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a b s t r a c t 

Spiral imaging is very well suited for functional MRI, however its use has been limited by the fact that artifacts 

caused by gradient imperfections and B 0 inhomogeneity are more difficult to correct compared to EPI. Effective 

correction requires accurate knowledge of the traversed k-space trajectory. With the goal of making spiral fMRI 

more accessible, we have evaluated image reconstruction using trajectories predicted by the gradient impulse 

response function (GIRF), which can be determined in a one-time calibration step. 

GIRF-predicted reconstruction was tested for high-resolution (0.8 mm) fMRI at 7T. Image quality and func- 

tional results of the reconstructions using GIRF-prediction were compared to reconstructions using the nominal 

trajectory and concurrent field monitoring. 

The reconstructions using nominal spiral trajectories contain substantial artifacts and the activation maps 

contain misplaced activation. Image artifacts are substantially reduced when using the GIRF-predicted recon- 

struction, and the activation maps for the GIRF-predicted and monitored reconstructions largely overlap. The 

GIRF reconstruction provides a large increase in the spatial specificity of the activation compared to the nominal 

reconstruction. 

The GIRF-reconstruction generates image quality and fMRI results similar to using a concurrently monitored 

trajectory. The presented approach does not prolong or complicate the fMRI acquisition. Using GIRF-predicted 

trajectories has the potential to enable high-quality spiral fMRI in situations where concurrent trajectory moni- 

toring is not available. 
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. Introduction 

Blood Oxygen Level Dependent (BOLD) functional magnetic reso-

ance imaging (fMRI) requires fast imaging, for which acquisitions with

cho Planar Imaging (EPI) readouts are currently used as the gold stan-

ard. Spiral readouts ( Ahn et al., 1986 ) have many desirable proper-

ies for rapid acquisitions and have long been considered a promising

lternative to EPI for fMRI ( Glover, 2012 ): They can provide higher

-space sampling efficiency compared to EPI sampling ( Glover, 2012 ;

lover and Lee, 1995 ; Noll et al., 1995 ), translating into higher res-

lution within a given readout time, and they also allow for a more

exible choice of echo time (TE). The combination is especially use-

ul for high-resolution fMRI at 7T or above, where for EPI large par-

llel imaging factors or Partial Fourier are required to achieve the op-

imal TE for BOLD contrast. Further, spiral imaging has naturally re-

uced sensitivity to pulsatile motion ( Glover and Lee, 1995 ; Yang et al.,
∗ Corresponding author. 

E-mail address: johanna.vannesjo@gmail.com (S.J. Vannesjo). 

ttps://doi.org/10.1016/j.neuroimage.2021.118674 . 

eceived 9 February 2020; Received in revised form 15 October 2021; Accepted 20 O

vailable online 27 October 2021. 

053-8119/© 2021 The Authors. Published by Elsevier Inc. This is an open access ar
998 ), and spiral-in/out trajectories ( Glover and Law, 2001 ) can im-

rove fMRI in regions prone to dropout, such as the orbitofrontal cor-

ex. Finally, spiral sampling is more amenable to high undersampling

actors, as the point spread function results in relatively incoherent

liasing ( Wright et al., 2014 ), which can be less detrimental to image

uality compared to coherent aliasing, which occurs in undersampled

PI. 

Despite these advantages spiral imaging has not yet become a main-

tream fMRI acquisition strategy. The reasons for the slow uptake of

piral fMRI include the fact that artifacts caused by gradient imper-

ections (discrepancy between the actual and nominal gradients) and

 0 inhomogeneities are more difficult to correct for spiral trajectories

ompared to EPI. Localized off-resonance resulting from susceptibility-

nduced field inhomogeneities cause dropout and shifts in EPI, for which

 number of established correction methods exist ( Andersson et al.,

003 ; Smith et al., 2004 ). Similarly for gradient infidelity, the correction
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f the Nyquist ghost artifact in EPI is considered a routine step in image

econstruction, for example using navigator lines acquired before the

eadout ( Schmitt et al., 1998 ). For spiral readouts, B 0 inhomogeneities

nd gradient imperfections cause blurring, geometric distortions and

ropout. To improve gradient fidelity, it is common to perform a de-

ay correction in spiral imaging ( Bhavsar et al., 2014 ; Börnert et al.,

999 ; Robison et al., 2010 ). However this typically requires extra cali-

ration scans, and is usually not as effective as the EPI delay correction.

oreover, unlike EPI, the effects of B 0 inhomogeneities are difficult to

orrect via image processing methods, and are therefore commonly not

ddressed at all. As a result, spiral fMRI images have often been blurry,

specially around the air-tissue interfaces in the frontal sinuses and ear

anals. 

