and drink only water in 
the 3 h before the study. In this experiment, participants made a series of 
180 choices within a magnetic resonance imaging (MRI) scanner while 
blood-oxygenation-level-dependant functional MRI was acquired. The 
experiment had 3 conditions with 60 trials each that were presented in blocks 
of 10, with the order of blocks and foods shown within blocks fully randomized 
for each participant. Each food was shown only once (Fig. 1c). In condition one, 
participants were asked to attend to the tastiness of the food when making their 
choices, in the second condition, to attend to the healthiness of the food, and in the 
third condition, to choose naturally. The instructions emphasized that participants 
should always choose what they preferred to eat regardless of the attention and 
consideration cues. Before each block, the attention condition cue was displayed 
for 5 s. For each choice trial, participants had 3 s to answer and were shown 
feedback on their choice for 0.5 s after responding. Trials were separated by a 
variable fixation period of 4–6 s. Most participants responded on a four-point scale 
of ‘strong yes’, ‘yes’, ‘no’ or ‘strong no’ to indicate whether they preferred to eat or to 
not eat the food shown on the current trial. Five out of 33 participants completed 
a version of the task that included a fifth option that allowed them to signal 
indifference between eating and not eating the food. We followed the original 
analysis procedures in the IAC study and analysed all 33 subjects as one set. After 
the scan, participants rated the 180 food items for taste (regardless of health) 
and health (regardless of taste), with the order of rating types randomized across 
participants. After both the choice task and ratings were complete, one trial from 
the choice task was randomly chosen to be realized. Participants were required to 
eat the food if they answered ‘yes’ or ‘strong yes’. If they answered ‘no’ or ‘strong no’, 
they still had to stay in the laboratory for the 30-min waiting period; however, they 
were not allowed to eat any other food. Participants were fully informed of these 
choice incentivization procedures before beginning the study.

Dataset 4—tDCS study. All participants in this study were prescreened during 
recruitment to ensure that they were actively following a healthy lifestyle. They 
were specifically asked if they would agree to do their best to choose the healthier 
option whenever possible on the day of the study. Participants who indicated that 
they would not do so were still allowed to complete the experiment and were 
reimbursed for their time, but we did not analyse their data. All participants 
received a flat fee of CHF100 (~$104).

The procedures for this study were originally described in ref. 69. We repeat that 
description here to make this paper self-contained.

Participants. The Ethics Committee of the Canton of Zurich approved the study 
protocol and all participants provided written informed consent. In total, 199 
participants were enrolled in the study. No participants reported any history of 
psychiatric or neurological conditions or had any acute somatic illness. Participants 
were prescreened in telephone interviews to ensure they did not suffer from any 
allergies, food intolerances or eating disorders. To ensure that the snacks in the 
food choice task would present a temptation, participants were only eligible if they 
reported regularly consuming snack foods (at a minimum two to three times per 
week) while at the same time trying to maintain an overall balanced and healthy diet.

Data from 25 participants were excluded because they failed to meet a priori 
inclusion criteria or data quality checks. Within the study, we requested a written 
statement of compliance with a health goal for the time of the experiment (see 
below). Seven men and one woman indicated that they would not comply with the 
health goal; their data were excluded from all analyses. Note that these participants 
still completed the experimental procedures and received the same compensation 
through food and monetary incentives as those who complied, so there was no 
incentive for the participants to lie about following the health goal. Data from 
eight participants had to be excluded because they confused the response keys or 
forgot the identity of the reference item during the task. Four participants were 
excluded on site due to safety precautions regarding tDCS. Three participants were 
excluded on site because a re-check of the inclusion criteria revealed that they 
did not actually like snacks or only consumed them on one to two occasions per 
month instead of the minimum two times per week. One additional participant 
had to be excluded because the choice set could not be constructed due to the fact 
that he reported only the most extreme values on all health and taste ratings. Last, 
data from one participant was excluded because she never made a healthy choice 
when taste and healthiness were in conflict in the baseline condition, precluding 
inference about within-subject changes due to stimulation. This left 87 men and 87 
women in the final dataset.

