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a b s t r a c t 

Navigating the physical world requires learning probabilistic associations between sensory events and their 
change in time (volatility). Bayesian accounts of this learning process rest on hierarchical prediction errors (PEs) 
that are weighted by estimates of uncertainty (or its inverse, precision). In a previous fMRI study we found that 
low-level precision-weighted PEs about visual outcomes (that update beliefs about associations) activated the pu- 
tative dopaminergic midbrain; by contrast, precision-weighted PEs about cue-outcome associations (that update 
beliefs about volatility) activated the cholinergic basal forebrain. These findings suggested selective dopaminergic 
and cholinergic influences on precision-weighted PEs at different hierarchical levels. 

Here, we tested this hypothesis, repeating our fMRI study under pharmacological manipulations in healthy par- 
ticipants. Specifically, we performed two pharmacological fMRI studies with a between-subject double-blind 
placebo-controlled design: study 1 used antagonists of dopaminergic (amisulpride) and muscarinic (biperiden) 
receptors, study 2 used enhancing drugs of dopaminergic (levodopa) and cholinergic (galantamine) modulation. 

Pooled across all pharmacological conditions of study 1 and study 2, respectively, we found that low-level 
precision-weighted PEs activated the midbrain and high-level precision-weighted PEs the basal forebrain as in 
our previous study. However, we found pharmacological effects on brain activity associated with these com- 
putational quantities only when splitting the precision-weighted PEs into their PE and precision components: 
in a brainstem region putatively containing cholinergic (pedunculopontine and laterodorsal tegmental) nuclei, 
biperiden (compared to placebo) enhanced low-level PE responses and attenuated high-level PE activity, while 
amisulpride reduced high-level PE responses. Additionally, in the putative dopaminergic midbrain, galantamine 
compared to placebo enhanced low-level PE responses (in a body-weight dependent manner) and amisulpride 
enhanced high-level precision activity. Task behaviour was not affected by any of the drugs. 

These results do not support our hypothesis of a clear-cut dichotomy between different hierarchical inference 
levels and neurotransmitter systems, but suggest a more complex interaction between these neuromodulatory 
systems and hierarchical Bayesian quantities. However, our present results may have been affected by confounds 
inherent to pharmacological fMRI. We discuss these confounds and outline improved experimental tests for the 
future. 
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. Introduction 

Navigating complex physical environments requires a representation
f probabilistic associations between events in the world. A popular no-
ion in contemporary computational and cognitive neuroscience is that
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he brain masters this challenge by constructing and continuously updat-
ng an internal model of the environment (technically speaking, a gen-
rative model of its sensory inputs; Dayan et al., 1995 ; Friston, 2005 ).
his generative model then serves to infer the hidden causes of current
ensations and predict future sensations. 
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1 One would like to add the hypothesis “significantly more in the midbrain 
than in the basal forebrain ”. Testing this type of region-by-condition interaction, 
however, is prohibited in fMRI as the scaling of BOLD signal can differ across 
This general “Bayesian brain ” notion is reflected by several con-
rete concepts, such as predictive coding ( Rao and Ballard, 1999 ;
riston, 2005 ) or hierarchical filtering ( Mathys et al., 2011 ). In ac-
ordance with long-standing neuroanatomical findings ( Felleman and
an Essen, 1991 ; Hilgetag et al., 2000 ), these concepts assume that the
rain’s model has a hierarchical structure, providing a basis for hierar-
hical Bayesian inference. Put simply, the key idea is that each level of
he hierarchy holds a belief or prediction about the level below that is
pdated by ascending prediction errors (PEs). 

One established experimental paradigm to probe hierarchical in-
erence is probabilistic associative learning under volatility. This in-
olves cue-outcome pairs whose association strengths change over time
 Behrens et al., 2007 ; Iglesias et al., 2013 ; Diaconescu et al., 2017 ). In
his setting, the brain needs to compute two different types of PEs for up-
ating hierarchically coupled beliefs: a low-level PE about the outcome
nd a high-level PE about the probability of that outcome. Importantly,
hese PEs are weighted by estimates of uncertainty (or precision, the
nverse of uncertainty) that modulate the magnitude of belief updates
 Mathys et al., 2011 ; Mathys et al., 2014 ). 

We have previously established an associative sensory learning task
nder volatility which is tailored to analysis by a hierarchical Bayesian
odel ( Iglesias et al., 2013 ). A functional magnetic resonance imag-

ng (fMRI) study of this task in healthy volunteers suggested a pos-
ible link between different precision-weighted PEs and activity in
istinct neuromodulatory regions. In brief, we found that low-level
recision-weighted PEs about sensory outcome ( 𝜀 2 ) activated the pu-
ative dopaminergic midbrain, whereas high-level precision-weighted
Es about the outcome’s probability ( 𝜀 3 ) were reflected by activity in
he cholinergic basal forebrain, or more precisely, in its septal subre-
ion (area Ch1-2; Zaborszky et al., 2008 ). A subsequent study using a
imilar computational model replicated these effects for social learning,
ith low-level PEs activating the putative dopaminergic midbrain and
igh-level PEs activating the basal forebrain ( Diaconescu et al., 2017 ). 

The possibility that activity of two distinct neuromodulatory sys-
ems could be probed by a single neuroimaging paradigm is intrigu-
ng, given the need for computational assays of neuromodulation that
ould guide differential diagnosis and treatment prediction in psychi-
try ( Stephan et al., 2006 ; Stephan et al., 2015 ). However, the blood
xygen level dependent (BOLD) signal of fMRI may represent a mixture
f different neurophysiological processes, and both the midbrain and
asal forebrain contain a variety of different neurons (see Iglesias et al.,
013 for discussion). It is thus necessary to verify to what degree our
revious findings truly reflect dopaminergic and cholinergic responses.
urthermore, a direct comparison between low-level PEs and high-level
Es in order to test for differential activations within the nuclei is not
ossible within the current analysis framework, as these regressors live
n different scales; standardising (e.g. z-scoring) these regressors would
hange their interpretation and result in additional complex effects
 Lebreton et al., 2019 ). Therefore, this study attempts to address the
uestion of an involvement of dopamine in low-level PEs and acetyl-
holine in high-level PEs by using pharmacological manipulations of
opaminergic and cholinergic receptors in healthy volunteers. 