Monitoring of the encoding fields during the acquisition using Nu-

lear Magnetic Resonance (NMR) field probes ( Barmet et al., 2008 ;

e Zanche et al., 2008 ) allows precise measurement of the traversed

-space trajectory. In conjunction with a B 0 field map covering the

maging FOV, included in a model-based reconstruction, this has

een shown to yield high-quality spiral imaging ( Engel et al., 2018 ;

asper et al., 2018 ; Wilm et al., 2016 ), enabling high-resolution spi-

al fMRI ( Kasper et al., 2019 ). However, the concurrent monitoring re-

uires an additional hardware setup, which is not always available. One

lternative to direct field measurements is to model the behavior of the

radient chain. With the appropriate model, deviations from the pre-

cribed encoding that are reproducible (for example, induced by eddy

urrents) can be measured and corrected for. It has previously been

hown ( Addy et al., 2012 ; Vannesjo et al., 2013 ) that the gradient chain

an be considered as a linear, time invariant (LTI) system to a high de-

ree of accuracy. For an LTI system, the relation between the input to

he system and its output is determined by the impulse response of the

ystem – in the case of the gradient chain, the gradient impulse response

unction (GIRF). The GIRF of a specific system can be characterized in

 one-time calibration procedure, which then enables to predict the ac-

ual gradient output to arbitrary input pulses. The GIRF-predicted output

an be used as basis for image reconstruction, which has been shown to

ield high quality images for a range of different trajectories ( Addy et al.,

012 ; Campbell-Washburn et al., 2016 ; Vannesjo et al., 2016 ). 

We have previously demonstrated that GIRF-prediction enables

ingle-shot spiral images with only minor quality differences to using

he monitored trajectory ( Vannesjo et al., 2016 ). This evaluation was

erformed on individual images. In fMRI, however, we perform high

uty cycle imaging over extended periods of time (5–10 min for a typi-

al fMRI run with a single fMRI session often containing multiple runs).

e know that there are long-term effects, for example gradient heating,

hat violate the LTI assumption at the basis of the GIRF prediction. But

e do not know to what extent this will affect an image time-series, such

s required for fMRI. We also do not know how the resulting imperfec-

ions propagate into the fMRI analysis. The aim of the present work is

o evaluate the utility of GIRF-based reconstruction for spiral functional

RI. The results are assessed by comparison with reconstructions based

n concurrent field monitoring and nominal trajectories with gradient

elay correction. 

. Methods 

All data were acquired on a 7T Achieva system (Philips Healthcare,

est, Netherlands) using a quadrature-transmit coil and 32-channel head

eceive array (Nova Medical, Wilmington, MA). The manufacturer’s

uilt-in eddy current compensation was kept activated for all experi-

ents. 

.1. LTI gradient model 

A linear and time-invariant system can be described via its impulse

esponse function, which is the output of the system to a very brief in-
2 
ut pulse. Knowledge of the system’s impulse response allows predicting

he system response o ( t ) to any input, via convolution of the input wave-

orm 𝑖 ( 𝑡 ) with the impulse response ℎ ( 𝑡 ) . In the frequency domain this

orresponds to a multiplication with the transfer function 𝐻( 𝜔 ) , i.e. the

ourier transform of the impulse response: 

 ( 𝑡 ) = 

∞
∫
−∞

𝑖 ( 𝜏) ⋅ ℎ ( 𝑡 − 𝜏) 𝑑𝜏
𝐹𝑇 

↔ 𝑂 ( 𝜔 ) = 𝐼 ( 𝜔 ) ⋅𝐻 ( 𝜔 ) (1)

The characterization of the gradient chain was performed similarly

s described by Vannesjo et al. (2013 ): A set of gradient input pulses

ere played out and the resulting magnetic fields were measured with

 dynamic field camera ( Dietrich et al., 2016a ) consisting of 16 1 H NMR

eld probes distributed on the surface of a sphere of 10 cm radius. Spher-

cal harmonic basis functions up to the 3rd order were fitted to the probe

easurements. The GIRF was calculated via frequency-domain division

f the measured output by the known inputs, using least-squares combi-

ation of data from different input pulses. For an accurate GIRF calibra-

ion the input gradient pulses should cover the entire range of expected

requencies, while complying with hardware and acquisition time con-

traints. This was achieved by using 12 different triangular pulses (slew

ate 200 T/m/s, time-to-peak 20–158 ms at ∼12-ms increments). The

IRF measurements took approximately 3 min (12 gradient pulses, 3

radient directions, 4 averages, 1.2 s TR). The individual probe signals

ere corrected for concomitant fields terms which are a known devia-

ion from the LTI assumption (for details see ( Vannesjo et al., 2016 )).

his correction was also applied to the concurrent field monitoring data

escribed in the next section. 

The LTI model of the gradient system was subsequently used to esti-

ate actual gradient time courses of the imaging acquisitions through a

requency-domain multiplication of the nominal gradient with the mea-

ured gradient transfer function (see Suppl. Fig. 1. for the measured

ransfer function). 

.2. Concurrent field monitoring 

Concurrent field monitoring was performed during all imaging ac-

uisitions using 19 F NMR field probes positioned between the transmit

oil and the 32-channel receive array (as shown in ( Engel et al., 2018 ),

ig. 1 ). The field probes were excited before the start of the readout

radient and the probe signal was acquired concurrently with the imag-

ng readout. Due to the long readout and the strong imaging gradients,

he probe signal can de-phase prior to the end of the monitoring period.

ach probe’s signal was therefore visually inspected and if the probe

ignal had very low amplitude and the signal phase exhibited discon-

inuities the probe was excluded from the spherical harmonic fit. Per

ubject, between 5 and 7 probes (on average 6.2) were excluded in this

tudy, leaving approximately 10 probes for the fit. 

The data from the remaining probes was fitted to up to 1st or-

er spherical harmonics producing linear gradient field terms in the

hree orthogonal directions (and the corresponding k-space trajectory

 x ,k y ,k z ), as well as a 0th-order field term (and the corresponding phase

erm, k 0 ), which reflects global field changes over time. 

