
iological
sychiatry
Archival Report B

P

Social Bayes: Using Bayesian Modeling to Study
Autistic Trait–Related Differences in Social
Cognition

Meltem Sevgi, Andreea O. Diaconescu, Lara Henco, Marc Tittgemeyer, and Leonhard Schilbach
ISS
ABSTRACT
BACKGROUND: The autistic spectrum is characterized by profound impairments of social interaction. The exact
subpersonal processes, however, that underlie the observable lack of social reciprocity are still a matter of substantial
controversy. Recently, it has been suggested that the autistic spectrum might be characterized by alterations of the
brain’s inference about the causes of socially relevant sensory signals.
METHODS: We used a novel reward-based learning task that required integration of nonsocial and social cues in
conjunction with computational modeling. Thirty-six healthy subjects were selected based on their score on the
Autism-Spectrum Quotient (AQ), and AQ scores were assessed for correlations with cue-related model parameters
and task scores.
RESULTS: Individual differences in AQ scores were significantly correlated with participants’ total task scores, with
high AQ scorers performing more poorly in the task (r = 2.39, 95% confidence interval = 20.68 to 20.13).
Computational modeling of the behavioral data unmasked a learning deficit in high AQ scorers, namely, the failure to
integrate social context to adapt one’s belief precision—the precision afforded to prior beliefs about changing states
in the world—particularly in relation to the nonsocial cue.
CONCLUSIONS: More pronounced autistic traits in a group of healthy control subjects were related to lower scores
associated with misintegration of the social cue. Computational modeling further demonstrated that these trait-
related performance differences are not explained by an inability to process the social stimuli and their causes,
but rather by the extent to which participants consider social information to infer the nonsocial cue.
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Autism is characterized by profound impairments of social
interaction and communication. These difficulties are thought
to be related across the diagnostic divide to autistic trait–
associated differences in social perceptual and/or cognitive
abilities (1). In recent years, it has become clear that a striking
dissociation exists between relatively intact explicit and
severely impaired implicit social abilities (2). In other words,
high-functioning individuals with autism learn to explicitly think
about other persons’ mental states and may tend to do so
even more often than neurotypical adults, yet they still find it
very difficult to engage in real-time social interactions with
persons without autism (3,4). Interestingly, exactly which
subpersonal processes show autism trait–related differences
and could explain everyday life social impairments is still a
matter of substantial controversy. Recent studies have pro-
vided evidence that many putatively relevant processes, such
as action perception, are intact in autism (5). Still, individuals
with autism experience striking impairments in everyday life
social situations, which raises the question of which processes
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other than basic perceptual mechanisms may come into play,
and how this would occur (6).

A currently prominent theoretical suggestion includes the
assumption that the autistic spectrum might be specifically
characterized by deficits of predictive coding or Bayesian
inference (7,8). Predictive coding formulations of perception
propose that expectations in higher brain areas generate top-
down predictions that meet bottom-up stimulus-related sig-
nals from lower sensory areas. The discrepancy between
actual sensory input and predictions of that input is described
as a prediction error (PE). The degree to which PEs revise
(Bayesian) beliefs depends on the precision afforded to PEs. In
other words, the precision of sensory PEs—relative to the
precision of prior beliefs (and their PEs)—can have a profound
effect on belief updating. In regard to autism, it has been
proposed that autistic traits might be related to higher sensory
precision, i.e., a stronger reliance on (bottom-up) sensory ev-
idence compared with (top-down) prior beliefs, which can lead
to a failure of automatically contextualizing sensory information
shed by Elsevier Inc. This is an open access article under the
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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in an optimal and socially adequate fashion (9,10). Further-
more, the reliance on prior beliefs might be particularly
important and relevant in situations of high uncertainty, such
as direct social interactions with others, as social agents are
arguably the most difficult stimuli to predict (10). Interestingly,
this theoretical proposition resonates with clinical descriptions
of patients with autism as having a particular dislike for situa-
tions of direct social interaction with others, whereas situations
of social observation (when other agents are merely observed)
are described as less difficult (4).