Here, we present the results from two pharmacological fMRI study
n healthy volunteers ( N = 81 participants in each study; after exclu-
ion, N = 75 (study 1) and N = 69 (study 2)). These studies employed
elective dopaminergic and cholinergic antagonists (study 1: amisul-
ride and biperiden) and dopaminergic and cholinergic potentiating
rugs (study 2: levodopa and galantamine), using the same computa-
ional modeling framework as in our previous study ( Iglesias et al.,
013 ). The behavioural and fMRI data from one of the three groups
n study 1 (the placebo group) have previously been published as part
f Iglesias et al. (2013) . Here we report differential effects of amisul-
ride/biperiden vs. placebo and levodopa/galantamine vs. placebo on
he behavioural and fMRI data, as well as analyses where we averaged
cross all three pharmacological conditions within each study. 
r

2 
Based on our previous findings ( Iglesias et al., 2013 ), our general
ypothesis was that the precision-weighted outcome PE ( 𝜀 2 ) specifically
eflects dopaminergic processes in the midbrain and that the precision-
eighted probability PE ( 𝜀 3 ) is specifically related to cholinergic pro-

esses in the basal forebrain. 
This general hypothesis allows for two more specific and testable

redictions. Before we describe these in detail, it is worth pointing out
hat testing dopaminergic and cholinergic mechanisms with systemi-
ally active antagonists is complicated by the existence of two oppos-
ng pharmacological effects: on the one hand, antagonists can block in-
ibitory autoreceptors (located on somata and axon terminals), lead-
ng to disinhibition ( Cragg and Greenfield, 1997 ). On the other hand,
ntagonists inhibit postsynaptic receptors; these could be located on
eurons in remote projection sites (where they are activated by synap-
ic or volume transmission; Zoli et al., 1999 ; Cragg et al., 2001 ) or on
earby interneurons (where they are activated by paracrine release of
ransmitters; Zoli et al., 1999 ). This dual mode of action can make in-
erpretations of pharmacological studies with systemic application dif-
cult. For example, for amisulpride, it is assumed that low and high
oses have opposite net effects, with inhibition of autoreceptors domi-
ating at low doses and inhibition of postsynaptic receptors prevailing
t high doses ( Schoemaker et al., 1997 ; Rosenzweig et al., 2002 ). Sim-
larly, the systemic application of pharmacological substances like lev-
dopa and galantamine, which increase the availability of the respec-
ive neurotransmitter, does not allow for straightforward conclusions
bout which of the mechanisms mentioned above might dominate. Fi-
ally, in the absence of plasma level measurements and in order to (at
east partially) account for individual differences in pharmacokinetics,
e included body weight as a covariate in our second-level fMRI anal-
ses. This was motivated by the fact that body weight is one factor of
ndividual variability in pharmacokinetics, for example, because it can
nfluence a drug’s volume of distribution (with larger body weight typ-
cally associated with larger volume of distribution) and, for a given
ose, plasma concentration decreases with the volume of distribution. 

With these caveats in mind, a first prediction concerns activity in
he neuromodulatory nuclei themselves. Specifically, a corollary of our
eneral hypothesis is that one would expect to see that the midbrain
ctivation by 𝜀 2 and the basal forebrain activation by 𝜀 3 are altered
pecifically by dopaminergic and cholinergic substances, respectively.
his corresponds to the following interaction effects: 

i) The effect of 𝜀 2 on midbrain activity should be altered significantly
more strongly by amisulpride compared to biperiden and placebo,
and by levodopa, compared to galantamine and placebo. 1 

ii) The effect of 𝜀 3 on basal forebrain activity should be altered signifi-
cantly more strongly under biperiden compared to amisulpride and
placebo, and under galantamine compared to levodopa and placebo.

Notably, either of these effects could be exerted by 𝜀 2 or 𝜀 3 in toto

as compound quantities) or could result from one of the components
i.e., the PE or the precision-weight). 

A second (and equivalent) prediction concerns remote target areas of
opaminergic and cholinergic projections. Given the widespread distri-
ution of cholinergic and, to a lesser degree, dopaminergic projections
o the rest of the brain, it is more difficult to specify ex ante in which re-
ions one expects possible alterations of PE-related activity by dopamin-
rgic and cholinergic drugs (see Discussion). We therefore tested this
rediction in a spatially less informed manner using whole-brain analy-
es. 

In brief, our analyses examining precision-weighted PEs in toto and
heir separate components, respectively, did not provide clear-cut evi-
ence for an unambiguous one-to-one relation between quantities from
egions due to differences in neurovascular coupling. 
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ur hierarchical Bayesian model and distinct neuromodulatory systems,
s we had hoped to find. There are several reasons – in addition to this
elation being truly absent, of course – that could explain our results. We
iscuss these possibilities in detail, outlining future tests based on the
xisting data. More generally, we use the current example, to showcase
he complexities and ambiguities inherent to pharmacological fMRI. 

. Methods 

.1. Subjects 

Eighty-one healthy male volunteers (mean age ± standard deviation,
D; study 1: 22 ± 2.4 years; study 2: 22 ± 3.0) participated in each of
he two placebo-controlled double-blind pharmacological studies with
 between-subject design. Within each study volunteers were randomly
ssigned to one of three pharmacological conditions such that each phar-
acological condition contained twenty-seven volunteers. To exclude

ariations of hormonal effects on the BOLD signal ( Goldstein et al.,
005 ), we only recruited male participants. Volunteers were all right-
anded, non-smokers, without any psychiatric or neurological disorders
n their past medical history, and were not taking any medication at the
ime. Additionally, before including volunteers in the study, an elec-
rocardiogram (ECG) was recorded and evaluated by a board-certified
ardiologist (R.M.) to exclude the presence of potentially arrhythmo-
enic cardiac predispositions that could have posed risks for pharma-
ological treatment. Notably, these studies were acquired consecutively
nd separately from each other. While the inclusion and exclusion cri-
eria were identical in both studies, participants were not explicitly
atched between studies, and no analyses between studies were per-

ormed. Participants were not explicitly matched across drug conditions
ither. However, our narrow inclusion and exclusion criteria prevented
ifferences in most relevant variables except age. Age was not signif-
cantly different between drug groups in either of the studies (study
: F (2, 72) = 0.467, p = 0.629, BF 10 = 0.164; study 2: F (2, 66) = 0.194,
 = 0.824, BF 10 = 0.141). 

Ethics approval was obtained by the locally responsible authorities
Kantonale Ethikkommission, KEK 2011-0101/3). All participants gave
ritten informed consent before participating in the study. 

Prior to data analysis, each subject’s behavioural data (see below)
ere examined for invalid responses. Two behavioural measures were
xamined for each subject: trial-wise reaction times (RT) and percent
orrect responses (%CR). %CR measures were adjusted to account for
he probabilistic nature of the task, that is, they were expressed in rela-
ion to the maximum %CR that an agent with perfect knowledge of the
robabilistic task structure could achieve (i.e. 74%). Invalid trials were
efined by the lack of any response (missed responses) or by excessively
ong reaction times (late responses; > 1500 ms after cue presentation, i.e.
t start of target presentation). Participants with more than 15% invalid
rials or less than 65% CR were excluded from further analyses. These
riteria led to the exclusion of five participants in study 1 (two from the
misulpride group and three from the biperiden group) and six partici-
ants in study 2 (three from the levodopa group, two from the placebo
roup, and one from the galantamine group). Furthermore, we had to
xclude one participant per study due to claustrophobia (biperiden and
alantamine group, respectively) and from study 2 two participants due
o large movement artefacts (more than 40 additional regressors censor-
ng scans with ≥ 1mm (translation) or ≥ 1º (rotation) scan-to-scan head
ovement; both from the galantamine group), one due to nausea (lev-

dopa group), one due to drop-outs in the midbrain region in the fMRI
ata (galantamine group), and one due to problems with model-fitting
f the winning model (galantamine group). As a consequence, the final
ata analysis included 75 participants (22 ± 2.3 years) in study 1 (25
articipants in the amisulpride condition, 23 in the biperiden, and 27 in
he placebo condition) and 69 participants (22 ± 3.1 years) in study 2
22 participants in the levodopa condition, 22 in the galantamine, and
5 in the placebo condition). 
3 
.2. Drug administration 

Drug administration was performed in a randomised and double-
lind fashion. 