Undesired saturation of the NMR field probe signal can occur if the

epetition time of the probe excitation is short relative to the T 1 of the

robes. To allow sufficient time for signal recovery between measure-

ents, the field camera recording was performed on every third slice.

or the non-monitored slices the k-space trajectory from the last moni-

ored slice was used. 

.3. fMRI acquisition 

The raw coil data and concurrently monitored trajectories analyzed

n this work were acquired as part of a recent study exploring the use of

oncurrently monitored single-shot spirals for fMRI ( Kasper et al., 2019 ).

he dataset contains acquisitions from seven healthy volunteers who
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Fig. 1. Comparison of a nominal delay-corrected, GIRF-predicted and concurrently monitored spiral trajectory for subject 4 (first slice of first volume). (a) An 

example spiral trajectory and (b) zooms highlighting differences between the three trajectories. (c) The k-space distance between nominal/GIRF-predicted and 

monitored trajectories is shown to quantify differences over the course of one spiral readout. (d) k x during spiral readout including zooms. (e) The zeroth order 

field term, k 0 , over one readout. Note that the nominal k 0 has a non-zero slope due to the retrospective “frequency adjustment ” correction applied. (f) Difference of 

nominal/GIRF-predicted to measured k 0 . 
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ad giving written informed consent and were scanned with approval

f the local ethics committee. The visual fMRI paradigm used a simple

etinotopic mapping protocol ( Warnking et al., 2002 ). It was designed

o stimulate quarter-fields of the visual cortex, similar to the one used

n Kasper et al. (2014 ). The subjects were presented with 15 s blocks

f two flickering, black-and-white checkerboard-filled 90° wedges sepa-

ated by 180°, interleaved with 15 s of rest (fixation cross). Alternating

locks of upper left/lower right (ULLR) and blocks of upper right/lower

eft (URLL) wedges were presented over 100 volumes ( ∼330s). The sub-

ects were instructed to fixate on a point at the center between the

edges. In order to maintain the subjects’ attention, they were asked

o respond to any contrast alteration of the fixation point via a button

ox. 

Images were acquired with a multi-slice 2D gradient-echo sequence

ith a single-shot Archimedean spiral-out readout (designed according

o Lustig et al. (2008 )) of 57 ms duration. The radial spacing of sam-

les was chosen to undersample k-space by a factor of 4 with respect

o the field-of-view (FOV) of 23 cm. The transversal images were ac-

uired with an in-plane resolution of 0.8 mm isotropic and a TE of

0 ms, selected for good BOLD contrast. 36 slices of 0.89 mm thick-

ess (with a slice gap of 0.11 mm) were acquired, resulting in a FOV of

3 × 23 × 3.6 cm and a volume TR of 3.3 s. Excitations were preceded by

 Spectral Presaturation with Inversion Recovery (SPIR) fat suppression

odule ( Kaldoudi et al., 1993 ). 

Measurements from five optically connected temperature sensors

cast into the epoxy that structurally supports the gradient coil) were

sed to monitor gradient coil temperature with a temporal resolution

f ∼18 s. The data was used for evaluation of the temperature change

ver scans and sessions, and was compared to the image RMSE over

ime for an example subject. Because the temperature recordings were

ot synchronized with the imaging scans, there was some ambiguity in

 

3 
he relative timing of the two. Approximate alignment was performed

ased on time stamps in log files, and further adjusted within + /- 10 s by

isually aligning the temperature data with the image RMSE curve. Due

o the timing ambiguity we refrained from a full quantitative analysis

f the relationship between trajectory/imaging errors and temperature

hanges. 

A Cartesian multi-echo GRE scan (FOV = 23 cm, resolution = 1 mm

sotropic, TE 1 = 4 ms, ΔTE = 1 ms, 6 echoes) was collected to estimate

oil sensitivities and B 0 maps. The first echo was used to estimate the

oil sensitivities, by dividing the single-coil images by the root-sum-of-

quares coil combination. The B 0 maps were calculated by voxel-wise

tting of the signal phase over the different echoes. Both the coil sen-

itivity maps and the B 0 maps were spatially smoothed before use in

ubsequent image reconstructions. 

One subject was excluded from further analysis due to reduced sig-

al in multiple channels of the head receive array. The data from the

ix remaining volunteers were reconstructed and analyzed as described

elow. 

.4. Image reconstruction and fMRI analysis 

The images were reconstructed offline in Matlab (MathWorks, Nat-

ck, MA, USA) using CG-SENSE ( Pruessmann et al., 2001 ) with multi-

requency interpolation for fast off-resonance correction ( Man et al.,

997 ; Sutton et al., 2003 ). The full reconstruction model takes into ac-

ount coil sensitivities, the static field as well as field dynamics over time

for details see ( Engel et al., 2018 ; Kasper et al., 2019 )). For each data

et three reconstructions were performed using the following k-space

rajectories: 

1 Delay-corrected nominal trajectory (labeled nominal in figures) 

2 GIRF-predicted trajectory (labeled GIRF or GIRF-predicted in figures)
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3 Trajectory measured with concurrent field monitoring (labeled mon-

itored in figures). 

For the monitored and GIRF-predicted reconstructions the imag-

ng data were demodulated by the measured/predicted 0th-order phase

erms k 0 . It has previously been demonstrated that demodulation with

n accurate estimate of k 0 can substantially improve image quality

 Vannesjo et al., 2016 ). 

