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Abstract

Background. Real-life decisions are often complex because they involve making sequential
choices that constrain future options. We have previously shown that to render such multi-
step decisions manageable, people ‘prune’ (i.e. selectively disregard) branches of decision
trees that contain negative outcomes. We have theorized that sub-optimal pruning contributes
to depression by promoting an oversampling of branches that result in unsavoury outcomes,
which results in a negatively-biased valuation of the world. However, no study has tested this
theory in depressed individuals.
Methods. Thirty unmedicated depressed and 31 healthy participants were administered a
sequential reinforcement-based decision-making task to determine pruning behaviours, and
completed measures of depression and anxiety. Computational, Bayesian and frequentist ana-
lyses examined group differences in task performance and relationships between pruning and
depressive symptoms.
Results. Consistent with prior findings, participants robustly pruned branches of decision
trees that began with large losses, regardless of the potential utility of those branches.
However, there was no group difference in pruning behaviours. Further, there was no relation-
ship between pruning and levels of depression/anxiety.
Conclusions. We found no evidence that sub-optimal pruning is evident in depression.
Future research could determine whether maladaptive pruning behaviours are observable in
specific sub-groups of depressed patients (e.g. in treatment-resistant individuals), or whether
misuse of other heuristics may contribute to depression.

Introduction

Major depressive disorder is a leading contributor to disability worldwide, affecting more than
300 million people at any time (World Health Organization, 2017). Although people with
depression experience impairments in decision-making that contribute to their disorder
(Clark et al., 1992; Eshel & Roiser, 2010; Husain & Roiser, 2018; Pulcu, Thomas, Trotter, &
McFarquhar, 2015), our knowledge of maladaptive decision-making processes in depression
remains incomplete. Understanding such depression-related impairments may aid our
attempts to improve the quality of life for those that struggle with this disorder.

Although people with anhedonic forms of depression exhibit dysfunctional evaluation of
immediately-available, yet superficially appetitive outcomes, those with other forms of depres-
sion (e.g. those associated with helplessness) may exhibit maladaptive assessment of outcomes
that occur only after extended sequences of decisions (Dayan & Huys, 2008; Huys et al.,
2015b). Addressing the substantial computational challenge associated with planning during
multi-step decision-making lies at the heart of modern reinforcement learning. Such multi-
step decision-making requires searching a decision-tree of options in which the first choice
constrains future choices. These searches are difficult and necessitate the use of certain
heuristics.

Using the multi-step decision-making task in Fig. 1, we investigated various heuristics that
healthy individuals use to approximate the best possible overall outcome without exhausting
cognitive resources. One particular heuristic we identified is the ‘pruning’ of branches of a
decision-tree that contain very negative outcomes in a Pavlovian manner (Huys et al., 2012;
Huys, Daw, & Dayan, 2015a). Specifically, healthy individuals selected the optimal sequence
of decisions when potential paths did not contain a large loss, although they were dramatically
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impaired at doing so when the optimal sequence began with a
large loss at the first decision step (Fig. 2).

Pruning of decision branches that contain a large loss can
reflect the rational allocation of computational resources.
Importantly, such pruning may also promote emotional well-
being; curtailing a tree search in the face of a large punishment
avoids aversive outcomes and the consequent negatively-biased
valuation of one’s surroundings (Dayan & Huys, 2008).
Conversely, an oversampling of branches associated with
unsavoury outcomes (i.e. a consistent selection of branches or
options that typically result in punishments) can contribute to a
more negatively-biased valuation of one’s surroundings and can
thus promote depression (Dayan & Huys, 2008; Huys et al.,
2015a). Indeed, research indicates that depression may be asso-
ciated with an oversampling of aversive information and out-
comes (e.g. Garrett et al. 2014; Joormann, Hertel, Brozovich, &
Gotlib, 2005; Joormann & Gotlib, 2008). For example, Garrett
et al. (2014) report that when constructing beliefs about the like-
lihood of future positive and negative events occurring, non-
depressed individuals exhibit a bias towards the processing of
information that supports a positively-skewed view of future posi-
tive events occurring, while ignoring information to the contrary.
However, the authors also report that clinically-depressed indivi-
duals consider such information as much as they consider infor-
mation that supports a negatively-skewed view of future events,
and as such overevaluate aversive information. In addition,
Joormann and Gotlib (2008) report that negatively-valenced but
irrelevant words interfere with the ability to update working
memory (indexed by response latencies on a recognition task)
in depressed participants more than in healthy individuals.
These results further indicate that depression may be associated
with an overevaluation of aversive information, and that people
with depression might sub-optimally prune decision trees by
oversampling branches associated with negative outcomes.

