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1 |  INTRODUCTION

In our daily activities, we often need to walk while interact-
ing with our environment in order to meet everyday goals. 
Walking requires the processing of both external and internal 
sensory information that help maintain action goals, reacting 

to changing environmental features, and readapting motor pro-
grams anytime unexpected events occur. Therefore, despite 
often perceived as undemanding, walking involves both sen-
sory and cognitive systems (Hausdorff, Schweiger, Herman, 
Yogev-Seligmann, & Giladi, 2008; Woollacott & Shumway-
Cook, 2002). During walking, our limited attentional resources 
have to be distributed between the motor and cognitive tasks, 

Received: 27 February 2020 | Revised: 25 August 2020 | Accepted: 26 August 2020

DOI: 10.1111/ejn.14956  

S P E C I A L  I S S U E  A R T I C L E

Alteration of brain dynamics during dual-task overground 
walking

Federica Nenna1  |   Cao Tri Do2  |   Janna Protzak3 |   Klaus Gramann4,5,6

© 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd

1Department of General Psychology, 
University of Padova, Padova, Italy
2Translational Neuromodeling Unit, 
Institute for Biomedical Engineering, 
University of Zurich & ETH Zurich, Zurich, 
Switzerland
3Junior research group FANS (Pedestrian 
Assistance System for Older Road User), 
Berlin Institute of Technology, Berlin, 
Germany
4Biological Psychology and 
Neuroergonomics, Berlin Institute of 
Technology, Berlin, Germany
5School of Computer Science, University 
of Technology Sydney, Sydney, NSW, 
Australia
6Center for Advanced Neurological 
Engineering, University of California, San 
Diego, CA, USA

Correspondence
Federica Nenna, Department of General 
Psychology, University of Padova, Via 
Venezia 8, 35131 Padova, Italy.
Email: federica.nenna@phd.unipd.it

Funding information
Berlin Mobile Brain/Body Imaging Lab 
(BeMoBIL); Ministry of University and 
Research

Abstract
When walking in our natural environment, we often solve additional cognitive tasks. 
This increases the demand of resources needed for both the cognitive and motor 
systems, resulting in Cognitive-Motor Interference (CMI). A large portion of neu-
rophysiological investigations on CMI took place in static settings, emphasizing the 
experimental rigor but overshadowing the ecological validity. As a more ecologi-
cally valid alternative to treadmill and desktop-based setups to investigate CMI, we 
developed a dual-task walking scenario in virtual reality (VR) combined with Mobile 
Brain/Body Imaging (MoBI). We aimed at investigating how brain dynamics are 
modulated by dual-task overground walking with an additional task in the visual 
domain. Participants performed a visual discrimination task in VR while standing 
(single-task) and walking overground (dual-task). Even though walking had no im-
pact on the performance in the visual discrimination task, a P3 amplitude reduction 
along with changes in power spectral densities (PSDs) were observed for discrimi-
nating visual stimuli during dual-task walking. These results reflect an impact of 
walking on the parallel processing of visual stimuli even when the cognitive task is 
particularly easy. This standardized and easy to modify VR paradigm helps to sys-
tematically study CMI, allowing researchers to control for the impact of additional 
task complexity of tasks in different sensory modalities. Future investigations im-
plementing an improved virtual design with more challenging cognitive and motor 
tasks will have to investigate the roles of both cognition and motion, allowing for a 
better understanding of the functional architecture of attention reallocation between 
cognitive and motor systems during active behavior.
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potentially causing a cognitive-motor interference (CMI) (for 
a review, Al-Yahya et  al.,  2011). This phenomenon has been 
widely investigated through dual-task walking paradigms 
and is indicated by a performance deterioration in the cogni-
tive and/or in the motor task. In the motor domain, decreased 
walking speed and increased stride time and variability were 
often observed (Beurskens, Steinberg, Antoniewicz, Wolff, & 
Granacher, 2016; De Sanctis, Butler, Malcolm, & Foxe, 2014; 
Malcolm, Foxe, Butler, & De Sanctis, 2015; Patel, Lamar, & 
Bhatt, 2014; Pizzamiglio, Naeem, Abdalla, & Turner, 2017; 
Plummer, Apple, Dowd, & Keith, 2015). Particularly for ad-
ditional visual tasks during walking, increased response times 
and higher error rates were registered (Beurskens et al., 2016; 
Patel et al., 2014; Plummer et al., 2015).

Recently, the neural foundations of dual-task walking have 
been addressed through Mobile Brain/Body Imaging (MoBI; 
Gramann, Ferris, Gwin, & Makeig, 2014; Gramann et al., 2011; 
Makeig, Gramann, Jung, Sejnowski, & Poizner, 2009). MoBI 
has been proposed as a method for imaging brain dynamics 
during active movement, allowing to gain deeper insights into 
the interplay of motor and cognitive processes. The general fea-
sibility of the MoBI concept has been demonstrated and applied 
to dual-task walking scenarios (e.g., Bradford, Lukos, Passaro, 
Ries, & Ferris, 2019; De Sanctis, Butler, Green, Snyder, & 
Foxe, 2012; De Sanctis et al., 2014; Debener, Minow, Emkes, 
Gandras, & De Vos, 2012; Gramann, Gwin, Bigdely-Shamlo, 
Ferris, & Makeig, 2010; Ladouce, Donaldson, Dudchenko, 
& Ietswaart, 2019; Pizzamiglio et al., 2017; Reiser, Wascher, 
& Arnau, 2019). However, particularly when investigating 
dual-task walking using secondary tasks that tax the visual 
modality, a large portion of mobile neurophysiological investi-
gations on CMI took place in artificial settings that used tread-
mill and fixed desktop setups. Only a few studies investigated 
the brain dynamics during overground walking but never in 
the visual domain (Debener et al., 2012; Ladouce et al., 2019; 
Pizzamiglio et  al.,  2017; Reiser et  al.,  2019). During natural 
overground walking, however, visual input is crucial when 
scanning the upcoming path and avoiding falls or collisions 
(Imai, Moore, Raphan, & Cohen, 2001; Nomura, Mulavara, 
Richards, Brady, & Bloomberg, 2005). Moreover, visual scan-
ning of the surrounding relies on and thus competes with the 
same resources that are necessary for performing secondary 
visual tasks (Wickens, 2002). Therefore, it is necessary to re-
place static setups with more realistic but controlled paradigms 
that better represent the central role of visual information for 
controlling ongoing gait and planning future movement in a 
changing environment.

1.1 | Neural indicators of CMI

Studies on event-related potentials (ERPs) investigating CMI 
mainly focused on the investigation of the P3 component, 

which is sensitive toward the amount of attentional re-
sources engaged to solve a task (Isreal, Chesney, Wickens, 
& Donchin, 1980a; Isreal, Wickens, Chesney, & Donchin, 
1980b; Polich, 2007). In a pioneering work, Gramann et al. 
(2010) analyzed the brain dynamics of participants during 
standing, slow, and fast treadmill walking, while attending 
to a visual oddball task. They demonstrated that the oddball 
P3 known from traditional desktop scenarios can be repli-
cated in paradigms allowing active walking. For the auditory 
domain, several studies demonstrated reduced posterior P3 
components when walking compared to standing or sitting 
reflecting reduced availability of resources for the cogni-
tive task (e.g., Debener et  al.,  2012; Ladouce et  al.,  2019; 
Reiser et al., 2019). To examine CMI in the visual domain, 
De Sanctis et al., (2014) observed a robust reduction in the 
P3 amplitude at centro-parietal regions in a visual Go/NoGo 
task during treadmill walking as compared to sitting. In the 
same condition, they observed a shorter P3 latency indicat-
ing an earlier onset of the processes related to the P3 when 
walking. These findings suggested that, for increasing task 
load, more conscious and effortful processing strategies were 
employed and a flexible redistribution of cognitive resources 
between the cognitive and motor tasks occurred. Moreover, 
a significant increase in P3 amplitudes was reported over 
fronto-central regions when walking briskly as compared to 
sitting, which was interpreted as an additional engagement 
of prefrontal resources to cope with the more cognitively 
effortful situation. In a follow-up study, shorter P3 latency 
and decreased P3 amplitudes were reproduced in young par-
ticipants performing a visual Go/NoGo task while walking 
compared to sitting (Malcolm et al., 2015). In this study, a 
topographical shift of the P3 toward more fronto-central sites 
was observed only in older participants. This finding was 
interpreted to reflect enhanced cognitive control by recruit-
ing additional frontal areas to compensate for an age-related 
cognitive decline.

