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The auditory mismatch negativity (MMN) is significantly reduced in schizophrenia. Notably, a similar MMN reduction can be
achieved with NMDA receptor (NMDAR) antagonists. Both phenomena have been interpreted as reflecting an impairment of
predictive coding or, more generally, the “Bayesian brain” notion that the brain continuously updates a hierarchical model to
infer the causes of its sensory inputs. Specifically, neurobiological interpretations of predictive coding view perceptual infer-
ence as an NMDAR-dependent process of minimizing hierarchical precision-weighted prediction errors (PEs), and disturban-
ces of this putative process play a key role in hierarchical Bayesian theories of schizophrenia. Here, we provide empirical
evidence for this theory, demonstrating the existence of multiple, hierarchically related PEs in a “roving MMN” paradigm.
We applied a hierarchical Bayesian model to single-trial EEG data from healthy human volunteers of either sex who received
the NMDAR antagonist S-ketamine in a placebo-controlled, double-blind, within-subject fashion. Using an unrestricted analy-
sis of the entire time-sensor space, our trial-by-trial analysis indicated that low-level PEs (about stimulus transitions) are
expressed early (102–207 ms poststimulus), while high-level PEs (about transition probability) are reflected by later compo-
nents (152–199 and 215–277 ms) of single-trial responses. Furthermore, we find that ketamine significantly diminished the
expression of high-level PE responses, implying that NMDAR antagonism disrupts the inference on abstract statistical regu-
larities. Our findings suggest that NMDAR dysfunction impairs hierarchical Bayesian inference about the world’s statistical
structure. Beyond the relevance of this finding for schizophrenia, our results illustrate the potential of computational single-
trial analyses for assessing potential pathophysiological mechanisms.
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Significance Statement

The NMDA receptor antagonist ketamine induces psychosis-like experiences in healthy individuals, consistent with
the notion that the pathophysiology of schizophrenia involves NMDAR dysfunction. On the cognitive level, the stark
misrepresentations of reality during psychosis suggest a dysfunction at high levels of belief hierarchies, where general
and stable features of the environment are represented. Here, we investigate physiological indices of altered percep-
tion under ketamine—the reduction of the auditory “mismatch negativity”—based on their algorithmic interpreta-
tion as hierarchical belief updates. We find that ketamine indeed impacts cortical signaling of higher-level belief
updates about environmental volatility. This finding bridges the physiological and computational concepts of
NMDAR dysfunction and offers a novel mechanistic perspective on a central element of pathophysiological theories of
schizophrenia.
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Introduction
The auditory mismatch negativity (MMN), an electrophysiologi-
cal response to rule violations in auditory input streams, has long
been interpreted as evidence that the brain learns the statistical
structure of its environment and predicts future sensory inputs
(Paavilainen et al., 1999; Näätänen et al., 2005; Winkler, 2007).
In psychiatry, reductions in MMN amplitude are among the
most robust electrophysiological abnormalities in individuals
with schizophrenia (Umbricht and Krljes, 2005; Todd et al.,
2013; Erickson et al., 2016; Avissar et al., 2018). Physiologically,
following primate work showing that MMN depends on intact
NMDA receptor (NMDAR) signaling (Javitt et al., 1996), human
electroencephalographic (EEG) studies demonstrated significant
reductions of MMN responses under the NMDAR antagonist
ketamine (Umbricht et al., 2000; Heekeren et al., 2008; Schmidt
et al., 2012).

The robust impairment of MMN in schizophrenia, and the
fact that similar MMN reduction can be achieved with NMDAR
antagonists like ketamine, are in line with the long-standing
notion that the pathophysiology of schizophrenia involves
NMDAR dysfunction (Olney and Farber, 1995; Goff and Coyle,
2001). More specifically, aberrant NMDAR-mediated signaling
plays a central role for explaining perceptual abnormalities and
positive symptoms in schizophrenia from a “predictive coding”
view (Stephan et al., 2006, 2009; Corlett et al., 2011, 2016; Adams
et al., 2013; Friston et al., 2016; Sterzer et al., 2018). According to
predictive coding and related “Bayesian brain” theories, the brain
continuously updates a hierarchical model of its environment to
infer the causes of sensory inputs and predict future events
(Dayan et al., 1995; Rao and Ballard, 1999; Friston, 2010; Doya et
al., 2011).

The auditory MMN is believed to reflect model updating dur-
ing perceptual inference within the auditory hierarchy (Winkler,
2007; Garrido et al., 2009; Lieder et al., 2013b). In predictive cod-
ing, each hierarchical level provides predictions about the state
of the level below and, in turn, receives a prediction error (PE)
signal reflecting the discrepancy between predicted and actual
state of the level below. It is thought that predictions are commu-
nicated by descending (backward) connections, while PEs are
signaled by ascending (forward) connections (Friston, 2005); fur-
thermore, glutamatergic signaling was found to mainly occur via
AMPA receptors at ascending connections and via NMDARs at
descending connections (Self et al., 2012). Critically, ascending
PE signals are weighted by the relative precision of bottom-up
input compared with predictions (priors) from higher levels. The
MMN, which is a difference waveform, is commonly interpreted
as the difference in precision-weighted PEs between surprising
and predictable events.