Pavlovian pruning of decision trees has been hypothesized to
depend on the brain’s serotonin system (Dayan & Huys, 2008).
Specifically, reductions in central serotonin are proposed to result
in a decrease in Pavlovian behavioural inhibition, and an
increased choice of options that result in negative outcomes due
to decreases in pruning (Dayan & Huys, 2008). This hypothesis
was based on observations that serotonin influences behavioural
inhibition in response to losses (Cools, Nakamura, & Daw,
2011; Crockett, Clark, & Robbins, 2009). Because depression is
associated with dysfunction in a number of neurotransmitter
systems, including the serotonin system (Anderson, 2000;
Cannon et al., 2007; Parsey et al., 2003), this theory provides

one possible mechanism by which depressed individuals exhibit
negatively-biased valuations of themselves and their surroundings
(Clifford and Hemsley, 1987).

The current study aimed to determine whether depression is
associated with sub-optimal pruning of decision trees. We com-
pared the performance of depressed and healthy participants on
a sequential decision-making task designed to reveal pruning
behaviours. Standard, Bayesian and computational analyses were
utilized. It was predicted that (1) compared to healthy individuals,
depressed individuals would exhibit less pruning of decision-tree
branches that begin with a large punishment, and (2) that in
depressed individuals, those with the highest levels of depression
would demonstrate the lowest pruning.

Methods

Participants

This study employed a between-subjects design. Thirty depressed
individuals were recruited via the Camden and Islington NHS
Foundation Trust Psychological Therapy Services, while 31
healthy controls were recruited via online and print advertise-
ments. All participants gave written informed consent after
receiving a detailed explanation of the study (approved by the
London – Queen Square NHS Research Ethics committee).
Exclusion criteria [assessed by the Mini International
Neuropsychiatric Inventory (MINI); Sheehan et al., 1998] for
the healthy control participants included past or present major
depressive disorder, bipolar disorder, psychosis, anxiety disorders,
substance/alcohol dependence or recent (<6 months) abuse, any
neurological disorder and not being a native English speaker.
Depressed participants were subject to the same exclusion criteria,
except they had to endorse depressive symptoms for a minimum
of 10 days within the last 2 weeks (number of past depressive epi-
sodes was not important for inclusion), and could also have a
diagnosis of an anxiety disorder, or historical substance/alcohol
dependence that was restricted to a depressive episode.
Exclusion criteria for depressed participants included the use of
antidepressants within the last month. All participants provided
written informed consent and were compensated £30 for partici-
pation, as well as an additional £0–20 depending on task
performance.

Procedure

All participants were initially contacted over the telephone
(depressed participants were contacted after a referral from the

Fig. 1. (a) Deterministic transition matrix presented to participants during the training phase to aid learning. (b) Deterministic reward matrix. Note that this was
never presented to participants; they must instead learn the reward structure through trial and error. (c) Task as presented to participants. The white box denotes
the state that the participant is currently in. Symbols below each state denote the deterministic reward achieved by transitioning away from that state; ‘++’ = +140
points; ‘+’ = +20 points; ‘-’ =−20 points; ‘--’ =−140 points.
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Camden and Islington NHS Foundation Trust Psychological
Therapy Services, while non-depressed participants responded
to the advert). At this point, participants were questioned to
determine whether they had ever experienced any symptoms of
a psychiatric disorder. Importantly, the specifics of such symp-
toms or disorders were not discussed at this stage; detailed infor-
mation pertaining to this was to be obtained in-person via
administration of the MINI interview, as instructed by the
London – Queen Square Research Ethics Committee. However,
individuals who at this stage endorsed previously or currently
experiencing such symptoms/disorders were not invited to attend
the testing session. The testing session took place at the Institute
of Cognitive Neuroscience, University College London.
Participants completed one testing session each, in which they
initially underwent full screening to determine eligibility (via
administration of the MINI), and then completed a battery of
questionnaires before being trained on and performing the
sequential decision-making task.

Questionnaire measures

The Beck Depression Inventory (BDI; Beck, Steer, & Brown,
1996) was administered to quantify the severity of depression.
This self-report questionnaire consists of 21 items, each of
which is scored on a 0–3-point scale. A total score of 0–9 indicates
minimal depression, while total scores of 10–18, 19–29 and 30–63
indicate ‘mild’, ‘moderate’ and ‘severe’ depression, respectively.

The State/Trait Anxiety Inventory (STAI; Speilberger,
Gorsuch, Lushene, Vagg, & Jacobs, 1983) is a 40-item self-rating
anxiety measure. Participants score each item as either 1 (‘do not
agree at all’), 2 (‘agree somewhat’), 3 (‘agree moderately’) or 4
(‘very much agree’). Scores from questions 1–20 and 21–40 are
then separately summed to respectively determine state and trait
anxiety.

