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A B S T R A C T   

The study of the brain’s processing of sensory inputs from within the body (‘interoception’) has been gaining 
rapid popularity in neuroscience, where interoceptive disturbances are thought to exist across a wide range of 
chronic physiological and psychological conditions. Here we present a task and analysis procedure to quantify 
specific dimensions of breathing-related interoception, including interoceptive sensitivity, decision bias, meta-
cognitive bias, and metacognitive performance. Two major developments address some of the challenges pre-
sented by low trial numbers in interoceptive experiments: (i) a novel adaptive algorithm to maintain task 
performance at 70–75% accuracy; (ii) an extended hierarchical metacognitive model to estimate regression 
parameters linking metacognitive performance to relevant (e.g. clinical) variables. We demonstrate the utility of 
the task and analysis developments, using both simulated data and three empirical datasets. This methodology 
represents an important step towards accurately quantifying interoceptive dimensions from a simple experi-
mental procedure that is compatible with clinical settings.   

1. Introduction 

Understanding how the brain integrates sensory information to guide 
perception and action is a core component of neuroscientific research. 
Whilst the mapping of sensory pathways and perceptual phenomena 
have seen major developments in our understanding of the ‘exterocep-
tive’ domain (such as vision, audition, touch etc.), the study of ‘inter-
oception’ (or the brain’s processing of sensory inputs from within the 
body) has begun receiving attention only relatively recently (Khalsa 
et al., 2017). While theoretical concepts of the dynamic interplay of 
brain and body – including interoception, homeostatic and allostatic 

control (Allen, 2020; Petzschner, Weber, Gard, & Stephan, 2017; Pez-
zulo, Rigoli, & Friston, 2015; Stephan et al., 2016) – exist, empirical 
investigations have lagged behind. However, empirical studies of 
interoception have been recently boosted by a surge of interest in mul-
tiple neuroscientific fields, given that impairments in interoceptive 
processing have been proposed to play a role in emotions, decision 
making, consciousness and mental health (Khalsa et al., 2017; Owens, 
Allen, Ondobaka, & Friston, 2018). 

Perceptual processing is a complex phenomenon, and one that is 
highly integrated with other domains of brain function. For example, 
visual perception can be manipulated via changes in factors such as 
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attention (Brefczynski & DeYoe, 1999), emotional state (Bocanegra & 
Zeelenberg, 2009) or expectation (Summerfield & Egner, 2009). 
Furthermore, objective performance in perceptual detection tasks (i.e. 
accuracy and sensitivity towards stimulus detection, as often measured 
with classic psychophysics experiments (Kingdom & Prins, 2016) and 
using inspiratory loading paradigms (Chou & Davenport, 2007; Dau-
benmier, Sze, Kerr, Kemeny, & Mehling, 2013; Davenport, Chan, Zhang, 
& Chou, 2007; Garfinkel et al., 2016a; Ruehland, Rochford, Trinder, 
Spong, & O’Donoghue, 2019)) can be differentiated from more ‘meta-
cognitive’ dimensions, where metacognition refers to the ability to 
accurately reflect and monitor cognitive or perceptual processes 
(Fleming & Lau, 2014; Fleming, 2017; Garfinkel et al., 2016a; Garfinkel, 
Seth, Barrett, Suzuki, & Critchley, 2015; Maniscalco & Lau, 2012). To 
quantify aspects of metacognition, measures of task performance can be 
paired with judgements of the confidence assigned to a decision 
(Fleming & Lau, 2014; Garfinkel et al., 2015, 2016a, 2016b). From these 
metrics, average confidence can be thought of as a ‘metacognitive bias’, 
or a tendency towards a certain level of confidence, while ‘meta-
cognitive performance’ (or ‘metacognitive sensitivity’) reflects how well 
confidence measures align with actual task performance (Fleming, 2017; 
Fleming & Lau, 2014; Garfinkel et al., 2015; Maniscalco & Lau, 2012). 
Critically, to distinguish these metacognitive measures from underlying 
task performance, either objective accuracy needs to be held consistent 
across participants, or the effect of task accuracy needs to be accounted 
for using appropriate mathematical models (and an adequate volume of 
data acquired to fit these models) (Fleming & Lau, 2014). Here, we 
propose a method that incorporates both control over task performance, 
as well as accounting for any residual task performance variation be-
tween individuals. 

These dimensions – task performance, metacognitive bias and met-
acognitive performance – have been distinguished within an intero-
ceptive model by Garfinkel and colleagues (Garfinkel et al., 2015). Here, 
the authors demonstrated that these domains appear to be both quan-
tifiable and distinct, and potentially related to traits such as anxiety. 
While their study was focused on cardiac-related body signals, initial 
work has hinted at potential cross-talk across different interoceptive 
‘channels’ in the metacognitive domain, where corresponding intero-
ceptive metacognition (but not task performance) was observed across 
cardiac and respiratory tasks (Garfinkel et al., 2016a). Interestingly, this 
study also reported significantly elevated confidence in 
breathing-related perceptual decisions when compared to judgements of 
cardiac and tactile performance (Garfinkel et al., 2016a). Whilst 
breathing is more consciously accessible for both perception and control 
than the cardiac domain, this elevated confidence also highlights the 
importance and relevance of breathing-related symptoms in the main-
tenance of homeostasis, whereby even a single breath of restricted or 
occluded breathing can be perceived as extremely unpleasant and 
frightening (Paulus, 2013). 

Central for the further development of interoceptive research is the 
requirement to develop robust methodologies that can quantify intero-
ceptive and metacognitive dimensions. Breathing is often considered to 
lie at the border of interoception and exteroception, combining cues 
from sensory avenues such as tactile and skeleto-muscular sensations 
across the chest wall, muscular effort, blood-gas signals representing 
bodily respiratory status, and air temperature and humidity, to name a 
few. Importantly, the accessibility of breathing to voluntary alterations 
and conscious perceptions lends itself to an array of experimental par-
adigms, including those that do not require exteroceptive cues. In a 
similar manner to cardiac measures, breathing contains inherent vari-
ability in flow and resistance both between and within individuals. 
These individual and breath-by-breath differences render highly accu-
rate measures of breathing-related perceptual sensitivity challenging. 
However, if the performance of a perception task is both controlled and 
accounted for, metacognitive measures relating to interoception can 
become both accessible and independent of these challenges. 

In this paper we provide a novel methodology for controlling task 

performance on a breathing perception task, and demonstrate the utility 
of applying a computational modelling approach to analyze meta-
cognitive metrics of breathing perception. The main benefit of utilizing 
this computational model to assess metacognitive performance is that 
the effect of underlying task performance on metacognition can be 
removed (Fleming, 2017; Maniscalco & Lau, 2012), as differences in task 
performance will produce concurrent differences in apparent metacog-
nition if not adequately accounted for (Fleming & Lau, 2014). Impor-
tantly, an experimental setup is employed that is sufficiently simple and 
mobile to enable practical applications outside a laboratory setting, 
providing progress towards more useful clinical assessments of intero-
ceptive properties of breathing. Inspiratory resistance is used as the 
breathing stimulus in this task, as it is both controllable and relevant to 
many individuals; for example, changes in airway resistance and pres-
sure can result from both bronchoconstriction in conditions such as 
asthma and/or panic disorder (Smoller, Pollack, Otto, Rosenbaum, & 
Kradin, 1996). However, inspiratory pressure also changes in physio-
logical conditions, for example, simply as a result of increased inspira-
tory flow during activities such as exercise (Johnson, Weisman, 
Zeballos, & Beck, 1999) or hyperventilation induced by states of arousal 
(Gallego, Nsegbe, & Durand, 2001), but also as the result of 
reflex-mediated bronchoconstriction in response to cooling of the skin or 
upper airways (Koskela, 2007; Koskela & Tukiainen, 1995). Further-
more, it is now widely acknowledged that the perceptual system can be 
influenced by top-down factors such as attention, expectation and affect 
(Bogaerts et al., 2005, 2008; Van den Bergh, Witthöft, Petersen, & 
Brown, 2017; Janssens, Verleden, De Peuter, Van Diest, & Van den 
Bergh, 2009, 2011; Marlow, Faull, Finnegan, & Pattinson, 2019; De 
Peuter et al., 2004; De Peuter, Lemaigre, Van Diest, & Van den Bergh, 
2008; Put et al., 2004; Stephan et al., 2016; Van den Bergh et al., 2004); 
a known issue in conditions where symptoms are discordant with 
objectively measured medical markers, such as in asthma (Boulay & 
Boulet, 2013; Janssens et al., 2009; Kendrick, Higgs, Whitfield, & Laszlo, 
1993; Teeter & Bleecker, 1998) or those with medically unexplained 
symptoms (Isaac & Paauw, 2014; Nimnuan, Hotopf, & Wessely, 2001; 
Steinbrecher, Koerber, Frieser, & Hiller, 2011). Therefore, using a task 
that is able to dissociate measures such as perceptual sensitivity from 
decision bias and metacognition has great potential to fill an important 
unmet need in clinical practice. 