This predictive coding perspective, which views the MMN as
a reflection of perceptual inference in the auditory cortical hier-
archy, makes the following two major predictions:

First, hierarchically related precision-weighted PEs should
underlie the MMN (Lieder et al., 2013b), particularly when the
stimulus stream exhibits considerable volatility (Mathys et al.,
2011; Iglesias et al., 2013; Diaconescu et al., 2014). Trial-by-trial
changes in MMN responses should reflect the temporal dynam-
ics of Bayesian belief updating and the PEs involved (Mars et al.,
2008; Ostwald et al., 2012; Lieder et al., 2013a; Kolossa et al.,
2015; Jepma et al., 2016; Stefanics et al., 2018).

Second, the expression of precision-weighted PEs should be
sensitive to NMDAR manipulations. As described above, block-
ing NMDARs should lead to a reduction of top-down (predic-
tive) signaling, resulting in less constrained inference about the
causes of sensory inputs. This, in turn, should render predictable
and less predictable stimuli more similar in how surprising they
are and thus alter the bottom-up signaling of PEs (Corlett et al.,
2007, 2011, 2016).

Here, we examine these predictions and present the first com-
putational single-trial EEG analysis of auditory MMN data under
pharmacological manipulations of NMDAR function (S-keta-
mine vs placebo) in healthy volunteers. While analyses of the
same dataset have been published previously (Schmidt et al.,
2012, 2013), these used standard event-related potential (ERP)
and connectivity methods operating on trial averages. Neither
study used a computational trial-by-trial model and could thus
not examine the trialwise expression of different PEs or their
changes under NMDAR blockade.

Materials and Methods
Here, we reanalyze a previously published study (Schmidt et al., 2012)
that administered S-ketamine to healthy volunteers. Details on partici-
pants, drug administration, and data acquisition have been provided
previously (Schmidt et al., 2012, 2013); the interested reader is referred
to these articles for more information. Here, we only briefly summarize
these aspects and focus on the model-based EEG analysis.

Participants
Nineteen healthy individuals (12 males; mean age, 266 5.09 years) gave
informed written consent and participated in the study, which was
approved by the Ethics Committee of the University Hospital of
Psychiatry (Zurich, Switzerland). The use of psychoactive drugs was
approved by the Swiss Federal Health Office, Department of
Pharmacology and Narcotics (Bern, Switzerland). Inclusion criteria
included physical and mental health, and the absence of a history of
drug dependence and of present drug use. For detailed examinations
before inclusion and additional questionnaire assessments, see Schmidt
et al. (2012).

Experimental procedure and paradigm
The two sessions (placebo and S-ketamine) that all participants under-
went in a counterbalanced fashion were separated by at least 2 weeks.
Both participants and the experimenter interacting with them were blind
to the drug order. S-ketamine was administered using an indwelling
catheter that was placed in the antecubital vein of the nondominant arm.
An initial bolus injection of 10mg over 5min was followed, after a 1min
break, by a continuous infusion with 0.006mg/kg/min over 80min. The
initial dose was reduced by 10% every 10min to keep S-ketamine plasma
levels fairly constant (Feng et al., 1995; Vollenweider et al., 1997). The
procedure in the placebo session was equivalent for administering an
infusion of physiological sodium chloride solution and 5% glucose. Each
participant was kept under constant supervision until all drug effects
had worn off, and was then released into the custody of a partner or im-
mediate relative.

EEG activity was recorded during an auditory “roving” oddball para-
digm, originally developed by Cowan et al. (1993) and subsequently
modified by Baldeweg et al. (2004). E-prime software (Schneider et al.,
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2002) was used to generate acoustic stimuli that were presented binau-
rally through headphones.

The stimuli consisted of seamlessly connected trains of pure sinusoi-
dal tones (70ms duration, 500ms interstimulus interval) with a roving
frequency structure using seven different frequencies from 500 to 800Hz
in steps of 50Hz. Within each stimulus train, all tones were of one fre-
quency and were followed by a train of tones of a different frequency.
The number of times the same tone was presented within one stimulus
train varied pseudorandomly between 1 and 11 such that 5% of all stim-
ulus trains consisted of 1–2 identical tones, 7.5% of all stimulus trains
consisted of 3–4 identical stimuli, and 87.5% of all stimulus trains con-
sisted of 5–11 identical stimuli. For each participant and each session, a
different sequence of tones was generated online.

Following the suggestion that MMN assessment is optimal when the
participant’s attention is directed away from the auditory domain
(Näätänen, 2000), participants performed a distracting visual task and
were instructed to ignore the sounds. Whenever a fixation cross changed
its luminance, which occurred pseudorandomly every 2–5 s (not coin-
ciding with auditory changes), participants had to press a button. One
experimental session lasted;15min.

Data processing
The EEG was recorded at a sampling rate of 512Hz using a BioSemi sys-
tem with 64 scalp electrodes. Preprocessing and data analysis was per-
formed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). Continuous
EEG recordings were referenced to the average, high-pass filtered using
a Butterworth filter with a cutoff frequency of 0.5Hz, downsampled to
256Hz, and low-pass filtered using a Butterworth filter with a cutoff fre-
quency of 30 Hz. The data were epoched into 500ms segments around
tone onsets, using a prestimulus baseline of 100ms.

We rejected all trials overlapping with eye blink events, as detected
by a thresholding routine on the vertical EOG channel, which was cre-
ated from subtracting the activity of two additional electrodes that were
attached infraorbitally and supraorbitally to the left eye. Finally, an arti-
fact rejection procedure was applied using a thresholding approach on
all EEG channels to detect problematic trials or channels. Trials in which
the signal recorded at any of the channels exceeded 80mV relative to the
prestimulus baseline were removed from subsequent analysis, and chan-
nels in which .20% of trials had to be rejected were marked as bad and
subsequently interpolated for sensor-level statistics.