The Wechsler Test of Adult Reading (WTAR; Wechsler, 2001)
was used to quantify verbal IQ. Participants were required to read
a list of 50 increasingly-uncommon words, and received one point
for each correct pronunciation.

Decision-making task

This task is described in Huys et al. (2012), and is presented in
Fig. 1. Participants were required to initially complete a training
phase, during which they learned how to transition throughout
a matrix of six states by referring to the schematic of the transition

matrix presented in Fig. 1a. Importantly, as in Huys et al. (2012),
participants were only allowed to proceed to the task phase after
demonstrating successful learning of this transition matrix by
completing a test without the aid of the schematic.

The task phase began with a further, shorter, training phase
designed to teach participants the deterministic financial out-
comes associated with each transition. Participants were not pre-
sented with a schematic of the action-reward matrix (see Fig. 1b),
but learned via trial and error. To help them, the values of the
deterministic financial outcomes associated with each transition
out of a state were depicted symbolically below each state (but
without being identified with the choice options ‘U’ or ‘I’), both
during this final training phase and throughout the entire task;
‘++’ denotes a £1.40 gain, ‘+’ denotes a 20 pence gain, ‘--’ denotes
a £1.40 loss, and ‘-’ denotes a 20 pence loss. Upon completion of
this final training, participants completed 48 trials of the task,
each of varying length (2–8 moves). On each trial, participants
began in a random state and were instructed to complete a
sequence of transitions of a pre-specified length (2–8 moves) to
maximize financial gain. On 50% of the trials, transitions were
made immediately after each key press, followed by the presenta-
tion of the financial outcome for that transition. On the remain-
ing trials (termed ‘plan-ahead’ trials), participants were instructed
to plan ahead the remaining (2–4) moves and complete the full
sequence of transitions; the transitions and resultant financial
outcomes were only presented after the final key press had been
made. A schematic of the decision-tree when starting in state 2
can be seen in Fig. 2a.

Model-based statistical analyses

As in Huys et al. (2012) the first 24 of the 48 trials were consid-
ered an extension of the reward matrix training, and data from
these trials were not analysed. However, we also performed an
analysis of data from all 48 trials; whilst doing so did not change
the overall significance (or lack thereof) of our findings, these are
reported in the online Supplementary Materials. A set of eight
increasingly complex models was fit to the data using a
Bayesian model comparison approach; these models are fully
defined in Huys et al. (2012). Briefly, each successive model had
an extra parameter to explain the data, and was assessed accord-
ing to its Bayesian Information Criterion (BICint) which is based
on the likelihood that the model can accurately explain the data
and penalizes the model for its extra complexity.

Fig. 2. (a) A typical decision-tree and financial outcomes up to a depth of 3 starting from state 2. Numbers in each box denote the state number. (b) Same decision-
tree starting, aversively pruned due to a large negative outcome at the first step. Note that this aversive pruning also avoids the large positive transition, but almost
halves the computational load.
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The first model was a simple ‘Lookahead’ model, which
assumed that subjects evaluate the entire decision-tree to choose
the optimal sequence of transitions. That is, for a trial of length
d, this model assumed that participants considered all 2d possible
sequences of transitions and chose the financially most beneficial
sequence. Specifically, the Q-value of each action (a) in the
present state (s) was given by the sum of the immediate reward
R(a,s) and the value of the optimal action from the next state
s’ = T(a,s):

QLookahead(a, s) = R(a, s)maxa′QLookahead(a
′, T(a, s))

This equation is iterated until the end of the tree has been
reached. Because a search of the entire tree is unlikely for depths
>3 due to the large computational demands, more complex
models were fit to the data which allowed for testing of hypoth-
eses pertaining to pruning. The first of these, termed the
‘Discount’ model, built upon the previous model by including a
‘discount’ factor that assumed participants exhibit a general ten-
dency to fail to evaluate all 2d (i.e. up to 28 = 256) sequences.
Specifically, this model assumed that evaluation stopped at any
stage along a path with probability γ. This is equivalent to the
standard model of exponential discounting in economics, and
implies that the deeper into the tree an outcome, the less likely
it is to be included in the calculation:

QDiscount(a, s) = R(a, s)+ (1− g)maxa′Qd(a
′, T(a, s))

where, at each step, the next transition is weighted by the prob-
ability (1–γ) that is encountered.