A center frequency adjustment is a typical fMRI pre-scan, which was

ot performed in this study because it is redundant when using con-

urrent field monitoring. In order to not artificially disadvantage the

IRF-predicted and nominal reconstructions, we performed a process-

ng step equivalent to frequency adjustment. The center frequency was

etermined once for each fMRI time series via a linear fit on the first

.9 ms of the monitored k 0 (using the data from first slice of the first

olume, before the readout gradient starts). The imaging data for the

ntire fMRI time series was then demodulated by this center frequency

or the nominal and the GIRF-predicted reconstruction. 

The nominal trajectories were delay-corrected prior to reconstruc-

ion. Delay calibration was performed by minimizing the RMSE trajec-

ory difference between the nominal and the monitored trajectory. The

elay calibration was performed on the first readout of the time series of

ll participants, and the mean over the participants was taken to be the

elay. The calibrated delay was then kept fixed for all readouts and for

ll participants. A global delay for all gradient axes was chosen as the

mall differences between the gradient axes were within the standard

eviation of the delay calibration. 

The reconstructed image time series was corrected for subject trans-

ations and rotations using MCFLIRT ( Jenkinson et al., 2002 ) in the

MRIB Software Library (FSL) ( Jenkinson et al., 2012 ) and was pre-

hitened using FILM/FSL ( Woolrich et al., 2001 ). The GLM (analyzed

sing FEAT/FSL ( Jenkinson et al., 2012 )) contained the regressors for

he ULLR and the URLL stimulation blocks convolved with a Gamma

unction. Activation was assessed using z-statistics contrasting ULLR

ersus URLL ([1 -1] in the design matrix). In order to produce fMRI

ata with high spatial specificity we performed no spatial smoothing or

lustering. We report activation maps at a liberal threshold of z > 2.3

 p < 0.01). 

All of the analysis was performed on a per-subject basis in the space

f each subject’s functional data to avoid any degradation of the spatial

esolution by registration. The first echo of the multi-echo GRE scans

as registered to the functional data and used as the subjects’ structural

mage. For the analysis of the functional results, masks of the grey mat-

er (GM) and white matter (WM) in the visual cortex were determined

s an intersection of a V1-V3 mask (using Juelich atlas ( Schleicher et al.,

005 ; Zilles and Amunts, 2010 ) labels 81-86 in FSL) and subject-specific

M/WM masks generated by segmenting the structural image using

AST/FSL ( Zhang et al., 2001 ). The GM/WM masks were generated

y conservatively thresholding the partial volume maps at 0.8 to ex-

lude most partial volume voxels from the masks. In Table 1 the average

nd 90th percentile of the absolute value of significant ( z > 2.3) z-stats

ithin the GM V1-V3 ROI are reported. 

The concurrently monitored trajectories and the resulting image re-

onstructions were used as reference to assess the nominal and GIRF-

redicted data. The trajectory error and image artifacts were accord-

ngly quantified as root-mean-squared error (RMSE) compared to con-

urrent monitoring ( Table 1 ), and the GIRF/nominal z-statistic maps

ere compared to the ones derived from concurrent monitoring data.

dditionally, receiver operator characteristic (ROC) curves were used

o provide an assessment of the fMRI results without selecting the mon-

tored reconstruction as the ground truth. ROC analysis typically in-

olves plotting the number of true-positives against the number of false-

ositive findings. In this work we used the subject-specific gray and

hite matter masks of V1-V3 to identify “true positive ” and “false posi-

ive ” activation respectively and plotted this while varying the z-statistic

hreshold from 0 to the maximum z present in the data. The area under
4 
he curve (AUC) gives a measure of spatial specificity and was used to

ompare between the reconstructions. This analysis has two major ad-

antages: i) it provides a quantitative assessment of the activation maps

ithout requiring one reconstruction as ground truth, and ii) it encom-

asses the full z-statistics instead of relying on a specific significance

hreshold (for example z > 2.3). 

The temporal SNR (tSNR) was evaluated in the motion-corrected

MRI time series, and was calculated on a voxel-by-voxel basis as the

ean signal over time divided by the temporal standard deviation of the

ignal. The tSNR was averaged over the GM V1-V3 ROI and reported in

able 1 for each subject and reconstruction. 

. Results 

The delay-corrected nominal spiral trajectories deviate substantially

rom the ones measured with the NMR field probes, especially close to

he center of k-space where the gradients are rapidly changing ( Fig. 1

–d). For the example subject shown in Fig. 1 the distance between the

ominal and the measured trajectories reaches 40.1 rad/m which cor-

esponds to ∼1.5 ∗ Δk ( Δk = 2 𝜋∗ 1/FOV). The GIRF-predicted spiral trajec-

ories follow the measured ones much more closely, especially during

he first 40 ms of the readout. Towards the edge of k-space, however,

here is little improvement from the GIRF-predicted trajectories over the

ominal ones. For the example subject in Fig. 1 the maximum k-space

eviation between the GIRF-predicted and the measured trajectories is

0.5 rad/m, which corresponds to ∼0.75 ∗ Δk, with the largest absolute

eviations occurring at the end of the readout. 