This kind of resource redistribution during dual-task walk-
ing has also been associated with changes in the frequency 
domain. Several studies described theta (4–7 Hz) power in-
crease and alpha (8–12 Hz) power decrease during treadmill 
walking (Presacco, Goodman, Forrester, & Contreras-Vidal, 
2011; Wagner, Solis-Escalante, Scherer, Neuper, & Müller-
Putz, 2014; Seeber, Scherer, Wagner, Solis-Escalante, & 
Müller-Putz, 2014; Beurskens et al., 2016; Peterson & 
Ferris, 2018; but see Malcolm et al., 2015, reporting no dif-
ferences). In particular, Peterson and Ferris (2018) investi-
gated brain patterns related to balance perturbations while 
standing and walking on a treadmill and interpreted the 
higher theta power observed in their walking condition as an 
indicator for increasing balance difficulty. Furthermore, the 
alpha power decrease over sensorimotor areas during walking 
was interpreted to reflect differences in motor readiness, indi-
cating that a more cognitively engaging task was performed. 
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Similarly, Beurskens et al. (2016) observed a decrease in 
alpha power over fronto-central brain areas while walking on 
a treadmill associated with both cognitive and motor pertur-
bations. The authors interpreted this modulation as a func-
tion of an increased cognitive load during dual-task walking. 
In the higher frequency ranges, beta (12–30 Hz) power was 
demonstrated to have a role in attention-related processes for 
numerous thalamic and cortical centers of the visual system 
(Wróbel,  2000 for a review). In mobile participants during 
walking, beta suppression was reported to play a role in walk-
ing reflecting the motoric activity as an “active state” of the 
brain (Engel & Fries, 2010; Pizzamiglio et al., 2017; Seeber 
et  al.,  2014; Wagner et al., 2014). Paradigms contrasting 
treadmill walking with a non-movement condition revealed 
upper beta rhythms (>18  Hz) to be suppressed during the 
whole gait cycle as a function of the activation of sensorim-
otor areas (Presacco et al., 2011; Seeber et al., 2014). When 
comparing a single walking condition with diverse second-
ary tasks, a beta power increase was also observed both 
for higher motor and cognitive demands. Particularly, beta 
power increased over frontal regions (Beurskens et al., 2016) 
for a secondary motor task (holding two interlocked sticks) 
as compared to a secondary cognitive task (Go/NoGo task). 
Gamma power (>30 Hz) was shown to increase with greater 
postural instability (Slobounov, Cao, Jaiswal, & Newell, 
2009) and has been related to muscle activation during upper 
and lower limb movements (Brown,  2000; Mima, Steger, 
Schulman, Gerloff, & Hallett, 2000; Raethjen et al., 2008). 
Gait cycle–dependent modulations in the gamma band have 
been reported over the frontal, central, and parietal cortex of 
healthy walking adults (Gwin, Gramann, Makeig, & Ferris, 
2011). A tonic increased power in gamma frequencies was 
reported for walking when compared to standing (Peterson & 
Ferris, 2018) and for waking and performing a serial subtrac-
tion task compared to walking only (Marcar, Bridenbaugh, 
Kool, Niedermann, & Kressig, 2014), demonstrating that 
gamma modulations arise not only from motor activity itself 
but also from the execution of additional tasks while walking.

1.2 | Dual-task overground walking with 
tasks in the visual domain

The above-reported studies imply CMI for dual-task walk-
ing for a variety of additional cognitive tasks. The findings 
document a flexible re-deployment of attentional resources 
between the cognitive and the motor task when concurrently 
performed. However, most of the previous studies were 
conducted with treadmills and fixed displays, which allow 
for an accurate understanding of gait kinematics but are not 
ecologically valid. For instance, during treadmill walking, 
participants have to match their gait velocity to the speed 
of the treadmill to secure their position. Natural overground 

walking, in contrast, allows for varying walking speed and 
requires visual scanning of the upcoming terrain (Marigold & 
Patla, 2008). Therefore, it is associated with orienting move-
ments of the head and eyes that are absent when participants 
do not scan for relevant information in their environment. 
Moreover, real-world situations require divided attention 
over a wide area of the visual field decreasing detection and 
discrimination accuracy for increasingly eccentric infor-
mation (Carrasco, Evert, Chang, & Katz, 1995; Staugaard, 
Petersen, & Vangkilde, 2016). Increasing resource demands 
when walking might thus lead to decreasing detection accu-
racies for more eccentric visual information. Therefore, in-
vestigating the neural dynamics associated with more natural 
overground walking with ecologically valid visual scanning 
behaviors will provide new insights into the brain dynamics 
contributing to the foundation of human dual-task walking 
behaviors.

To overcome the restriction of previous studies, we cou-
pled virtual reality (VR) and mobile EEG to allow for in-
vestigation of CMI during more ecological valid dual-task 
overground walking with the requirement to process addi-
tional visual information. In particular, we simulated an ev-
eryday situation through VR in which people stood or walked 
freely while discriminating and responding to external visual 
stimuli appearing at different eccentricities. We expected 
higher perceived subjective mental load when walking with 
an additional visual task as compared to standing, accompa-
nied by a decrease in performance for the visual discrimina-
tion task (Beurskens et al., 2016; Patel et al., 2014; Plummer 
et al., 2015). Performance deterioration in the visual task was 
expected to be most pronounced for more peripherally as com-
pared to more centrally presented visual stimuli (Carrasco 
et al., 1995; Staugaard et al., 2016) in the dual-task condi-
tion. Regarding the physiological responses, we expected an 
earlier onset and a lower amplitude of a centro-parietal P3 
component evoked with visual stimuli reflecting a reallo-
cation of cognitive resources in the dual-task condition (De 
Sanctis et al., 2014; Malcolm et al., 2015). For the frequency 
domain, we expected higher theta and lower alpha power in 
the dual-task condition (Beurskens et al., 2016; Peterson & 
Ferris, 2018) along with changes in the beta rhythms and in-
creased gamma power (Gwin et al., 2010; Marcar et al., 2014; 
Pizzamiglio et al., 2017; Presacco et al., 2011).