The next model, termed the ‘Pruning’ model, is central to this
study’s hypotheses. This model splits the above γ parameter that
quantifies the tendency to stop a tree-search into two separate
parameters. The first of these is a ‘general pruning’ parameter
(γG) that quantifies the proportion of trials on which tree searches
were curtailed due to a general failure to look ahead (identical to
the ‘discount’ parameter in the previous model). The second is
termed a ‘specific pruning’ parameter (γS) that quantifies the pro-
portion of trials on which the tree search was stopped specifically
when the next transition would incur a large loss (see Fig. 2b for
an example):

QPruning(a, s) = R(a, s)+ (1− x)maxa′Qp(a
′, T(a, s))

x = gS
gG

{
if R(a, s)is the large negative reinforcement

else

The next model, termed the ‘Pruning and Pavlovian’ model,
accounted for ‘Learned Pavlovian’ attraction/repulsion to states
that are associated with future financial rewards that are not
achievable because too few moves remain to obtain them.
Specifically, it accounted for such learning due to the addition
of a second state-action value which depends on the long-term
average value of the states, which is itself learned by standard tem-
poral difference learning after multiple exposures: ←

QPruning and Pavlovian(a, s) = QPruning(a, s)+ vV(T(a, s))

where V is the value that is learned by standard temporal

difference learning:

V(s) � V(s)+ 1(V(s′)+ rt − V(s))

where V(s′) is set to zero at the final transition.
Finally, to distinguish the effect of pruning from the effect of

loss aversion (i.e. the notion that a loss of a given amount is
more aversive than a reward of the same amount is appetitive),
we replicated the above four models but relaxed how they treated
the different outcomes. In the original model, preferences for
financial outcomes were assumed to be proportional (e.g. a loss
of £1.40 was assumed to exactly cancel out a gain of £1.40). In
the new models, we fitted separate parameters for each of the
financial outcomes, so that individuals could weight outcomes
in a non-proportional manner. These four models are termed
‘rho’ (i.e. ‘Lookahead rho’, ‘Discount rho’, ‘Pruning rho’ and
‘Pruning and Pavlovian rho’), with each having three additional
parameters (a parameter for each outcome, but no overall scaling
parameter as in the original models). In principle, this allowed
participants to be attracted to a reward and repelled from a loss,
and vice versa. If pruning is observable above and beyond an indi-
vidual’s simple preferences for rewards and losses, the differential
sensitivities to rewards and punishments cannot, by themselves,
account for the pruning effects in the above four (i.e. non-‘rho’)
models.

Group comparisons and psychometric correlation analyses

Once the best-fitting model was identified, its parameter estimates
were extracted and compared between groups. Frequentist ana-
lyses were performed using the Statistical Package for Social
Scientists version 26 (SPSS Inc., Chicago, Illinois, USA).
Bayesian analyses were also performed using JASP [JASP Team
(2019), version 0.11.1] because they provide Bayes Factors,
which depict a ratio of the probability of the evidence for one
hypothesis (i.e. the null) relative to another (i.e. the experimental).
Comparing evidence in this way allows one to demonstrate sup-
port for the null hypothesis, as opposed to simply failing to reject
the null as when using frequentist approaches (Wetzels et al.,
2011).

To determine the effects of depression status on parameter
estimates from the most parsimonious model, frequentist and
Bayesian independent samples t tests were performed, with the
relevant parameter estimate added as the dependent variable. To
examine relationships between parameter estimates and psycho-
metric questionnaire data, frequentist and Bayesian bivariate cor-
relation analyses were performed.

For the frequentist analyses, a significance threshold of α =
0.05 (two-tailed) was adopted. For the Bayesian analyses, on the
basis of Jeffreys (1961), we considered Bayes Factors (BF10; NB:
not logarithmically transformed) smaller than 1/100 to be
extreme evidence for the null hypothesis, a BF10 between 1/100
and 1/30 to be very strong evidence for the null, a BF10 between
1/30 and 1/10 to be strong evidence for the null, a BF10 between
1/10 and 1/3 to be moderate evidence for the null, and a BF10
between 1/3 and 1 to be not worth more than a bare mention.
Conversely, we considered BF10 larger than 100 to be extreme evi-
dence for the experimental hypothesis, a BF10 between 100 and 30
to be very strong evidence for the experimental hypothesis, a BF10
between 30 and 10 to be strong evidence for the experimental
hypothesis, a BF10 between 10 and 3 to be moderate evidence
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for the experimental hypothesis, and a BF10 between 3 and 1 to be
not worth more than a bare mention.

Results

Participant characteristics

Compared to healthy controls, depressed participants self-
reported higher depression scores on the BDI [t(59) = 13.779;
p < 0.001, BF10 = 1.11×10+16], greater trait anxiety on the STAI
[t(59) =−7.601; p < 0.001, BF10 = 1.672×10+7] and greater state
anxiety on the STAI [t(59) = −5.219; p < 0.001, BF10 = 4987.46].
Frequentist t tests failed to reject the null hypothesis that
depressed and healthy individuals did not differ in terms of
age, years of education or IQ, although Bayesian analyses failed
to provide support for or against the null hypothesis that these
two groups did not differ in these characteristics; [age: t(59) =
1.227; p = 0.225, BF10 = 0.496; years of education: t(59) = 1.491;
p = 0.141, BF10 = 0.660; IQ: t(59) = 1.780; p = 0.083, BF10 =
1.058]. A full description of participant characteristics is pre-
sented in Table 1.