To firstly demonstrate the utility of computational modelling for 
breathing, we combined an interoceptive breathing task based on 
resistive loads (Garfinkel et al., 2016a) with an established computa-
tional model of metacognition (HMeta-d) (Fleming & Lau, 2014; 
Fleming, 2017; Maniscalco & Lau, 2012). We utilized both simulations 
and empirical data from individuals with asthma, as a cohort of in-
dividuals who regularly experience changes in airway resistance. The 
HMeta-d model utilizes a robust hierarchical statistical framework that 
allows computational models of metacognition, such as the meta-d 
model (Maniscalco & Lau, 2012), to be fit to task data where only low 
numbers of trials are available, such as those from interoceptive tasks. 
Furthermore, we present an extension to a hierarchical Bayesian model 
of metacognitive efficiency, HMeta-d (Fleming, 2017), that allows 
measures of metacognitive performance to be directly regressed against 
external variables of interest within the hierarchical model. This is an 
advantage over standard approaches as it capitalizes on the power of 
hierarchical estimation, especially when trial numbers are low, but 
avoids the problems encountered by post-hoc regressions on hierarchi-
cal model parameters such as unwanted shrinkage to the group mean. 
This shrinkage within standard hierarchical models is where individual 
subject estimates are drawn towards the group mean, and the variance 
between subjects (and thus the ability for post-hoc regression models to 
accurately explain inter-individual variance) is reduced. Lastly, we 
present an adaptive task-performance algorithm that directly targets a 
perceptual threshold accuracy of ~70% and allows online control of 
performance, to aid the collection of a maximal number of trials at this 
level of task difficulty. Importantly, quantification of higher-order 
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metacognitive measures is most efficient when objective performance is 
both significantly above chance (or guessing: 50%) and lower than a 
ceiling value of 100%, such that the resulting perceptual errors can be 
used to quantify the correspondence between objective accuracy and 
subjective confidence reports (Fleming & Lau, 2014). The utility of the 
analysis models and task-performance algorithm are established using 
both simulations and empirical data. 

2. Methods 

The Methods section firstly contains an overview of how the Filter 
Detection Task (FDT) is carried out, followed by an explanation of the 
four interoceptive measures that can be quantified. We then describe the 
computational model simulations employed to determine the applica-
bility of these analysis methods to limited-trial interoceptive applica-
tions. Next, we describe the testing and analysis methods employed to 
assess illustrative hypotheses in an example empirical dataset that 
encompassed a group of individuals with asthma as well as healthy 
controls. Finally, we describe the novel task algorithm that was designed 
to both control performance (within sessions and between individuals) 
and increase the number of trials measured at the perceptual threshold 
of an individual, which is defined using the classical value of 70–75% 
(Watson & Pelli, 1983), lying half-way between guessing between the 
two answer options available (50%) and a ceiling value of 100%. We use 
both simulations and two further empirical datasets to demonstrate the 
utility of the algorithm to control performance and reduce the number of 
excess (unused) trials. 

2.1. Filter Detection Task overview 

To systematically test breathing perception within interoception, we 
have developed a perceptual threshold breathing task (the FDT) based 
on a previously-reported perceptual breathing task (Garfinkel et al., 
2016a). This task is a perceptual discrimination task, and can either be 
completed as a ‘Yes/No’ decision task, or a two-interval forced choice 
(2IFC) task. This task requires a computer to run MATLAB, as well as 
low-cost and easily accessible spirometry filters and anesthetic tubing, 
presenting a simple setup (Fig. 1) that allows for assessment of multiple 

interoceptive and metacognitive measures within the breathing domain. 
Participants wear a nose clip throughout the task, such that breathing is 
performed only through the mouth. 

For the ‘Yes/No’ version of the task, a standard trial structure con-
sists of participants first taking three ‘baseline’ breaths through a 
mouthpiece connected to a simple breathing system (outlined in Fig. 1). 
Following the baseline breaths, three breaths take place under ‘resis-
tance’ or ‘sham’ conditions: either an inspiratory load is created via the 
addition of combinations of clinical breathing filters (signal trials, filters 
provided by GVS Filter Technology, product number 2800/22BAUF), or 
an empty filter (sham trials) is added to the system. The filters provide a 
resistance of < 0.48 cm H2O/L.sec− 1 with the filter membrane attached 
(see Supplementary Material for further information). After each trial, 
participants are asked to verbalize their decision as to whether or not a 
load had been added. Alternatively, for the 2IFC task, the inspiratory 
load is either added in the first or second set of three breaths, and par-
ticipants are asked to choose in which of the two intervals the inspira-
tory load was present. In either task, after each trial participants are 
asked to verbally report their confidence in this decision on a user- 
defined scale, e.g. from 1 to 10 (1 = not at all confident in decision, 
10 = extremely confident in decision). The use of verbal feedback has 
the additional advantage of momentarily taking the participant’s 
attention away from their breathing. Participants can also take any 
length of rest period required between each trial. 

The responses from the FDT can then be used to determine a variety 
of interoceptive measures (outlined below), including inspiratory load- 
related perceptual sensitivity, bias in symptom reporting, perceptual 
confidence and metacognition (the ability to accurately reflect upon 
cognitive or perceptual processes). 

2.2. Breathing-related interoceptive measures 

In the original version of the filter detection task (Garfinkel et al., 
2016a), three domains of breathing-related interoception were quanti-
fied: interoceptive sensitivity (number of filters required for a discrim-
ination threshold of approximately 75%), interoceptive sensibility 
(average confidence over threshold trials) and metacognition (corre-
spondence between accuracy and confidence using a Type 2 receiver 

Fig. 1. A) Diagram of circuitry for the filter detection task. A 
single-use, bacterial and viral mouthpiece (A: Powerbreathe 
International Ltd., Warwickshire, UK - Product SKU PBF03) is 
attached to a 22 mm diameter connector (B: Intersurgical Ltd., 
Berkshire, UK - Product 1960000) and a t-shaped inspiratory 
valve (C: Hans Rudolf, Kansas City, MO, USA - Product 1410/ 
112622), connected to a 2 m length of 22 mm diameter flexible 
tubing (D: Intersurgical Ltd. - Product 1573000) and two 
additional baseline filters (E: Intersurgical Ltd. - Product 
1541000, and F: GVS, Lancashire, UK - Product 4222/ 
03BAUA). A 22-30 mm (G: Intersugical Ltd. - Product 197100) 
adapter then allows the attachment of either a series of con-
nected spirometry filters (H: GVS - Product 2800/17BAUF, 
Pressure at 30 L/min < 0.3 cm H2O, Resistance < 0.48 cm 
H2O/L.sec− 1) or a sham ‘dummy’ filter – a spirometry filter 
shell with the inner bacterial protection pad removed (I). B) 
Overview of the basic trial structure for a Yes/No formulation 
of the task. Participants take three normal size/pace breaths 
(with the sham filter attached), and during the third exhalation 
(indicated by the participant raising their hand and the dotted 
line in panel B) the experimenter either swaps the sham for a 
number of stacked filters (to provide a very small inspiratory 
resistance) or removes and replaces the sham filter. Following 
three more breaths, the participant removes the mouthpiece 
and reports whether they thought it a resistance was added 

(‘Yes’) or not (‘No’), and how confident they are in their decision on any scale (here 1-10 used, with 1 = guessing and 10 = maximally confident in their decision). If a 
two-interval forced choice (2IFC) formulation of the task is used, the filters (resistance) are either placed on the circuit for the first three breaths or the second three 
breaths according to the FDT algorithm, with the sham filter on the system during the alternate period. The reported decision from the participant is whether they 
thought the resistance was on in either the first set or the second set of three breaths, and also again the confidence in their decision.   
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operating characteristic curve; an ROC curve). Here, we aimed to extend 
these measures to incorporate a more thorough and nuanced overview 
of a range of interoceptive dimensions. These measures include intero-
ceptive sensitivity, decision bias, metacognitive bias, and metacognitive 
performance. 