In light of recent findings, which demonstrate relatively
intact perceptual processes across a wide range of tasks in
autism, it might be exactly the integration of bottom-up and
top-down processes during social interactions and exploita-
tion of social cues provided by others during decision making
that could be particularly relevant to understanding the social
impairments in autism. In other words, whereas autistic traits
may not be associated with disturbances of basic perceptual
and learning processes, it is conceivable that such traits may
affect social learning processes or the extent to which social
information automatically influences decision making and
thereby what behavior is actually shown. From a predictive
coding perspective, there are two possible pathologies. First,
there could be deficits in predicting and inferring the mental
states of others owing to an impoverished weight or precision
of higher-level prior beliefs; or second, these inferences or
representations are unable to influence behavior.

Importantly, recent progress in computational modeling has
convincingly demonstrated that Bayesian models can be used
to formally investigate perceptual and cognitive mechanisms
that underlie social behavior when explicit social advice is
provided to study participants (11): in particular, it has been
shown that humans employ hierarchical generative models to
make inferences about the changing intentions of others when
attention is explicitly directed toward them and that they
integrate estimates of advice accuracy (i.e., the correctness of
the advice, which can be valid or misleading depending on the
conflicting interests of the players) with nonsocial sources of
information when making decisions. In Bayesian terms, this
integration corresponds to an optimal weighting of prosocial
and nonsocial cues in terms of their relative precision when
making decisions.

In our study, we built on this research by applying hierar-
chical Bayesian modeling to behavioral data from a novel
version of a probabilistic learning paradigm that included a
social gaze cue about whose relevance no explicit information
was given to investigate autistic trait–related differences in the
extent to which healthy individuals integrate and use this piece
of social information during task performance. In light of the
evidence discussed above, we hypothesized that autistic traits
are related to differences in the extent to which individuals are
influenced by social cues (i.e., their precision), rather than a
Table 1. Descriptive Data of Participants

AQ Group Gender, M/F Age, Years

High AQ (n = 18) 9/9 25.5 (0.7) 2

Low AQ (n = 18) 10/8 27 (1) 1

Values are reported as mean (SEM).
AQ, Autism-Spectrum Quotient; EQ, empathy quotient; F, female; M, ma
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general inability to process social cues and putatively under-
lying mental states. On the behavioral level, this should result
in higher total task scores for individuals with lower autistic
traits, as they should be more easily able to exploit the addi-
tional social information. In terms of the underlying cognitive
processes, we hypothesized that this behavioral advantage
might be subserved by differences in the effect that social in-
formation can have on learning and decision making, which, in
turn, would be inversely related to autistic traits. We further
predicted that using the social cue should be more difficult
under volatile conditions and differentially so for individuals
with higher autistic traits.

METHODS AND MATERIALS

Participants

In light of evidence that suggests that autistic traits are
distributed as a continuum across the general population and
are known to show identical etiology across the diagnostic
divide (1), we chose to study healthy participants based on
their score on the German translation of the Autism-Spectrum
Quotient (AQ) questionnaire (12). This experimental approach
of studying autistic traits in neurotypical subjects makes it
possible to infer the etiology of autistic traits without potential
confounds from a variety of comorbid conditions often noted in
patients with autistic spectrum disorder. To capture the ex-
tremes of the distribution and have a balanced proportion of
participants with high and low AQ scores, 36 subjects were
prescreened and invited based on their AQ scores up to 25 (19
men; age range, 20–37 years; mean age, 26.25 years) (Table 1).
It has been shown that the AQ has a good discriminative val-
idity at a threshold of 26 (13). Participants did not have any
history of neurological or psychiatric disorders and were
invited by using a preexisting database of the Max Planck
Institute for Metabolic Research comprising healthy native
German volunteers. The distribution of AQ scores was as fol-
lows: range = 7–23, mean = 15.72, SD = 5.09. All participants
gave informed consent before the beginning of the experiment.

Experimental Paradigm

The card game used in our study, which had been originally
designed as two cards with associated winning probabilities
(14,15), was combined with a face cue presented in the center
of the screen (Figure 1A). The eye gaze direction of the face
was manipulated to change during each trial and to then be
directed toward one of the cards before participants were
allowed to make their choice. As a result, two things needed to
be learned in the task: first, whether the reward is associated
with the green card or the blue card; second, whether the gaze
shift is directed toward the card that is rewarded. The proba-
bility of whether the face actually looked toward the winning
AQ SQ EQ IQ (Verbal)

0.4 (0.5) 27.1 (2) 41.1 (2.1) 101.9 (2.1)