Computational analyses

The ability of all eight models to explain participants’ choices can
be seen in Fig. 3. The inclusion of each extra parameter improved
the predictive probabilities of the models, while the four models
that incorporated the ‘rho’ parameter were all able to predict a
higher proportion of participants’ choices than the corresponding
models that did not include this parameter (Fig. 3a). Importantly,
the Pruning ‘rho’ model outperformed all others due to it achiev-
ing the lowest BICint score (Fig. 3b). As expected, the most com-
plex model, the Pruning and Pavlovian ‘rho’ model, achieves the
highest predictive probability (i.e. it is able to accurately predict
the highest proportion of participants’ choices, as shown in
Fig. 3a). However, it is penalized for its added complexity
(Fig. 3b). This means that the Pruning ‘rho’ model is considered
the most parsimonious, and therefore the winning, model.

Specifically, the winning Pruning ‘rho’ model included both γS
and γG parameters, which suggests that loss-specific pruning had
a robust influence on behaviour. The fraction of choices that was
correctly predicted by this winning model can be seen in Fig. 4a–c.
Because this Pruning ‘rho’ model outperforms all others, the γS
and γG parameter values, as well as the reward sensitivities to
each of the four transition types, were extracted from this
model and compared between depressed and healthy participants.

Group comparisons

Frequentist and Bayesian analyses indicated that depressed and
healthy individuals did not differ in terms of total money won
on the task [t(59) = 0.345; p = 0.731, BF10 = 0.274]. Further,
depressed and healthy individuals did not differ in terms of γS
[t(59) = 0.320; p = 0.750, BF10 = 0.272]. However, while the fre-
quentist analysis indicated that depressed and healthy individuals
did not differ in terms of γG either, the Bayesian analysis failed to
provide support for or against there being a group difference in
this variable: [t(59) =−1.123; p = 0.266, BF10 = 0.442]. These
data can be seen in Fig. 4d. There were no differences between
the groups in terms of reward sensitivities for the +140 transitions
[t(59) =−0.105; p = 0.917, BF10 = 0.262], +20 transitions [t(59) =
−0.073; p = 0.942, BF10 = 0.261] or the −20 transitions [t(59) =

0.459; p = 0.648, BF10 = 0.285]. Again, while a frequentist analysis
indicated that depressed and healthy individuals did not differ in
their sensitivity to the −140 transitions, the results of the Bayesian
analysis narrowly missed out on providing support for the null
hypothesis that these two groups did not differ in this variable
[t(59) =−0.831; p = 0.409, BF10 = 0.348]. These data can be seen
in Fig. 4e.

In depressed participants, BDI scores did not correlate with
γS (r = 0.068; p = 0.748, BF10 = 0.261), γG (r = −0.083; p = 0.693,
BF10 = 0.267), or reward sensitivities to the +140 transitions
(r = 0.038; p = 0.857, BF10 = 0.252) or the −140 transitions
(r =−0.137; p = 0.514, BF10 = 0.304). Further, frequentist analyses
indicated that BDI scores also did not correlate with the +20 tran-
sitions or −20 transitions, although the Bayesian analyses did not
provide support for or against the null hypothesis that BDI scores
did not correlate with the sensitivity to these two transition types
(+20 transitions: r =−0.226; p = 0.276, BF10 = 0.435; −20 transi-
tions: r = 0.261; p = 0.207, BF10 = 0.528).

In addition, in depressed participants, trait anxiety scores
did not correlate with γS (r = 0.083; p = 0.694, BF10 = 0.267), γG
(r = 0.084; p = 0.688, BF10 = 0.268), or reward sensitivities to the
+140 transitions (r = 0.156; p = 0.457, BF10 = 0.323), the +20
transitions (r = 0.309; p = 0.133, BF10 = 0.724), the −20 transitions
(r = 0.066; p = 0.755, BF10 = 0.260) or −140 transitions (r =−0.070;
p = 0.740, BF10 = 0.261).