Bad channels occurred for three participants in the placebo session
(with five, one, and one bad channel(s), respectively) and for two partici-
pants in the ketamine session (with one and two bad channels, respec-
tively). Additionally, we had to mark two channels (F1 and C2) in five
datasets as bad (two in placebo, three in ketamine) due to incorrect ca-
bling. To exclude the possibility that our main results were driven by the
interpolation of missing channel data, we performed all statistical analy-
ses on the group level once without participant 14, who lost five channels
due to bad signal quality, and once without the four participants affected
by the cabling errors. The SPM results reported in this article remained
significant unless stated otherwise.

The average total number of artifact-free trials was 1211 (SD, 201) in
the placebo and 1464.6 (SD, 211.2) in the ketamine condition. The num-
ber of artifact-free trials was thus significantly lower in the placebo ses-
sions. However, the resulting nonsphericity was accommodated by our
second-level statistical tests (paired t tests to assess group differences; see
the “Experimental design and statistical analysis” section). Note that we
did not define categorical events like standard and deviant trials, but
instead included all tones in our trial-by-trial analysis.

Computational model
In what follows, we briefly outline our perceptual model before
describing the analysis steps used to apply this model to single-trial
EEG data. In terms of notation, we denote scalars by lower case
italics (e.g., x), vectors by lower case bold letters (e.g., x), and matri-
ces by upper case bold letters (e.g., X). Trial numbers are indexed by
the superscript ðkÞ [e.g., xðkÞ].

Perceptual model: the hierarchical Gaussian filter. To describe a par-
ticipant’s perceptual inference and learning during this roving MMN

paradigm, we use a multivariate version of the hierarchical Gaussian fil-
ter (HGF), a generic Bayesian model introduced by Mathys et al. (2011)
that has been applied in various contexts, such as associative learning
(Iglesias et al., 2013; Weilnhammer et al., 2018), social learning
(Diaconescu et al., 2014, 2017), spatial attention (Vossel et al., 2014b),
visual mismatch negativity (Stefanics et al., 2018), visual discrimination
(Auksztulewicz et al., 2017), and sensorimotor learning (Palmer et al.,
2019).

In the present task, participants were exposed to a tone sequence
with seven different tones. Our modeling approach assumes that in this
context, an agent infers the following two hidden states in the world:
(1) the current (probabilistic) “laws” underlying the observed tone statis-
tics—in our case, a matrix X2 of pairwise transition probabilities
between all tones; and (2) the current level of environmental volatility
(i.e., how quickly the inferred laws seem to change). This is represented
in our model by the volatility x3, which is the degree to which the transi-
tion probabilities in X2 change from trial to trial. The rationale for track-
ing this quantity is that agents should learn faster (i.e., update their
beliefs about the statistical laws in the environment according to predic-
tion errors) if they experience the current environment to be changing
rather than stable. Figure 1 shows a visualization of the corresponding
generative model.

On each trial, the agent updates her beliefs about these two environ-
mental states, given the new sensory input (i.e., tone). We denote these
updated (posterior) beliefs in the following by their mean m and their
precision (or certainty) p (the inverse of variance, or uncertainty, s ). In
the HGF, the general form of the update of the posterior mean at hier-
archical level i on trial k is as follows:

Dm kð Þ
i / p̂ kð Þ

i�1

p kð Þ
i

d kð Þ
i�1: (1)

Here, d kð Þ
i�1 denotes the PE about the state on the level below, which

is weighted by a ratio of precisions: p̂ kð Þ
i�1 is the precision of the predic-

tion about the level below (i� 1), while p kð Þ
i is the precision of the cur-

rent belief at the current hierarchical level i. The intuition behind this is
that belief updates of an agent should be more strongly driven by PEs
when the precision of predictions about the input is high relative to the
precision of beliefs in the current estimate (e.g., when the environment
is currently perceived as being volatile). For the specific update equations
for the two levels of our model, as well as a detailed derivation of these
equations, the interested reader is referred to the paper by Mathys et al.
(2011).

Usually, in the HGF, subject-specific perceptual parameters describe
the individual learning style and computational trajectories (e.g., beliefs
and PEs) of an agent. Specifically, the three parameters k , v , and #
determine the strength of the coupling between the second and third
level (k), the tonic volatility estimate on the second level (v ; i.e., the part
of the learning rate that is independent of online volatility estimation),
and the (tonic) volatility estimate on the third level (#; i.e., the speed of
change in volatility). Here, we fixed the coupling parameter k to 1
because the scale of x3 is arbitrary in our setting (Mathys et al., 2014).
This effectively eliminates this parameter from the model. An additional
four free parameters determine the starting values of an individual’s
beliefs at the beginning of the task (mð0Þ

2 , s ð0Þ
2 , mð0Þ

3 , and s
ð0Þ
3 ). Since the

current paradigm does not involve behavioral responses to the tones,
and thus the model could not be fitted to behavior, we used the parame-
ters (volatility estimates on both hierarchical levels and starting values of
the beliefs) of a surprise-minimizing Bayesian observer for all partici-
pants, similar to a previous application of the HGF to single-trial (visual)
MMN responses (Stefanics et al., 2018). This ideal observer was defined
as the parameter values that result in minimal overall surprise about the
stimulus sequence encountered. To estimate these parameters, we used
the MATLAB function tapas_fitModel from the HGF toolbox (version
4.0), distributed as part of TAPAS (release version 1.6) with the tapas_
bayes_optimal_whatworld function as a pseudoresponse model. For this
estimation, we used the default priors for this model in the HGF toolbox,
after verifying that all parameters that had a visible impact on belief tra-
jectories were being estimated. The prior settings were as follows: v =
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�6 (var = 25), # = 0.05 (var = 0.088), and s ð0Þ
3 = 0.1 (var = 1 in log space),

with k ¼ m
ð0Þ
3 ¼ s

ð0Þ
2ij ¼ 1 and m

ð0Þ
2ij ¼ 1

7 fixed (var = 0). Note that the
scale of x3 is arbitrary in our context (see above), and therefore the
choice of k and m