1.1 (0.4) 23.9 (2.1) 44.3 (2.6) 103.2 (2.7)

le; SQ, systemizing quotient.
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Figure 1. Experimental design. (A) Subjects can make a choice once the lines on both cards disappear. If the choice is right on that trial, a green tick is
displayed, and the reward value of the right card is added to the total score. If the choice is wrong, a red cross is displayed, and the score remains the same.
Probability schedules. (B) Probability of the blue card being correct (i.e., card accuracy), and (C) probability of the gaze showing the correct card (i.e., gaze
accuracy).
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card on a given trial (i.e., gaze accuracy) was systematically
manipulated in accordance with two probabilistic schedules
(see Supplement for more details about the schedules).

Across both conditions, the card and gaze accuracies were
varied independently of one another across the experiment
(Figure 1B, C). The phases in which the trials have cues with
unstable accuracy are referred as volatile phases. In the first
half of the experiment (trials 1–60), card accuracy was stable
and high, whereas in the second half (trials 60–120), it followed
a volatile phase (Figure 1B). For the gaze accuracy, the volatile
phase took place during trials 30 to 70. Positions of the cards
(left or right) were determined randomly.

Importantly, we manipulated the degree to which the gaze
could influence learning about the card probabilities. Although
the gaze schedules were matched in terms of overall congru-
ency to the card probabilities, the order of those phases was
manipulated, resulting in two different conditions: the con-
gruency first condition began with the gaze as highly
congruent to the winning card (with 80% probability of being
informative of the winning card), and the incongruency first
condition began with the gaze strongly incongruent to the
Biological Psy
winning card (with only 20% probability of being informative of
the winning card) (Figure 1C).

In the instructions, subjects were informed that the cards
have winning probabilities, which can change during the
experiment and which are independent of the reward magni-
tude that is displayed on them. On each trial, there was only
one correct card, and if subjects chose the correct card, they
would receive the score (random numbers between 1 and 9)
that had been displayed on it. They were instructed that they
would earn an extra amount of money depending on their
score at the end of the experiment. Finally, participants were
informed about the presence of a face on the screen, which
was explained by stating that it was supposed to make the
visual display more interesting. Participants did not receive any
other information about the face in an attempt to keep the
instruction about the gaze cue as implicit as possible. After the
experiment, subjects filled out a brief questionnaire.

Perceptual and Response Models

The “observing the observer” approach provides a com-
plete mapping from experimental stimuli to observed
chiatry January 15, 2020; 87:185–193 www.sobp.org/journal 187

http://www.sobp.org/journal


Perceptual 
Model

Level 1: Observations
(accurate or inaccurate  gaze /

blue or green card) 

1 = 1 =
1

1 + − 2
( )

Level 3: Phasic volatility

3
( )

~ ( 3
−1
, )

Level 2: Tendency towards 
congruent gaze/ card 

2
( )

~ ( 2
−1
, ( 3

−1
))

Response 
Model

( )
= 1 =

+ 1−

Integration: Gaze and Card

Belief-to-Response Mapping

= ̂1, + 1,
~

Figure 2. Graphical depiction of two parallel learning systems that were assumed to influence the choice behavior. For any trial t, xðtÞ3 follows a Gaussian
random walk such that pð xðtÞ3 Þw N ð xðt2 1Þ

3 ; wÞ . The first level state variable xðtÞ1 is the accuracy at that trial and is a sigmoid transform of the second level state
variable xðtÞ2 , which also follows a Gaussian distribution: N ðxðt21Þ

2 ; expðkxðt2 1Þ
3 ÞÞ, where the variance term depends on k, which accounts for the coupling

between the third level and the second level and the phasic volatility from the previous time step, or xðt21Þ
2 . The response model maps the predicted

outcome probabilities to choices via a softmax function.
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responses by inversion of the perceptual model and the
response model (16). An application of this approach is a
generative model called the Hierarchical Gaussian Filter
(HGF), which accounts for deterministic and probabilistic
relationships between the environment and perceptual
states (17). We used a perceptual-response model pair to
infer subjects’ beliefs about the stimuli. We modeled con-
gruency of response with advice, i.e., the advice given by
the social cue (the gaze), using the HGF combined with a
response model as implemented in Diaconescu et al. (11).
This approach allows the estimation of hierarchically
coupled hidden states that describe subjects’ learning
about the environmental statistics, namely, the probability
and the volatility of the card and gaze cues, based on their
responses. These subjective beliefs are weighted by their
precision to form the basis of a response model (of the
observed behavior) as explained in detail below. The
graphical representation of the perceptual model is shown
in Figure 2.