Table 1. Participant characteristics and parameter estimates from the winning
pruning ‘rho’ model

Participant characteristics
Healthy

individuals
Depressed
individuals

N 31 30

Gender (M/F) 15/16 15/15

Age (years) 30.42 (10.80) 33.82 (10.44)

Education (years) 14.38 (2.94) 15.43 (2.51)

IQ 108.00 (14.79) 114.55 (7.37)

BDI 3.00 (4.61) 25.44 (7.48)

Trait anxiety 14.71 (8.16) 32.88 (9.74)

State anxiety 10.19 (7.53) 23.44 (11.39)

Number of depressive
episodes

– 15.56 (13.42)

Current episode length
(months)

– 3.64 (4.91)

No. of days depressed within
past 2 weeks

– 10.63 (2.86)

Number of suicide attempts – 0.55 (1.21)

Parameter estimates

γS 0.630 (0.14) 0.617 (0.19)

γG 0.123 (0.04) 0.136 (0.05)

Rho −140 −2.600 (1.12) −2.378 (0.97)

Rho −20 −0.006 (0.05) 0.011 (0.05)

Rho +20 1.510 (0.78) 1.520 (0.79)

Rho +140 7.252 (3.48) 7.340 (3.05)

All values expressed as means (S.D.), except for no. of subjects (N ) and gender.
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Finally, both frequentist and Bayesian analyses indicated
that state anxiety scores did not correlate with γS (r =−0.092;
p = 0.662, BF10 = 0.272) in depressed participants. However,
while the frequentist analysis indicated that state anxiety did
not correlate with γG, results of the Bayesian analysis narrowly
missed out on providing support for there being no relationship
between these two variables (r =−0.177; p = 0.397, BF10 = 0.349).
Both frequentist and Bayesian analyses indicated that state anxiety
was not related to sensitivities to the +140 transitions (r =−0.048;
p = 0.820, BF10 = 0.254), +20 transitions (r =−0.013; p = 0.950,
BF10 = 0.249), −20 transitions (r =−0.004; BF10 = 0.248, p = 0.985)
or −140 transitions (r = 0.068; p = 0.745, BF10 = 0.261).

Discussion

We previously showed that healthy individuals prune decision
trees to render complex sequential decisions manageable. Here,
we tested the hypothesis that depressed individuals are less able
to optimally use this heuristic, and that this inability may be
related to their severity of depression. However, contrary to pre-
dictions, depressed and healthy individuals in this study did not
differ in their pruning behaviours.

The finding that participants pruned branches of decision trees
that began with a large loss, regardless of the potential utility of
that branch, replicates our previous work (Huys et al., 2012,
2015b). The most parsimonious model in the current study was
the same as the ‘winning’ model in Lally et al. (2017). However,
the most parsimonious model in our original study (Huys et al.,
2012) included a Pavlovian parameter which indicated that partici-
pants had a reflexive attraction/aversion to certain states, whereas
including this Pavlovian parameter weakened model parsimony
in the current study, meaning that participants did not display
strong attractions/aversions to specific states in this dataset.

The addition of four separate parameters to the model (one for
each of the four financial outcomes) allowed for the possibility
that there was a difference between how participants weighted
gains and losses. This is important to avoid confusing pruning
with loss aversion. Replicating the findings of Huys et al.
(2012), we found that these ‘rho’ parameters indeed improved
the predictive probability of the models. However, as for the
healthy individuals in Huys et al. (2012), the current participants
did not exhibit typical loss aversion. Instead, the large gain (+140)

was roughly three times more appetitive than the large loss
(−140) was aversive. Interestingly, sensitivity to −140 transition
types was found to be significantly weaker, while sensitivity to
the +140 transitions was significantly greater, in the ‘winning’
(Pruning ‘rho’) model than in the model that did not quantify
participants’ pruning behaviours (i.e. the ‘lookahead’ model; see
online Supplementary Materials). Taken together, these results
suggest that loss aversion certainly fails to explain away pruning,
although pruning may uncover a form of risk seeking.

Importantly, the current findings failed to support our hypoth-
eses that (a) depressed individuals sub-optimally prune decision
trees, and that (b) in depressed individuals, those with the highest
levels of depression would demonstrate the lowest pruning. Our
latter hypothesis was based partly on the results of Huys et al.
(2012), which indicated a relationship between pruning and
level of depression. However, it must be noted that the specific
relationship reported in Huys et al. (2012) was a significant
positive correlation between specific pruning and sub-clinical
depression scores on the BDI in healthy participants, not
depressed individuals. Further, this relationship was also not
replicated by our subsequent studies (i.e. Huys et al., 2015b).
While it currently appears that no relationship between pruning
and magnitude of depression exists in depressed individuals
who share similar characteristics to those who participated in
the current study, future research should attempt to determine
the replicability of the initial finding of a relationship between
pruning and sub-clinical depression in healthy individuals.
Further, it is unlikely that we failed to observe sub-optimal prun-
ing in the current depressed individuals because the current
healthy participants also pruned sub-optimally, because the latter
demonstrated specific pruning to a very similar magnitude as the
healthy participants included in Lally et al. (2017) (pruning param-
eter estimate =∼0.6), and they actually pruned slightly more than
those in Huys et al. (2012). While this does not explain why the
current results do not support the theory put forward by Dayan
and Huys (2008), there may be a number of factors that do.