In study 1 each participant received either a single oral dose of
he cholinergic (muscarinic) antagonist biperiden, the dopaminergic an-
agonist amisulpride, or placebo (lactose). Based on previous studies,
osage was chosen as 4 mg biperiden ( Guthrie et al., 2000 ) or 400 mg
f amisulpride ( Rosenzweig et al., 2002 ), respectively. Drug administra-
ion took place 90 minutes before starting the first task (see below), as
or both biperiden and amisulpride, the peak plasma level is attained
ithin approximately 1.5 h ( Grimaldi et al., 1986 ; Hamon-Vilcot et al.,
998 ). 

In study 2 subjects received either a single oral dose of 8 mg galan-
amine (acetylcholinesterase inhibitor), 200 mg levodopa (prodrug of
opamine) combined with 50 mg of the peripheral decarboxylase in-
ibitor benserazide, or placebo (lactose). Drug administration started
0 min before starting the first task, as for both substances the peak
lasma level is attained within approximately 1–2 h ( Farlow, 2003 ;
hor and Hsu, 2007 ; Noetzli and Eap, 2013 ). 

.3. Experimental design: associative learning task 

In both studies, participants performed the same audio-visual as-
ociative learning task (stimulus-stimulus learning, SSL) as described
reviously (fMRI study 2 in Iglesias et al., 2013 ; Iglesias et al., 2019 ).
n brief, participants had to learn the predictive strengths of auditory
ues (AC) in order to predict, as quickly and accurately as possible,
hich of two possible visual target (VT) categories would follow (a face
r a house picture, Fig. 1 A). Importantly, the cue-outcome association
trength changed over time (volatility), including strongly predictive
ues (probabilities of 0.9 and 0.1), moderately predictive cues (0.7, 0.3)
nd non-predictive cues (0.5; Fig. 1 B). Participants were not informed
bout the sequence of probabilities. They were instructed explicitly that
earning one association was sufficient to infer the entire probabilis-
ic structure of the task (see Supplementary Material in Iglesias et al.,
013 ). 

The two possible ACs, lasting for 300 ms, included high tones
576 Hz) and low tones (352 Hz), were followed by the VT (presented
or 300 ms) 1200 ms later. During this interval, the participants had
o indicate by button press whether they predicted a face or house to
ppear, providing us with an explicit behavioural readout of prediction
 Fig. 1 A). The appearance of the VT gave participants explicit feedback
bout their predictions and allowed them to update their beliefs trial-by-
rial. There were no trial-wise monetary rewards. Participants received
 fixed payment for participating in the study, which was independent
f their task performance. 

To ensure that participants perceived both tones equally loudly,
hey performed a psychophysical matching task within the MR scan-
er ( den Ouden et al., 2010 ), prior to the task. Stimuli were presented
sing Cogent2000 ( www.vislab.ucl.ac.uk/Cogent/index.html ). 

.4. Questionnaires 

To control for potential changes in vigilance and arousal due to
he drugs, two questionnaires were applied: the Epworth Sleepiness
cale (ESS; Johns, 1991 ) and the Karolinska Sleepiness Scale (KSS;
kerstedt and Gillberg, 1990 ). However, only the KSS scores were used
s covariates in the fMRI group analyses. 

In the KSS, the subjective level of sleepiness at different time points
uring the day is measured. Here we explicitly asked them to rate their
lertness during the fMRI measurements. Subjects had to indicate on a 9-
oint scale, from extremely alert (1) to extremely sleepy (9), which level
est reflects their psycho-physical state ( Akerstedt and Gillberg, 1990 ).

http://www.vislab.ucl.ac.uk/Cogent/index.html
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Fig. 1. Task and computational model 
A) The sensory-sensory associative learning task (SSL). Subjects had to predict within 1200 ms which visual stimulus (face or house) followed an auditory cue (high 
or low tone). B) Black: the probabilistic trajectory visualizing the change in the association strength between the auditory cues and the visual targets, including 
high associations (probabilities of 0.9 and 0.1), moderate associations (0.7, 0.3) and no associations (0.5); red: trajectory example of a subject-specific posterior 
expectation of the visual outcome “Face ” given the auditory high tone (HT). C) HGF: Hierarchical Gaussian Filter: x 1 represents the identity of the stimulus (stimulus 
category), x 2 the tendency towards one of the categories (the conditional probability of the target given the cue in logit space), and x 3 represents the (log) volatility 
of the environment. The figure has been adapted, with permission, from Iglesias et al. (2013) . 
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2 For the mathematical definition of precision weight 𝜓 2 and PE 𝛿1 , see Eq. 
A.7 in Supplementary Material to Iglesias et al., 2013 . 
.5. Computational modeling of behavioural data 

The behavioural data were analysed using the Hierarchical Gaussian
ilter (HGF). This model describes hierarchical learning at multiple lev-
ls in terms of coupled Gaussian random walks ( Mathys et al., 2011 ;
athys et al., 2014 ). The update equations in this model are analytic

nd contain classical delta-rule or reinforcement learning as a special
ase, with precision-weighted PEs driving belief updating at different
evels of the hierarchical model. 

Here, we used an identical implementation of the HGF as in our pre-
ious study ( Iglesias et al., 2013 ) and considered three alternative mod-
ls: A first model, hgf 3l , corresponded to the standard three-level HGF
s described by Mathys et al. (2011) ; Fig. 1 C. For our learning task,
he first level of this model represented the occurrence of the auditory
nd visual stimuli, the second level the conditional probability of the
isual stimulus given the auditory cue, and the third level the change
n this conditional probability (i.e., log-volatility). Free subject-specific
earning parameters included ϑ (the speed of learning about the (log)
olatility of the environment) and 𝜅 (which determined how much the
stimated environmental volatility affected the learning rate at the sec-
nd level). As explained in Mathys et al. (2014) , for HGF applications
here the belief trajectory at the third level does not inform the re-

ponse model, not all of the perceptual parameters of the HGF are iden-
ifiable. Therefore, in order to ensure parameter identifiability we fixed
he learning parameter 𝜔 (which is a constant component of the learn-
ng rate at the second level) to -4. The perceptual model was combined
ith a response model that linked trial-wise estimates of the conditional
robability (of the visual stimulus given the auditory cue) to trial-wise
ehavioural responses (i.e., the subjects’ predictions of visual stimulus
ategory) by means of a sigmoid function with parameter 𝜁 . This en-
bled us to invert the HGF in order to obtain subject-specific parameter
stimates and belief trajectories (of PEs and precisions) for all levels of
he model. However, it should be noted that for the behavioural anal-
ses of the HGF parameters, we restricted ourselves to 𝜅 and 𝜁 , which
A

4 
ould be well recovered in simulations, whereas ϑ was not recoverable
see Figure S3, Supplementary Material). 

The HGF software used for the analyses in this paper (hgfTool-
ox_v1.0) is available at www.translationalneuromodeling.org/tapas as
pen source code (GPLv3). All update equations are described in detail
y Mathys et al. (2011 , 2014 ). 