The root-mean-square trajectory error (RMSE), defined here as the

uclidian distance to the monitored trajectory, averaged over all slices

nd volumes, is reported for all subjects in Table 1 . Averaged over

ll subjects, the nominal RMSE and GIRF-predicted RMSE were 19.66

ad/m and 10.85 rad/m, respectively. Fig. 1 e/f show the concurrently

onitored, GIRF-predicted and nominal k 0 , reflecting global temporal

ariations in B 0 . The measured k 0 oscillations are closely coupled with

hose of the spiral readout gradients. This is partially predicted by the

IRF, but the amplitude of oscillations is not captured accurately, es-

ecially towards the end of the readout. Additionally, the monitored

 0 exhibits slower trends over the readout, namely a change in slope at

bout 35 ms (see monitored k 0 (yellow line) in 1e). These slower dynam-

cs are qualitatively similar across subjects and have also been observed

n other studies acquired on the same MRI scanner ( Engel et al., 2018 ).

he reason for this change in slope is not yet know but it is not captured

y the GIRF prediction, suggesting that it is not linearly related to the

radient waveform. Average RMSE over all subjects (see Table 1 for re-

ults for individual subjects) is 1.06 rad for nominal k 0 and 0.94 rad for

IRF-predicted k 0 
The GIRF-predicted and nominal trajectories are the same for all re-

onstructions within a time series, whereas the monitored trajectory is

pdated every 3rd readout. Fig. 2 illustrates how the monitored trajec-

ory changes over the course of the fMRI experiment. Over the 5.5 min

xperiment the trajectory gradually shifts from the first volume (blue)

o the last volume (red). Note that the shift, however, is small com-

ared to the distance to the nominal trajectory. The RMSE for the GIRF-

redicted vs. monitored trajectories increases over the course of the

xperiment, but remains considerably below the RMSE of the nomi-

al vs. measured trajectories ( Fig. 2 b). Interestingly, the latter slightly

mproves during the experiment. For the measured k 0 ( Fig. 2 c/d) the

mplitude of the observed oscillations remains fairly consistent but the

lope of the k 0 drift over the readout changes substantially. Most varia-

ions over the acquisition are likely caused by gradient heating. For our

cquisition we observed gradient temperature increases of ∼10–15°C

ver a single ∼5 min fMRI run and ∼25–30°C increase over the entire

canning session consisting of four fMRI runs and a number of shorter

cans. 
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Table 1 

Results summary metrics for all subjects (from top to bottom): RMSE trajectory errors for the k-space distance and 

the zeroth order field term, k 0 , using the monitored trajectory as the ground truth, RMSE image error using the 

monitored reconstruction as the reference, average tSNR in the brain, average and 90th percentile of significant 

z-statistics in the GM V1-V3 ROI and the AUC from the ROC plots to evaluate spatial specificity of the z-statistic 

maps. 

Subjects → 1 2 3 4 5 6 Mean 

Trajectories RMSE k-space distance nomi [rad/m] 19.78 19.60 20.84 19.63 18.67 19.40 19.66 

RMSE k-space distance GIRF [rad/m] 9.85 10.66 12.80 9.07 10.55 12.19 10.85 

RMSE k 0 nomi [rad] 1.19 0.89 1.08 1.04 1.34 0.85 1.06 

RMSE k 0 GIRF [rad] 1.11 0.75 0.90 0.84 1.24 0.81 0.94 

Images RMSE nomi [%] 6.34 6.45 5.22 6.97 5.03 5.06 5.85 

RMSE GIRF [%] 2.01 2.07 1.98 2.36 2.52 1.95 2.15 

tSNR tSNR moni 16.44 19.39 14.98 15.43 13.95 15.35 15.93 

tSNR GIRF 14.94 18.25 14.23 14.71 13.37 14.67 15.03 

tSNR nomi 15.47 19.42 14.90 15.66 14.09 15.46 15.84 

fMRI mean zstat moni 3.74 4.09 3.98 4.33 4.04 3.72 3.98 

mean zstat GIRF 3.66 3.92 3.86 4.14 3.73 3.75 3.84 

mean zstat nomi 3.54 3.94 3.85 3.84 3.55 3.81 3.76 

90th perct. moni 5.72 6.74 6.34 7.13 6.62 5.76 6.39 

90th perct. GIRF 5.58 6.35 6.04 6.74 5.77 5.88 6.06 

90th perct. nomi 5.14 6.20 5.83 5.97 5.32 5.94 5.73 

ROC AUC moni 928 758 860 1062 624 755 831 

ROC AUC GIRF 809 615 703 981 577 723 735 

ROC AUC nomi 548 341 266 295 80 463 332 

Fig. 2. Evolution of k-space trajectories (for subject 4) over the fMRI experiment showing how (a) a monitored spiral trajectory changes from the first volume (dark 

blue) to the last (dark red) including zoom and (b) RMSE on the k-space distance for the nominal/GIRF-predicted trajectories with respect to the monitored one. In 

the lower row (c) k 0 with zoom and (d) RMSE of the nominal/GIRF-predicted k 0 with respect to the measured one are shown. 
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The nominal spiral images are heavily corrupted by blurring and ge-

metric distortion ( Fig. 3 ). The GIRF-predicted reconstruction provides

uch improved image quality. Residual artifacts (mainly subtle blur-

ing and some ringing) can be observed in the difference images to the

onitored reconstruction. The global image artifact levels, defined here

s the RMSE to the monitored reconstruction averaged over all voxels

n a brain mask and all volumes in the fMRI time-series, are reported in

able 1 (image differences reported as percent of the maximum value

n the monitored reconstruction). Averaged over all subjects the arti-
5 
act level was 5.85% for nominal image reconstructions and 2.15% for

IRF-predicted trajectories, which corresponds to an improvement of

3%. 