Participants were randomly allocated to stimulation conditions. The anodal 
(58 participants, 30 female), cathodal (57 participants, 30 female) and sham (59 
participants, 27 female) stimulation groups did not differ from each other with 

regard to age, body mass index or self-reported eating patterns (as assessed by 
the “three factor eating” questionnaire, German validated version by Pudel and 
Westenhöfer66) (Supplementary Table 9). The groups also did not differ with regard 
to impulse control (in the stop signal reaction time), working memory capacity 
(digit span test) or time discounting preferences. Finally, the groups did not differ 
in the level of hunger that they reported before the choice task (Supplementary 
Tables 10–17).

tDCS stimulation protocol. The target electrode (5 × 7 cm) was placed on the left 
dlPFC (Supplementary Fig. 2). The reference electrode (10 × 10 cm) was placed 
over the vertex, off-centred to the contralateral side in such a way that a 5 × 7-cm 
area of the reference electrode was centred over the vertex while the remaining 
area was placed more to the right side. The target electrode covered the two dlPFC 
regions depicted in Supplementary Fig. 2 (MNI peak coordinates = (−46, 18, 24) 
and (−30, 42, 24)). These targets were selected because they both showed greater 
activity for health challenge success > failure in two previous functional MRI 
studies51,53. The coordinates for both the dlPFC and the vertex were identified 
using a neuronavigation system (Brainsight, Rogue Research, RRID:SCR_009539, 
https://www.rogue-research.com/; see Supplementary Fig. 2) from individual 
T1-weighted anatomical MR images for each participant. We applied anodal, 
cathodal or sham tDCS over this dlPFC site using a commercially available 
multichannel stimulator (neuroConn). Between a ramp-up and ramp-down phase 
of 20 s, active stimulation with 1 milliampere (mA) took place for 30 min (anodal 
and cathodal group) or 5 s (sham). Sham stimulation was delivered with either the 
anode or the cathode over the dlPFC, counterbalanced over the entire sham group. 
Both the participants and the experimenters mounting the tDCS electrodes were 
blind to the stimulation condition.

Procedure. Participants first rated 180 food items for health and taste. They were 
instructed to rate taste regardless of the healthiness and vice versa for each of our 
180 food items on a continuous scale that showed visual anchor points from −5 
(not at all) to +5 (very much). Before or after these ratings, participants completed 
a battery of control tasks in a randomized order. All control tasks were performed 
both before and after stimulation: a stop signal reaction time task, a self-paced digit 
span working memory test and a self-paced monetary inter-temporal choice task. 
To test for stimulation effects on taste and health ratings, participants also re-rated 
a subset of foods after stimulation (see Supplementary Results).

After all pre-stimulation tasks had been completed, but before any food 
choices were made, we asked participants to sign a health goal statement in which 
they indicated whether they would commit to maintaining a health goal during 
the subsequent food choice task (see Supplementary Methods for an English 
translation of the health goal text). Participants indicated that they would or would 
not commit to the goal, dated and signed the document, and then handed it back 
to the experimenter. Participants could not see which option others in the room 
had selected, and the experimenter randomizing the tDCS conditions was blind to 
the responses of the participants to the health goal.

Immediately before beginning the food choice task, participants indicated their 
current hunger levels. They then completed a series of food choices. The first 101 
participants made 60 food choices at baseline; however, we increased the number 
of baseline choices to 80 for the final 98 participants to have an even number at 
baseline and under stimulation. All other experimental factors were kept the same 
for all 199 participants. The baseline choices allowed us to make within-subject 
comparisons of health challenge success before and during stimulation. Once 
participants had finished making the baseline choices, stimulation was applied. 
Participants did not make any choices for the first 3 min of stimulation to allow the 
current to stabilize. Following the stabilization period, they completed another set 
of food choices (n = 120 for participants 1:101 and n = 80 for participants 102:199). 
No choice pairs were repeated between the baseline and stimulation choice sets. 
However, the difficulty in terms of taste difference was balanced across the two 
choice sets (Supplementary Information).