The dynamics of the belief trajectories—the accuracy and
volatility estimates as well as their precisions—are deter-
mined by 4 learning parameters: kg; kc; wg; wc for gaze and
card outcomes, respectively. Across stimulus modalities,
parameter k reflects the coupling between the levels of the
188 Biological Psychiatry January 15, 2020; 87:185–193 www.sobp.or
model, thus determining the phasic component of the
learning rate, and parameter w refers to the meta-volatility,
thereby regulating the variance of the cue-outcome vola-
tility. A detailed description of the perceptual models used
here is in the Supplement.

Belief Precision. In the HGF, the belief update is propor-
tional to a precision-weighted PE (see Supplement). The belief
precision weighting the PE depends on the estimated envi-
ronmental volatility and the low-level (sensory) precision:

p
ðtÞ
2;g ¼ bpðtÞ

2;g 1 bmðkÞ
1;g

�
12 bmðkÞ

1;g

�
; p

ðtÞ
2;c ¼ bpðtÞ

2;c 1 bmðkÞ
1;c

�
12 bmðkÞ

1;c

�
(1)

with the precision of the prediction given by:

bpðtÞ
2;g ¼

1

1
.
p
ðt21Þ
2;g 1 exp

�
kgm

ðt21Þ
3;g

� ;

bpðtÞ
2;c ¼ 1

1
.
p
ðt21Þ
2;c 1 exp

�
kcm

ðt21Þ
3;c

�
(2)

where m
ðt2 1Þ
3 is the predicted environmental volatility.
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Precision Weighted Response Model. We applied this
model to derive subject-specific accuracy and volatility es-
timates for card and gaze in a parallel manner. On a given
trial t, subjects generated a combined belief, bðtÞ, after
weighting the posterior expectation of inferred card and gaze
accuracies, ~m

ðtÞ
1;c and bmðtÞ

1; g, to generate actions in the
following manner:

wðtÞ
g ¼ zbpðtÞ

1;g

zbpðtÞ
1;g 1 bpðtÞ

1;c

; wðtÞ
c ¼ bpðtÞ

1;c

zbpðtÞ
1;g 1 bpðtÞ

1;c

(3)

bðtÞ ¼ wðtÞ
g bmðtÞ

1;g 1 wðtÞ
c ~m

ðtÞ
1;c (4)

Where wðtÞ
g and wðtÞ

c are effective precision ratios of gaze and
card cues, ~m

ðtÞ
1;c is the transformed expected card color prob-

ability from the perspective of the gaze (i.e., the estimated card
color probability indicated by the gaze), and bmðtÞ

1;g corresponds
to the logistic sigmoid of the current expectation of advisor
fidelity:

bmðtÞ
1;g ¼ s

�
m
ðt21Þ
2;g

�
¼ 1

1 1 exp
�
2m

ðt21Þ
2;g

� (5)

Response model parameter z is the weight on the precision
of inferred gaze accuracy or the additional bias toward the
social cue; bpðtÞ

1;g and bpðtÞ
1;c are precisions (inverse variances) at

the first level for gaze and card accuracies, respectively. As the
first level estimates are assumed to follow a Bernoulli distri-
bution, one can calculate the precision at each trial by:

bpðtÞ
1;g ¼ 1

bmðtÞ
1;g

�
1 2 bmðtÞ

1;g

� ; bpðtÞ
1;c ¼ 1

~m
ðtÞ
1;c

�
1 2 ~m

ðtÞ
1;c

� (6)

The probability of taking the gaze advice was assumed to
be a softmax function:

p
�
yðtÞ ¼ 1jbðtÞ�¼ bðtÞb

bðtÞb 1
�
1 2 bðtÞ�b (7)

Where b . 0 is the subject-specific inverse decision temper-
ature parameter.