2.2.1. Interoceptive sensitivity 
This measure is analogous to interoceptive accuracy, and in this task 

aims to quantify the ‘perceptual threshold’ as a means for determining 
breathing-related interoceptive sensitivity. In other words, interoceptive 
sensitivity here is the level (i.e. number of filters) at which a participant 
is able to consciously detect an inspiratory loading stimulus. However, 
to allow for the quantification of higher-order interoceptive measures 
(such as metacognition), the number of filters used must elicit a per-
formance that is both significantly above chance (or guessing) and lower 
than 100%, so that perceptual errors can be used to quantify the cor-
respondence between accuracy and confidence (as explained below in 
‘metacognitive performance’). To achieve a task difficulty that elicits 
this required performance, the original publication of this task (Gar-
finkel et al., 2016a) utilized a descending accuracy staircase protocol, 
whereby a large starting filter number (for example 7 filters), and 20 
trials were completed at descending filters until a final filter level when 
performance first dropped below 70%. While many staircase protocol 
options could be adopted to achieve a desired task difficulty, the time to 
complete one trial (approximately 30–60 seconds), the natural vari-
ability in resting tidal breaths (Khatib, Oku, & Bruce, 1991), the inherent 
bias associated with the Yes/No task formulation (Peters, Ro, & Lau, 
2016) and the fixed filter intervals render many traditionally-employed 
staircase protocols (such as the two/three-down-one-up (Kingdom & 
Prins, 2016)) less straightforward with the current methodology. 
Therefore, we have developed a custom staircase algorithm (explained 
in ‘Task performance algorithm’) that employs probability metrics to 
objectively assess both task performance and trajectory towards the 
required perceptual threshold (see ‘Task performance algorithm’ section 
for full explanation of the algorithm). 

2.2.2. Interoceptive decision bias 
If using the FDT as a Yes/No task, a quantifiable measure of behavior 

is the ‘bias’ towards reporting ‘Yes’ or ‘No’. This bias represents the 
placement of a criterion value above which the presence of a resistance 
is reported, reflecting an individual’s inherent tendency to report the 
presence of an inspiratory resistance. Importantly, this bias can be 
quantified using Signal Detection Theory (SDT (Green & Swets, 1966; 
Stanislaw & Todorov, 1999)), and may represent an important cognitive 
trait regarding the experience of respiratory symptoms. Using SDT, 
stimulus sensitivity (d’) can be separated from bias (or the placement of 
a criterion, c) (Green & Swets, 1966; Stanislaw & Todorov, 1999). As 
such, we are able to disentangle the components of measures that may 
be confounded by a mix of task sensitivity and bias, such as performance 
accuracy. When using the FDT as a 2IFC task, the measured ‘bias’ will 
instead be the tendency to report the resistance on the first or second 
interval. While this may have limited relevance to real world scenarios, 
quantification of d’ using this task design is likely to also allow for a 
more accurate representation of task sensitivity and a possibly more 
translatable measure of metacognitive performance (Lee, Ruby, Giles, & 
Lau, 2018), which can both be confounded by variations in criterion 
placement. 

2.2.3. Interoceptive metacognitive bias 
Average subjective confidence or metacognitive bias in interoceptive 

decisions has also previously been referred to as interoceptive “sensi-
bility” (Garfinkel et al., 2015). In this task, we take an overall average of 
the confidence scores (measured across the perceptual threshold trials) 
to represent interoceptive sensibility that directly corresponds to the 
task at hand. Additional trait-like, global perceptual measures of sensi-
bility could also be gathered by using separate interoceptive 

questionnaires such as the Porges Body Questionnaire (Porges, 1993). 
Interoceptive sensibility is also referred to as “metacognitive bias” 
(Fleming & Lau, 2014; Fleming, 2017; Rouault, Seow, Gillan, & Fleming, 
2018), as it represents the tendency to give higher or lower confidence 
ratings. 

2.2.4. Interoceptive metacognitive performance 
Breathing-related metacognitive performance (also termed ‘intero-

ceptive awareness’ (Garfinkel et al., 2015) and ‘interoceptive insight’ 
(Khalsa et al., 2017) in the literature) in this instance is considered to be 
the correspondence between task accuracy and confidence (Garfinkel 
et al., 2015), or the ability to recognize successful perceptual processing 
(Fleming & Lau, 2014). Previous reports of interoceptive metacognition 
have utilized the area under a type 2 ROC curve (Garfinkel et al., 2015, 
2016a, 2016b), resulting in a measure of absolute metacognition where 
the effect of underlying task performance also influences the final score 
(Fleming & Lau, 2014). However, more recent model-based approaches 
have developed a metric of metacognitive performance that can subse-
quently take into account task performance, known as meta-d’ (Man-
iscalco & Lau, 2012). Meta-d’ represents “the sensory evidence available 
for metacognition in signal-to-noise ratio units” (Fleming & Lau, 2014), 
which, because it is in the same units as d’, can be straightforwardly 
compared to task performance as a ratio (Mratio: meta-d’/d’; the log of 
the ratio, logMratio, is also often used to meet Gaussian assumptions: log 
(meta-d’/d’)). This ratio of absolute metacognitive performance 
(meta-d’) divided by task performance (d’) is thus a relative measure of 
metacognitive performance (often termed ‘metacognitive efficiency’). In 
order to employ this model-based approach for the FDT, a hierarchical 
formulation of the meta-d model (HMeta-d) is employed that allows 
efficient pooling of data from multiple subjects (Fleming, 2017), 
allowing us to estimate model parameters on a relatively small number 
of threshold trials (≥ 40 trials). 

2.3. Metacognitive model simulations 

To demonstrate the feasibility of utilizing the meta-d model for 
interoceptive tasks with low trial numbers, we first present simulated 
results to establish the recoverability of group metacognitive perfor-
mance (Mratio) values using the original maximum likelihood estima-
tion algorithm (MLE (Maniscalco & Lau, 2012)), a single-subject 
Bayesian model and a hierarchical (group) Bayesian model (HMeta-d), 
which are both provided in the HMeta-d toolbox (Fleming, 2017). 
Parameter inference in the HMeta-d toolbox rests on a Markov chain 
Monte Carlo (MCMC) sampling procedure, implemented using the JAGS 
software package (http://mcmc-jags.sourceforge.net). The extent of the 
group Mratio recoverability is demonstrated for 20, 40 and 60 trials per 
subject, with 30 simulated participants. Simulations were generated 
from a set of values N(μ,σ), which refer to Gaussians parameterized by a 
mean and standard deviation, using the metad_sim function provided in 
the HMeta-d toolbox (Fleming, 2017). The meta-d’ values for the first set 
of simulations were generated from seven group Mratio distributions 
(meta-d’/d’) with parameters N([0.25 0.5 0.75 1.0 1.2 1.5 1.75 2], 0.1), 
where d’ ~ N(1, 0.1) and c ~ N(0, 0.1). 

Second, we developed and simulated an extension of the HMeta- 
d model (RHMeta-d), which incorporates a simultaneous hierarchical 
estimation of a regression parameter (beta) that controls variation in 
logMratio values in relation to a subject-level predictor (such as a clin-
ical score). The model was adjusted as follows (for full details of the 
original model please see the original publication (Fleming, 2017)). N(μ,
σ) and HN(μ, σ) refer to Gaussians and Half-Gaussians parameterised by 
a mean and standard deviation, while T(μ, σ, ν) refers to a T-distribution 
parameterised by a mean, standard deviation and degrees of freedom: 
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M0 ∼ N(0, 1)
β ∼ N(0, 1)
σδ ∼ HN(1)

ζ ∼ Beta(1, 1)
δs ∼ T(0, σδ, 5)

εs = ζ∗δs
Ms = M0 + β∗Xs + εs  

where Ms refers to the log(meta-d’/d’) value for subject s, M0 is the 
baseline logMratio for the group (i.e. the intercept of the regression), 
and Xs is a vector of predictor values (e.g. clinical scores) for each 
subject. This formulation embeds the estimation of psychopathology- 
cognition relationships into the parameter inference routine, such that 
the group-level posterior over β reflects the influence of individual dif-
ferences in X on metacognitive performance (Moutoussis, Hopkins, & 
Dolan, 2018). To ensure that the regression is robust to outliers, the 
noise εs is drawn from a T-distribution with a standard deviation of |ζ|σδ 

and 5 degrees of freedom (Gelman et al., 2020). Consistent with the 
original HMeta-d model (Fleming, 2017), a redundant multiplicative 
parameter ζ is used to introduce an additional random component in the 
sampling process to aid the recovery of the posterior on the noise scale. 