Participants completed the set of food choices under stimulation (or sham) 
in a maximum of 16 min. In the remaining 8–14 min of stimulation (or sham) 
time, participants completed several control tasks. We randomized the order of 
the post-stimulation control tasks so that all tasks had an equal chance of being 
run in the period when current was still being applied versus the 5–10-min 
window immediately after stimulation (during which physiological after 
effects of the tDCS were still present, see refs. 70,71). Once they had completed 
all post-stimulation control tasks, participants filled in a questionnaire battery 
(the three factor eating questionnaire, the cognitive reflection test, the ‘Big Five’ 
personality dimensions and socioeconomic status). They also indicated whether 
and to what degree they had tried to comply with the health goal throughout 
the study, whether they had felt the stimulation and how strongly, and whether 
they had any problems understanding or following the instructions. Finally, 
participants received and ate their selected food 30 min after they made their final 
decision in the food choice task.

Food choice paradigm. Participants were asked to eat a small meal of ~400 kcal 3 h 
before the study and consume nothing but water in the meantime. In the health 
challenge paradigm, participants chose which food they wanted to eat at the end of 
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the study. To comply with their health goal, they had to choose the healthier item 
as often as they could. However, the paradigm was engineered such that health and 
taste of the food options always conflicted based on the ratings of the participant, 
so that they would always have to forgo the tastier food to choose healthy. 
Participants knew that one of their choices would be realized at the end, and they 
would have to eat whatever they chose on the trial that was randomly selected.

Participants were shown the picture of a reference food for 3 s at the beginning 
of each block. This reference food was either healthier and less tasty than all 
ten items shown in the upcoming block or tastier and less healthy than all ten 
upcoming items. For each of the ten trials within a block, participants had to 
decide whether they preferred to eat the food currently shown on the screen or 
the reference food at the end of the study. The identity of the reference food was 
written in text on the screen so that participants did not need to remember it 
(Fig. 1d). During each choice trial, participants had 3 s to make their decisions, 
and each trial was separated by a jittered inter-trial interval of 2–6 s. One trial 
was selected at random to be realized after all experimental procedures were 
completed. At the end of the study, participants stayed in the laboratory for 
30 min to eat the food they obtained in the study.

Statistical analyses. For all Bayesian modelling analyses, we used the default, 
uninformative priors specified by the packages brms, BEST or BayesFactor from R 
(see Supplementary Methods). These analyses are not predicated on assumptions 
of normally distributed data or equal variances across groups. Throughout the 
paper, the notation “PP()” indicates the posterior probability that the relation 
stated within the parentheses is true. Similarly, the BF represents the relative 
evidence for this relationship over its opposite (for example, greater than zero 
versus less than zero). Whenever we analysed previously published data, we 
applied the same subject-level and trial-level exclusion criteria described in the 
original papers.

tDDM with separate attribute consideration onset times. We fit a DDM that 
allowed for differential onset times for taste and health attributes during evidence 
accumulation to choice outcome and reaction time data of participants. Several of 
the food choice tasks used a four-point decision-strength scale, and for these data, 
we collapsed choices into a binary yes/no or left/right choice. The following six free 
parameters were separately estimated for each participant and condition:

Thr: the evidence threshold for responding (symmetric around zero).
Bias: the starting point bias for the evidence accumulation process  

(zero = no bias).
nDT: the non-decision time and corresponds to the starting time for taste in 

our model.
RST: the relative start time for health (timing is relative to the start of taste 

processing; positive values mean that health enters the process after taste, negative 
values mean health enters before taste).

ωtaste: the weighting factor determining how much taste contributes to the 
evidence accumulation rate.

ωhealth: the weighting factor determining how much healthiness contributes to 
the evidence accumulation rate.

The values of these six parameters were used to simulate choices and RTs using 
the sequential sampling model described in the equation below to update the 
relative evidence level at each subsequent time step t.