Hypotheses. Given that we assumed the autistic spectrum
to be characterized by differences in sensory precision
compared with belief (i.e., prior) precision, we expected
differences in two sets of parameters: 1) perceptual model
parameter k, which modulates the influence of sensory
compared with belief precision in the belief updating process,
and 2) response model parameter z, which signals the bias
toward the social cue. To this hypothesis, we extracted the
parameters of the winning model and subjected them to a two-
way analysis of variance with an interaction term (group,
condition [congruent first vs. incongruent first gaze schedule],
and group 3 condition). The participant groups were defined
by their AQ scores, which were obtained using a median split
procedure (median AQ = 15). The models and the routines for
Biological Psy
all analyses performed here are available as MATLAB (The
MathWorks, Inc., Natick, MA) code https://gitlab.ethz.ch/
dandreea/mltm. See Table 2 for the prior mean and variance
over the parameters.

Other Behavioral Measures. We assessed the relation-
ship between AQ scores and total task scores, as the ability to
exploit the additional social information should contribute to
task performance. We predicted that the volatility of the input
structure may influence subjects’ inference about the gaze and
subsequent decision to take gaze into account. The influence
of probability (high vs. low) and volatility (stable vs. volatile) of
the gaze cue on performance was evaluated and compared
between two AQ groups.

RESULTS

To investigate group differences in learning about the card
probabilities and gaze congruency, we examined group 3

condition interactions in the parameter maximum a posteriori
estimates of the winning model (i.e., M5, the full HGF with the
integrated decision model).

As predicted, subjects with low AQ scores used the gaze
schedule to successfully learn about the card probabilities.
Whereas they showed superior performance in the task (see
Supplement for details), they also displayed significant dif-
ferences in learning about the card probabilities as a func-
tion of the gaze schedule. A significant group 3 condition
interaction was observed for parameter kc (group: F1,35 =
0.28, p . .60; condition: F1,35 = 1.02, p . .30; interaction:
F1,35 = 10.74, p = .0025), suggesting that whereas learning
of subjects with high AQ scores about the card probabilities
was unaffected by the gaze congruency schedule, subjects
with low AQ scores adapted their learning rate according to
the gaze schedule (Figure 3A). This interaction effect was
supported by post hoc t tests, which revealed that partici-
pants with low AQ scores showed larger kc values in the
incongruent compared with the congruent first condition
(2-tailed t test; t16 = 22.55, p = .04 corrected for multiple
comparisons using Bonferroni correction), whereas partici-
pants with low AQ scores showed a lack of differences
between the 2 conditions (2-tailed t test; t16 = 2.08, p = .10
after Bonferroni correction). This result was also related to
participants’ postexperiment descriptions of their perfor-
mance. In contrast to participants with high AQ score who
showed a lack of task differences, participants with low
scores reported having to rely on the gaze information more
when the card and gaze input structures started out as
incongruent compared with the congruent first condition
(group: F1,35 = 0.80, p . .38; condition: F1,35 = 0.80, p .

.37; interaction: F1,35 = 5.89, p = .021) (Supplemental
Figure S5A).

Mirroring this effect, we also observed significant group 3

condition interactions for the precision of the prediction about
the card probabilities or bpðtÞ

2;c (see Equation 5). Subjects with
low AQ scores were more confident in their predictions about
the card probabilities when the gaze schedule began as
congruent than when it began as incongruent to the winning
cards compared with the subjects with high AQ scores (group:
F1,35 = 0.26, p . .60; condition: F1,35 = 0.97, p . .30;
chiatry January 15, 2020; 87:185–193 www.sobp.org/journal 189
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Table 2. Prior Mean and Variance of Perceptual and
Response Model Parameters

Model Parameter Prior Mean Prior Variance

Perceptual Models

Normative HGF kg, kc 0.50 0

wg, wc 0.56 0

3-level HGF kg, kc 0.50 1

wg, wc 0.56 1

Response Models b 48 25

Integrated z 1 25

Card Only z 0 0

The prior variances are given in the numeric space in which
parameters are estimated. k and w are estimated in logit space, and
the other parameters are estimated in log space. Whereas the prior
variances for all parameters are set to be rather broad, we selected a
shrinkage prior mean for the decision noise such that behavior is
explained more by variations in the rest of the parameters rather than
decision noise.

HGF, Hierarchical Gaussian Filter.
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interaction: F1,35 = 10.82, p = .02). Subjects with high AQ
scores showed no differences in belief precision across the
two gaze schedules (Figure 3B).