ð0Þ
3 is arbitrary, too. We chose the initial value of mð0Þ

2ij ,
the belief about tone transitions, to be neutral (i.e., all transitions were
equally likely a priori), with sufficient uncertainty (s ð0Þ

2ij ) to enable learn-
ing. Because of the subject- and session-specific stimulus sequences
(they were generated, under identical probabilities across participants,
on the spot during each session), this procedure resulted in slightly dif-
ferent parameter values for the ideal observer for each recording session.
There were no significant differences in these parameter values between
placebo and ketamine conditions (low-level tonic volatility estimate v :
placebo mean = �10.04, SD= 0.2; ketamine mean = �10.06, SD= 0.28,
p= 0.83; high-level tonic volatility estimate #: placebo mean = 0.045,
SD= 0.003; ketamine mean = 0.046, SD= 0.003, p= 0.33; and starting
value of the high-level uncertainty s ð0Þ

3 : placebo mean=0.10, SD= 0.00;
ketamine mean=0.10, SD= 0.00; p=0.67, p values refer to two-sided
paired t tests). The resulting belief and PE trajectories for a representa-
tive session are depicted in Figure 2.

Computational quantities: the precision-weighted prediction errors.
The MMN has been interpreted as a precision-weighted PE (or model
update signal) during auditory perceptual inference and statistical learn-
ing (Näätänen et al., 2001; Winkler, 2007; Garrido et al., 2008, 2009;
Wacongne et al., 2012; Lieder et al., 2013a,b). In our model, two hier-
archical levels are updated in response to new auditory inputs, as follows:
the current estimate of the transition probabilities (l2), and the current
estimate of environmental volatility (m3). The corresponding precision-
weighted PEs driving these updates are hierarchically related and are
computed sequentially, as follows: the agent first needs to update l2
(using the low-level PE about l1) before evaluating its high-level PE with
respect to l2, which is then used to update m3. Following previous

notation (Iglesias et al., 2013), we denote
these precision-weighted PEs by « 2 and « 3.

We address the following questions in
this article: (1) whether these precision-
weighted PEs are reflected by trial-by-trial
variations in the amplitude of evoked
responses; (2) whether their hierarchical
relation in the model is mirrored by a
corresponding temporal relation in their
electrophysiological correlates; and (3)
whether NMDAR antagonism by S-keta-
mine alters the electrophysiological expres-
sion of these PEs.

Experimental design and statistical
analysis
We examined manifestations of our two
computational quantities (« 2 and « 3) in
the event-related EEG responses for each
trial in a time window from 100 to 400ms
poststimulus. We focused on this time win-
dow to model learning-induced modula-
tions of both the MMN and the P300
waveforms.

The data from each trial in each session
were converted into scalp images for all 64
channels and 91 time points using a voxel
size of 4.25 � 5.38� 3.33ms. The images
were constructed using linear interpolation
for removed bad channels and spatial
smoothing with a Gaussian kernel
(FWHM: 16� 16 mm) in accordance with
the assumptions of random field theory
(Worsley et al., 1996; Kiebel and Friston,
2004) to accommodate for between-subject
spatial variability in channel space.

Our vectors of precision-weighted PEs
served as regressors in a general linear
model (GLM) of trialwise EEG signals for

each participant and each session separately, after removing the entries
of trials that had been rejected during EEG preprocessing. We did not
orthogonalize the regressors. Figure 3 summarizes the analysis steps for
the model-based GLM.

Random-effects group analysis across all 19 participants was per-
formed using a standard summary statistics approach (Penny and
Holmes, 2007). We used one-sample t tests as second-level models, sepa-
rately for each drug condition, and used F tests to simultaneously
examine positive and negative relations of EEG amplitudes with the tra-
jectories of our computational quantities. To examine differences
between the two drug conditions, we tested for reduced responses under
ketamine using a paired t test.

For all analyses, we report any results that survived familywise error
(FWE) correction, based on Gaussian random field theory (Kilner and
Friston, 2010), across the entire volume (time � sensor space) at the
cluster level (p, 0.05) with a cluster defining threshold (CDT) of
p, 0.001 (Flandin and Friston, 2019). Notably, all reported results also
survive whole-volume correction at the peak level (p, 0.05).