If taste enters first, the evidence-updating equation is as follows:

Et ¼ Et�1 þ ωtaste ´TDþ t>
RST
dt

����
����

� �
´ωhealth ´HD

� �
´ dtþ noise ð1Þ

While if healthiness enters first it is as follows:

Et ¼ Et�1 þ t>
RST
dt

����
����

� �
´ωtaste ´TDþ ωhealth ´HD

� �
´ dtþ noise ð2Þ

Thus, the times at which the weighted value differences in tastiness and 
healthiness attributes (ωtaste × TD and ωhealth × HD, respectively) begin to influence 
the evidence accumulation rate are determined by the RST. When the conditional 
statement t> RST

dt

�� ��� �

I
 is false, it equals 0, while if true, it equals 1. Multiplying 

one of the two weighted attribute values by 0 until t> RST
dt

�� ��� �

I
is true means that 

that attribute does not factor into the evidence accumulation process for the 
initial time period determined by |RST|. The RST parameter is defined as the 
consideration start time for healthiness minus the starting time for tastiness. 
Thus, RST will have a positive value when tastiness enters consideration first 
and a negative value when healthiness is considered first. Note that the standard, 
synchronous onset DDM is equivalent to the specific case of RST = 0, and then 
equations (1) and (2) are equivalent because t is always greater than (|RST/ t|) and 
t> RST

dt

�� ��� �

I
 always equals 1.

Based on previous mouse-tracking results from Sullivan et al.16, our model 
formulation makes the simplifying assumption that once an attribute comes into 
consideration, it continues to influence the rate of evidence accumulation until 
the choice is made. Model comparisons testing this assumption showed that the 
different starting time formulation fit the data better than DDMs that allowed 
for differential attribute consideration end times, both different start and end 

times, non-decision times that varied as a function of choice outcome or  
starting point biases in favour of tastiness (Figs. 2 and 3; Extended Data Fig. 2;  
Supplementary Table 1).

Evidence accumulation proceeds according to equation (1) or (2) in the 
following manner. The evidence accumulation process begins with an initial value 
(E0) that is equal to the value of the Bias parameter. This value is then updated in 
discrete time steps of dt = 0.008 s until |Et| is greater than the Thr parameter value. 
The noise at each step of the accumulation process is drawn from a Gaussian 
distribution with mean = 0. The differences in taste and healthiness ratings 
between Food 1 and Food 2 (or Food 1 versus 0 for the single-item choices in 
the IAC dataset) on a given trial are denoted by TD and HD, respectively. Once 
the threshold is crossed, the RT is computed as t × dt + nDT, where nDT is a free 
parameter for a non-decision time that accounts for the time required for any 
initial perceptual or subsequent motor processes that surround the period of active 
evidence accumulation and comparison.

We estimated the best values for all six free parameters described above 
separately for each participant and condition using the differential evolution 
algorithm described in Mullen, et al.72, with a population size of 60 members run 
over 150 iterations. For every iteration, we simulated 3,000 decisions and RTs for 
all unique combinations of taste and healthiness trade-offs in the choice set for 
each participant using the six tDDM parameters for each population member. We 
then computed the likelihood of the observed data given the distribution generated 
by the 3,000 simulated choices for a given set of parameters. For each subsequent 
iteration, the population evolves towards a set of parameters that maximize the 
likelihood of the observed data using the procedures described by Mullen and 
colleagues72. We examined the evolution of the population over the 150 iterations 
and generations and found that the differential evolution algorithm settled on a 
set of best-fitting parameters well before 150 iterations in our datasets. The upper 
and lower bounds on the search space for each of the six parameters are listed in 
Supplementary Table 18. The ratings for taste and healthiness were z-scored across 
all available ratings of each type for the entire set of participants in each study.

Last, we also fit a standard DDM and several other alternative DDM 
formulations (Supplementary Table 1) to all datasets using the same procedures 
as the tDDM. The simulated choice sets from each model shown in Fig. 2 
were composed of 1,000 repetitions of each of the 673 unique taste and health 
combinations used across all four datasets.

We also fit the tDDM using two levels of resolution for the tastiness and 
healthiness ratings in the GFC and tDCS studies. The tastiness and healthiness 
ratings from these two studies were collected on a 426-point visual analogue 
scale. We initially fit the tDDM using the 426-point ratings scale. We also 
estimated the fits after first reducing the resolution to 10 equally sized bins (that 
is, 42.6 points per bin) for both taste and health. Both versions yielded very 
similar results, but the estimation proceeded considerably faster when using 
the binned ratings because this reduced the number of unique combinations 
of attributes and therefore the number of simulations required for the fitting 
procedure. We report the parameter values and results from the model with 
binned ratings for these studies.