2 |  MATERIALS AND METHODS

2.1 | Participants

Right-handed participants (n  =  25) with normal or cor-
rected to normal vision as well as normal color vision 
were recruited to take part in the experiment. All par-
ticipants reported to be in good health and free of any 
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neurological conditions. They also reported the absence 
of medication containing psycho/neuroleptics or use of 
intoxicants (alcohol, coffee, cigarettes) within the last 
24 hr prior to the experiment. Due to a misconnection of 
the technical apparatus, three participants were excluded 
from the analysis. The remaining sample included data 
from 22 participants: 6 women (age range: 20–31 years, 
M = 25.5, SD = 3.92) and 16 men (age range: 21–34 years, 
M = 27.2, SD = 4.48). Before the experiment, participants 
were asked to report their height in centimeters for adapt-
ing the virtual environment (height range for women: 
170–172 cm, M = 170.33 cm, SD = 0.83 cm; height range 
for men: 170–181 cm, M = 174.38 cm, SD = 4.15 cm). 
Specifically, the height of all the virtual objects was 
adapted and fixed to the height of the participant (right 
above the eye level) and not to the headset, such that 
the virtual environment was not affected by head move-
ment during locomotion. Only right-handed participants 
were recruited, and the walking direction was chosen to 
be counterclockwise in order to avoid possible effects of 
handedness on the turning behavior (Karim, Proulx, & 
Likova, 2016; Mohr & Bracha, 2004). The study was ap-
proved by the TU Berlin ethics committee. All partici-
pants were recruited through the local online participant 
portal, gave written informed consent, and obtained aca-
demic credits for compensation.

2.2 | Technical setup

To investigate the neural correlates of CMI, we im-
plemented a MoBI approach using the setup shown in 
Figure 1. It consisted of a 128 channels EEG MOVE sys-
tem (Brain Products GmbH), in combination with acti-
CAP (Easycap GmbH), and a VR headset (ACER WMR; 
2.89”, 2,880  x  1,440 resolution, refresh rate of 90  Hz, 
100° field of view with a weight of 440  g). The head-
set was tethered to a Zotac gaming computer (Zotac PC, 
Intel 7th Gen Kaby Lake processor, GeForce GTX 1,060 
graphics, 32GB DDR4-2400 memory support, Windows 
10 OS) placed in a backpack. The Zotac system was ex-
tended with two batteries that allowed swapping them 
approximately after three blocks of experimental session 
(circa 40 min) without shutting down the VR. Participants 
were projected into a virtual environment (VE) designed 
in Unity (2017.3). In addition, a prototype of VR-EEG 
adapters (Wenzel, 2018) was used to reduce the mechani-
cal pressure on frontal and occipital channels of the EEG 
cap induced by the VR goggles. The adapters further 
increased the signal-to-noise ratio by reducing headset 
movements accompanying locomotion. Both behavio-
ral and neural data streams were synchronized via Lab 
Streaming Layer (Kothe, 2014).

2.3 | Experimental procedure

The experiment took place at the Berlin Mobile Brain/Body 
Imaging Laboratories (BeMoBIL), with a dedicated room 
providing an experimental space of 150 m2 for participants 
to move around without restrictions. The virtual space pro-
vided an elliptical path that was 10.8 m long and 2.5 m wide. 
Data collection took place in one single experimental ses-
sion. During the training phase, participants were asked to 
walk along the oval path and to follow a red moving sphere 
(Figure 2). Prior to the experiment, each participant was able 
to adjust the speed of the sphere to their preferred natural 
walking pace using the controller in a training session. The 
speed was then kept constant during the experiment. When 
moving the head away from the virtual sphere, the sphere 
stopped moving and changed its color to black until par-
ticipants turned their heads back in line with the sphere. 
In this way, we controlled for participants’ head orienta-
tion and walking speed. In the second part of the training 
phase, participants were instructed to follow the sphere while 

F I G U R E  1  Overview of the technical setup for the MoBI 
experiment. The participant was equipped with a 128-channel EEG 
MOVE system and a VR headset (ACER Windows Mixed Reality) 
tethered to a Zotac gaming computer placed in a backpack. Moreover, 
two Windows Mixed Reality controllers were used for responding 
to the lateralized virtual stimuli
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performing a visual discrimination task. This part consisted 
of 15 trials with the aim of familiarizing with the task and the 
virtual environment.

2.4 | Experimental design

In the main experiment, participants performed a visual 
discrimination task while walking or standing with the 
movement conditions alternating in six blocks. The initial 
movement condition was counterbalanced across partici-
pants; half of the participants started with the standing con-
dition first while the other half started with the walking 
condition. Each block consisted of 240 trials displaying 
visual targets at different eccentricities while participants 
walked around the elliptoid path. Overall, 720 targets were 
presented per movement condition with a total of 1,440 
targets per participant. Between each block, participants 
were asked to take a break, allowing them to sit down for 
a few minutes, and to flip-up the VR headset. As the head-
set display could be flipped up without moving the head-
set position on the head, the position of electrodes was not 
affected.

As illustrated in Figure 2, a virtual green field was used as 
the background. The red sphere, controlling for the subject's 
walking speed, was placed centrally on the grey path and par-
ticipants were instructed to keep their gaze toward the sphere 
at all times to reduce head movement. A yellow cube (Yellow 
condition) or a blue cube (Blue condition) were presented for 
200 ms in the left (Left condition) or in the right (Right con-
dition) hemifield at 15° or 35° eccentricity (15° and 35° con-
dition, respectively). Target color, hemifield and eccentricity 

were randomized and counterbalanced. Participants had to 
press the trigger on the right controller whenever a blue cube 
was presented and the trigger on the left controller when a 
yellow cube appeared. If participants responded correctly 
within a 1.5 s time interval after stimulus presentation, the 
response was registered as ‘correct’; if an incorrect trigger 
was pressed, it was registered as ‘incorrect’ and if none of the 
triggers were pressed, the response was classified as ‘missed’. 
After each response, a 2000 ms time window elapsed before 
the presentation of the next stimulus. Task and instructions 
were identical for both the standing and the walking phase.

2.5 | EEG recording and preprocessing

EEG recordings were conducted with an actively amplified 
128-channel mobile EEG system (MOVE; Brain Products), 
with a sampling frequency of 1,000 Hz. Two EOG electrodes 
were placed under each eye to measure vertical eye move-
ments and EEG electrodes were placed equidistant according 
to a custom layout (Figure  4). Reference and ground elec-
trodes were placed over posterior leads, close to the standard 
P1 and P2 locations, respectively. Impedances of all scalp 
electrodes were kept below 10 Κohm. Raw data were pro-
cessed offline using MATLAB R2018a (MathWorks) and 
EEGLAB 14.1.2b toolbox (SCCN, University of California, 
2018). All preprocessing steps were conducted using the 
BeMoBIL Preprocessing Pipeline (Klug,  2019) which spe-
cifically aims to generalize and simplify the processing of 
continuous EEG data acquired from MoBI experiments. A 
schematic overview of the preprocessing pipeline can be 
found in Figure 3.