For these simulations, group baseline logMratio (M0) values were 
generated from a distribution ~ N(log(0.8), 0.1). Then, to simulate data 
from each subject, a random value of the covariate Xs was drawn from a 
standardised distribution N(0,1), multiplied by a group regression co-
efficient that was one of a fixed set of β values (β ~ [-0.5:0.5]) and added 
to this baseline logMratio together with zero-mean noise sampled from 
N(0, 0.1). Values used for d’ and c’ were consistent with previous sim-
ulations (d’ ~ N(1, 0.1) and c ~ N(0, 0.1)), and data were generated 
using either 20, 40 or 60 trials per subject and a confidence scale of 10 
rating points. From these simulated data, parameter estimates were then 
obtained either using the original HMeta-d model combined with a post- 
fit linear regression (i.e. a standard linear regression conducted on the 
per-subject point estimates obtained from the group-level fit, which we 
denote HMeta-d + R), as well as the extended hierarchical regression 
model (RHMeta-d) described above. An average for ten sets of simula-
tions for each group β value was calculated for the final results. 

2.4. Analysis methods: Example dataset of asthma and healthy controls 

To demonstrate the utility of the analysis methods, we employed an 
example dataset that included a group of individuals who experience an 
elevated frequency of breathing symptoms. While it has been observed 
that individuals with asthma can vary from under-reporting to over- 
reporting of symptoms (Boulay & Boulet, 2013; Janssens et al., 2009; 
Kendrick et al., 1993; Teeter & Bleecker, 1998), group-wise analyses of 
asthma have demonstrated both an elevated prevalence of anxiety and 
depression symptoms (Cooper et al., 2007) and that symptom preva-
lence is related to these affective qualities (Katon, Richardson, Lozano, 
& McCauley, 2004; De Peuter et al., 2008; Richardson et al., 2006; 
Rimington, Davies, Lowe, & Pearson, 2001). Furthermore, as the met-
acognitive properties of individuals with asthma have not yet been 
systematically tested and could viably relate to symptom reporting, this 
group was selected as an example test-case for this method. Importantly, 
the FDT allows us to separate the effect of interoceptive sensitivity to 
inspiratory loads, bias towards under- or over-reporting the presence of 
a resistance, metacognitive bias (higher or lower confidence in intero-
ceptive decisions) and metacognitive performance (‘insight’ into 
perceptual performance). These separable entities may help to shed light 
on the potential drivers towards the under- to over-reporting of symp-
toms (Boulay & Boulet, 2013; Janssens et al., 2009; Kendrick et al., 
1993; Teeter & Bleecker, 1998) in asthma. 

Sixty-three individuals with asthma (39 females, mean age (± sd) 
43.7 ± 12.2 years, recruited through general practitioner clinics and 
public advertisements) and 30 healthy controls (19 females, mean age 
(± sd) 44.2 ± 12.2 years, recruited through public advertisements) took 

part in a study approved by the Oxfordshire Clinical Research Ethics 
Committee. Participants underwent the FDT and completed the Dyspnea 
12 (Yorke, Moosavi, Shuldham, & Jones, 2010) questionnaire as a 
subjective assessment of their breathlessness severity. Additionally, 
participants completed a further set of questionnaires and additional 
physiological and behavioural measures that will be addressed else-
where. Seven individuals with asthma were excluded from the analysis 
due to insufficient data (10 trials or less of the FDT, n = 4), or perfor-
mance of less than 50% correct (n = 3), as determined in the preregis-
tered analysis plan (https://gitlab.ethz.ch/tnu/analysis-plans/h 
arrisonetal_fdt_methods_2020). 

During the FDT in this study, the number of filters required for each 
participant to induce task performance at perceptual threshold was 
determined manually, using a staircase method adjusted from a previous 
publication of the task (Garfinkel et al., 2016a) (data was collected prior 
to the development of the task algorithm). In this step-wise procedure, 
participants first completed 10 trials at 4 filters. If the task accuracy was 
below or above 70%, the number of filters was adjusted up or down 
accordingly by one filter. Performance accuracy was assessed again at 
20, 30 and 40 trials, with adjustments made if the accuracy moved 
outside of the 65–75% range (with an acceptable range of 60–80% in 
later trials). The aim was to complete 40–60 trials, which was limited by 
time and attention constraints of each participant. A 0–100 confidence 
rating scale was employed, with 0 = not at all confident, and 100 =
maximal confidence. These confidence scores were down-sampled into 
10 rating bins prior to analysis with the HMeta-d model. 

To demonstrate empirical questions that could be answered using the 
FDT and metacognitive models, we firstly tested any differences be-
tween individuals with asthma and healthy controls across all FDT pa-
rameters (https://gitlab.ethz.ch/tnu/analysis-plans/harrisonetal_fdt 
_methods_2020). For the measures of interoceptive sensitivity (number 
of filters), decision bias (c parameter from model) and metacognitive 
bias (average confidence), tests for data normality were first conducted 
using Anderson-Darling tests, with an alpha value of p < 0.05 required 
to reject the null hypothesis of normally distributed data. A significant 
group difference was then tested using two-tailed parametric or non- 
parametric Wilcoxon rank-sum tests. A group difference in meta-
cognitive performance (the Mratio parameter from the HMeta-d model 
output) was assessed by first calculating the distribution of differences in 
posterior parameter samples from each group (control Mratio samples >
asthma Mratio samples), and then determining the highest density in-
terval (HDI) for this distribution. The HDI employed was a two-tailed 
99% (Bonferroni corrected for five tests, including the regression anal-
ysis described below) confidence interval, where a significant difference 
between groups was denoted if the resulting HDI did not span zero. 
Significance for all other tests was denoted by p < 0.01 (p < 0.05 
Bonferroni corrected for the five experimental tests). 

To assess a possible relationship between metacognitive perfor-
mance and the prevalence of reported breathing-related symptoms, a 
direct test of the relationship between metacognitive performance and 
D12 was performed using a linear regression model in the individuals 
with asthma. To achieve this, the HMeta-d model was extended to 
include a hierarchical estimation of a linear regression parameter, 
whereby a group regression coefficient (beta) was simultaneously fit 
within the model to determine the relationship between logMratio and 
D12. The significance of the beta parameter was then also determined 
using its posterior samples, with a two-tailed 99% HDI (Bonferroni 
corrected) that did not span zero determining a significant relationship 
between more severe D12 and worsened metacognitive performance. An 
illustrative procedure using a split-half analysis is presented in the 
Supplementary Material. 

2.5. Task performance algorithm: Simulations and empirical data 

Lastly, to assist in the collection of a greater number of usable trials 
for further instances of the FDT, we created a novel staircase protocol 
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(within a MATLAB toolbox package) to aid the selection of the appro-
priate number of filters for each participant. While adaptive psycho-
physics staircase algorithms are available (such as QUEST (Watson, 
2017; Watson & Pelli, 1983)), many of these formulations rely on 
adjustable step-sizes and small amounts of sensory noise, and also often 
assume a pre-determined psychometric for model fitting. Therefore, for 
this novel application in the breathing domain we designed an algorithm 
that does not assume any psychometric function; instead, it estimates 
the underlying accuracy that gives rise to the current performance using 
a beta-binomial model. This simple model is robust and does not run the 
risk of non-convergence as can be observed with a more complicated 
algorithm such as QUEST, which may occur due to both the limited 
number of trials, step sizes available and variability in breathing from 
trial to trial. 