Tests of parameter recovery. We generated simulated choices and reaction times 
by parameterizing the standard DDM and tDDM using the best-fitting parameters 
for each model estimated from the choices made by the participants in the 
baseline condition for all four studies. The simulated choice sets were based on 
these parameters and the tastiness and healthiness differences participants faced 
during every decision trial. Thus, the simulated choice sets matched the empirical 
data in terms of trial numbers and attribute difference distributions. Fitting these 
simulated choices allowed us to quantify the ability of both models to recover 
known parameter values within the context of our experimental datasets and the 
ability to distinguish between these models (Extended Data Fig. 1; Supplementary 
Fig. 1; Supplementary Table 1).

Testing taste versus healthiness influence by RT. In addition to parameter 
recovery tests, we used simulated choices to test how well each model reproduced 
choice and RT characteristics observed in the empirical data. A hierarchical 
Bayesian logistic regression analysis showed that the influence of taste and 
healthiness on choice outcomes differed as a function of RTs (equation (3); 
Supplementary Tables 2–4). Specifically, this analysis tested the influence of 
each attribute on trials in which the response was made before versus after the 
relative-starting-time advantage of the first attribute had on average elapsed. The 
population-level regressors are listed in equation (3) below.

Left¼ β0 þ β1HFirstþ β2InitAdv þ β3TDþ β4HDþ β5HFirst ´ InitAdv
þβ6HFirst ´TDþ β7HFirst ´HDþ β8InitAdv ´TDþ β9InitAdv ´HD

þβ10HFirst ´ InitAdv ´TDþ β11HFirst ´ InitAdv ´HDþ e

ð3Þ

In this equation, Left is a binary indicator of the choice outcome. HFirst is a 
dummy variable (1 = healthiness, 0 = taste) indicating which attribute is considered 
first (as determined by the tDDM). InitAdv is a dummy variable (1 = before, 0 = after) 
indicating whether the response was made before the median value of the sum of 
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RST difference plus non-decision time across participants had elapsed. This sum was 
equal to 1 s. One second was also the cut-off for the first quartile of the RT range, 
meaning that 25% of choices were made in 1 s or less. The abbreviations TD and 
HD stand for the differences in tastiness and healthiness, respectively, for each trial. 
Subject-specific coefficients were estimated for all regressors except HFirst because 
each participant had only one level of that regressor in his or her baseline condition.

We computed this regression using four different subsets of empirical or 
simulated data. Initially, we analysed the baseline choice trials pooled over all four 
studies (baseline = mouse response trials from MRT, day 1 trials from GFC, no-cue 
trials from IAC, pre-stimulation trials from tDCS). We then compared this model 
to two simpler models that omitted either (1) the dependency on RT (that is, 
InitAdv dummy variable) or (2) both the dependency on RT and the indicator for 
which attribute a participant considered first (that is, InitAdv and HFirst dummy 
variables). The full model explained the data better (Supplementary Table 4); 
therefore, we used it to examine choice patterns generated by the standard DDM 
and tDDM. The means and 95% HDIs for regression coefficients plotted in Fig. 3a 
are derived from estimating the hierarchical logistic regression in equation (3) to 
observed, time-varying (tDDM), standard (sDDM) or tastier starting-point-bias 
(bDDM) model-simulated choices for all participants in whom the |RST| 
parameter fell into the third quartile. We subset the data into this quartile so that 
timing differences between taste and healthiness would be big enough to have a 
clear effect in both the real and simulated data.