F I G U R E  2  First person view of the participant. A red sphere is placed centrally on the path controlling the walking pace. Next to it, 
two examples of targets for the visual discrimination task are shown: in the Left hemifield the Yellow target, in the Right hemifield the Blue 
target. Targets could appear in a randomized fashion in the left and right hemifield and at 15° or 35° of eccentricity at the same height of the 
participant. On the left, an illustration of the checkpoint that participants had to reach for starting the experiment
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The raw EEG data were first filtered to the range of 
0.2 Hz and 90 Hz using a finite impulse response (FIR) fil-
ter with zero phase and resampled to 250 Hz. Subsequently, 
bad channels were identified and removed by automated 
rejection using kurtosis (the threshold was set to 5 stan-
dard deviations (SDs) from mean kurtosis) and probability 
functions (with a threshold of 3 SDs from mean probabil-
ity distribution). Removed channels were interpolated with 
spherical interpolation and data were subsequently re-ref-
erenced to the average reference. This “precleaned” data-
set was screened for additional spikes and other artifacts 
(e.g., muscle activity, noise) by visual inspection. Then, 
for the identification and removal of eye blink artifacts, 
we utilized the procedure of adaptive mixture independent 

component analysis (AMICA, Hsu et  al.,  2018; Palmer, 
Kreutz-Delgado, & Makeig, 2012). To this end, the raw 
data were bandpass filtered to 1–90 Hz to improve the de-
composition to independent components (ICs) (Winkler, 
Debener, Müller, & Tangermann, 2015). The resulting de-
composition matrices representing the weights and spheres 
obtained from the AMICA procedure were applied on the 
“precleaned dataset” (described above) to allow for further 
component investigation in IC space. ICs representing eye 
movements (e.g. blinks) were removed based on visual 
inspection of their component activity as well as compo-
nent power spectra (Chaumon, Bishop, & Busch, 2015; 
Makeig, Bell, Jung, & Sejnowski, 1996). Additionally, 
prior to IC rejection, we performed plausibility testing of 

F I G U R E  3  Overview of the preprocessing pipeline for the continuous raw EEG data. The pipeline stream starts from the EEG row data and 
data processing was divided into two separated flows. First, as displayed on the left, the data were preprocessed and then manually cleaned before 
ICA decomposition. If the decomposition did not reveal clear dipolar components, the additional manual cleaning was done and ICA re-computed. 
In case of sufficiently clean ICA decompositions, the weights and spheres matrices were copied to the uncleaned dataset that was preprocessed in 
an identical fashion safe data cleaning, depicted in the right column. Finally, displayed in the middle column, ICs reflecting eye movements were 
rejected and a low-pass filter of 40 Hz was applied. Delay caused by RDA and Unity software was corrected and stimulus-locked epochs were 
created for analyzing both ERPs and PSDs
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our IC selection in terms of its equivalent dipole location 
to be certain that they did not reflect any brain activity. 
ICs located to the grey matter of the head model were kept 
(M = 114.18, SD = 3.01) while ICs located outside the gray 
matter were removed (M = 3.04, SD = 0.82).

After IC removal and back-projection to channel space, 
the dataset was further low-pass filtered at 40 Hz. Finally, the 
cleaned continuous dataset was epoched with onset of each 
visual stimulus with a prestimulus baseline of −200  ms to 
1,000 ms after stimulus presentation, and a baseline correc-
tion was performed based on the prestimulus interval for each 
channel and trial. During this step, we additionally accounted 
for a constant temporal delay of 15 ms that was caused by the 
Brain Vision RDA interface, the WIFI (MOVE) transmission, 

and an additional delay resulting from the Unity software 
which was demonstrated to last 20 ms on average.

2.6 | Statistical analysis

In the following sections, the standing condition is referred to as 
“Single-task” condition, and the walking phase is referred to as 
“Dual-task” condition. Besides differences between Single- and 
Dual-task (factor: ‘Task’), we investigated the potential impact 
of lateralized stimulus presentation on behavioral and brain re-
sponses (factor: ‘Hemifield’) as well as the potential impact of 
the target color (factor: ‘Target’). Moreover, we investigated 
the impact of stimulus eccentricity (factor: ‘Eccentricity’). 

F I G U R E  4  Grand mean ERPs and violin distribution of selected P3 amplitudes. In the grand mean ERPs, the shaded area around each 
component represents the standard deviation, the gray area indicates the 300–600 ms window where the maximum peak was detected, while the 
yellow area highlights a smaller time window comprising the maximum peak plus and minus 40ms where the amplitude was averaged and used 
for analysis. Additionally, the solid line indicates the averaged response time in the Single-task, while the broken line in the Dual-task. The subject 
distributions of the resulting P3 amplitudes are shown in the violin plots on the sides. The customized location of each of the midline channels is 
indicated in the central headmaps
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All statistical analyses were conducted using repeated meas-
ures ANOVA. When sphericity assumptions were violated in 
the Mauchly's test of sphericity (Mauchly, 1940), the p-values 
were adjusted following the Greenhouse-Geisser correction 
(Greenhouse & Geisser,  1959). Additionally, we performed 
post hoc tests using the Bonferroni method (Bonferroni, 1936) 
to correct for multiple comparisons. This statistical procedure 
was applied to analyze all the dependent measures reported in 
the results section.

2.6.1 | NASA TLX

To investigate the perceived workload, each participant was 
asked to fill in the NASA TLX (NASA Task Load Index; Hart 
& Staveland, 1988) questionnaire after the third and the fourth 
experimental block, thus, after a Single-Task and after a Dual-
Task phase, dependent on the initial starting condition. The total 
workload assessed by the questionnaire was divided into the 
six subjective subscales (‘Items’): mental demand, physical 
demand, temporal demand, performance, effort, and frustra-
tion. We used the questionnaire to assess whether the walking 
activity had an influence on the subjective mental load. Single 
items were also analyzed to investigate a potential impact of 
the movement condition. Therefore, a 2 × 6 repeated measures 
ANOVA for factors ‘Task’ and ‘Items’ was computed.

2.6.2 | Performance

Three 2 × 2 × 2 × 2 repeated measures ANOVAs were cal-
culated to analyze reaction times, percentage of misses, and 
percentage of incorrect responses. For all three dependent 
variables, we tested the same within-subject factors: ‘Task’ 
(Single- versus. Dual-task), ‘Eccentricity’ (15° versus. 35°), 
‘Hemifield’ (Left versus. Right), and ‘Target’ (Blue versus. 
Yellow). Reaction times were defined as the time between 
stimulus onset and button press and analyzed only for correct 
response trials. Accuracy in task performance was operation-
alized through the number of missed and incorrect response 
trials over the total number of trials that remained after arti-
fact correction during the EEG preprocessing. This secured 
identical trials to enter the performance and EEG statistics. 
Missed trials were defined as missing responses within the 
1.5 s after the stimulus onset, and incorrect trials as a devia-
tion from required response pattern (wrong button response).

2.6.3 | ERPs

The P3 component evoked by the visual discrimination task 
was analyzed for the midline electrodes of the custom layout 
that were closest to the standard midline locations (Figure 4). 

These locations are denoted with an apostrophe (Fz’, FCz’, 
CPz’, Pz’, POz’, Oz’). From this, the centro-parietal regions, 
where the P3 maximum is usually observed, as well as brain 
activity at more frontal and occipital regions were investi-
gated in terms of amplitude and onset time (latency). To this 
end, the individual maximum peak within a time window 
from 300 to 600 ms was detected and the P3 amplitude (in 
microvolts) was computed as the average comprising the 
maximum peak plus/minus 40ms. To have a more accurate 
estimate of the P3 peak amplitude, the same procedure was 
repeated with different amplitude windows (maximum peak 
±10, 20, 30, and 40 ms). For the final analyses, an 80 ms 
range (maximum peak ±40  ms) was chosen as the results 
revealed the same direction of effects and the longer time 
window was more suitable for including a relatively smeared 
P3 component. P3 latency (ms) and amplitude (µV) means 
were analyzed in a full-factorial design (2 × 2 × 2 × 2 × 6) 
with ‘Task’ (Single- versus. Dual-task), ‘Eccentricity’ (15° 
versus. 35°), ‘Hemifield’ (Left versus. Right), ‘Target’ (Blue 
versus. Yellow), and ‘Channel’ (Fz’, FCz’, CPz’, Pz’, POz’, 
Oz’) as repeated measure factors. The effects of the factors 
‘Channel’ and ‘Task’ are in the focus of the present study 
and are thus the only effects described in detail in the results 
and discussion section. However, the complete results are re-
ported in Table S1. In addition, the P3 signal-to-noise ratio 
(SNR) was calculated for each of the midline channels divid-
ing the amplitude of the ERP maximum in the P3 time range 
(300–600 ms) by the standard deviation in the prestimulus 
interval (Debener, Hine, Bleeck, & Eyles, 2008). Finally, 2D 
reconstructed topographic maps showing the interpolated 
voltage distribution over 128 electrodes were computed for 
the P3 time window (300–600 ms) and the ERP voltage ac-
tivity was averaged across 50 ms time intervals in order to 
illustrate ERP differences between Task conditions in time.