Association Between AQ Scores and Utility of
Misleading Advice in a Volatile Environment

Figure 4A illustrates the performance in each phase of the
gaze accuracy. As expected, we observed a significant
relationship between AQ scores and choosing in accordance
with the gaze during volatile low probability phases (R2 =
22.28%, F35 = 9.74, p = .0037), with AQ scores correlating
with the number of trials where the subjects took the gaze
Condition:
Group:

Incongruent
Low AQ

Congruent
High AQ

Incongruent
High AQ

**

Phasic Learning Rate Parameter

Congruent
Low AQ

,

(
)

A B

Figure 3. Maximum a posteriori estimates for both groups and conditions. (A) k
third level for the card model, showed a significant group 3 condition interacti
showed a significant group 3 frame interaction. The interaction suggests signi
Quotient (AQ) group, which were absent in the high AQ group. See main text fo
to the mean, the interrupted red line refers to the median, the colored backg
background refers to 1 SD of the mean. **Significant post hoc t tests after Bonf
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into account (r = .52, 95% confidence interval = 0.29 to
0.75) (Figure 4C). As there were no AQ group differences
when the gaze cue was stable, the results suggest that
subjects with high AQ scores do spontaneously take the
social cue into account, even when its meaning (i.e., gaze
direction) is reversed, thereby implying that lower level as-
pects of social processing are intact. The group difference
emerges when the gaze cue is volatile. In this context, the
gaze cue is imprecise (i.e., less reliable) and should be
ignored, but subjects with high AQ scores continue to rely
on it, leading to poor performance in particular when the
gaze cue accuracy is low. In terms of the computational
model, this implies that the subjects with high AQ scores do
not take into account the precision of the gaze cue when
using it to infer the card probabilities.

DISCUSSION

In this study we applied hierarchical Bayesian modeling to
investigate autistic trait–related differences in the extent to
which healthy individuals integrate and make use of gaze cues
in a probabilistic reward learning task. For optimal perfor-
mance, our task required following both the card and the gaze
cues and combining these two sources of information, even
though instructions provided very little information about the
nature and relevance of the gaze cues, in contrast to other
studies using explicit forms of social advice (11,14). As ex-
pected, our results demonstrate an inverse relationship be-
tween autistic traits (as measured by AQ scores) and total task
scores obtained by study participants, such that individuals
with higher autistic traits obtained lower total task scores.

We were particularly interested to model perceptual as well
as higher-order processing of both card and gaze cues and, in
particular, their relationship to action selection, i.e., the extent
**

Belief Precision

Incongruent
Low AQ

Congruent
High AQ

Incongruent
High AQ

Congruent
Low AQ

c, the parameter representing the coupling between the second level and the
on. (B) pðtÞ

2;c, the average belief precision about the card probabilities, also
ficant differences between the two conditions in the low Autism-Spectrum
r details. Jittered raw data are plotted for each variable. The red line refers
round reflects the 95% confidence intervals for the mean, and the gray
erroni correction.
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Figure 4. Influence of structure of the environment on the behavior. (A) Scores obtained by high and low Autism-Spectrum Quotient (AQ) groups in different
phases of the experiment based on the features of the gaze cue (high 3 low gaze accuracy and stable 3 volatile periods of gaze accuracy). (B) Difference is
significant (*p = .034) in the volatile low accuracy phase (circled area). (C) During the same phase, the number of trials in which the subjects took the advice, i.e.,
chose the card that is indicated by the highly misleading gaze, was correlated with AQ traits (r = .52, 95% confidence interval = 0.29 to 0.75).
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to which individuals were actually biased by the social infor-
mation provided on a trial-by-trial basis. Results of our
computational analyses provide evidence for AQ-related
group differences, such that individuals with lower AQ
scores are influenced by the gaze cue more as indicated by an
enhanced learning rate modulation as a function of the gaze
schedule (Figure 3A). This unmasks a learning deficit in sub-
jects with high AQ scores, namely, the failure to take into
account the social context to adapt the learning about the
nonsocial stimulus to accurately predict the outcome of the
binary lottery. Furthermore, our results indicate that in-
dividuals with high AQ scores had particular difficulties inte-
grating the social cue, as they were more likely to rely on the
gaze during volatile trials and when the gaze accuracy was
low (Supplemental Figure S5). These results jointly suggest
that autistic traits are associated with a reduced impact of
social information on the precision of higher-level prior beliefs,
which has a detrimental effect on probabilistic learning about
card outcomes.