When interfacing with the task algorithm, the researcher is given 
instructions for each trial via the MATLAB command window. Addi-
tionally, the researcher is required to enter the participant’s decision 
and confidence scores into the MATLAB command window when 
prompted for every trial, and this information is then used to dynami-
cally update the staircase procedure. This staircase begins with one or 
two practice trials and a short calibration, which are completed under 
the same within-trial format (i.e. Yes/No or 2IFC structure) as the main 
task trials. In the practice trials for the Yes/No task, an additional 
‘explicit dummy’ is first applied, whereby participants are told that it is a 
dummy. Another practice trial is then performed using a large load of 7 
filters, where no feedback is given (no feedback is maintained for the 
rest of the protocol). The practice is then immediately followed by the 
calibration trials, where participants complete trials that increase by one 
filter each trial (beginning with a dummy) until they have correctly 
reported the resistance for two consecutively increasing filter numbers. 
A final calibration trial is then given, where the number of filters is 
dropped by one from the last trial. If participants correctly report the 
final calibration trial, they begin on that number of filters, whereas if 
they are incorrect, they begin with one additional filter. A diagram of the 
basic trial structure is presented in Fig. 1, and the practice, calibration 
and real trial trajectory is provided in the Supplementary Material 
(Supplementary Fig. 1). 

Once the calibration is complete (or alternatively, a manual starting 
point can be provided), the main task trials begin. The target number of 
trials is specified (recommendation of ≥ 60 trials), and a pseudo- 
randomized sequence of trials are presented (trials are balanced be-
tween present/absent for a Yes/No task or between first and second 
interval for 2IFC). The target is for participants to be within a 65–80% 
accuracy band. Given a set of binary trials (and an appropriate prior), we 
use the fact that the posterior distribution over the underlying accuracy 
follows a beta distribution. After 5 trials at one filter level (with at least 
one resistance present for the Yes/No task), the posterior probability 
that the underlying performance accuracy for the current task difficulty 
(i.e. the current number of filters) falls between 65–80% is calculated 
using the difference in beta cumulative distribution functions for 80% 
and 65%, in a similar vein to the QUEST algorithm (Watson & Pelli, 
1983). We use a weak prior on the accuracy itself (beta distribution with 
the parameters α = 2 and β = 1; prior mean = 67% accuracy, inter-
quartile range = 37%), determined by the performance of simulations to 
produce observed accuracies closest to 75%. If the probability that the 
underlying accuracy is between 65–80% falls below a threshold of 20%, 
an addition or removal of a filter is automatically suggested to decrease 
or increase task difficulty respectively. If a new filter number is started, 
the trial count will begin again (i.e., a ’constant’ staircase design) and 5 
trials (with at least one resistance) must be completed before the algo-
rithm will suggest any changes. If the filter change moves the filter 
number back to that of previous trials, the trial count will pick up again 
from the last trial at this level. In this instance, 3 trials (with at least one 
resistance) must be completed before any changes are suggested. If a 
‘roving’ staircase design is specified, trial count will continue regardless 
of filter number. In this scenario, the ‘threshold’ filter becomes the 

average of the number of filters employed across the task. 
To demonstrate the utility of this task performance algorithm, we 

firstly present simulation results from a range of possible participant 
performances, characterized by a distribution of potential psychometric 
functions. These psychometric functions (n = 350) were constructed 
from an underlying logistic sigmoid with a lower asymptote at 0.5 (to 
account for chance answers with the two answer options of ‘yes’ and 
‘no’), a slope k = [0.7:1.2], the number of filters at which the 75% 
threshold is obtained t = [1:7] and added Gaussian noise ε = N(0, 
[0.05:0.015]). We then ran each of the sigmoids generated from each of 
5 starting points – from two filters below to two filters above the t 
parameter, totaling 7000 simulations. Second, we provide data metrics 
(number of trials, performance accuracy, number of filters) for two 
collected datasets using the Yes/No version of the task. The first of these 
collected datasets stems from the first 50 participants measured as part 
of a wider study approved by the Cantonal Ethics Committee Zurich 
(Ethics approval BASEC-No. 2017-02330). For this study, we employed 
a ‘constant’ staircase formulation of the algorithm, with the aim of 
collecting 60 trials at a single level of filters that elicited a task perfor-
mance between ~60− 85%. The second empirical dataset includes the 
first 22 participants measured as part of a wider study approved by the 
Cambridge ethics committee (Ethics approval PRE.2018.092). This 
study employed the alternative ‘roving’ staircase with 60 trials total, 
where the aim was to simply collect 60 trials regardless of the number of 
filters. 

3. Results 

The Results section firstly outlines and compares the computational 
model simulations using three different implementations of the Meta-
cognitive (Mratio) model. The hierarchical version (HMeta-d) is 
convincingly shown to be the most reliable in recovering simulated 
values of Mratio. Simulation results also establish the recoverability of 
regression parameters using the extended RHMeta-d model compared to 
the standard HMeta-d model. We then present the results from the 
example empirical analyses proposed in individuals with asthma and 
healthy controls, to demonstrate how the model outputs can be inter-
preted in light of example hypotheses. Lastly, we ascertain the utility of 
the novel task algorithm using both simulated and empirical results. 

3.1. Metacognitive model simulations 

The simulation results firstly demonstrate that utilizing the hierar-
chical Bayesian HMeta-d model fit allows adequate recovery of group 
Mratio values (Fig. 2). This recovery is possible even using as few as 20 
trials per subject, with slightly larger uncertainties (demonstrated by the 
width of the highest density intervals) than those obtained for 40 and 60 
trials. It is instructive to compare this to the alternative estimation 
methods: while MLE is able to recover an average Mratio value that is 
indeed representative of the simulated value, the uncertainty around 
these estimates (demonstrated by the width of the confidence intervals) 
is large when using even 60 trials per subject. Moreover, the confidence 
interval around these MLE estimates incorrectly encompasses zero for all 
group Mratio values below 1. The recovery of the group Mratio using the 
Bayesian single subject fit also has large uncertainties and shows 
shrinkage effects towards zero, recovering Mratio values below the 
simulated values across all trial numbers tested here. 

The second set of simulations were designed to probe the recover-
ability of single-subject Mratio values, for possible use in analyses 
comparing individual metacognitive performance against an external 
variable. Using the original HMeta-d model, we demonstrated that a 
post-hoc regression on the single-subject values was unable to accurately 
recover a group regression parameter simulated from the range β =
[− 0.5:0.5] even when using 60 trials, with all confidence intervals on 
the regression parameters encompassing zero (Fig. 3). This is unsur-
prising given that the hierarchical model naturally shrinks single-subject 
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Fig. 2. Group Mratio recovery for 20, 40 and 60 trials using three different meta-d models. Data were simulated from 8 groups of 60 subjects with group mean Mratio 
(meta-d’ / d’) values set to [0.25 0.5 0.75 1.0 1.25 1.5 1.75 2] ± 0.1 (sd). All simulated values were generated from data where d’ ~ N(1, 0.1) and c ~ N(0, 0.1), and a 
confidence scale of 10 rating points was used. A) Simulated vs. recovered Mratio values using maximum likelihood estimation (Maniscalco & Lau, 2012), where the 
shaded grey areas denote the 95% confidence interval of the estimate. B) Simulated vs. recovered Mratio values using a Bayesian single-subject fit (provided in the 
HMeta-d toolbox (Fleming, 2017)), where the grey areas denote the 95% highest density interval (equivalent to a 95% credible interval) of the sampled estimate. C) 
Simulated vs. recovered Mratio values using a hierarchical Bayesian group fit (provided in the HMeta-d toolbox (Fleming, 2017)), where the grey areas denote the 
95% highest density interval of the sampled estimate. Dashed lines represent ideal recovery, with dotted lines at zero demonstrating the ability of the model fit to 
significantly recover group estimates (i.e. when confidence or highest density intervals do not include zero). 

Fig. 3. Demonstration of the recovery of group regression parameters (β ~ [− 0.5:0.5]) using either the original HMeta-d model combined with a post-fit linear 
regression (HMeta-d + R), or the extended regression HMeta-d (RHMeta-d) model. Ten sets of simulations were performed and results were averaged, where each 
simulation set included 60 simulated ‘subjects’ where logMratio = logMratiobaseline + β*covariate + noise, where logMratiobaseline ~ N(log(0.8), 0.1), covariate ~ N 
(0, 1), β ~ [− 0.5:0.5], noise ~ N(0, 0.1), and with d’ ~ N(1, 0.1), c ~ N(0, 0.1). Grey areas denote the 95% highest density interval of the sampled estimate. Dashed 
lines represent ideal recovery of group beta values, and dotted lines at zero demonstrate the ability of the model fit to significantly recover group estimates (i.e. 
highest density intervals that do not including zero). 
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estimates towards the group mean, losing information about individual 
differences. In contrast, the RHMeta-d model was able to significantly 
recover beta values of ± >0.2 with 60 trials, ± >0.25 with 40 trials, and 
± >0.3 with 20 trials (Fig. 3). The results for multiple regression models 
(with up to three covariates) at each of 20, 40 and 60 trials are presented 
in the Supplementary Material (Supplementary Fig. 4). 