2.6.4 | PSDs

For the Power Spectral Density (PSD) analysis, spectral 
power (µV2/Hz) in the 4–8 Hz (theta), 8–10 Hz (lower alpha), 
10–12  Hz (upper alpha), 12–30  Hz (beta), and 30–40  Hz 
(gamma) band were extracted from the same stimulus-locked 
epochs used for the ERPs analysis and averaged across each 
condition. Central midline electrodes (Fz’, FCz’, CPz’, Pz’, 
POz’, Oz’) were analyzed in a 2 × 2 × 2 × 2 × 6 repeated-
measures ANOVA computed separately for each defined 
frequency band with the factors ‘Task’ (Single- versus. Dual-
task), ‘Eccentricity’ (15° versus. 35°), ‘Hemifield’ (Left ver-
sus. Right), ‘Target’ (Blue versus. Yellow), and ‘Channel’ 
(Fz’, FCz’, CPz’, Pz’, POz’, Oz’). Given our hypotheses, the 
presentation of results focuses only on the effects of the fac-
tors ‘Channel’ and ‘Task’ for each of the frequency bands. 
The complete results are reported in Tables S2 and S3).
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3 |  RESULTS

3.1 | Subjective measures

3.1.1 | NASA TLX

A 2x6 repeated-measures factorial ANOVA was com-
puted over the factors ‘Task’ and ‘Items’ for analyzing the 
NASA TLX subscales. The analysis did not yield any sig-
nificant main effect for ‘Task’ or ‘Items’. Only the interac-
tion between ‘Task’ and ‘Item’ was statistically significant 
(F5,105 = 2.766, p = .031, η2p = 0.116). The data revealed a 
tendency for higher ratings regarding the mental, physical, 
and temporal demand in the Dual-Task condition while there 
was a tendency toward higher performance, effort, and frus-
tration scores in the Single-task situation. However, corrected 
post hoc tests did not reveal significant differences between 
the conditions (Single-Task versus. Dual-Task) for single 
items.

3.2 | Performance measures

3.2.1 | Reaction time

The repeated measures factorial ANOVA (2 × 2 × 2 × 2) 
computed for the factors ‘Task’, ‘Eccentricity’, ‘Hemifield’, 
and ‘Target’ did not yield a significant main effect of ‘Task’ 
on response times. However, a significant main effect for the 
factor ‘Eccentricity’ was observed (F1,21 = 99.3, p <  .001, 
η2p = 0.825) revealing increased reaction times for stimuli 
appearing at 35° eccentricity as compared to 15° eccentric-
ity. Significant effects were observed also for the factors 
‘Target’ (F1,21 = 8.04, p = .010, η2p = 0.277) and ‘Hemifield 
(F1,21 = 8.77, p = .007, η2p = 0.295), and for their interac-
tion (F1,21 = 43.24, p <  .001, η2p = 0.673). Post hoc com-
parisons for the interaction between ‘Target’ and ‘Hemifield’ 

showed increased reaction times when responding with the 
left hand to Yellow targets that appeared in the Right hemi-
field as compared to the same targets that appeared in the Left 
hemifield (p < .001), and compared to Blue targets that ap-
peared in the Right hemifield and that were responded to with 
the right hand (p <  .001). Similarly, the reaction time was 
longer for responses with the right hand to Blue targets when 
they appeared in the Left hemifield as compared to the same 
targets when appearing in the Right hemifield (p < .001), and 
to Yellow targets appearing in the Left hemifield (p = .013). 
Finally, reaction times were about 23ms longer when re-
sponding to Yellow targets with the left hand appearing in the 
Left hemifield compared to responding to Blue targets with 
the right hand appearing in the Right hemifield (p <  .001). 
Reaction time means and standard deviations for ‘Task’, 
‘Eccentricity’ and ‘Target’ by ‘Hemifield’ are reported in 
Table 1.

3.2.2 | Accuracy

Two repeated measures factorial ANOVAs (2 × 2 × 2 × 2) 
over ‘Task’, ‘Eccentricity’, ‘Hemifield’, and ‘Target’ were 
calculated for the percentage of misses and percentage of 
incorrect responses. The analysis of response accuracy 
revealed no significant main effect of ‘Task’ on the per-
centage of incorrect trials or the percentage of missed tri-
als. However, a significant main effect of ‘Eccentricity’ 
for the number of missed targets (F1,21  =  5.94, p  =  .024, 
η2p = 0.221) and incorrect responses (F1,21 = 8.35, p = .009, 
η2p = 0.285) was found. A higher percentage of incorrect 
responses and missed stimuli was observed when stimuli 
appeared more peripherally as compared to more centrally 
presented stimuli. Moreover, the analysis of incorrect re-
sponses demonstrated a significant interaction between the 
factors ‘Target’ and ‘Hemifield’ (F1,21 = 20.52, p <  .001, 
η2p  =  0.494). Specifically, significant differences were 

T A B L E  1  Response time and accuracy rate

Factor Levels
RT (ms) 
(Mean ± SD)

N. of incorrect 
(Mean ± SD)

% of incorrect 
(Mean ± SD)

N. of missed 
(Mean ± SD)

% of missed 
(Mean ± SD)

Task Single-task 501.18 ± 69.7 7.32 ± 7.60 4.19 ± 4.34 1.47 ± 2.69 0.84 ± 1.53

Dual-task 506.33 ± 79.9 7.23 ± 8.55 4.07 ± 4.74 2.86 ± 6.29 1.65 ± 3.66

Eccentricity 15° 495.75 ± 72.7 6.36 ± 6.64 3.57 ± 3.58 1.34 ± 2.58 0.77 ± 1.45

35° 511.76 ± 76.6 8.18 ± 9.23 4.69 ± 5.28 2.99 ± 6.31 1.72 ± 3.68

Target × Hemifield Yellow Right 522.70 ± 75.9 7.55 ± 8.41 4.35 ± 4.88 2.39 ± 6.34 1.39 ± 3.85

Yellow Left 500.4 ± 75.85 4.77 ± 3.98 2.68 ± 2.24 2.24 ± 3.62 1.29 ± 2.08

Blue Left 514.9 ± 72.04 11.8 ± 10.9 6.73 ± 6.01 1.95 ± 3.68 1.14 ± 2.06

Blue Right 477.01 ± 68.9 4.95 ± 5.12 2.75 ± 2.67 2.08 ± 5.40 1.18 ± 2.99

Note: Conditions highlighted in grey represent incongruent hand-hemifield response.
Abbreviations: N., number; RT, reaction time.