Using random effects Bayesian model selection (BMS; Stephan et al.,
009 ; Penny et al., 2010 ), we compared this three-level HGF (hgf 3l )
o two additional models: (i) a reduced model, hgf 2l , in which the
hird level (the log-volatility of the environment) was omitted; this rep-
esented the possibility that participants did not track and make use
f volatility; and (ii), a non-hierarchical Rescorla-Wagner (RW) model
ith fixed learning rate. BMS operates on the log-evidence, which cor-

esponds to the negative surprise of encountering the data given the
odel, and quantifies the trade-off between accuracy (fit) and model

omplexity. Please note that we could not use model “HGF 2 ” from
glesias et al. (2013) because this referred to the prediction of trial-wise
ewards – which did not exist in the present study. 

Using the HGF we estimated subject-specific trajectories of different
omputational quantities that were used for subsequent fMRI analyses.
n our first general linear model (GLM1) analysis of fMRI data, the fol-
owing three quantities were used as parametric modulators, as in our
revious analysis ( Iglesias et al., 2013 ): 

i) 𝜀 2 ( = 𝜓 2 ⋅ 𝛿1 ), the precision-weighted PE about visual stimulus out-
come 2 (which updates the estimate of visual stimulus probability in
logit space, 𝜇2 ); 

ii) 𝜀 3 ( ≈ 𝜓 3 ⋅ 𝛿2 ) the precision-weighted PE about visual stimulus prob-
ability 3 (which updates the estimate of environmental log volatility,
𝜇 ); 
3 For the mathematical definition of precision weight 𝜓 3 and PE 𝛿2 , see Eq. 
.10 in Supplementary Material to Iglesias et al., 2013 . 

http://www.translationalneuromodeling.org/tapas
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ii) 𝜀 𝑐ℎ , the precision-weighted choice PE about visual stimulus outcome.

In a subsequent analysis (GLM2), we split the precision-weighted
prediction errors into their components, resulting in the following
parametric modulators: 

i) 𝛿1 , the PE about visual stimulus outcome; 
ii) 𝛿2 , the PE about visual stimulus probability; 
ii) 𝜓 2 , precision weight at the second level; this corresponds to the

learning rate by which visual stimulus probability estimates are up-
dated; 

v) 𝜓 3 , precision weight at the third level; this is proportional to the
learning rate by which (log) volatility estimates are updated; 

v) 𝛿𝑐ℎ , the choice PE about visual stimulus outcome. 

Note that owing to the unambiguous nature of the outcomes, our
ensory associative learning task involved informational uncertainty (or
stimation uncertainty, i.e. the uncertainty about outcome probabili-
ies, captured by 𝜓 2 ) and environmental uncertainty (i.e. changes in the
robabilities with time, captured by 𝜓 3 ), but did not involve sensory
ncertainty. 

As the predictions in this task were of a categorical nature and
he probabilities were coupled for both learning trajectories, we com-
uted the absolute value of both, the precision-weighted prediction error
 𝜀 2 ), and of the prediction error ( 𝛿1 ) about the outcome (this is iden-
ical to computing separate trajectories for both stimulus categories;
ee Supplementary Material to Iglesias et al., 2013 ). Thus, the lower-
evel precision-weighted prediction error ( 𝜀 2 ) and the lower-level pre-
iction error ( 𝛿1 ) represent the difference between the actual visual out-
ome and its a priori probability. By contrast, the precision-weighted
hoice prediction error ( 𝜀 𝑐ℎ ) and the lower-level prediction error ( 𝛿𝑐ℎ )
re signed prediction errors and represent the difference between the
articipant’s choice being correct and the a priori probability of the cor-
ectness of this choice. Therefore, the choice prediction error is positive
hen the participant made a correct choice and negative when the par-

icipant was wrong (see Supplementary Material to Iglesias et al., 2013 ).

.6. Classical inference 

We performed univariate analyses of covariance (ANCOVA) to test
hether there were significant differences in behaviour across the phar-
acological conditions. For this we used the two HGF parameters, reac-

ion time (RT), and percent correct responses (%CR) as dependent vari-
bles, weight, and KSS scores as covariates, and drug condition as inde-
endent variable. We report significant effects at a Bonferroni-corrected
ignificance threshold of 0.05/4 = 0.0125. Before running the ANCOVAs
e verified that there were no differences across groups in the covari-
tes. These statistical analyses were performed in IBM SPSS Statistics
Version 23.0). 

At the suggestion of a reviewer we complemented our frequentist
nalyses with their Bayesian counterparts using the software JASP (Ver-
ion 0.13.1; JASP Team, 2020) and report the corresponding Bayes
actor expressed as BF 10 , which is computed as the ratio between
he probability of the data given the alternative hypothesis H 1 and
he probability of the data given the null hypothesis H 0 . As stated in

agenmakers et al. (2018b) , BF 10 “... grades the degree of evidence
hat the data provided for H 1 versus H 0 “. According to their classifi-
ation, a BF 10 ranging from 3-10 reflects “moderate ” evidence, a BF 10 
030 “strong ” evidence, a BF 10 30-100 “very strong ” evidence, and a
F 10 > 100 “extreme ” evidence in favour of the alternative hypothesis
 Wagenmakers et al., 2018a ). For all Bayesian analyses, Cauchy prior
istributions were used, as is default in JASP ( Wagenmakers et al.,
018a ). As a caveat, the current Bayesian ANOVA implementation does
ot account for potential violations of sphericity and normality, there-
ore, these results should be interpreted with caution ( van den Bergh
t al., 2020 ). 
5 
.7. fMRI data acquisition and statistical analysis 

In both studies structural and functional MRI data were acquired
n a 3 Tesla Philips Achieva whole body MR Scanner (Philips Medical
ystems) equipped with an eight-channel Philips SENSE head-coil. The
tructural image was acquired using a T 1 -weighted sequence (inversion
ecovery MPRAGE sequence; resolution = 1.1 × 1.1 × 0.6 mm; inver-
ion time (TI) = 875 ms; repetition time (TR) = 2.8 s). A T 2 

∗ -weighted
cho-planar imaging sequence covering the whole brain was used for
unctional data acquisition and lasted for ∼ 23 min, or more specifi-
ally for 550 volumes with a TR of 2500 ms, a slice thickness of 3 mm;
n-plane resolution of 2 × 2 mm; interslice gap of 0.6 mm; ascending
ontinuous in-plane acquisition; TE = 36 ms; flip angle = 90°; field of
iew = 192 × 192 × 118 mm; SENSE factor = 2; EPI factor = 51 (as
n Iglesias et al., 2013 ). A second order pencil-beam volume shim (pro-
ided by Philips) was applied to account for field inhomogeneities. The
MRI sequence we used was optimised for signal quality in brainstem
nd basal forebrain, resulting in signal dropouts in the orbitofrontal
ortex (see Fig. S6). Therefore, no conclusions can be drawn about the
epresentation of our computational quantities in this region. 

In order to enable physiological noise correction of breathing and
eart beat related signal variance, participants wore a breathing belt,
nd an electrocardiogram was obtained during fMRI data acquisition. 