Region-of-interest analysis
To relate our trialwise analysis approach to the conventional ERP analy-
sis presented in a previous report of our dataset (Schmidt et al., 2012),
we performed a region of interest (ROI) analysis in a subset of frontal
sensors, using our model-based PE estimates. Specifically, we defined
“standards” and “deviants” as those trials with the 10% lowest and 10%
highest precision-weighted PEs, respectively, according to our model.
We averaged the respective responses across trials and across three fron-
tal sensors [Fz, F3, and F4 (same sensors as in Schmidt et al., 2012)], sep-
arately for standard and deviant trials, and computed a difference wave
(deviant – standard, or high PE – low PE)or each participant and each
recording session (placebo, ketamine). Next, we extracted the peak of

Figure 1. The perceptual model: a multivariate version of the binary three-level HGF. The agent infers on two continuous
quantities: the transition tendencies from one tone (frequency) to another, stored in the transition matrix X2, and the (common)
volatility of these tendencies, x3. To use this model, the agent only has to follow simple one-step update rules for its beliefs (para-
meterized by their meanm and variance s ) about these quantities.
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this difference wave between 100 and 200ms (MMN), where deviant
ERPs are more negative than standards, and tested whether this peak
mismatch effect was significantly different between placebo and keta-
mine sessions using a paired t test. This procedure exactly mimics the
analysis presented in the study by Schmidt et al. (2012), except for the
definition of standard and deviant trials, which was based on our model
here. Additionally, we ran the same test for a later time window (200–
300ms), where amplitudes of ERPs to deviant tones are more positive
than standards (P3a). We separately performed these ROI analyses for
our two precision-weighted PEs (« 2 and « 3), resulting in the following
four tests: (1) placebo vs. ketamine for mismatch based on lower-level
PEs in the early time window, and (2) in the late time window, and (3)
for mismatch based on higher-level PEs in the early time window and
(4) in the late time window.

Results
For each computational quantity of interest, our model-based
EEG analysis proceeded in the following two steps: first, we per-
formed whole-volume (spatiotemporal) analyses to search for

representations of our quantities in single-trial EEG responses;
and second, we examined whether these electrophysiological rep-
resentations of trialwise PEs differed significantly between keta-
mine and placebo.

Low-level precision-weighted prediction errors
By fitting computational trajectories to participants’ single-trial
EEG data, we found that under placebo there was a significant
trial-by-trial relation between «

ðkÞ
2 (the precision-weighted tran-

sition PE) and EEG activity between 102 and 207ms poststimu-
lus, peaking at 121ms at central channels (peak, F(1,18) = 70.0;
whole-volume cluster-level FWE corrected, p= 2.8e-08; with a
CDT of p, 0.001; Fig. 4). This time window includes the typical
time when the negativity of the roving MMN is observed
(Cowan et al., 1993; Baldeweg et al., 2004; Garrido et al., 2008).
Critically, more negative EEG amplitudes in this cluster corre-
sponded to higher PE values (i.e., more surprising events; Fig. 4).
This suggests that the MMN typically observed in roving MMN

Figure 2. Simulation results: example trajectories from a representative participant in the placebo session. A, Time course over the experimental session (1707 trials) for the simulated belief
of the agent about volatility (m3, in red), her trial-by-trial prediction of the repetition probability of tone 1 (m̂1;1;1, in green), her trial-by-trial prediction of the transition probability from tone
1 to tone 3 (m̂1;3;1, in green), and the tone sequence she was exposed to (u, black dots). After an initial learning period, the agent has learned that repetitions are likely, and transitions are
unlikely. B, Trial-by-trial values of the two precision-weighted PEs used as regressors in the GLM of the EEG signal. The initial learning period is characterized by high low-level PEs about stimu-
lus occurrences (« 2) for all tone events; later the deviant trials (tone transitions) separate clearly from the standard trials (repetitions). As the volatility estimate of the agent decreases, the
higher-level PE (« 3) in response to deviants separates more and more from the one in standard trials. C, The two PE trajectories in more detail for the 50 first tones of the session (left) and
the 50 last tones of the session (right). At first, all tones are similarly surprising (« 2 in the beginning of the session), but in the end, because the estimates of repetition and transition probabil-
ities of the agent are stable and accurate, repetitions elicit almost no PEs anymore.
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paradigms reflects the difference in low-level precision-weighted
PEs about stimulus transitions between the subsets of trials la-
beled as standards and deviants by the experimenter.

Under ketamine infusion, we found a similar activation pat-
tern, with significant clusters of activity at frontocentral electro-
des between 107 and 188ms (peak, F(1,18) = 63.4; at 137ms,
p=3.1e-08), and at left temporal channels between 105 and
188ms, peaking at 141ms poststimulus (peak, F(1,18) = 76.4;
p=6.3e-06; Fig. 5).

High-level precision-weighted prediction errors
In the placebo condition, we found a significant trial-by-trial
relation between «

ðkÞ
3 (the precision-weighted PE that serves to

update volatility estimates) and EEG activity, both in an early
time window (between 152 and 199ms, peaking at 184ms at
right temporal channels; peak: F(1,18) = 58.8, p=0.004; and
between 145 and 188ms, peaking at 180ms at frontal channels;
peak: F(1,18) = 31.6, p= 0.009) and in a later time window
(between 215 and 277ms, peaking at 266ms poststimulus; peak:
F(1,18) = 35.1, p= 0.002; Fig. 4), where high-level PEs correlated
with an increased central positivity corresponding to the P3a
component of the auditory-evoked potential (Polich, 2007).

Under ketamine, we found a similar relationship of EEG
amplitudes with the higher-level PE in the early time window
(148–211ms, peaking at 160ms at right temporal channels; peak:
F(1,18) = 35.0, p=0.04; and 156–215ms, peaking at 207ms at
frontocentral channels; peak: F(1,18) = 25.2, p= 0.008), but the
later cluster occurred only much later (297–398ms, peaking at
375ms at right temporal channels; peak: F(1,18) = 32.3, p=0.021;
and 324–398ms, peaking at 398ms at frontocentral channels;
peak: F(1,18) = 35.5, p=0.001; Fig. 5). While the timing of this late
effect is reminiscent of the P3b component, high-level PEs in this
cluster correlated with a frontocentral negativity (Fig. 5) instead
of a parietal positivity, as would be characteristic for P3b (Polich,
2007; Watson et al., 2009).