10 |   NENNA Et Al.

observed when detecting Blue targets (with the right hand) 
in the Left hemifield as compared to detecting the same tar-
gets (with the right hand) in the Right hemifield (p < .001) 
and Yellow targets (with the left hand) in the Left hemifield 
(p < .001). At the same time, detecting Yellow targets (with 
the left hand) in the Right hemifield led to significantly more 
incorrect trials as compared to detecting the same Yellow 
targets (with the left hand) in the Left hemifield (p = .036) 
and Blue targets (with the right hand) in the Right hemifield 
(p  =  .007). Finally, detecting Yellow targets with the left 
hand in the Right hemifield yielded a higher percentage of 
incorrect responses when compared with detecting Blue tar-
gets with the right hand in the Left hemifield (p = .007). In 
light of the experimental design, these findings reflect the 
congruent and incongruent hand-hemifield response trials. 
Descriptive statistics of response trial numbers and percent-
ages are reported in Table 1.

3.3 | Event-related potentials

3.3.1 | P3 signal-to-noise ratio (SNR)

Results from the SNR calculation show that the SNR was sig-
nificantly lower for electrode POz’ compared to all other mid-
line electrodes (POz’- FCz’: p = .04; POz’- CPz’: p = .003; 
POz’- Oz’: p = .04) except for channels FCz’ (p = .19) and 
Pz’ (p = .24).

3.3.2 | P3 Latency

The means of the P3 latencies (in ms) were analyzed in a re-
peated measures factorial ANOVA design (2 × 2 × 2 × 2 × 6) 
over ‘Task’, ‘Eccentricity’, ‘Hemifield’, ‘Target’, and 
‘Channel’. Focusing on the factors of interest for the present 

study (‘Channel’ and ‘Task’), a significant main effect 
was observed only for the factor ‘Channel’ (F5,105  =  7.11, 
p =  .003, η2p = 0.253) revealing the shortest P3 latency at 
Fz’ (M = 414.2; SD = 76.1) and increasing latencies at cen-
tral, parietal, and occipital sites. Post hoc test revealed that 
the P3 peaked significantly earlier at Fz’ as compared to CPz’ 
(M = 438.2; SD = 68.7), Pz’ (M = 468.1; SD = 89.1), POz’ 
(M = 477.2; SD = 105), and Oz’ (M = 464.3; SD = 83.9; 
all ps < .001). An earlier P3 maximum was also observed at 
FCz’ (M = 423.6; SD = 75.9) as compared to CPz’, Pz’, and 
Oz’ (all ps < .001), and at CPz’ as compared to Pz’, POz’, 
and Oz’ (all ps < .001). No significant effect was found for 
the factor ‘Task’ (F1,21  =  2.63, p  >  .1, η2p  =  .112) or for 
its interaction with the factor ‘Channel’ (F5,105 = 1.4, p > .2, 
η2p = .063).

3.3.3 | P3 amplitude

The 2x2x2x2x6 repeated measures factorial ANOVA com-
puted over the factors ‘Task’, ‘Eccentricity’, ‘Hemifield’, 
‘Target’, and ‘Channel’ yielded significant main ef-
fects for the factors ‘Channel’ (F5,105  =  11.07, p  <  .001, 
η2p  =  0.345) and ‘Task’ (F1,21  =  14.16, p  =  .001, 
η2p  =  0.403). These main effects were qualified by their 
interaction (F5,105 = 4.053, p = .009, η2p = 0.162). Post hoc 
test showed significant differences in P3 amplitude between 
the two tasks for channels CPz’ (p = .011), Pz’ (p < .001), 
and Oz’ (p < .001). A strong P3 amplitude reduction was 
observed in all posterior electrodes in the Dual-Task as 
compared to the Single-task condition (CPz’ Single-Task: 
M = 5.56, SD = 2.29; Dual-Task: M = 5.07, SD = 2.46; 
Pz’ Single-task: M = 3.2, SD = 2.41; Dual-Task: M = 2.62, 
SD = 2.64; Oz’ Single-task: M = 3.96, SD = 2.31; Dual-
Task: M = 3.34, SD = 2.13), which can be seen in the topo-
graphic changes over time (Figure 5).

F I G U R E  5  Topographical distribution of P3 ERP voltage activity across the scalp. The activity was averaged through 50 ms time intervals 
covering the window of 300-600ms for Single- and Dual-task. The customized location of the analyzed midline channels is indicated with dots
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In addition, but not in the focus of interest for this study, 
significant effects were observed also for the factor ‘Target’ 
(F1,21 = 5.54, p = .028, η2p = 0.209), for the interaction ‘Target’ 
by ‘Hemifield’ (F5,105 = 5.04, p = .036, η2p = 0.194), and for 
the three-way interaction between ‘Target’, ‘Hemifield’, and 
‘Task’ (F1,21 = 7.6, p = .012, η2p = 0.266). As revealed by 
post hoc comparisons, the differences in P3 amplitude linked 
to congruent and incongruent hand-hemifield response con-
ditions were observed only in the Dual-task. Within this task 
condition, a lower P3 amplitude was observed when detect-
ing Blue targets in the Left hemifield and responding with the 
right hand as compared to responding to the same targets in 
the Right hemifield but had to respond with the right hand 
(p < .001) and responding with the left hand to Yellow targets 
that appeared in the Left hemifield (p  <  .001). Finally, re-
sponding with the left hand to Yellow targets that appeared in 
the Right hemifield led to significantly lower P3 amplitudes 
as compared to responding with the left hand to the same 
Yellow targets in the Left hemifield (p = .046) and respond-
ing with the right hand to Blue targets appearing in the Left 
hemifield (p = .005).

3.4 | Power spectral densities

3.4.1 | Theta

A repeated measures factorial ANOVA (2 × 2 × 2 × 2 × 6) 
over the within-subject factors ‘Task’, ‘Eccentricity’, 
‘Hemifield’, ‘Target’, and ‘Channel’ was computed for ana-
lyzing each defined frequency band. Focusing on the factors 
of interest for the present study, significant main effects were 
observed in the theta frequency band (4–8 Hz) for the factors 
‘Channel’ (F5,105 = 12.79, p < .001, η2p = 0.379) and ‘Task’ 
(F1,21 = 39.98, < 0.001, η2p = 0.656). In addition, a signifi-
cant interaction effect between ‘Channel’ and ‘Task’ was 
observed (F5,105 = 3.42, p =  .017, η2p = 0.140), revealing 
a significantly lower theta power in the Single-task as com-
pared to the Dual-Task condition for all the midline chan-
nels Fz’ (p <  .001), FCz’ (p <  .001), CPz’ (p <  .001), Pz’ 
(p < .001), POz’ (p < .001), and Oz’ (p < .001).

3.4.2 | Lower alpha

Significant results for the factor ‘Channel’ (F5,105  =  9.05, 
p < .001, η2p = 0.301) and for its interaction with the factor 
‘Task’ (F5,105 = 4.59, p = .011, η2p = 0.180) were found for 
the lower alpha frequency range (8–10 Hz). Post hoc analy-
sis revealed lower alpha power in the Dual-Task condition 
as compared to the Single-task condition, reaching signifi-
cance at channels CPz’ (p = .026), Pz’ (p = .018), and POz’ 
(p < .001) but not Fz’, FCz’, and Oz’.

3.4.3 | Upper alpha

In the 10–12 Hz range, significant effects were only found 
for ‘Channel’ (F5,105  =  3.62, p  =  .018, η2p  =  0.147). The 
interaction ‘Channel’ x ‘Task’ also reached significance 
(F5,105 = 4.2, p = .014, η2p = 0.167), revealing a significantly 
lower average power for the upper alpha band in the Dual-
Task condition as compared to the Single-task condition for 
electrodes Fz’ (p < .001), FCz’ (p < .001), CPz’ (p < .001), 
and Pz’ (p = .024).