Correspondence of tDDM health delay estimates with MRT estimates. With 
their MRT analysis, Sullivan and colleagues16 were able to estimate to within a 
fraction (1/101) of each RT when health first became and remained significant 
in each choice (see Fig. 4b in that study). To compare our estimate (which is 
given in seconds and represents a mean value across all a given set of choices) 
to the MRT estimates, we also transformed the MRT estimates of start times for 
health into a mean estimate in seconds. Specifically, we took the mean of the 
estimated trial-wise health start time bins for each participant and multiplied 
it by the mean RT of the participants, then divided by 101. The MRT method 
was only able to estimate health start times for n = 18 out of 28) participants; 
therefore, we calculated the Bayesian equivalent of Pearson’s correlation 
coefficient between tDDM and mouse-tracking estimates of health start times 
in this subset of participants. Unless otherwise noted, all correlation coefficients 
reported in this paper represent the mean of the posterior distribution from a 
Bayesian correlation analysis. These Bayesian correlations were implemented 
in R and JAGS based on code published at http://doingbayesiandataanalysis.
blogspot.com/2017/06/bayesian-estimation-of-correlations-and.html, which 
accompanies the book by Kruschke73.

Relationship between RSTs and other tDDM parameters. To explain how 
individual differences in the RST for healthiness were related to the other tDDM 
parameters (Supplementary Table 6), we estimated the model specified in 
equation (4) below:

RST¼ β0 þ β1ωtaste þ β2ωhealth þ β3nDTþ β4Thrþ β5biasþ β6
study IAC þ β7studyMRT þ β8study tDCSþ β9bias ´ study IACþ β10
bias ´ studyMRTþ β11bias ´ study tDCSþ e

ð4Þ

Note that we interacted the bias parameter from the tDDM with a dummy 
variable indicating the study because the bias measures different answers across 
studies given the task designs (for example, left/right, eat/do not eat). The GFC 
study served as the baseline in this regression.

Out-of-sample tests for comparing the standard DDM and tDDM. We fit the 
standard DDM and tDDM with separate attribute consideration onsets to the 
odd-numbered choices from each participant and then compared the accuracy 
of the two models when predicting even-numbered choice outcomes. We used 
the squared error in predicting choice outcomes as our measure of accuracy74. 
The predicted outcome for each choice was computed as the mean outcome 
over 1,000 simulations from the standard DDM and tDDM. Choices for the 
food on the left or to eat the food in single-option decisions were set to a value 
of 1, and the alternative choice was set to a value of 0. Thus, the mean outcome 
from the 1,000 simulations for each choice represented the probability of a given 
outcome. The scoring rule for accuracy on each trial was then computed as: (True 
outcome – Prediction)2. We computed the squared error separately for tastier and 
less tasty choice outcomes and then took the mean error across these trials types to 
obtain a measure of balanced error.

Changes in tDDM parameters between instructed attention conditions. We 
compared tDDM parameters fit to choices during HC, TC and NC blocks using a 
Bayesian t-like test (implemented in the R package BEST v.3.1.0)75, which in turn 
relies on JAGS (v.3.3.0).

Modelling changes in behaviour under tDCS. We first fit the hierarchical 
regression model specified in equation (5) to the odd-numbered baseline trials 

in our tDCS dataset. Based on those fitted parameters, we generated predictions 
about the probability of health challenge success in even-numbered trials as a 
function of tDCS polarity (anodal, cathodal, sham), stimulation session (baseline, 
active), health difference, taste difference and participant identity. We then 
estimated equation (5) on all even-numbered trials for which the probability of 
health challenge success was predicted to be between 0.2 and 0.8.

To examine whether stimulation over the left dlPFC caused changes in health 
challenge success, we fit a Bayesian hierarchical logistic regression model to 
the tDCS dataset. The population-level regressors for this model are given in 
condensed notation in equation (5).