Effects of ketamine on PE representations
We tested for drug differences in activity elicited by precision-
weighted PEs using paired t tests at the second level. We found
no significant differences in activation by «

ðkÞ
2 in the ketamine

condition compared with the placebo condition. In contrast, the
activation by «

ðkÞ
3 , the higher-level PE informing volatility esti-

mates, was significantly reduced under ketamine compared with

placebo in a time window between 207 and 250ms poststimulus,
peaking at 223ms across frontocentral channels (peak: t(18) =
5.95, p=0.005; Fig. 6). That is, the trial-by-trial relation between
EEG signal and the higher-level PE was significantly more pro-
nounced under placebo than under ketamine in this time
window.

To relate this result to the previously reported effect of keta-
mine on MMN amplitudes between 100 and 200ms in a frontal
ROI in our dataset (Schmidt et al., 2012), we repeated the same
ROI analysis performed there, but with standard and deviant
events defined as the 10% least surprising trials (lowest preci-
sion-weighted PE) and 10% most surprising trials (highest preci-
sion-weighted PE), respectively, according to our trialwise
estimates of low- and high-level PEs. We found that both in an
early (100–200 ms) and in a late (200–300 ms) time window, ke-
tamine significantly reduced the mismatch effect in a frontal ROI
composed of sensors Fz, F3, and F4, but only when using the trial
definition based on the higher-level PE (two-sided paired t tests:
tearly(18) =�3.57, p= 0.002; tlate(18) = 2.56, p= 0.02; Fig. 6).

Discussion
Current theories of schizophrenia conceptualize psychotic symp-
toms as disturbed hierarchical Bayesian inference, characterized
by an imbalance in the relative weight (precision) assigned to
prior beliefs (or predictions) and new sensory information that
elicits PEs (Adams et al., 2013; Corlett et al., 2016; Sterzer et al.,
2018). Neurobiologically, this disturbance is thought to result
from alterations of NMDAR-dependent synaptic plasticity and
to be reflected by abnormalities in perceptual paradigms, such as
the auditory MMN (Stephan et al, 2006, 2009; Friston et al.,
2016). Based on a computational single-trial analysis of the
MMN under ketamine, the current results are supportive of the
following two major predictions: (1) multiple and hierarchically
related precision-weighted PEs should underlie the MMN; and
(2) the expression of precision-weighted PEs should be sensitive
to NMDARmanipulations.

Multiple, hierarchically related prediction errors underlie
the MMN
The auditory MMN has been interpreted as reflecting model
updates in an auditory processing hierarchy (Garrido et al., 2008,
2009; Lieder et al., 2013a). In our Bayesian learning model, levels

Figure 3. Sketch of the analysis pipeline for the model-based analysis. First, we simulated the beliefs of an agent using our hierarchical Bayesian model, which provided us with an estimate
of precision-weighted PE on two hierarchical levels (« 2 and « 3) for each trial in each session. At first glance, it may seem that the « 3 regressor simply amounts to a drift-like signal. This, how-
ever, is not the case; the design of our experiment, with prolonged trains of identical stimuli that exchange each other, leads to separate monotonic changes in log-volatility estimates for
standard and deviant trials, with jump-like transitions between them (Fig. 2). Second, we used these estimates as parametric regressors in a general linear model (GLM) of the single-trial EEG
signal in each session of each participant separately (peristimulus time window of 100–400 ms after tone onset) and computed the first-level statistics. Third, the b values for each quantity
and each participant in each session entered the second-level analysis. We performed random-effects group analysis across all 19 participants separately for each drug condition in one-sample
t tests and used F tests to examine correlations of EEG amplitudes with our computational quantities of interest, resulting in thresholded F statistical parametric maps (SPM) across within-trial
time and sensor space. PST, Peristimulus time.
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of a belief hierarchy are updated in response to two different pre-
cision-weighted PE signals (Mathys et al., 2011): a low-level PE
that quantifies the mismatch between expected and actual tone
transitions, and a higher-level PE that quantifies the change in
estimated uncertainty about transition probabilities and is used
to update estimates of environmental volatility. Effects of vola-
tility on mismatch signals have been reported previously
(Summerfield et al., 2011; Todd et al., 2014; Dzafic et al., 2018).

Notably, in the present study, the observed timing of low-level
and high-level precision-weighted PE responses under placebo
coincided with the timing of MMN and P3a components, respec-
tively, previously shown to reflect related, but dissociable stages
of automatic deviance processing (Rinne et al., 2006; Lecaignard
et al., 2015). Furthermore, the temporal succession of these two
PE signatures mirrored the temporal order that is predicted pre-
dicted by the computational model.