We analysed all fMRI data – including the placebo group data pre-
iously published in Iglesias et al. (2013) – using Statistical Parametric
apping (SPM), version 12 (r7487). Preprocessing steps included mo-

ion correction of the functional images (realignment), co-registration
o the structural image, warping of the functional and structural im-
ges to MNI space using the “New Segment ” toolbox in SPM12, re-
ampling to 1.5 × 1.5 × 1.5 mm resolution, and smoothing of the
unctional images with a 6 mm full-width at half maximum Gaussian
ernel. Signal-to-noise ratio optimization for relevant regions such as
he brain stem, was performed by correcting for physiological noise
sing RETROICOR ( Glover et al., 2000 ) based on the PhysIO tool-
ox (expansion order of the regressors: 3rd, 4th, 1st order for cardiac,
espiratory and interaction between respiratory and cardiac cycle, re-
pectively ( Harvey et al., 2008 )) and by entering into the first-level
LMs regressors obtained from principal component analysis (PCA) of
hite matter and cerebrospinal fluid (CSF; Behzadi et al., 2007 ) us-

ng the PhysIO toolbox (version 2019b, v7.2.1) ( Kasper et al., 2017 ;
ww.translationalneuromodeling.org/tapas ). 

We specified two different voxel-wise general linear models (GLMs)
or each participant. In both of these first-level GLMs we specified re-
ressors representing the two visual trial types (face, house), each of
hich was modulated by several computational quantities that were es-

imated from the individual behaviour. Specifically, in GLM1 we used
he subject-specific trajectories of precision-weighted PEs 𝜀 2 , 𝜀 3 , 𝜀 𝑐ℎ as
omputational (parametric) modulators. In GLM2 we split our computa-
ional quantities into precision and prediction error components, result-
ng in the following parametric modulators: 𝛿1 , 𝛿2 , 𝜓 2 , 𝜓 3 , 𝛿𝑐ℎ . In both
LMs, the regressors were not orthogonalised to each other and were

ime-locked to the outcome phase. Additionally, we modeled missed and
ate responses, respectively, by separate regressors. All regressors were
onvolved with a canonical hemodynamic response function and its tem-
oral derivative. 

In addition to these regressors of interest, our first-level GLMs also
ncluded regressors representing potential confounds. This included the
ealignment parameters, their first derivative, a regressor censoring
cans with ≥ 1mm or ≥ 1º scan-to-scan head movement, physiological
onfound variables related to cardiac activity and breathing (provided
y the PhysIO toolbox), and the PCA regressors for white matter and
SF. 

Contrasts of interests at the first level included the average effect of
ach computational quantity (parametric modulator) specified above.
hese contrasts were entered into study-specific separate second (group)

evel ANOVAs (full factorial design) that compared the three different

http://www.translationalneuromodeling.org/tapas
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rug groups, together with the two covariates (KSS score, and body
eight). To test our hypotheses, we compared equivalent drug types
cross neuromodulators (i.e. amisulpride/biperiden/placebo and lev-
dopa/galantamine/placebo). KSS accounted for individual variabil-
ty in drug-induced vigilance. The covariate body weight was mean-
entered and included an interaction with the factor drug. Body weight
erved as a proxy for the volume of distribution and thus as a (rough)
pproximation to individual differences in pharmacokinetics. In addi-
ion to testing for a main effect of drug, we tested whether drug effects
n computational quantities showed a body-weight dependent effect. 

In addition to whole-brain analyses, we performed region-of-
nterest (ROI) analyses based on a combined anatomical mask of pu-
ative dopaminergic and cholinergic nuclei, as in our previous study
 Iglesias et al., 2013 ). The anatomical mask included (i) the dopamin-
rgic midbrain (substantia nigra, SN, and ventral tegmental area,
TA; Bunzeck and Duzel, 2006 ), (ii) the cholinergic basal forebrain
 Eickhoff et al., 2005 ; Zaborszky et al., 2008 ), and (iii) the putative
holinergic nuclei in the tegmentum of the brainstem, i.e., the peduncu-
opontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei. The
atter were based on manual delineation using MRICron and anatomical
andmarks ( Naidich et al., 2009 ; Zrinzo et al., 2011 ). 

Finally, we also had access to information about two single nu-
leotide polymorphisms (SNPs) in our volunteers: COMT (related to
opamine) and ChAT (related to acetylcholine; for more details, see
upplementary Material Section “Supplemental Results ”). In order to
xplore interaction effects of the pharmacological intervention and com-
utational quantities with genotype, we performed whole-brain and ROI
roup-level analyses as described previously, but adding COMT or ChAT
s a covariate. However, as our sample size may not be sufficient for ro-
ust analyses of the influence by genotype, we report these results in
he Supplementary Material only. 

Our analyses focused on our anatomical regions of interest (ROIs),
esting each computational quantity for group differences (e.g., differ-
nces in 𝜀 2 -related activity between biperiden and placebo). For the
harmacological effects in our ROIs, we use Bayesian statistics to assess
he evidence for the null hypothesis relative to the alternative hypoth-
sis. Since it is methodologically challenging to deal with spatial de-
endencies across voxels in current implementations of Bayesian tests
hen correcting for multiple comparisons, the Bayesian procedure we
sed differs from the statistical analysis performed with SPM. Specif-
cally, for the Bayesian approach, we summarised the data across all
oxels within a given ROI (in terms of the first eigenvariate) whereas
or the SPM analyses we were performing voxel-wise analyses. More
pecifically, in the Bayesian approach we extracted the first eigenvari-
te (or principal component) separately for each region from our a priori
natomical mask, i.e., SN/VTA, basal forebrain, and PPT/LDT. This ex-
raction was performed for each region separately, without applying any
hreshold, and removing all effects related to body weight and sleepi-
ess. For each computational quantity and each of the three anatomi-
al regions, the extracted first eigenvariates were entered into separate
ayesian ANOVAs, with the respective first eigenvariate as dependent
ariable, and group as independent variable. The model containing the
actor group (H 1 ) was then compared to a null model (H 0 ). Post-hoc
ests – i.e. pairwise comparisons with Bayesian t-tests using a Cauchy
rior (0, r = 1/sqrt(2)) – were only computed if the ANOVA displayed at
east moderate evidence for the alternative hypothesis (i.e. if BF 10 > 3).
n JASP, multiple testing is accounted for by adjusting the prior odds.
ultiplying the prior odds with the estimated BF results in the posterior

dds (i.e. the relative plausibility of the model after observing the data
 van Doorn et al., 2020 ). 

Additionally, a number of regions throughout the brain showed sig-
ificant drug effects on activity related to the different computational
uantities. As these findings did not directly relate to our hypotheses,
e report these results in the Supplementary Material (Tables S32 and
33). Regardless whether analyses were conducted for ROIs or across the
hole brain, we always corrected stringently for multiple comparisons;
6 
n the former case, the search volume corresponded to the total volume
f all ROIs combined. All findings reported in this paper survived family-
ise error correction for multiple comparisons ( p < 0.05), either at the
eak-level or at the cluster-level with a cluster-defining threshold (CDT)
f p < 0.001. This CDT affords valid cluster-level inference in SPM (see
klund et al., 2016 ; Flandin and Friston, 2016 ). 