3.2. Empirical data analyses 

When considering the comparisons between the asthma and control 
groups, no significant difference was found between the two groups for 
interoceptive sensitivity (number of filters = mean ± se: controls = 2.87 
± 0.29, asthma = 2.80 ± 0.20), decision bias (c = mean ± se: controls =
0.01 ± 0.07, asthma = -0.01 ± 0.06), metacognitive bias (average 
confidence % = mean ± se: controls = 66.57 ± 2.99, asthma = 69.74 ±
2.13), nor metacognitive performance (Mratio = mean ± se: controls =
0.83 ± 0.14, asthma = 0.79 ± 0.12) (Fig. 4). We then considered the 
relationship between breathing symptoms and metacognition in asthma 
only. While the data demonstrated a tendency for reduced meta-
cognitive performance with higher symptom loads using a hierarchical 
regression analysis (RHMeta-d; Fig. 5), this was not statistically signif-
icant (determined by an HDI that does not encompass zero). Using a 
hierarchical regression approach, the beta parameter mean was esti-
mated as − 0.22 ± 0.16 (se), with the beta HDI in the range [− 0.67, 
0.27] (Fig. 5). 

3.3. Task performance algorithm: Simulations and empirical data 

The results from both simulated and empirical data demonstrate the 
ability of the task algorithm to target performance towards a perceptual 
threshold that lies above chance (50%) and below ceiling (100%) per-
formance (Fig. 6). Simulations conducted using the task algorithm (with 

a ‘constant’ staircase formulation) produced task accuracy scores with a 
mean of 74.1 ± 8.7% (sd) and an accurate recovery of the 75% filter 
number, irrespective of the starting filter value (Fig. 6A). Empirical data 
collected using the Yes/No formulation of the task (with a constant 
staircase) produced a task accuracy with a mean of 68.9 ± 7.4% (sd), 
with the threshold filter number spread between 1 and 8 filters (Fig. 6B). 
Both the simulations and real data demonstrate a feasible number of 
trials (70.4 ± 10.3 (sd) trials for simulated results with 60 threshold 
trials, 69.6 ± 10.0 (sd) trials for empirical data) required to complete 60 
trials at the threshold filter. In real terms, this indicates that it is possible 
to reliably measure respiratory interoception and metacognition in 
approximately one hour or less (assuming approximately 45–60 seconds 
to complete each trial). These estimates include a constraint whereby 
the algorithm was additionally programmed to continue until 30 trials 
are completed at the threshold filter number, followed by the option for 
manual intervention to instigate filter changes every ten trials if the 
accuracy moves out of acceptable bounds (experimenter decision 
required, depending on time taken and participant). 

When utilizing a ‘roving’ staircase experimental design, simulations 
of the task algorithm produced task accuracy scores with a mean of 75.4 
± 8.0% (sd) and an accurate recovery of the 75% filter number, irre-
spective of the starting filter value (Supplementary Fig. 7A). When the 
first 60 trials from the constant staircase empirical data discussed above 
were analyzed as a roving staircase (i.e. the first 60 trials analyzed, 
regardless of filter intensity), the mean task accuracy was slightly 
reduced from 68.9% to 67.7%, and the variance of the scores increased 
from 7.4% to 8.5% (sd) (Supplementary Fig. 7B). A final dataset, 
collected with explicit use of the roving staircase paradigm, demon-
strated a mean accuracy of 69.7 ± 11.7% (sd), and threshold filter 
numbers that ranged from 1 to 8 filters (Supplementary Fig. 7C). No 
additional trials are required when utilizing a roving staircase design, as 
all trials following the calibration step are included in the analysis. The 

Fig. 4. Group difference comparisons between individuals with asthma and healthy controls. Panels A, B and C denote group mean and standard error for each group 
regarding interoceptive sensitivity, decision bias and metacognitive bias, with no significant differences found between the groups. Panel D demonstrates the sampled 
posteriors for the group estimates of metacognitive performance (Mratio). Panels E and F demonstrate the model fit by comparing the observed and model estimates 
of the Type 2 ROC curves for both ‘Yes’ and ‘No’ responses (regarding the presence of an added inspiratory resistance). Model fits for all other models are presented in 
the Supplementary Material (Supplementary Fig. 5). 
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simulated and empirical results from the calibration algorithm are pre-
sented in Supplementary Fig. 8. 

Direct comparisons between the empirical data collected using the 
three methods (i.e. manual accuracy calculations every 10 trials (asthma 
dataset), the constant staircase design and the roving staircase design) 
are provided in Fig. 7. Data collected using a manual accuracy calibra-
tion (asthma and controls) produced task accuracy scores with a mean of 
66.4 ± 8.2% (sd), with a large number of additional trials (percentage of 
the number of threshold trials collected = 71.9 ± 17.7% (sd)) and two 
participants whose task accuracy was ≤50%. No difference in overall 
accuracy was found (Wilcoxon rank-sum tests) between any of the task 

designs (all p > 0.05), however the roving task design produced the 
largest standard deviation in the task accuracy across the methods 
(observed in Fig. 7). Additionally, while a significant number of addi-
tional trials were required when using the manual and constant staircase 
methods (Wilcoxon signed-rank tests, p < 0.001 for both tests against 
zero), the constant staircase significantly reduced the additional number 
of trials required from the manual method, both as an absolute number 
of trials and as a percentage of the number of threshold trials collected 
(Wilcoxon rank-sum tests, p < 0.001 for both tests). 

Finally, while using a roving staircase design removes the possibility 
that any additional (non-analyzed) trials will be required, a tighter 

Fig. 5. Comparisons between metacognitive perfor-
mance (logMratio) and symptom load in asthma, using 
a hierarchical regression analysis. A) A hierarchical 
regression predicting logMratio from the standardised 
D12 scores within asthma participants. The regression 
was fit using an extension of the HMeta-d model 
(RHMeta-d) in which the beta regression coefficient 
was fit simultaneously together with the logMratio 
scores. Dashed line represents the regression line from 
the model fit. B) The distribution of samples over the 
regression beta parameter (from panel A) fit using the 
RHMeta-d model. Dashed lines represent the two-tailed 
99% HDI which encompasses zero (dotted line) 
consistent with no significant relationship between D12 
score and metacognitive efficiency in this dataset.   

Fig. 6. Results demonstrating the use of an adapted staircase algorithm for targeting a specified level of task difficulty over 60 trials. A) Simulation results, where 
data were generated from a range of logistic sigmoid functions bounded between 0.5 and 1, with 20 simulations for each sigmoid (‘participant’) from each of five 
starting points – from two filters below to two filters above the 75% threshold filter. Left: Simulated and recovered 75% filter number for each simulated ‘participant’. 
Middle: Histogram of the task accuracy scores for the 60 threshold trials for all simulations. Right: Histogram of the total number of trials required to complete 60 
threshold trials for each simulation. B) Data collected using a Yes/No version of the task (with a constant staircase), where 50 participants each completed 60 
threshold trials. Left: Histogram of the measured threshold filter number for each participant. Middle: Histogram of the task accuracy scores for the 60 threshold trials 
for the 50 measured participants. Right: Histogram of the total number of trials required to complete 60 threshold trials for each participant. All histograms are 
reported with mean ± standard deviation. 
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target accuracy band could be employed to better control the variance in 
performance accuracy (observed in Fig. 7), and the algorithm can be 
programmed to continue throughout all trials to better control task 
performance (instead of stopping at 30 trials, as occurs with the constant 
staircase). Therefore, we re-ran the task simulations using a difference in 
beta cumulative distribution functions between 75–70% (reduced from 
80–65%), with a lower bound on the acceptable probabilities increased 
from 20% to 30%. The results of these simulations compared to the 
original thresholds can be seen in Supplementary Fig. 9, and these 
changes reduced the simulated standard deviation in task performance 
accuracy from 8.0 to 6.7. 