Ketamine interferes with high-level belief updates
We found that ketamine changed the electrophysiological
expression of the higher-level (but not lower-level) PE. Other
authors have reported ketamine-induced changes of the deviant-
related negativity at an earlier time corresponding to our lower-
level PE representation and the classical MMN latency
(Umbricht et al., 2000; Schmidt et al., 2012). One difficulty for
comparing these reports to the current results is that the timing
of ketamine effects in previously reported ERP analyses strongly
depended on the type of MMN paradigm, the definition of
standards, and the choice of electrodes and time windows
(Oranje et al., 2000; Umbricht et al., 2000; Heekeren et al., 2008;
Roser et al., 2011; Schmidt et al., 2012, 2013). For example, using
classical averaging-based ERP analysis restricted to the early

MMN time window (100–200ms after tone onset) and a subset
of frontocentral and temporal channels, Schmidt et al. (2012)
found an attenuation of early MMN amplitudes in frontal
channels under ketamine in the same dataset used here. When
repeating this ROI analysis here, but using a trial definition
based on model-based estimates of PE, we found that mis-
match effects were indeed attenuated by ketamine both in the
early and a later time window (200–300ms) in the frontal ROI
for the higher-level PE, but not for the lower-level PE. This is
consistent with our main single-trial analysis, where the high-
level PE also showed an effect in frontal sensors within the
early time window (Figs. 4, 5). However, this analysis, which
considers all sensors and time points under multiple-compari-
son correction, locates the dominant effect of ketamine in the
later time window of the P3a. This is also consistent with
another set of ERP results from the same dataset (Schmidt et
al., 2013) where, across all sensors and time points, a signifi-
cant drug effect was found exclusively in a time window (220–
240 ms) that was later than the classical MMN latency, and
with literature on how ketamine attenuates later ERP compo-
nents such as the P3 (Oranje et al., 2000; Watson et al., 2009;
Rosburg and Schmidt, 2018).

Our finding that ketamine altered high-level PEs can also be
compared with previous dynamic causal modeling (DCM) stud-
ies that examined the effects of ketamine during auditory roving
MMN paradigms. While these studies (which used different
approaches to modeling the input stream) gave different
answers, both localized the effect of ketamine at higher levels of
the auditory hierarchy. One study found that the effect of keta-
mine was best explained by changes of inhibition within frontal
sources (Rosch et al., 2019). Previous DCM analyses of our

Figure 4. Results of the model-based EEG analysis in the placebo condition: effects of the high-level and the low-level PE. Top, The left side of each panel shows an F map across the scalp
dimension y (from posterior to anterior, x-axis) and across peristimulus time (y-axis) at the spatial x-location indicated above the map. Significant F values (p, 0.05, whole-volume FWE cor-
rected at the cluster level with a cluster-defining threshold of p, 0.001) are marked by white contours. Time windows of significant correlations are indicated by the yellow bars next to the
colored clusters of significant F values. The scalp maps next to the F maps always show the F map at the indicated peristimulus time point, corresponding to the peak of that cluster, across a
2D representation of the sensor layout. We found significant correlations of the EEG signal with our two computational quantities across frontocentral and temporal channels. For the lower-
level PE, « 2, the correlation peaked at 121 ms poststimulus at central channels; for the higher-level PE, « 3, it peaked at 180 ms at frontal channels, at 184 ms at temporal channels (data not
shown here), and at 266 ms poststimulus at left central channels. Bottom, Average EEG responses to the 10% highest and the 10% lowest PE values at exemplary sensors within significant
clusters. High values in low-level PEs correlated with an increased negativity between 102 and 207 ms poststimulus (sensor C1). High values in high-level PEs correlated with both an increased
positivity (sensor P8) and an increased negativity between 145 and 188 ms poststimulus (sensor F1), and an increased central positivity between 215 and 277 ms poststimulus (sensor C1).
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dataset (Schmidt et al., 2013) suggested reduced bottom-up con-
nectivity from auditory cortex (A1) to superior temporal gyrus
(STG) under ketamine. Assuming that low-level and high-level
PEs are computed at lower and higher levels of the auditory hier-
archy (e.g., A1 and STG), respectively, this is compatible with
disturbed computation of higher-level PEs in STG due to
impaired message passing from A1.

It is important to note that our results do not allow for a
unique interpretation of ketamine effects in computational
terms. If one assumes a strictly monotonic relation between EEG
amplitude and PEs, our finding suggests that ketamine reduces
learning (smaller PEs) about environmental volatility. Because
volatility estimates are a direct function of the PEs used to update
them (Eq. 1), this can both lead to inflated estimates of volatility
(slowed representation of stability after periods of inconstancy) or
diminished ones (in the opposite case), depending on context. A
previous study using ketamine found reduced stabilization of an in-
ternal model of environmental regularities during instrumental
learning (Vinckier et al., 2016). One may be tempted to interpret
this as an overestimation of volatility under ketamine; however, the
previous model derived from a different computational concept,
making direct comparisons problematic. Interestingly, an overesti-
mation of volatility has been observed in patients with schizophre-
nia (Kaplan et al., 2016; Deserno et al., 2020) and individuals at risk
for psychosis (Cole et al., 2020).

Limitations
The HGF parameters allow for the expression of individual dif-
ferences in learning (with potential relations to neuromodulatory
mechanisms; Mathys et al., 2011; Vossel et al., 2014a). A main li-
mitation of our approach is that we cannot infer on subject-spe-
cific learning styles, simply because the MMN paradigm does
not provide behavioral responses to which the model could be
fitted. Similar to Stefanics et al. (2018), we therefore used the pa-
rameters of a surprise-minimizing Bayesian observer for each of
the tone sequences and simulated belief trajectories accordingly.
An important future extension of HGF applications to MMN
paradigms would be the formulation of a forward model from
belief updates to EEG signals. This would allow for estimating
subject-specific model parameters from single-trial EEG data
directly.

A second limitation concerns the relatively small sample size
(N= 19). This renders it difficult to interpret negative results,
such as the lack of ketamine effects on low-level PEs. This will
need to be addressed in future studies with larger samples and/or
meta-analyses.