. Results 

.1. Behavioural data: classical analysis 

Here, we report behavioural data from the N = 75 participants in
tudy 1 and N = 69 in study 2, whose data were included in the fMRI
nalyses, respectively. First, within every study we tested for any sig-
ificant differences in the sleepiness ratings (KSS) and body weight
etween the pharmacological groups. We did not find any significant
roup differences, neither in study 1 (KSS: F (2,72) = 0.229, p = 0.796,
F 10 = 0.137, i.e. the data is 1/0.137 = 7.3 times more likely under H 0 

han under H 1 ; body weight: F (2,72) = 1.354, p = 0.265, BF 10 = 0.326)
or in study 2 (KSS: F (2,66) = 1.012, p = 0.369, BF 10 = 0.260; body
eight: F (2,66) = 0.674, p = 0.513, BF 10 = 0.203). 

We subsequently performed one-way analyses (ANOVA) on reac-
ion times (RT) and percent correct responses (%CR). Because normal-
ty and/or homoscedasticity were not always met, Welch’s ANOVA was
erformed for all variables using drug as independent variable. No-
ably, using this test we cannot account for the effects of the covari-
tes KSS and weight. We did not find any significant main effect of
rug on these variables (study 1: RT: F (2, 47.675) = 0.621, p = 0.542,
F 10 = 0.182; %CR: F (2,44.343) = 1.193, p = 0.313, BF 10 = 0.308; study 2:
T: F (2, 43.167) = 0.567, p = 0.571, BF 10 = 0.175; %CR: F (2,43.280) = 1.544,
 = 0.225, BF 10 = 0.431). 

.2. Behavioural data: computational modeling 

Using Bayesian model selection (BMS; Stephan et al., 2009 ), we
ested, following our previous study ( Iglesias et al., 2013 ), which of
everal alternative generative models best explained our participants’
ehaviour. Specifically, we compared a three-level HGF model (hgf 3l ),
 reduced version of the HGF (hgf 2l ), and the classical Rescorla-Wagner
odel (RW) of associative learning that has a fixed learning rate and

s agnostic about environmental volatility. For BMS analyses we had to
xclude participants due to numerical problems during inversion of the
W model (study 1: five participants excluded; study 2: four participants
xcluded) and inversion of the hgf 3l model (1 participant excluded from
tudy 2 as listed in the “Subjects ” session). 

Independently of drug condition, random effects BMS yielded a pos-
erior model probability (PP) of 87.0% and 79.9% in study 1 and study
, respectively, and a protected exceedance probability of > 0.99 in both
tudies in favor of model hgf 3l . This suggests that our participants not
nly learned the task-relevant conditional probabilities of visual stimuli,
ut were capable of tracking the volatility of the environment and up-
ating their learning rate dynamically (Figure S4A and S5A, Table S3).
PP is the expected probability that the model in question generated the
ata for a randomly chosen subject. The exceedance probability (XP) of
 model denotes the probability that this model has a greater posterior
robability than any other model tested; and the protected exceedance
robability (PXP) accounts for the possibility of models having identical
requencies; ( Rigoux et al., 2014 )). Furthermore, when each pharmaco-
ogical condition was considered separately, hgf 3l was the most com-
elling of the models tested (study 1: placebo: PP = 87.9%, PXP > 99%;
misulpride: PP = 81.0%, PXP > 98%; biperiden: PP = 71.7%, PXP >
7.9%; Figure S4B-D, Table S3; study 2: placebo: PP = 65.0%, PXP >
4%; levodopa: PP = 85.9%, PXP > 99%; galantamine: PP = 72.2%,
XP > 93%; Figure S5B-D, Table S3). 

Having identified an optimal model (amongst the models tested), we
roceeded to testing whether within study there were significant differ-
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nces in parameter estimates across drug conditions (see Table S4). (In
he subsequent analyses, we excluded one subject for which we had
ncountered numerical fitting problems for hgf 3l ). To this end, we per-
ormed Welch’s one-way analyses of variance and a Bayesian ANOVA for
he dependent variables 𝜅 (the learning parameter reflecting how much
he estimated environmental volatility influences learning at the second
evel) and 𝜁 (the parameter encoding decision noise in the observation
odel) with drug as independent variable. We did not find any signifi-

ant main effect of drug on these model parameter estimates (study 1:
: F (2,44.937) = 0.296, p = 0.745, BF 10 = 0.157; 𝜁 : F (2,45.737) = 0.344,
 = 0.711, BF 10 = 0.144; study 2: 𝜅: F (2,43.368) = 1.237, p = 0.300,
F 10 = 0.275; 𝜁 : F (2,41.511) = 2.375, p = 0.106, BF 10 = 0.514). 

Finally, multiple regression was applied separately in both studies to
est whether the model parameter estimates could explain task perfor-
ance (percent correct responses (%CR)) and reaction times (RT) across

ll pharmacological conditions. Notably, if the identified model is rea-
onable, one would expect that it is associated with %CR but not RT;
his is because the model was challenged to explain the binary nature
f trial-by-trial decisions, but without reference to their speed. This test
as conducted while controlling for potentially confounding factors in

elation to pharmacology, i.e. KSS, and body weight. In a first step we
nly considered the confound variables and examined whether, on their
wn, they affected individual %CR. This was not the case in study 1: the
ombined influence of potential confounds only explained 6.5% of the
ariance in %CR (study 1; F (2,72) = 2.486, p = 0.09; BF 10 = 0.627).
owever, we found a significant influence in study 2 (R2 = 11.7%;
 (2,66) = 4.388, p = 0.016; BF 10 = 2.843). Notably, this effect was
nly significant in the galantamine group (R2 = 30.6%; F (2,19) = 4.187,
 = 0.031; BF 10 = 2.434). 

We then added the two model parameter estimates ( 𝜅 and 𝜁 ; Ta-
le S4) to the regression model; this explained additional 58.9% and
7.9% of the variance in %CR in study 1 and study 2, respectively
study 1: R2 change = 58.9; F (2,70) = 59.508, p < 0.001; BF 10 > 150;
tudy 2: R2 change = 47.9; F (2,64) = 37.892, p < 0.001; BF 10 > 150).
he main parameter driving this result was 𝜁 (study 1: 𝛽 = 0.793, p <
.001; BF Inclusion > 150; study 2: 𝛽 = 0.737, p < 0.001, BF Inclusion > 150;
F Inclusion represents the evidence in the data for including a predictor

n the model ( van den Bergh et al., 2020 )). These results were not driven
y any single pharmacological condition, but were found similarly when
onsidering each drug in isolation (see Supplementary Material). 

By contrast, as expected, adding the model parameter estimates to
he regression model did not help explain RT (study 1: across condi-
ions: R2 change = 0.02; F (2,70) = 0.822, p = 0.444, BF 10 = 0.333; study
: across conditions: R2 change = 0.057; F (2,64) = 2.218, p = 0.117,
F 10 = 0.844). 

Finally, it is worth noting that the behavioural results reported
ere (both in terms of model comparison and analyses of parame-
er estimates) are perfectly consistent with the results of the non-
harmacological fMRI study in Iglesias et al. (2013) . 

.3. fMRI results 

First, we tested for main effects of each computational variable
within every study pooled across drug conditions), both across the
hole brain and within our anatomical mask (the combined ROIs of
opaminergic and cholinergic nuclei). This served to test whether, aver-
ged across all pharmacological conditions, we would obtain compara-
le results to the non-pharmacological results as in Iglesias et al. (2013) .
or this, we used the same statistical criteria as in Iglesias et al. (2013) ,
.e., family-wise error correction for multiple comparisons ( p < 0.05), at
he peak-level. 