3.4.4 | Beta

PSD differences in the beta frequency band (12–30 Hz) were 
observed, with significant main effects of interest for the fac-
tors ‘Channel’ (F5,105 = 10.72, p <  .001, η2p = 0.338) and 
‘Task’ (F1,21 = 4.6, p = .044, η2p = 0.180). A significant inter-
action effect for the same factors also emerged (F5,105 = 9.16, 
p < .001, η2p = 0.304). Post hoc tests revealed a significant 
lower power in the beta band for the Single-task as compared 
to Dual-Task for Pz’ (p < .001), POz’ (p < .001), and Oz’ 
(p < .001), and the opposite trend in CPz’ (p < .001).

3.4.5 | Gamma

Power in the gamma frequency band (30–40 Hz) yielded sig-
nificant main effects for the factors ‘Channel’ (F5,105 = 14.8, 
p < .001, η2p = 0.120) and ‘Task’ (F1,21 = 21.9, p < .001, 
η2p = 0.167), and also for their interaction (F5,105 = 28.05, 
p  <  .001, η2p  =  0.205). Post hoc comparisons revealed a 
significantly higher gamma power when comparing the 
Dual-Task with the Single-task conditions for all midline 
electrodes: Fz’ (p < .001), FCz’ (p < .001), CPz’ (p < .001), 
Pz’ (p < .001), POz’ (p < .001), and Oz’ (p < .001).

4 |  DISCUSSION

The present study was designed to give further insights into 
the human brain dynamics of dual-task walking, particularly 
when the cognitive task taxes the same visual resources that 
are also required for the planning and control of natural over-
ground walking. To this end, we used a visual discrimination 
task in VR and analyzed the impact of dual-task walking on 
cognitive performance and brain dynamics using a MoBI ap-
proach. The head-mounted VR allowed for a dynamic pres-
entation of stimuli providing higher ecological validity while, 
at the same time, ensuring control of potential confounding 
factors which would be present in the real world, including 
visual and auditory stimuli that are not directly related to the 
task. In this way we were able to address a relevant aspect of 



12 |   NENNA Et Al.

mobile cognition which is resource conflicts during walking 
when additional stimuli in different areas of the visual field 
have to be processed.

4.1 | Subjective measures

Our results did not reveal significant differences in the per-
ceived mental load between the Single-task and Dual-Task 
conditions. Therefore, the overall results from the NASA 
TLX reflected a comparable workload for the Dual-Task 
and the Single-task conditions. Only a tendency for higher 
mental, physical, and temporal demand in the Dual-Task 
and a tendency toward higher performance, effort, and frus-
tration scores in the Single-task condition were observed. 
However, none of the single items reached significance when 
a Bonferroni correction was applied. The absence of any dif-
ferences experienced in the two conditions might have been 
due to the secondary task, which, arguably, was particularly 
easy for the young healthy population under investigation. 
Nonetheless, it is of interest to point out that even for such a 
low-demanding cognitive task that did not reveal any distinc-
tion in perceived mental load, the brain dynamics revealed 
systematic task-related differences.

4.2 | Performance measures

The absence of a main effect of the factor ‘Task’ for all de-
pendent measures of performance likely reflects the relatively 
low complexity of the additional cognitive task. Interestingly, 
the 1.65% of missed trials were counted in the Dual-Task 
condition, in contrast to the 0.84% of missed trials observed 
in the Single-task condition (Table 1). Even though this is a 
clear tendency for a behavioral cost induced by the dual-task 
walking requirements, this trend failed to reach significance.

The hypothesis regarding the impact of the target ec-
centricity was supported. Reaction times were significantly 
slower when responding to stimuli appearing at 35° as com-
pared to 15° eccentricity. In addition, a higher miss rate and a 
higher rate of incorrect responses were observed for stimuli at 
35° eccentricity as compared to those presented at 15° eccen-
tricity. These findings indicate that the position of a salient 
and attention demanding stimulus can impact visual infor-
mation processing with higher accuracy and faster responses 
in the central visual field. Previous studies already demon-
strated such an eccentricity effect in vision and attention 
(Carrasco et al., 1995; Staugaard et al., 2016). Some argue 
that the effect can be explained by the neurophysiological 
differences between foveal and peripheral vision (Carrasco 
& Frieder, 1997). Others state that this could reflect a cen-
tral bias in the allocation of attentional resources (Brown, 
Halpert, & Goodale, 2005; Wolfe, O’Neill, & Bennett, 1998). 

The eccentricity effect was observed in our novel virtual du-
al-task walking paradigm as well, proving this approach to 
replicate more traditional laboratory setups during natural 
overground walking while contrasting with recent results re-
ported by Cao and Händel (2019).

Additionally, an interaction effect between ‘Target’ and 
‘Hemifield’ was found both for reaction times and incor-
rect responses. This can be explained with the Simon effect 
(Simon,  1969) that predicts increased reaction times and a 
higher percentage of incorrect responses when targets have 
to be responded to with an incongruent hand-hemifield re-
sponse assignment (Yellow-Right or Blue-Left) as compared 
to the conditions with congruent hand-hemifield responses 
(Yellow-Left or Blue-Right).

4.3 | Event-related potentials

Even though the performance measures did not provide any 
direct evidence for a main effect of increased effort in the 
Dual-Task condition, the ERP results clearly indicated differ-
ences in neural processing between the Single- and the Dual-
Task. Indeed, a significant impact of the ‘Task’ condition 
was observed for the P3 amplitude, which decreased in the 
Dual-Task as compared to the Single-task (Figure 4). These 
effects differed topographically and were most pronounced 
over posterior leads (CPz’, Pz’, Oz’). As indicated by the 
scalp topographies (Figure 5), the evoked potential reached 
the maximum voltage over central and posterior areas at 400–
500ms in both Single- and Dual-task, with higher positivity 
in the Single-task. Moreover, the P3 activity appeared to be 
more sustained in the Single-task, while it rapidly decreased 
in the Dual-task. These findings replicated previous results 
on P3 amplitude reductions in dual-task walking scenarios 
(De Sanctis et al., 2014; Malcolm et al., 2015). In contrast to 
previous reports, the P3 onset latency did not differ between 
Single- and Dual-task conditions. Irrespectively to the task 
load, the latency of the P3 was observed to increase from 
frontal to occipital sites.