Finally, the particular roving paradigm used in this study was
not optimized for investigating the effects of volatility, as the
probabilities governing the auditory input stream are quite sta-
ble: repetitions are more likely than tone transitions, throughout
the tone sequence. However, as the (subjective) inferred level of

Figure 5. Results of the model-based EEG analysis in the ketamine condition: effects of the high-level and the low-level PE. Top, The left side of each panel shows an F map across the scalp
dimension y (from posterior to anterior, x-axis) and across peristimulus time (y-axis) at the spatial x-location indicated above the map. Significant F values (p, 0.05, whole-volume FWE-cor-
rected at the cluster level with a cluster-defining threshold of p, 0.001) are marked by white contours. Time windows of significant correlations are indicated by the yellow bars next to the
colored clusters of significant F values. The scalp maps next to the F maps always show the F map at the indicated peristimulus time point, corresponding to the peak of that cluster, across a
2D representation of the sensor layout. We found significant correlations of the EEG signal with our two computational quantities across frontocentral and temporal channels. For the lower-
level PE, « 2, the correlation peaked at 137 ms at frontocentral channels, and at 141 ms at left temporal channels (data not shown here). For the higher-level PE, « 3, it peaked at 208 and
398 ms after stimulus onset at frontocentral channels, and at 160 and 375 ms at right temporal channels (data not shown here). Bottom, Average EEG responses to the 10% highest and the
10% lowest PE values at exemplary sensors within significant clusters. High values in low-level PEs correlated with an increased negativity between 102 and 188 ms poststimulus (sensor FC2),
and the reverse effect occurred in temporal channels between 105 and 188 ms (sensor TP7). High values in high-level PEs correlated with an increased negativity between 156 and 215 ms
poststimulus (sensor F2), and an increased late frontocentral negativity between 324 and 398 ms poststimulus (sensor FC1).
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volatility determines an individual’s learning rate, participants
still need to infer the adequate level of volatility as they perform
the task. This learning process is reflected by monotonic changes
in log-volatility estimates in the belief trajectories of the surprise
minimizing agent (Fig. 2). It is important to note, however, that
standard and deviant trials affect log-volatility estimates differen-
tially, and the resulting PE trajectory used as a regressor here
does not simply correspond to a drift-like signal but properly
reflects trial-by-trial belief updates. Still, future work that follows
up on our current findings would benefit from using mismatch
paradigms designed to include marked changes of volatility
across time (Summerfield et al., 2011; Todd et al., 2014; Dzafic et
al., 2018).

Conclusion and outlook
This study presents evidence for the role of hierarchically related
PEs in the auditory MMN. While ketamine-induced reductions
of MMN have been reported previously, our study enables two
new insights by taking an explicitly computational perspective

and analyzing trial-by-trial belief updates. First, we offer an inter-
pretation of two mismatch-related ERP components, the MMN
and the P3a, in terms of hierarchically related PEs that are
expressed trial-by-trial and reflect the updating of a hierarchical
model of the statistical structure of the environment. Additionally,
a reduced expression of the higher-level PE under infusion of S-
ketamine suggests a disturbance of high-level inference about
environmental volatility by perturbation of NMDA receptors
(Coull et al., 2011).

Our results are clinically relevant as they support a bridge
between physiology (NMDAR function) and computation (hier-
archical Bayesian inference), as proposed by predictive coding
theories of schizophrenia. By linking physiological indices of
abnormal perceptual inference to their algorithmic interpretation
in terms of hierarchically related PEs, the present work provides
a starting point for future attempts to understand individual
alterations of MMN in schizophrenia mechanistically. We hope
that this will eventually contribute to the development of compu-
tational assays for improved differential diagnosis and treatment
prediction in schizophrenia (Stephan et al., 2015).

Figure 6. Drug effect on the representation of the lower-level PE (« 2, left) and the higher-level PE (« 3, right). Top, The left side of each panel shows a t map for the paired t test (placebo
– ketamine) across the scalp dimension y (from posterior to anterior, x-axis) and across peristimulus time (y-axis) at the spatial x-location indicated above the map. Significant t values
(p, 0.05, whole-volume FWE corrected at the cluster level with a cluster-defining threshold of p, 0.001) are marked by white contours. Time windows of significant correlations are indi-
cated by the yellow bars next to the colored clusters of significant t values. The scalp map next to the t map shows the t map at the indicated peristimulus time point, corresponding to the
peak of that cluster, across a 2D representation of the sensor layout. The effect of the higher-level PE was stronger under placebo compared with ketamine between 207 and 250 ms poststimu-
lus, peaking at 223 ms at frontocentral channels. No significant drug effects were found for the lower-level PE. Bottom, Results of the ROI analysis. Left plots show the average difference wave
(mismatch effect) for the contrast deviants (high PE) – standard (low PE) trials. Middle and right plots show peak mismatch effects (EEG amplitude differences) per participant in the placebo
and the ketamine sessions (gray lines). Session averages are marked by small squares, with error bars showing 61.96 times the SEM. Middle plots, Peak mismatch effects between 100 and
200 ms. Right plots, Peak mismatch effects between 200 and 300 ms. The effect of ketamine was not significant when using the lower-level PE for the definition of standards and deviants. In
contrast, ketamine significantly attenuated mismatch effects in both time windows for the higher-level PE in the frontal ROI. Please note that in this case we are not interested in the interac-
tion (and are thus not committing the common error of confusing a difference in significance with a significant difference) but do wish to test both PE types separately to enable a comparison
with previous results by Schmidt et al. (2012).
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