A comparison of the first and final volume in the fMRI time series

evealed an increase in image artifacts over time for the GIRF reconstruc-

ion (shown for an example subject in Fig. 4 ), in line with the observed

ncrease in trajectory error. The image quality however remained much

mproved over the nominal spiral images through-out the time series,
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Fig. 3. Image quality comparison of reconstructions using monitored trajectories (left), GIRF-predicted trajectories (centre) and nominal trajectories (right) for two 

different slices for subject 6 (first volume of the time series). To the right of each sub-figure, the differences to the corresponding reconstructions based on the 

monitored trajectory are displayed. The difference images are scaled to percent of the maximum value in the monitored reconstruction. In the inferior slice (a) the 

GIRF-predicted reconstruction only contains a small increase in blurring compared to the monitored reconstruction. In a superior example slice (b) the GIRF-predicted 

reconstruction additionally exhibits an increase in ringing artifacts. 
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2  

w  
ith an image artifact reduction compared to nominal of 65% in the

rst volume and 57% in the final volume (averaged over all subjects).

he change in GIRF-monitored RMSE over the scan aligns well with si-

ultaneously acquired temperature data, which indicates that gradient

eating is a driving factor for time-varying gradient system responses

ot captured by the GIRF. 

The average temporal SNR over all subjects ( Table 1 ) is highest for

onitored reconstructions, slightly lower for the nominal reconstruc-

ions ( < 1% reduction) and lowest for the reconstructions using GIRF-

redicted trajectories ( ∼5% reduction). 

Figs. 5 and 6 show fMRI activation maps, in a single subject in vari-

us orientations, and in a single slice in all subjects, respectively. For the

onitored and GIRF-predicted reconstructions, the spiral fMRI results

how good correspondence of the activation with gray matter architec-

ure, while the nominal data contain misplaced activation (apparent for

xample where activation is crossing white matter boundaries). The ac-

ivation for the GIRF-predicted and monitored reconstructions largely

verlap in all subjects, whereas there are substantial deviations in the

ominal activation maps, as demonstrated by activation difference maps

 Fig. 6 ). 

The ROC analysis confirms that the GIRF-predicted reconstructions

ield nearly as good spatial specificity as the monitored reconstruc-

ions, and considerably better than nominal reconstructions ( Fig. 7 ).

ompared to the nominal reconstructions, the GIRF reconstructions

ield ∼122% increase in specificity as captured by the AUC, aver-

ged over all subjects. The monitored reconstructions in turn provide

 smaller additional improvement over the GIRF-reconstructions, with

n average increase of the AUC by ∼13%. The ROC analysis assumes
6 
hat all activated voxels within the GM V1-V3 ROI are true positives.

ote that this is different to how true positives are defined in the

-statistics map comparison with monitored as the ground truth in

ig. 6 . 

. Discussion 

The main goal of this work was to determine if image reconstruction

ased on an LTI gradient system model is suitable for use in functional

RI with spiral trajectories. The results presented here first confirmed

he conclusion of previous work, showing that reconstructions using the

ominal trajectory contain a large amount of artifacts (blurring, ringing

nd distortion) while monitored and GIRF-predicted trajectories yield

igh-quality images. Extending from previous work we demonstrated

hat the image quality of the GIRF-predicted reconstructions remained

uperior to reconstructions based on nominal trajectories over the course

f the time-series. The higher image quality translated into increased

patial specificity in the fMRI analysis, yielding activation patterns that

losely followed the gray/white matter architecture in the visual cortex.

ominal reconstructions, on the other hand, yielded misplaced activa-

ion that was not localized to the gray matter, due to the blurring and

ther artifacts present in the images. 

We observed that the tSNR was largest for reconstructions using con-

urrent monitoring. This is expected, as we are reducing the temporal

ariance in the image time series by correcting for both system-related

eld variations and physiological field fluctuations ( Bollmann et al.,

017 ; Bright and Murphy, 2017 ). These are not captured by the GIRF

here we use the same trajectory for each volume. We also saw that
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Fig. 4. Quality of GIRF-predicted reconstructions over the fMRI time-series (shown for subject 4): The top row shows the RMSE for GIRF-predicted/nominal re- 

constructions with respect to the monitored one. A zoom showing the dynamics of the GIRF-predicted RMSE is shown on the top right along with the measured 

temperature increase. The bottom row shows difference images of monitored and GIRF-predicted reconstructions at the start, middle and the end of the 330 s fMRI 

acquisition. 
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n  
he tSNR is slightly higher for the nominal reconstruction compared to

he GIRF reconstruction, which could potentially be explained by the

arger amount of blurring present, causing local averaging of signal in

he image. 