Furthermore, it is important to note that the EEG record-
ings at POz’ were particularly noisy and thus difficult to 
interpret. The straps of the Mixed Reality goggles were situ-
ated precisely over this electrode, likely inducing significant 
pressure and mechanical noise. This was confirmed by the 
significantly lower SNR observed at POz’ as compared to all 
other midline electrodes except for channels FCz’ and POz’. 
Moreover, the lower SNR over POz’ is consistent with the 
reduced activity shown in the scalp maps of Figure 5, which 
covers posterior leads and extends horizontally in both hemi-
spheres, where the headset straps were situated. It is thus rea-
sonable to assume that the ERPs at POz’ were compromised 
by the constant mechanical pressure of the VR headset, mak-
ing it difficult to detect reliable peak onset latencies.
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F I G U R E  6  Power Spectral Densities (PSDs) extracted from EEGLAB for each of the midline channels are depicted relative to the ‘Task’ 
condition. All the spectra were divided into five bands (theta: 4–8 Hz; lower alpha: 8–10 Hz, upper alpha: 10–12 Hz; beta: 12–30 Hz; gamma: 30–
40 Hz), independently analyzed through five 2x2x2x2x6 repeated measures ANOVAs. The shaded area around the means represents the confidence 
interval (CI) of 0.95. Bands highlighted in grey gave yielded significant effects and are complemented by stars indicating the significance level of 
the statistical test (*p ≤ .05; **p ≤ .01; ***p ≤ .001)
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Finally, the same Simon effect (Simon, 1969) found in re-
action times and response accuracy was observed for the P3 
component as well. A smaller P3 amplitude was observed for 
incongruent hand-hemifield responses (Blue Left and Yellow 
Right) in contrast to congruent responses (Blue Right and Yellow 
Left). These results have repeatedly been observed in previous 
static setups (Melara, Wang, Vu, & Proctor, 2008; Ragot & 
Renault, 1981; Zhou, Zhang, Tan, & Han, 2004) and are here 
replicated for a naturalistic walking task. Interestingly, as shown 
by the three-way interaction between ‘Task’, ‘Target’, and 
‘Hemifield’, the incongruence of hand-hemifield response did 
not affect P3 amplitude within the Single-task but only within 
the Dual-task condition. These results indicate a greater diffi-
culty and resource conflict for the Dual-task walking condition 
when participants needed to respond to targets with an incon-
gruent hand-hemifield assignment. Due to increased resources 
necessary for walking, the additional button press response cre-
ated stronger interference compared to the standing condition 
(Ruffieux, Keller, Lauber, & Taube, 2015). Such a resource 
conflict is reduced for the Single-task in which the Simon effect 
was thus marginalized. While the Simon effect in our setup is 
noteworthy, the more important finding is the observed impact 
of the hand-hemifield incongruence on brain dynamics only 
during natural overground walking but not while standing.

4.3.1 | Power spectral densities

Gradually proceeding from lower to higher frequency bands 
(Figure 6), the present study replicated an inverse modulation 
of theta and alpha activity related to the task demand. An in-
creased theta power in the Dual- as compared to the Single-
task was observed over frontal and centro-parietal areas 
spreading out to occipital sites. Moreover, a decreased alpha 
power has been observed as well, which was prominent from 
central sites up to parieto-occipital regions for lower alpha fre-
quencies, and from frontal up to parietal regions for the upper 
alpha frequency range. These modulations have previously 
been observed when contrasting walking with a static condi-
tion (Pizzamiglio et  al.,  2017; Presacco et  al.,  2011; Seeber 
et al., 2014) and also with a dual-task walking (Pizzamiglio 
et al., 2017; Beurskens et al., 2016). Particularly, Beurskens 
et al. (2016) demonstrated lower alpha over frontal and oc-
cipital areas when walking and performing both cognitive and 
motor tasks as a function of cognitive load. In contrast, the 
observed alpha decrease in our data was not limited to frontal 
and central sites, but was observed over widespread regions 
from frontal to parieto-occipital midline channels. Overall, in 
the present study, theta and alpha modulations were replicated 
during walking overground in a virtual scenario, providing 
evidence for higher demand during dual-task walking.

Moving toward higher frequencies, we further observed 
a decrease in beta power over centro-parietal leads under 

dual-task walking, which turned into a beta power increase 
from parietal to occipital leads. Furthermore, a strong in-
crease in gamma activity for all midline electrodes when 
walking was also observed, which became increasingly pro-
nounced from frontal to occipital sites. The observed cen-
tro-parietal decrease is in line with the beta suppression 
that was reported to be related to motor activation induced 
by walking (Engel & Fries, 2010; Pizzamiglio et al., 2017; 
Seeber et al., 2014; Wagner et al., 2014). However, our data 
show higher beta activation from parietal to occipital sites 
under dual-task walking. This result is in line with previous 
studies contrasting standing and walking conditions (Presacco 
et al., 2011) and with studies interpreting this trend as due to 
higher demand in the motor (Beurskens et al., 2016) or cog-
nitive domain (Pizzamiglio et  al.,  2017). Similarly, gamma 
frequencies have previously been shown to be related to 
body instability, which can occur in dynamic situations like 
walking (Slobounov et al., 2009) but also while walking and 
performing an additional cognitive task (Marcar et al., 2014). 
Both factors were involved in the present study replicating 
previous results and pointing to a role of gamma activity in 
the stabilization of posture as well as additional tasks during 
walking. However, given the contradictory observations of 
beta modulation in mobile contexts and considering that a 
walking phase without additional cognitive tasks was not in-
cluded in our experimental design, a functional role of both 
beta and gamma in CMI during overground walking cannot 
be derived from our results. In addition, interpretations of 
gamma activity have to consider a potential confound due 
to neck muscle activity, which is likely to contaminate the 
surface EEG signal when walking (Goncharova, McFarland, 
Vaughan, & Wolpaw, 2003). In the present experiment, we 
minimized head movements by requiring participants to keep 
their head aligned with the virtual sphere in front of them. 
However, it is important to point out that neck muscles ac-
tivity was not recorded in the present study with participants 
walking overground without physical constraints. As a solu-
tion to this issue, the integration of electromyographic re-
cordings from the neck might significantly improve the ICA 
decomposition for recordings involving neck muscles activity 
like walking (Richer, Downey, Nordin, Hairston, & Ferris, 
2019). Future studies might consider the additional recording 
of electromyographic signals from the neck for investigating 
CMI effects including different conditions of motor and cog-
nitive tasks and how these impact beta and gamma activity.

4.3.2 | Principal contributions, 
limitations, and future directions

Within the present virtual framework, the main question was 
whether measuring human brain dynamics during standing 
and overground walking can provide further insights into the 
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human brain dynamics accompanying CMI in an ecologically 
valid setup. We addressed this question by adding a visual 
cognitive task to an overground walking and compared this 
to the same task dynamics during simple standing to inves-
tigate how visual attention is directed while visual resources 
are necessary to plan and control future walking behavior. As 
an option for studying neural mechanisms underlying visual 
CMI during overground walking, a VR system was incorpo-
rated in a MoBI setup, taking a step toward the investigation 
of more natural and active behaviors involving visual pro-
cessing. In this context, the perceived mental load during the 
Single- and the Dual-task did not differ, and neither did the 
performance. From a neural perspective, instead, our results 
demonstrated that simply walking overground at a natural 
speed already interferes with the execution of a low-demand-
ing cognitive task in the visual domain. This was revealed 
by a P3 amplitude reduction when executing the cognitive 
task in motion as compared to standing and was also reflected 
in the frequency domain with increasing theta and decreas-
ing alpha power over widespread regions of the brain. Even 
though important modulations at higher frequencies were 
also observed (beta and gamma frequencies), whether and 
how those are related to cognitive and/or motor load needs to 
be further investigated.

Thus, on the same interpretative line of previous works on 
mobile cognition, our results reflect CMI to take place during 
Dual-task walking even when involving only a low-effort vi-
sual discrimination task. As an addition to previous works, it 
was also demonstrated that the above-mentioned neural mark-
ers can be used to identify changes in attention during active 
behaviors involving visual processing in VR and overground 
walking. However, the visual discrimination task used in the 
present study was particularly easy for the young population. 
Future investigations implementing an improved virtual de-
sign with more challenging cognitive and motor tasks will 
have to investigate the roles of both cognition and motion in 
brain dynamic modulations, still controlling relevant exper-
imental features in an ecologically valid way. We are confi-
dent that the implementation of head-mounted VR systems 
in dual-task scenarios will provide an important contribution 
to better understand ‘natural cognition’, representing the step 
from the laboratory setting to the real world.
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