First, levels of depression in our participants may not have
been great enough to promote sub-optimal pruning. While the
current depressed participants exhibited similar levels of depres-
sion to those in studies that report maladaptive decision-making
in depression (Joormann & Gotlib, 2008; Kumar et al., 2018;
McFarland & Klein, 2009; Ubl et al., 2015), they were all

Fig. 3. (a) Mean predictive probabilities for all models. All models that include the ‘rho’ parameter fit the data better than the corresponding models that do not
contain this parameter. (b) Model comparisons using each model’s Bayesian Information Criterion (BICint). Despite the fact that the model that predicts the highest
proportion of participants’ choices is the ‘Pruning and Pavlovian’ model that contains the ‘rho’ parameter, this model is penalized due to its added complexity. The
most parsimonious (i.e. ‘winning’) model is therefore the ‘Pruning’ model that includes the extra ‘rho’ parameter.

6 Paul Faulkner et al.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033291721000799
Downloaded from https://www.cambridge.org/core. UZH Hauptbibliothek / Zentralbibliothek Zürich  (Bill To for 21002 Zurich Uni), on 15 Mar 2021 at 14:54:50, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033291721000799
https://www.cambridge.org/core


undergoing ‘low-intensity treatments’ due to being deemed to
exhibit mild/intermediate levels of depression. Indeed, this may
be one reason as to why our depressed patients failed to exhibit
greater sensitivity to losses than healthy participants, or indeed
loss aversion at all, as highly depressed patients (Baek et al.,
2017; with mean BDI = 30.10) exhibit heightened aversion to
losses, while patients with lower levels of depression do not
(Charpentier, Aylward, Roiser, & Robinson, 2017; mean BDI =
16.96). Future studies could therefore examine the pruning beha-
viours of more severely depressed participants.

Second, Pavlovian pruning of decision trees has been hypothe-
sized to depend on the brain’s serotonin system (Dayan & Huys,
2008). Specifically, reductions in central serotonin are proposed to
result in a decrease in Pavlovian behavioural inhibition, increasing
the choosing of options that result in negative outcomes due to
decreases in pruning (Dayan & Huys, 2008). Because serotonin
is considered to influence behavioural inhibition in response to
losses (Cools et al., 2011; Crockett et al., 2009), and because

depression is associated with dysfunction in a number of neuro-
transmitter systems including the serotonin system (Anderson,
2000; Cannon et al., 2007; Parsey et al., 2003), it has been argued
that depressed participants may exhibit maladaptive pruning due
to serotonergic dysfunction (e.g. Dayan & Huys, 2008; Huys et al.
2015a). However, there is no way of knowing whether the current
depressed participants exhibit serotonergic dysfunction because
no neurochemical measures were collected. Further, depression
has been associated with altered dopaminergic functioning
(Nestler & Carlezon, 2006), and dopamine is thought to influence
decision-making in an opponent fashion to serotonin (Boureau &
Dayan, 2010; Daw, Kakade, & Dayan, 2002; Dayan & Huys, 2009).
For example, reductions in serotonin via acute tryptophan deple-
tion can enhance the motivational influence of aversive stimuli on
instrumental responding, while reductions in dopamine can
diminish the influence of appetitive stimuli on such responding
(Hebart & Gläscher, 2014). To truly determine the influence of
serotonergic function on decision-tree pruning, future studies

Fig. 4. Top: The fraction of choices correctly predicted by the best-fitting model (the Pruning ‘rho’ model). (a) All participants combined. (b) Healthy participants
only. (c) Depressed participants only. Each bar depicts this as a function of the number of choices remaining on each trial. For example, the right most bar (i.e. bar
‘8’) depicts the fraction of choices at a depth of 1 on eight-choice trials that were correctly predicted by this model; the third rightmost bar (i.e. bar ‘6’) depicts both
the fraction of choices that were correctly predicted by this model at (1) a depth of 1 on six-choice trials, (2) a depth of 2 on seven-choice trials and (3) a depth of 3
on eight-choice trials, and so on. Grey lines depict the full ‘Lookahead’ model. The blue dashed lines depict chance (i.e. 50%). The winning model correctly predicts
choices of both depressed participants and healthy controls to roughly the same extent. Further, the full Lookahead model is only able to correctly predict deci-
sions that are eight choices away in the sequence on roughly 50% of trials (i.e. at chance level). The winning model correctly predicts all choices to roughly the
same extent, no matter how many choices are remaining. Note that these models include data from, and disregard differences between, trials in which transitions
were displayed immediately after each button press and trials in which participants had to enter the entire sequence of transitions at once (i.e. so-called
‘plan-ahead’ trials.). Bottom: Parameters of the winning Pruning ‘rho’ model. (d ) Specific and general pruning parameters. (e) Reinforcement sensitivity to
each transition type. (f ) Absolute ratio of reward (+140) to loss (−140) sensitivity. Red denotes depressed participants, green denotes healthy participants.
Error bars denote 1 standard deviation above/below the mean (red) and 95% confidence intervals (green).
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may consider examining the effects of a serotonin challenge such
as acute tryptophan depletion on performance on this task.