4. Discussion 

4.1. Main findings 

In this manuscript we demonstrate the utility of pairing a breathing 
perception task – the ‘Filter detection task’ – with the HMeta-d model of 
metacognition, to quantify the interoceptive domains of sensitivity, 
decision bias, metacognitive bias and metacognitive performance. Using 
simulations, we have shown how the use of a hierarchical model 
formulation (HMeta-d (Fleming, 2017)) can help overcome the chal-
lenge of low trial numbers when calculating metacognitive performance 
metrics using frameworks such as the meta-d model (Maniscalco & Lau, 
2012). We demonstrate how this hierarchical model can be extended to 
include a simultaneous hierarchical estimation of regression parameters 
linking metacognitive performance to individual difference variables. 
We also demonstrate the use of the model and appropriate statistics to 
answer research questions in an empirical dataset of healthy controls 
and individuals with asthma. However, we did not observe any group 
differences in our FDT measures (interoceptive sensitivity, interoceptive 
bias, metacognitive bias or metacognitive performance) within our 
empirical dataset (including usable data from 56 individuals with 
asthma and 30 healthy controls), who each completed ~40 trials (mean 
± sd = 42 ± 10) at their perceptual threshold using a manual staircase 
procedure. Whilst there may be no differences that exist between these 
groups in the measures tested, the noise associated with using only 40 
trials when quantifying metacognition may also mask any underlying 
differences. Therefore, lastly, we introduce a task algorithm to help 
target performance accuracy towards 70–75% correct. This accuracy 
band is optimal for metacognitive analysis as it provides sufficient errors 
for analysis of confidence-accuracy relationships, while maintaining 
above-chance performance and accounting for any remaining variability 
in performance accuracy between participants. We demonstrate the 
effectiveness of this algorithm using both simulations and via empirical 
data comparisons when using either manual adjustment strategies or the 

staircase options provided by the toolbox (constant or roving staircase 
options). 

4.2. Computational models of breathing-related interoception and 
metacognition 

As interest in interoception-related research grows across neurosci-
ence, psychiatry, physiology and other scientific communities, the 
importance of developing robust methodologies for quantification of 
interoceptive dimensions is paramount. While discussions regarding the 
validity of tasks such as heartbeat counting in the cardiac domain 
highlight the need for robust measures of interoception (Corneille, 
Desmedt, Zamariola, Luminet, & Maurage, 2020), the FDT offers one 
route to overcoming some of these issues within the domain of respi-
ration. Here, we highlight the feasibility of applying signal detection 
theory-derived computational models of both task and metacognitive 
performance, first introduced by Maniscalco and Lau (2012) (the meta-d 
model) and derived from theories of ‘Type 2’ performance (dis-
tinguishing between one’s own correct and incorrect decisions (Galvin, 
Podd, Drga, & Whitmore, 2003)). Utilizing these signal detection theory 
models firstly allows us to separate interoceptive sensitivity from deci-
sion biases within task (or ‘Type 1’) performance, both of which may be 
highly informative in disentangling drivers of altered interoception and 
have been previously quantified using inspiratory loading tasks in con-
trols (Harver, Katkin, & Bloch, 1993; Narbed, Marcer, & Howell, 1982; 
Narbed, Marcer, Howell, & Spencer, 1983) and children with asthma 
(Harver et al., 2013). Additionally, while there have been reports of 
possible blunted sensitivity to inspiratory resistive loads with anxiety 
disorders (Tiller, Pain, & Biddle, 1987), there is also an established 
prevalence of reporting medically unexplained symptoms with anxiety 
(Steinbrecher et al., 2011), and even early evidence for a potential 
relationship between symptom over-report and reduced interoceptive 
accuracy in healthy individuals (Bogaerts et al., 2008). Therefore, as a 
criterion shift may manifest as differences in interoceptive sensitivity, it 
is imperative to separate these measures both in healthy individuals and 
within clinical populations. 

While perceptual sensitivity and bias metrics can be directly calcu-
lated from behavioural data, the estimation of metacognitive parameters 
such as meta-d’ often require optimizing a model’s predicted responses 
to match those observed within the data (Maniscalco & Lau, 2012). 
However, here we demonstrate that the original meta-d model formu-
lation (using maximum likelihood parameter estimates) is not able to 
significantly recover group Mratio values below 1, nor reliable estimates 
of individual subject scores when using the low number of trials that are 
practically feasible within interoceptive experiments (Fig. 2). Due to 
these constraints, here we instead explore the utility of hierarchical 

Fig. 7. Comparison of the three empirical datasets 
collected using different methods: ‘Manual’ = Manual 
staircase adjustment of filters via accuracy calculations 
every 10 trials; ‘Constant’ = Constant formulation of 
the staircase, where all analysed trials are collected at 
the same filter number; and ‘Roving’ = Roving stair-
case, where all trials (across different filter numbers) 
are used for data analysis. A) Comparison of task ac-
curacy across the data collection methods, where no 
difference in accuracy was observed between any of the 
methods (all p > 0.05). B) Comparison of the additional 
trials required during data collection as percentage of 
the analysed threshold trials (N.B., no extra trials are 
collected for the roving staircase design). In Panel B, 
both the manual and constant staircase methods pro-
duced a significant percentage of additional trials 
(above zero, both p < 0.001), and the constant staircase 
significantly reduced the number / percentage of these 

trials compared to the manual adjustment method (both p < 0.001). Black dots are individual data points, while grey areas represent the distribution of values. Large 
circles denote the group mean in each condition.   
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formulations of the meta-d model (HMeta-d) derived by Fleming (2017), 
which can achieve good recovery of metacognitive performance pa-
rameters (e.g. Mratio) using as few as 20 trials per subject (Fig. 2). 
Importantly, the meta-d model allows us to differentiate relative meta-
cognitive performance (i.e. metacognitive efficiency controlling for task 
performance) from absolute measures of metacognition, such as that 
calculated from the area under a type 2 ROC curve (Garfinkel et al., 
2015, 2016a, 2016b). This is important because it is well-established 
that absolute measures of metacognition may be biased by differences 
in underlying task performance between individuals or conditions 
(Maniscalco & Lau, 2012). 

Beyond estimating group metrics of metacognition, often it may be 
desirable to estimate the relationship between individual metacognitive 
performance and an external measure of interest, for example a clinical 
score or other behavioural variable. While post-hoc regressions on 
single-subject parameter estimates are possible, hierarchical models 
tend to shrink single-subject estimates towards the group mean, thus 
losing information regarding individual differences and reducing the 
power of these types of analyses. To this end, we have developed and 
tested a hierarchical regression model, whereby multiple regression 
parameters can be simultaneously fit alongside the group logMratio 
within the HMeta-d model (RHMeta-d). We find that the sensitivity of 
the regression model in being able to accurately recover simulated beta 
coefficients is greatly enhanced when increasing from 20 to 40 and 60 
trials, with the width of the posterior (represented by the HDI) notably 
reducing when trial number is increased (Fig. 3). We have also 
demonstrated the use of this regression approach in an empirical dataset 
in which interoceptive metacognitive performance was compared 
against breathlessness symptom reports (measured via the D12 ques-
tionnaire) in individuals with asthma (Fig. 4). 

4.3. FDT toolbox 

To aid the use of computational models within interoceptive exper-
iments, we have developed a toolbox to run the FDT according to an 
accuracy-targeted performance algorithm (freely available for down-
load: https://github.com/ofaull/FDT). While practicalities regarding 
the fixed step-size of each of the inspiratory resistance filters prevents us 
from utilizing established psychophysics staircases, we have instead 
developed an adapted staircase protocol which prompts adjustment of 
the filter load once the probability falls too far beyond our desired range 
of 70–75%. As task performance control is carried out online at every 
trial, any variations in breathing physiology that may alter performance 
are dynamically accounted for across the task. Both simulations and 
empirical data show that this algorithm produces performances within 
the desired range required for employing the computational models 
described above, where participants need to be performing above 
chance but below 100% accuracy. 