Second, we tested for differential drug effects on the computational
uantities and interaction effects between body weight, drug, and com-
utational quantities; this test was applied both across the whole brain
nd within anatomically defined ROIs. As detailed in the Methods sec-
ion, we only report results that survive FWE correction for multiple
7 
omparisons. Unless mentioned otherwise, the pharmacological results
urvive p < 0.05 at the cluster-level with a cluster-defining threshold
CDT) of p < 0.001. 

Third, we conducted an alternative test of differential drug effects
n the computational quantities using Bayesian ANOVAs (see Meth-
ds). Here, we focused on the three anatomical regions SN/VTA, BF and
PT/LDT within our a priori anatomical mask and assessed the evidence
or a model including the pharmacological group factor compared to a
ull model. 

As explained in the Methods, we used two different GLMs. In GLM1
e used precision-weighted PEs ( 𝜀 2 , 𝜀 3 , 𝜀 𝑐ℎ ) as compound computational
uantities for parametric modulation. In GLM2, we split these quantities
nto precision and PE components, resulting in five parametric modula-
ors ( 𝛿1 , 𝛿2 , 𝜓 2 , 𝜓 3 , 𝛿𝑐ℎ ). 

.3.1. GLM1: average effect of precision-weighted PEs across drug 

onditions 

We first examined in both studies separately the low-level precision-
eighted PEs, the absolute precision-weighted outcome PE 𝜀 2 and the
recision-weighted choice PE 𝜀 𝑐ℎ . In both studies, whole-brain analyses
howed a significant activation of numerous regions by 𝜀 2 , including
arietal, prefrontal, visual, insular areas, and cerebellum (see Figs. 2 A
nd 3 A and Table S8). Additionally, we observed a deactivation of op-
rcular, insular, cingulate, auditory, hippocampal and prefrontal areas
see Table S9 for details). The choice PE ( 𝜀 𝑐ℎ ) not only activated a wide
ange of prefrontal, cingulate, insular, temporal, and parietal regions,
ut also ventral striatum, basal forebrain, putamen, and hippocampus
 Figs. 2 B and 3 B, for a complete list, see Table S10). Deactivations by
 𝑐ℎ were found in supplementary motor cortex, middle cingulate cor-
ex, superior parietal cortex, middle frontal gyrus, calcarine cortex and
recuneus (Table S11). 

Within our anatomical mask, we found a significant 𝜀 2 activation
n the midbrain (as already observed in the whole brain analysis; see
igs. 2 D and 3 D for the anatomical ROI analysis), but also in PPT/LDT
Table S12) and a significant 𝜀 2 deactivation in the basal forebrain (Ta-
le S13). Similarly, the choice prediction error 𝜀 𝑐ℎ activated the basal
orebrain ( Figs. 2 E and 3 E, Table S14), as in the whole brain analy-
is, and deactivated in both studies putatively the cholinergic nuclei
PPT/LDT; Table S15) and additionally in study 1 the midbrain. 

Subsequently, we moved to the next higher level of the hierarchy in
ur model and examined the precision-weighted probability PE, 𝜀 3 . In
hole-brain analyses, we found 𝜀 3 activations in the hippocampus, ACC,
CC opercular and insular regions ( Figs. 2 C and 3 C Table S16). Deac-

ivations were found in numerous regions, including occipital, insular,
refrontal, parietal, temporal areas as well as cerebellum (Table S17).
estricting the analyses to our anatomical mask, we found the expected
 3 activation within the basal forebrain ( Figs. 2 F and 3 F, Table S18) and
 deactivation of the midbrain (Table S19). 

.3.2. GLM1: drug effects on precision-weighted PEs – ROI (anatomical 

ask) 

In analyses restricted to our anatomical ROIs, we did not find signif-
cant differences between drug conditions for any of the computational
uantities ( 𝜀 2 , 𝜀 3 , 𝜀 𝑐ℎ ) that survived correction for multiple comparisons.

Using Bayesian ANOVA we tested, for each computational quantity
nd in each ROI (i.e. SN/VTA, BF, PPT/LDT), the evidence for a model
hat included the factor pharmacological group vs. a null model. For
lmost all tests, the Bayes factors showed that the data were better ex-
lained by the null model, although the evidence was only moderate
t best (see Table S5). By contrast, evidence for drug effects was only
ound in one case ( 𝜀 3 in PPT/LDT, weak evidence). 

.3.3. GLM2: average effects of PEs and precisions across drug conditions 

The prediction error about the outcome, 𝛿1 produced a similar whole-
rain activation pattern as 𝜀 2 ( Figs. 4 A and 5 A), including prominent bi-
ateral activations of prefrontal, parietal, insular, and cingulate areas as
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Fig. 2. Study 1 - Activations by the precision-weighted PEs 
A) whole-brain activations by 𝜀 2 ; B) whole-brain activations by 𝜀 𝑐ℎ ; C) whole-brain activations by 𝜀 3 ; A-C) Activation maps are shown at a threshold of p < 0.05, 
FWE peak-level corrected for multiple comparisons across the whole brain. D) activations by 𝜀 2 ; E) activations by 𝜀 𝑐ℎ ; F) activations by 𝜀 3 ; D-F) Activation maps 
are shown at a threshold of p < 0.05, FWE peak-level corrected for multiple comparisons across the anatomical mask (red) overlayed on activation thresholded at 
p < 0.05, FWE cluster-level corrected for multiple comparisons with an initial CDT of p < 0.001 (orange). WB: whole-brain; AM: anatomical mask. 

Fig. 3. Study 2 - Activations by the precision-weighted PEs 
A) whole-brain activations by 𝜀 2 ; B) whole-brain activations by 𝜀 𝑐ℎ ; C) whole-brain activations by 𝜀 3 ; A-C) Activation maps are shown at a threshold of p < 0.05, 
FWE peak-level corrected for multiple comparisons across the whole brain. D) activations by 𝜀 2 ; E) activations by 𝜀 𝑐ℎ ; F) activations by 𝜀 3 ; D-F) Activation maps 
are shown at a threshold of p < 0.05, FWE peak-level corrected for multiple comparisons across the anatomical mask (red) overlayed on activation thresholded at 
p < 0.05, FWE cluster-level corrected for multiple comparisons with an initial CDT of p < 0.001 (orange). WB: whole-brain; AM: anatomical mask. 

8 
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Fig. 4. Study 1 - Activations by the PEs 
A) whole-brain activations by 𝛿1 ; B) whole-brain activations by 𝛿𝑐ℎ ; C) whole-brain activations by 𝛿2 ; A-C) Activation maps are shown at a threshold of p < 0.05, 
FWE peak-level corrected for multiple comparisons across the whole brain. D) activations by 𝛿1 ; E) activations by 𝛿𝑐ℎ ; F) activations by 𝛿2 ; D-F) Activation maps 
are shown at a threshold of p < 0.05, FWE peak-level corrected for multiple comparisons across the anatomical mask (red) overlayed on activation thresholded at 
p < 0.05, FWE cluster-level corrected for multiple comparisons with an initial CDT of p < 0.001 (orange). WB: whole-brain; AM: anatomical mask. 
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ell as basal ganglia, thalamus, and (in study 2) midbrain (for detailed
esults, see Table S20). Deactivations were found in the basal forebrain,
ippocampus, insula, as well as in various other cortical areas (Table
21). 