Third, while no group difference was observed in task
performance, this does not mean that there are no group differ-
ences in the brain regions that are recruited during aversive prun-
ing. We have recently shown that aversive pruning recruits the
pregenual anterior cingulate cortex and subgenual anterior cingu-
late cortex (sgACC) (Lally et al., 2017). Interestingly, the sgACC is
overactive in depression (Drevets, Savitz, & Trimble, 2008;
Drevets et al., 1997; Mayberg et al., 1997), while the degree of
sgACC reactivity to negatively-valenced stimuli can predict treat-
ment response in depressed patients (Roiser, Elliott, & Sahakian,
2012). In addition, depression-related reductions in serotonin 1A
receptor availability are greatest in the sgACC (Moses-Kolko et al.,
2008). Therefore, comparing the neural mechanisms of pruning
in depressed and healthy individuals may reveal group differences
in pruning-related sgACC function.

While the above factors may explain why the current results do
not support the theory put forward by Dayan and Huys (2008),
the fact remains that on the basis of the current findings, it
may simply be that depressed individuals may not experience or
exhibit maladaptive pruning behaviours during multi-step plan-
ning, and that sub-optimal pruning may not promote depressive
behaviours. However, pruning is only one heuristic that people
use to render complex, sequential decisions manageable.
Specifically, healthy participants solve problems by fragmenting
deep sequences (i.e. sequences with a depth >3) into sub-
sequences of shorter lengths (termed ‘fragmenting’), and recall
and re-use previous fragmented solutions on subsequent trials
(termed ‘memoization’), rather than always searching the tree
anew each time (Huys et al., 2015b). Unlike the case for pruning
(Dayan & Huys, 2008; Huys et al., 2012), neither theoretical nor
empirical studies have suggested that altered use of fragmenting
or memoization during planning may promote depression.
However, future studies might compare the use of these two heur-
istics, along with the use of pruning, in highly-depressed and
healthy individuals.

Our study has several limitations. First, the sample size was
relatively limited, which reduced our ability to detect small effects,
or to determine the effects of individual differences on task per-
formance; this could be particularly pertinent as Huys et al.
(2015b) report that individuals use certain heuristics to solve
planning problems in an idiosyncratic fashion. Another potential
limitation is the fact that our healthy and depressed individuals
may have differed in age, years of education and IQ. While
frequentist analyses found no evidence that these two groups
differed in such characteristics, Bayesian analyses provided,
at best, only anecdotal evidence that these two groups did not
differ in this way. Whilst there were no relationships between
any of these characteristics and task performance (see online
Supplementary Materials), it is therefore possible, although
unlikely, that our sampling method may have introduced extrane-
ous variables into our dataset that influenced findings. A further
potential limitation is that we did not investigate whether pruning
abilities differed as a function of specific clinical depression sub-
type, such as anhedonic v. non-anhedonic forms of depression.
However, we did quantify self-reported anhedonia using one
item of the BDI, and examined whether it related to pruning
behaviours (see online Supplementary Materials). Relationships
between anhedonia and sensitivity to each of the +140, +20 and
−140 transition types were observed, suggesting that patients
with higher anhedonia were less sensitive to both rewards and

punishments, although these results remain preliminary due to
our sample size. However, no relationships with pruning were
detected. Future studies should determine the association between
specific symptoms of depression and pruning behaviours in larger
samples of depressed participants. Further, while we have
reported that pruning is insensitive to the magnitude of the
large loss (Huys et al., 2012), pruning becomes mathematically
more disadvantageous as the magnitude of the large loss decreases
(relative to the magnitude of the large reward). However, the cur-
rent data do not indicate whether depressed individuals prune
sup-optimally when pruning is more disadvantageous (i.e. when
the large loss costs 70 points rather than 140), or whether over-
pruning in these circumstances can promote depression. Finally,
our calculated reward sensitivities in Fig. 4e indicate that, once
pruning is taken into account, participants are three times more
‘sensitive’ to the large reward than to the large loss. However,
pruning and risk seeking are rather entangled in the current
task, and it would be interesting to combine it with a compatible,
but independent measure of risk seeking.

In summary, we replicated previous findings that people prune
decision trees to solve complex planning problems. However, we
failed to provide support for the hypothesis that depressed indivi-
duals prune sub-optimally. Future research is needed to achieve a
more complete understanding of whether misuse of certain heur-
istics in sequential decision-making can contribute to depression.
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be found at https://doi.org/10.1017/S0033291721000799.
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