By providing these insights into AQ-related differences
in social cognition, our study, we believe, is most relevant
to current discussions concerned with mechanistic
Biological Psy
explanations of autistic symptoms: predictive coding theories
have reconstructed autism in terms of high-level attenuated
precisions relative to sensory precision (9), which results in an
enhanced weighting of PEs (10) and a loss of the selective
force when processing a context with multiple cues (18). We
find reduced modulation of top-down belief precision as a
function of social context (Figure 3B), which is another
mechanism leading to an enhanced weighting of PEs (9). As
stated by Pellicano and Burr (7), Bayesian models provide an
important avenue that can help to identify whether autistic
trait–associated alterations lie in the reliance on prior
knowledge or the optimal update of prior information during
learning. In our Bayesian formulation, we addressed this
issue by assessing possible relationships of perceptual and
response model parameters with AQ scores. We found a
relationship between perceptual model and response model
parameters with AQ scores, although the latter relationship
was less significant. Participants who scored higher on the
AQ questionnaire did not take advantage of the gaze
schedule to adjust their belief precision about the card out-
comes. This finding relates to recent applications of hierar-
chical Bayesian modeling in the context of autism spectrum
chiatry January 15, 2020; 87:185–193 www.sobp.org/journal 191
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disorder (19). Individuals with autism spectrum disorder
showed reduced learning rates and thus belief precision
about probabilistic (nonsocial) outcomes, while at the same
time exhibiting an enhanced learning about volatility.
Whereas we observed a reduced modulation of the learning
rate by the social cue, we also found a lack of differences in
learning about volatility, suggesting the presence of similar
but dampened learning deficits in individuals with subclinical
autistic traits. These findings appear consistent with a recent
suggestion by Palmer et al. (20), who proposed that autism
may not impair the ability to process social information per
se, but rather lead to differences in how the relevant repre-
sentations are integrated for optimal action selection.

In light of other propositions, which hold that autistic trait–
related impairments of social cognition may be particularly
relevant in complex and unpredictable situations (18), we
further investigated whether subjects’ AQ scores were also
related to task performance during phases of the experiment,
which included volatile and misleading gaze cues. Here our
data show that this particularly unstable environment made it
more difficult for subjects with higher AQ scores to use the
social cue while making decisions. This kind of influence of
volatility on behavior parallels results from previous studies,
which report that an unpredictable context makes it more
difficult for individuals with autism to use social cues in an
appropriate way (21). Our finding can therefore be seen as
evidence for difficulties of contextualizing social cues in light of
high uncertainty.

The modeling approach that we implemented in this study is
a promising method for capturing individual differences in the
learning and integration of social information. Given the het-
erogeneity of the population, this could be particularly useful
for identifying subgroups that may map onto distinct mecha-
nisms of impaired social interaction in autism. The “observing
the observer” approach has indeed been demonstrated to be
useful for inference about hidden states and parameters that
shape interindividual differences in learning (22). Our results
indicate that Bayesian models may be particularly powerful in
providing mechanistic explanations of social difficulties, which
are particularly relevant to an understanding of psychiatric
disorders (4,23,24). Advances in computational psychiatry
(25–28) and studies such as this could therefore contribute to
mechanistic formulations of psychopathology.

It is important to note that we cannot rule out intact
precision-weighted PE processing in patients with autism, as
our sample comprised healthy subjects. One can speculate
that in a patient sample, impaired inference about the social
cue in addition to the reduced integration of social information
could be observed. Therefore, future research should include
testing patients with a formal diagnosis of autism to explore
whether the observed differences hold across the entire
autistic spectrum. Furthermore, the experimental paradigm
introduced here and our analysis approach could be used
together with neuroimaging to investigate which activity and
connectivity profiles in brain regions relevant for social cogni-
tion underlie the observed autistic trait–related behavioral
differences.

Taken together, the results of our study demonstrate
autistic trait–related behavioral differences in a task that re-
quires the integration of nonsocial and social information.
192 Biological Psychiatry January 15, 2020; 87:185–193 www.sobp.or
Using hierarchical Bayesian modeling, we show that these
performance differences are subserved by impairments of
integrating social information to infer causal structures in the
environment, which is consistent with previous findings in
autism (5).
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