The main source of system-related field variations is heating of the

radient coils and surrounding structures, caused by the long high-duty

ycle acquisitions in fMRI. Here, we observed gradient temperature in-

reases of up to 15°C over a single ∼5 min fMRI run. Such a substantial

emperature increase alters electrical and mechanical material proper-

ies and thus changes the behavior of the gradient chain. This is a de-

iation from the LTI assumption underlying the GIRF approach, which

ould explain the observed increase in artifacts in the GIRF-predicted

econstructions over the course of the fMRI acquisition. A visual com-

arison between gradient coil temperature and image RMSE in one sub-

ect indicated a close relationship between the two. The GIRF measure-

ent is relatively low duty cycle and was performed starting from a cold

tate of the system. Therefore, towards the end of an fMRI time series

he gradients are in a different thermal state to the one they were char-

cterized in. Overall the impact of this on the fMRI results was small.

he spatial specificity of the GIRF-predicted fMRI results was very close

o the monitored ones, while it was substantially reduced for the nom-

nal reconstruction. In future work, the GIRF model may be further im-

roved by incorporating temperature-dependent GIRFs ( Dietrich et al.,

016b ; Nussbaum et al., 2018 ; Stich et al., 2019 ). The hardware tem-

erature can easily be assessed via the scanner’s temperature monitor-

ng system or using separate temperature sensors and this information

an then be used to select the optimal GIRF for each measurement. Al-

ernatively the GIRF approach could be combined with additional nav-

gators that, for example, track global field changes per slice or vol-

me. This would allow adjusting the slope of k 0 , which we had ob-

erved to vary substantially over the course of the fMRI time series

 Fig. 2 ). 
7 
There is a complex relationship between the trajectory error and

he resulting image quality, which is influenced by many factors not

aptured by the RMSE. For example, a slow drift and a high-frequency

scillatory component of equally large RMSE will cause very different

mage artifacts, and the impact will furthermore depend on the under-

ying trajectory type (e.g. spiral vs. EPI). Results of this and previous

ork ( Vannesjo et al., 2016 ) suggest that for spiral imaging trajectory

eviations near the k-space center are more impactful on the overall im-

ge quality than deviations towards the edge of k-space. We also know

rom previous work that while an oscillatory k 0 component has a sub-

tantial influence on EPI image quality ( Ma et al., 2020 ; Vannesjo et al.,

016 ), spiral imaging is more robust to k 0 errors, especially when the

inear component due to thermal drift is removed ( Vannesjo et al.,

016 ). 

The nominal trajectory used in this work included a global delay

orrection based on minimizing the RMSE to the monitored trajectory.

he delay correction of the nominal trajectory did not improve the im-

ge quality much, as compared to no delay correction (data not shown).

his stands in contrast to EPI where calibrating a delay between odd

nd even lines typically allows substantial artifact reduction. The de-

ay of the gradient chain is dependent on the frequency of the input

aveform, and is therefore not a single parameter valid for all gradi-

nt waveforms ( Vannesjo et al., 2013 ). The spiral readout gradients

weep a large range of temporal frequencies, whereas the EPI has a

ominant peak at the switching frequency. Presumably for this reason,

 single delay correction works well in EPI, whereas for spiral imag-

ng it is important to know the full response over a large range of

requencies. 

B 0 related artifacts, such as dropout and blurring, scale with field

trength, therefore it is especially important to include B 0 correction

or fMRI at 7T. We observed that the artifacts were worst in the nomi-

al reconstructions near air-tissue interfaces, where B 0 inhomogeneity
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Fig. 5. Evaluation of the fMRI experiment designed to stimulate the quarter-fields of the visual cortex. Z-statistic maps (contrasting ULLR versus URLL) overlaid on 

the structural image (shown for subject 4). The activation for the monitored and GIRF-predicted reconstructions match the grey matter architecture well, as seen for 

example along the calcarine sulcus (sagittal view), while the nominal reconstruction results in misplaced activation. 
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s large, despite the fact that static B 0 was accounted for in all recon-

tructions. This is because B 0 correction relies on geometric congruency

etween the field map and the encoded image ( Spirig et al., 2017 ). Ac-

urate knowledge of the encoding fields therefore becomes even more

mportant at ultra-high field. 

We evaluated the spatial specificity of the GIRF-predicted reconstruc-

ion, to test suitability of the approach for high-resolution fMRI, as for

xample required to detect activation on the level of cortical laminae

 Huber et al., 2017 ; Kok et al., 2016 ) and columns ( Cheng et al., 2001 ;

acoub et al., 2008 ). The nominal in-plane resolution of the acquisi-

ion was 0.8 mm, but T 2 
∗ decay over the readout reduces the effective

patial resolution due to the resulting attenuation of k-space. For our

cquisition we therefore expect an effective resolution in the range of

.94-0.98 mm, based on PSF analysis ( Engel et al, 2018 ). This effect is

ractically identical for all three reconstructions. In this work we were

redominantly interested in the relative spatial specificity of the fMRI

ctivation between the different reconstructions. We assessed this us-

ng a ROC-style analysis, which allows quantifying specificity without

hoosing one reconstruction as a ground truth and is independent of a

pecific significance threshold. The challenge with this method is that

t requires accurate true/false positive masks, which relies on accurate

egmentation and registration of an anatomical atlas to the subjects’

unctional data. To obtain trust-worthy masks, we visually inspected
8 
he registration and segmentation in each subject, and chose a conserva-

ive threshold for the automatic gray/white matter segmentation. Voxels

traddling the border between gray and white matter were therefore not

ncluded in either of the masks. 

The GIRF-predicted trajectories consistently provided good results

or all subjects acquired. There were some inter-subject differences in

ow closely the GIRF-predicted reconstructions matched the monitored

nes (see Figs. 6 and 7 ). The fMRI scans used in this study were ac-

uired at different time points within the scanning session (sometimes

t was the first longer scan of the session whereas other times a few

ther fMRI runs had been performed immediately beforehand). This

ould potentially explain some of the differences in performance of the

IRF-prediction between subjects. 