The demonstration of the FDT in the current manuscript utilized a 
Yes/No task formulation, where a participant is required to answer 
whether or not a resistance was added to the system (‘Yes’) or stayed the 
same (‘No’). However, the toolbox also provides the option to employ a 
two-interval forced choice (2IFC) alternative if desired. While criticisms 
exist of the application of equal-variance signal detection theory metrics 
in Yes/No tasks (discussed previously (Peters et al., 2016)), we also see 
potential practical utility in using these task variants, for example to 
quantify measures akin to symptom over- or under-report by estimating 
the criterion parameter. However, if the metrics calculated from the FDT 
are to be compared with other perceptual tasks that are run as a 2-inter-
val/alternative forced choice, then the 2IFC option may be desirable, 
allowing for comparable model assumptions across tasks. 

Lastly, the toolbox also offers two alternative staircase options to 
control task performance in both the Yes/No or 2IFC formulation. In the 
original protocol presented by Garfinkel and colleagues (Garfinkel et al., 
2016a), the aim was to collect 20 usable trials at a specific number of 
filters where performance first fell below 75%, thus corresponding to the 

participant’s perceptual threshold and providing a measure of intero-
ceptive sensitivity. Whilst the number of additional (unused) trials 
required can be greatly reduced from using a standard staircase pro-
cedure by employing the adapted staircase algorithm in the toolbox 
(Fig. 7), an alternative approach is to employ a ‘roving’ staircase, 
whereby all trials are used in the calculation of interoceptive measures, 
and interoceptive sensitivity is taken as an average of the filter numbers 
used across trials. As the risk of needing additional trials is removed, this 
approach allows experimenters to tighten accuracy thresholds to 
improve task performance control, as the aim of this staircase is no 
longer to find a single filter that elicits the desired accuracy. This roving 
staircase option would likely prove a more viable alternative if using the 
FDT in a clinical setting, removing the possibility of any additional trials 
while maintaining adequate representations of interoceptive sensitivity. 
We note however that roving staircases also have potential downsides in 
artificially inflating estimates of metacognitive sensitivity when 
compared to constant-stimulus designs (see Rahnev and Fleming (2019) 
for further discussion of this issue). 

4.4. Limitations 

While this experimental setup provides a progression towards 
measuring quantities related to interoception of breathing, a number of 
limitations exist that could be addressed in future work. The first of these 
is that while the resistance applied is static, the resulting pressure dif-
ferential across the resistance is flow-dependent, such that larger 
inspiratory flow will generate larger inspiratory pressure differences 
(see Supplementary Material for further details). Furthermore, inherent 
resting resistance and inspiratory pressures are also variable between 
individuals, depending on factors such as anatomical structure of the 
airways and physiological differences in inspiratory musculature. 
Therefore, if measures of inspiratory pressure and flow were added to 
the system, more detailed quantification of perceptual sensitivity may be 
determined by considering the changes in both the inspiratory pressure 
and flow (relative to the baseline breaths) that were required to detect 
the resistance. The use of mouth pressure, in particular, could be used as 
a replacement for the number of filters as a more nuanced measure of 
interoceptive sensitivity. As pressure will change in response to both 
changes in resistance as well as inspiratory flow (see Supplementary 
Fig. 3 for details), this measure would thus incorporate any inter-filter 
and inter-participant inspiratory flow variability. Importantly, differ-
ences in ventilatory properties between individuals with asthma and 
healthy controls may have contributed to the null finding where no 
difference in perceptual sensitivity was observed between the groups, 
despite previous reports of altered perception in asthma (Boulay & 
Boulet, 2013; Janssens et al., 2009; Kendrick et al., 1993; Teeter & 
Bleecker, 1998). The downside of these additional measures would be 
the loss of some of the task simplicity, and thus its feasibility for use in a 
wide range of settings. 

Whilst adding physiological measures would improve the accuracy 
of the perceptual sensitivity measures, it is worth noting that the addi-
tion of these physiological measures would not likely alter the meta-
cognitive performance scores. This is due to two factors: the task both 
controlling performance and the meta-d model accounting for any 
remaining performance variability (seen in Fig. 7); this renders the 
metacognitive performance scores independent of interoceptive sensi-
tivity (Fleming & Lau, 2014). Therefore, the null effect observed in the 
metacognitive performance domain between individuals with asthma 
and healthy controls may reflect no observable difference between the 
groups as a whole. Alternatively, it is possible that “interoceptive” 
sub-types or phenotype of asthma exist, whereby some individuals with 
asthma experience altered metacognition compared to healthy controls, 
whilst others do not. 

A further notable limitation of the current version of the FDT is the 
time required for completion of the task. The original manual staircase 
proposed by Garfinkel and colleagues (Garfinkel et al., 2016a) (used in 
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the collection of the asthma data presented here) could require more 
than 60 min to acquire the final 20 trials used in the analysis, and other 
inspiratory load paradigms measuring only objective performance also 
require up to 60 min to collect only 7 trials at each level of resistance 
(Davenport et al., 2007). Using this manual staircase and ~40 trials in 
each participant, we were unable to identify any differences in intero-
ceptive sensitivity, interoceptive bias, metacognitive bias or meta-
cognitive performance between individuals with asthma and healthy 
controls. Additionally, while worsened D12 scores appeared to relate to 
reduced metacognitive performance in asthma (Fig. 5), this relationship 
did not reach statistical significance. To aid the collection of more trials 
in order to reduce the noise associated with each of our measures, the 
implementation of the FDT staircase allows for up to 60 usable trials in 
approximately the same amount of time (45− 70 min). To further 
improve the ecological validity of the task, a roving staircase design with 
only 40 trials could be employed, and a reduction in the number of 
breaths per interval (currently 3 breaths) could be considered; these 
would dramatically reduce the time required for task completion to 
approximately 20− 30 min per participant. However, these options have 
not yet been tested in practice. 

An additional limitation of the current design is the currently linear 
staircase step-sizes induced by adding or removing a filter, and their lack 
of highly-accurate factory calibrations. While the resistance increments 
of 0.42 cm H2O/L.sec− 1 provided here (see Supplementary Material for 
details) are similar to those used in previous paradigms such as that by 
Davenport and colleagues (0.20–11.46 cm H2O/L.sec− 1) (Davenport 
et al., 2007), sophisticated electronic devices that can deliver very 
variable small resistances (< 0.5 cm H2O/L.sec− 1) are not yet widely 
available. The development of such a device could allow for variable 
step-sizes, reduce the time required to manually change filters, and 
allow greater control over inspiratory flow rate and volume to reduce 
breath-by-breath variability. Such devices may either incrementally 
change resistance using techniques such as an adjustable aperture, or 
with even further sophistication establish a constant inspiratory pres-
sure via biofeedback devices. The possible improvements in control over 
the staircase step-size may also allow for more established staircase 
procedures (such as QUEST) to be implemented here, where the 
fine-grain coverage of stimulus strengths required to accurately identify 
perceptual threshold may then become available. Furthermore, auto-
mated developments would also greatly reduce the current experi-
menter burden of having to manually change filters and interact with the 
task algorithm at every trial. 

While the limitations in the current measures of perceptual sensi-
tivity are worth observing and improving, these limitations do not dis-
count the utility of the current measures. While the noise of the 
perceptual sensitivity metrics will be notable (but not necessarily 
insurmountable), the control of task performance allows the meta-
cognitive measures to be somewhat independent of this noise. Further-
more, the measure of metacognitive performance directly accounts for 
any remaining differences in task performance by creating a ratio of 
meta-d’ / d’. Finally, keeping participants comfortable and reinforcing 
the notion that the task should be performed with normal pace and 
depth of breathing should limit large differences in inspiratory flow and 
pressure, and filters could be additionally numbered to ensure consis-
tency in incremental steps. 

5. Conclusions 

Here we present a breathing-related interoceptive application of a 
computational model designed to tease apart important aspects of 
perception: sensitivity, decision bias, metacognitive bias and meta-
cognitive performance. Whilst interoceptive experiments often suffer 
from low trial numbers, by combining a breathing perception task with a 
hierarchical statistical model we were able to develop a robust algorithm 
to control task performance while maximizing the number of useful 
trials for analysis. 

The FDT toolbox is freely available for download (https://github.co 
m/ofaull/FDT), as are the statistical methods employed (MLE model: htt 
p://www.columbia.edu/-bsm2105/type2sdt/; HMeta-d and RHMeta-d: 
https://github.com/metacoglab/HMeta-d/). 
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