Health challenge success ¼ β0 þ β1TDþ β2HDþ β3stimulation onþ
β4cathodalþ β5anodalþ β6TD ´ stimulation on þ β7HD ´ stimulation onþ β8
TD ´ cathodalþ β9TD ´ anodalþ β10HD ´ cathodalþ β11HD ´ anodalþ β12
stimulation on ´ cathodalþ β13stimulation on ´ anodalþ β14
TD ´ stimulation on ´ cathodal þ β15TD ´ stimulation on ´ anodalþ β16
HD ´ stimulation on ´ cathodal þ β17HD ´ stimulation on ´ anodalþ e

ð5Þ

Here, TD and HD denote the absolute value of taste and healthiness, 
respectively, difference between foods for each trial, stimulation on is a dummy 
variable taking the value 1 under stimulation and 0 at baseline, and anodal and 
cathodal are the active stimulation conditions. The sham condition is the baseline 
in this regression. The model included the main effects of all regressors as well 
as the two-way and three-way interactions between attribute differences and 
stimulation type and session (that is, baseline versus stimulation on). The model 
also included subject-specific intercepts, stimulation effects and slopes for HD and 
TD (Supplementary Table 8).

Choice of sample sizes, randomization and blinding. The IAC and MRT studies 
were based on preexisting datasets and we included the participants analysed in 
the original papers. No statistical methods were used to predetermine sample 
sizes for the GFC study and tDCS studies, but our sample sizes were similar 
to those reported in relevant previous publications18,38,51. For the tDCS study, 
participants were randomly assigned to the stimulation condition. Experimental 
conditions in the tDCS and GFC studies were blocked. For the tDCS study, 
the baseline condition was always presented first to prevent any influence of 
potential tDCS after-effects. The food choice and gambling conditions in the GFC 
study were presented in random order. Data in the tDCS study were collected 
double-blind. Data analyses were performed with knowledge of the condition 
labels in all experiments.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data analysed in this paper are openly available on the Open Science 
Framework at https://osf.io/g76fn/. Additional data for the MRT experiments from 
Sullivan et al.16 are available at https://osf.io/jmiwn/.

Code availability
The code for fitting the diffusion models and running the other analyses is openly 
available on the Open Science Framework at https://osf.io/g76fn/.
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Extended Data Fig. 1 | Parameter recovery for the time-varying DDM. parameter recovery for the time-varying DDM with separate consideration onset 
times for tastiness and healthiness attributes. The plots in the first column show the distributions of all 272 generating and recovered relative weighting 
(a) and timing parameters (b). There was no significant difference between generating and recovered relative weighting (mean difference = 0.01, 95% 
HDI = [−0.36, 0.54], posterior probability of a difference > 0 = 0.662, Bayes factor = 0.140) or relative timing parameters (mean difference = −0.01, 
95% HDI = [−0.03, 0.01], posterior probability of a difference > 0 = 0.105, Bayes factor = 0.024). The panels in the second column show the correlations 
between the generating and recovered relative weighting (c) and timing parameters (d). The red dotted line indicates the x = y identity line. panel e) plots 
the error in relative weight recovery against the error in relative timing recovery. This plot shows that there is no significant correlation between the two 
types of error when fitting the model (r = − 0.1, 95% HDI = [−0.215; 0.018], posterior probability of observing a negative correlation = 0.95). The grey 
shaded area (panels c-e) signifies the 95% confidence interval.
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Extended Data Fig. 2 | Cumulative response time distributions for sDDM, tDDM and bDDM. Cumulative distributions for response times by participant 
type, choice outcome and data source. participants estimated to consider taste or health first are plotted in the top and bottom rows, respectively. 
Response times for choices in favour of (91) less healthy but more tasty (LH_MT), (2) more healthy but less tasty (MH_LT), or (3) both more healthy and 
more tasty (MH_MT) outcomes are shown in columns 1-3, respectively. Choices in favour of the option rated as less healthy and less tasty were rarely 
made (less than 5% of trials) and are omitted for clarity. Responses generated by human participants are shown in green lines. Responses generated 
by simulated agents using the best-fitting sDDM, tDDM, and bDDM parameters are shown in orange, purple, and magenta lines respectively. All three 
models can recreate the RT patterns in the empirical data equally well when choice outcomes align with the attribute participants consider first. However, 
the sDDM and bDDM both generate response times that are too fast relative to the empirical data when participants that consider taste first ultimately 
choose in favour of a more healthy, but less tasty option (row 1, column 2) or if participants that consider health first ultimately choose in favour of a less 
healthy, but more tasty option (row 2, column 1). In contrast, the tDDM is able to reproduce the observed response time distributions in these cases well.
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Extended Data Fig. 3 | Relative start time for all participants in each dataset. Relative start times in seconds for healthiness compared to tastiness for all 
participants in each study. positive values indicate that tastiness is considered before healthiness and negative values that healthiness is considered before 
tastiness. In each column every dot is a separate participant. The thick black horizontal bars represent within-study means and the rectangular bands 
indicate the 95% highest density intervals (HDIs). Dataset abbreviations: MRT = data from the computer-mouse response trials in Sullivan et al 2015; IAC 
= data from the natural choice condition in Hare et al 2011; GFC = newly collected data from the first session/day of an experiment combining gambles 
and food choices; TDCS = newly collected data from the pre-stimulation baseline choices in our tDCS experiment.
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Data collection Data were collected with Psychophysics Toolbox version 3.0.11 in Matlab. 
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Study description Quantitative experimental study