The reconstructions using measured trajectories provided the best

esults, both in terms of image quality and fMRI activation patterns.

oncurrent monitoring allows capturing dynamic field effects that vi-

late the LTI assumption, including non-linear and time-dependent re-

ponses of the gradient system, as well as non-reproducible effects (e.g.

aused by the subject). However, concurrent monitoring is technically

hallenging and can be difficult to incorporate into routine fMRI scan-

ing. The approach relies on an external hardware setup, optimized for

he specific purpose of monitoring long readouts at high resolution. This

equires field probes with suitable specifications (e.g. size and doping
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Fig. 6. Activation maps (transversal section of visual cortex) for six subjects. Maps of false positives (yellow) and false negatives (pink) with respect to the monitored 

reconstruction are displayed below each GIRF-predicted and nominal image. 
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f the probe) to avoid probe signal de-phasing during the measurement.

IRF-prediction provides an alternative when concurrent monitoring is

ot feasible, for example if the optimal field monitoring setup is not

vailable or if de-phasing still occurs (e.g., due to a poor shim). More-

ver, concurrent monitoring could be combined with the GIRF model,

here parts of the readout is measured and the rest is filled in by GIRF

rediction ( Wilm et al., 2019 ). 

As an alternative to field measurements data-driven methods can be

sed to compensate for trajectory imperfections without separate tra-

ectory calibration data. This can be achieved by exploiting data re-

undancy resulting from oversampling the center of k-space (present

n many non-Cartesian trajectories) and/or the data redundancy pro-

ided my multi-channel acquisitions ( Deshmane et al., 2016 ; Ianni and

rissom, 2016 ; Jiang et al., 2018 ; Mani et al., 2017 ; Wech et al., 2015 ).

he advantage of these methods is that they mostly do not need addi-

ional hardware or calibration data, however solving for the image and

he trajectory at the same time makes the reconstruction problem more

omplex and not always well-conditioned. 

GIRF characterization is a one-time calibration step (previous work

as shown the GIRF to be stable over at least 3 years ( Vannesjo et al.,

016 )) and can be performed without any specialized equipment. In this

tudy the GIRF was determined using a dynamic field camera, which al-

ows very accurate characterization of the encoding fields with high fre-

uency resolution, including spatial cross-terms and higher-order terms.

owever the GIRF can also be measured using a phantom-based ap-

roach ( Addy et al., 2012 ; Duyn et al., 1998 ; Rahmer et al., 2019 ), at the

ost of some loss in the frequency resolution of the GIRF ( Graedel et al.,

017a ). 

We used a spiral-out fMRI protocol for this study, but the GIRF-

ased trajectory prediction is a generic method that can be used for

ny trajectory. For example it could be employed for hybrid spiral-

n/out methods ( Glover and Law, 2001 ), which can provide high BOLD

ensitivity as well as improved signal dropout artifacts. Beyond spirals

s  

9 
he GIRF could enable other non-Cartesian fMRI techniques, which re-

uire accurate gradient correction, such as radial ( Lee et al., 2010 ),

ROPELLER ( Krämer et al., 2012 ) and TURBINE fMRI ( Graedel et al.,

017b ). Furthermore, the approach presented here may also be useful to

orrect EPI trajectories, as the GIRF prediction captures effects that the

ommonly used odd-even lines EPI Nyquist ghost correction schemes

 Schmitt et al., 1998 ) do not address ( Vannesjo et al., 2016 ). 

. Conclusion 

GIRF-predicted trajectories have the potential to enable high-quality

piral fMRI in situations where concurrent monitoring is not available.

he presented approach requires only a one-time calibration per sys-

em, thus the fMRI acquisition is not prolonged or complicated by the

cquisition of additional data for correction purposes. 
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Fig. 7. (a) Grey and white matter masks of V1-V3 used for the analysis. (b) Schematic explaining receiver operating characteristic (ROC) curve analysis used to 

assess the spatial specificity of the different reconstructions (without having to choose a specific one as ground truth). The dashed line is the line of no discrimination, 

indicating equal amounts of true and false positives. The area under the curves (AUC) values were used as a summary metric and are reported in Table 1 . (c) ROC 

curves for all six subjects, indicating that the spatial specificity of the activation is highest for the monitored reconstructions. The GIRF-predicted reconstructions 

result in only slightly reduced specificity whereas the nominal curve lies substantially closer to the line of no discrimination. 
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pace trajectories for subject 6. The raw data sets from the other sub-

ects cannot be made publicly available, as we did not obtain ex-

licit subject consent to share data for these subjects. However, we

rovide the mean spiral fMRI images for all three reconstructions

ith the corresponding activation maps for all subjects on NeuroVault

 https://identifiers.org/neurovault.collection:6526 ). 

The image reconstruction in this work was performed using

ustom Matlab implementation of CG-SENSE ( Pruessmann et al.,

001 ) algorithm. A demo version of the reconstruction pipeline

s publicly available on GitHub ( https://github.com/mrtm-zurich/

rsg- arbitrary- sense ), however without the multi-frequency interpola-

ion used for the B 0 correction in this work. 

Scripts (bash and Matlab) for the post-processing and analy-

is pipeline will be available on https://github.com/MRI-gradient/

aper- GIRF- spiral- fMRI . Matlab code for GIRF calculation and trajec-

ory prediction using the GIRF can also be found in the same repository.

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.neuroimage.2021.118674 . 
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