Research sample University undergraduate students from California Institute of Technology (datasets Sullivan et al. 2015 (MRT) and Hare et al. 2011 (IAC)), 
and University of Zurich (datasets GFC and TDCS); no representative samples because we studied basic choice processes that should not 
vary with demographics; for details on demographics of the 4 different datasets please see the methods section on pages 22-29; the MRT 
dataset is openly available at: https://osf.io/jmiwn/

Sampling strategy We randomly invited participants from an established database of research volunteers maintained at the University of Zurich for the 
newly collected datasets presented in this paper.  
We originally collected the data on the "gamble plus food choices" task (GFC) to test a hypothesis unrelated to the current paper. We 
collected data from 30-40 participants according to the common practice for preliminary behavioral experiments in our group. We simply 
re-used these data to test the accuracy of the model we develop in the current work in predicting choices made by the same participants 
two weeks apart.  
 
We aimed to collect at least 150 participants (i.e. 50 per condition) in our tDCS experiment because we expected the effects of tDCS on 
food choices to be more variable across participants than in our previous work pairing tDCS manipulations with monetary decisions and 
using 20-25 participants per condition (Ruff et al., 2013 Science; Raja-Beharelle et al., 2015 J Neuro). We expected greater variability  
because of the heterogeneity in both food preferences and self-control strategies and ability across individuals. Therefore, we doubled 
the number of participants per condition relative to our previous work.    

Data collection Data were collected with computerized behavioral paradigms; additional techniques: MRT used mouse-tracking as additional technique, 
the IAC dataset was collected while participants were undergoing fMRI, and the TDCS dataset was collected before and during 
transcranial direct current stimulation. No one besides the researcher(s) and the participants were present. The experiments MRT, IAC, 
and GFC were conducted without blinding (as there was no need) but fully incentivized to avoid experimenter demand effects, the TDCS 
experiment was conducted double-blind. 

Timing Information on data collection is not available for the MRT and IAC datasets. They are existing datasets from different teams that we 
reused in full here. Data were collected in April 2016 for the GFC study. Data for the TDCS study were collected from December 2014 to 
February 2016 . 

Data exclusions The exclusion criteria described in the Methods section were established a priori for the GFC and TDCS datasets. For the other two re-
used datasets, all data utilized in the original publications were included in our current analyses.   

Non-participation No participants dropped out or declined participation.

Randomization MRT, IAC and GFC did not have treatment groups. Participants for the TDCS study were randomly allocated to the anodal, cathodal and 
sham stimulation conditions and were blind to the treatment condition. The experimenters giving instructions to and mounting the 
electrodes on participants’ heads were also blind to the participants' stimulation condition.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Human research participants
Policy information about studies involving human research participants

Population characteristics Healthy young adults

Recruitment Participants in the novel datasets were drawn from a database of research volunteers maintained at the University of Zurich. 
Registration for this database is advertised with flyers on campus and brief presentations in lectures at the beginning of each 
term.  

Ethics oversight All participants provided written informed consent in accordance with the procedures of the Institutional Review Board of the 
California Institute of Technology, the Institutional Review Board of the Faculty of Business, Economics and Informatics at the 
University of Zurich, or the Ethics Committee of the Canton of Zurich. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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