In our anatomical mask we found a significant 𝛿1 activation within
he midbrain and PPT/LDT ( Figs. 4 D and 5 D). Deactivations were found
n the septum and basal forebrain (spreading to parahippocampal gyrus
ut still within the probabilistically defined boundaries of the basal fore-
rain; Tables S22 and S23). 

Concerning the choice prediction error, 𝛿𝑐ℎ , we found a similar ac-
ivation pattern as compared to its precision-weighted counterpart, 𝜀 𝑐ℎ ,
escribed above. This included activations in striatum, basal forebrain,
mPFC, mid and posterior cingulate cortex (for details and other acti-
ations, see Figs. 4 B and 5 B, and Table S24; for deactivations, see Table
25). In the anatomical ROI analyses, we found a 𝛿𝑐ℎ activation in bilat-
ral basal forebrain ( Figs. 4 E and 5 E, Table S26) and a deactivation in
he putatively cholinergic nuclei and SN (Table S27). 

Whole-brain analyses of the high-level prediction error (about prob-
bility), 𝛿2 , activated the hippocampus and anterior cingulate gyrus as
reviously observed for its precision-weighted counterpart 𝜀 3 , but also
he septum and middle cingulate gyrus ( Figs. 4 C and 5 C; Table S28).
nterestingly, the septal 𝛿2 activation was considerably stronger than
or 𝜀 3 , suggesting that septal activity was more strongly driven by the
E than by precision. The 𝛿2 deactivations were similar to those for 𝜀 3 
Table S29). In the anatomical ROI analyses, we found the expected ac-
ivation of septum ( Figs. 4 F and 5 F; Table S30), and deactivations in
PT/LDT and midbrain (Table S31). 

Finally, we explored activity related to the precision weights. No-
ably, these precision weights have slightly different forms across the
wo levels of our model. At the lower (second) level, the precision weight
 corresponds to variance or uncertainty (about stimulus outcome); see
2 

9 
athys et al. (2014) . In whole-brain analyses, this quantity led to ac-
ivations of angular and frontal gyri, parietal cortex, with additional
ctivations in basal ganglia, anterior insula (only study 1) and cerebel-
um ( Figs. 6 A and 7 A, Table S32). A deactivation was found in the right
halamus and precentral gyrus (Table S33). No results were found for
 2 in the anatomical ROI analyses. 

Concerning the higher (third) level, the precision weight 𝜓 3 cor-
esponds to a ratio of second- and third-level uncertainties; see
athys et al. (2014) for details. For whole-brain analyses of 𝜓 3 , we

ound significant activations of fusiform and lingual gyri, parietal, tem-
oral, frontal areas, anterior insula and brainstem regions ( Figs. 6 B and
 B; Table S34; no overlapping deactivations across both studies were
ound; Table S35). Within our anatomical mask, we found an activa-
ion in the midbrain, and cholinergic nuclei PPT/LDT ( Figs. 6 D and 7 D;
able S36). 

.3.4. GLM2: drug effects on PEs and precisions – ROI (anatomical mask) 

For the low-level PE, we found that, compared to placebo, galan-
amine enhanced the positive relationship between body weight and

1 -related activity in the midbrain (FWE peak-level and cluster-level
orrected; x = 0; y = -27; z = -18; t score: 4.46; cluster size: 23 vox-
ls; Fig. 8 A). Furthermore, biperiden as opposed to placebo increased
he 𝛿1 -related activity in the right PPT/LDT (FWE peak-level corrected;
 = 6; y = -36; z = -16; t score: 4.19; Fig. 9 A). The same region (x = 6;
 = -36; z = -18) showed a near-significant activation by 𝛿1 under amisul-
ride as compared to placebo (FWE peak-level corrected; t score: 3.99;
 = 0.051). 

For the high-level PE, we found that biperiden decreased 𝛿2 -related
ctivity in the right PPT/LDT (FWE peak-level corrected; x = 6; y = -36;
 = -18; t score: 4.29; Fig. 9 B). Additionally, we found a decreased 𝛿2 -
elated activation in the right PPT/LDT under amisulpride as compared



S. Iglesias, L. Kasper, S.J. Harrison et al. NeuroImage 226 (2021) 117590 

Fig. 5. Study 2 - Activations by the PEs 
A) whole-brain activations by 𝛿1 ; B) whole-brain activations by 𝛿𝑐ℎ ; C) whole-brain activations by 𝛿2 ; A-C) Activation maps are shown at a threshold of p < 0.05, 
FWE peak-level corrected for multiple comparisons across the whole brain. D) activations by 𝛿1 ; E) activations by 𝛿𝑐ℎ ; F) activations by 𝛿2 ; D-F) Activation maps 
are shown at a threshold of p < 0.05, FWE peak-level corrected for multiple comparisons across the anatomical mask (red) overlayed on activation thresholded at 
p < 0.05, FWE cluster-level corrected for multiple comparisons with an initial CDT of p < 0.001 (orange). WB: whole-brain; AM: anatomical mask. 

Table 1 

Summary of all significant pharmacological effects on brain activity associated with our computational quantities in a priori anatomical regions of 
interest. Note that no effect was found for levodopa. 

Computational quantity/anatomical region 𝛿1 SN/VTA 𝜓 3 SN/VTA 

galantamine ↑ vs. placebo interaction 

with body weight 

amisulpride ↑ vs. placebo 

Computational quantity/anatomical region 𝛿1 PPT/LDT 𝛿2 PPT/LDT 𝛿2 PPT ∕ LDT 𝛿2 PPT ∕ LDT 

biperiden ↑ vs. placebo ↓ vs. placebo 

amisulpride ↓ vs. placebo ↑ vs. biperiden interaction 

with body weight 
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o placebo (FWE peak-level corrected; x = 6; y = -36; z = -18; t score:
.30; Fig. 9 C) and a modulation of drug effects on 𝛿2 -related activity by
ody weight in right PPT/LDT (FWE peak-level corrected; x = 6; y = -34;
 = -15; t score: 3.99): under amisulpride we found a positive relation
etween 𝛿2 -related activity and body weight whereas this relation was
nverted (negative) under biperiden ( Fig. 9 D). More precisely, 𝛿2 -related
ctivity in the PPT/LDT increased with lower body weight (and thus
resumably higher plasma levels of biperiden) and with higher body
eight (and hence putatively lower levels of amisulpride). 

Finally, amisulpride compared to placebo increased the 𝜓 3 -related
ctivity in the midbrain (FWE peak-level and cluster-level corrected;
 = 11; y = -25; z = -21; t score: 4.26; cluster size: 33 voxels; Fig. 8 B). 

There were no significant drug effects for 𝛿𝑐ℎ , 𝜓 2 in either study nor
or any of the computational quantities in study 2, except for the one ef-
ect mentioned above (of galantamine on the relation between 𝛿1 -related
ctivity in the midbrain and body weight). All significant pharmacologi-

al effects across the anatomical mask have been summarized in Table 1 . a  

10 
In study 1, a Bayesian ANOVA found moderate evidence for a drug
ffect on 𝛿1 -related activity in PPT/LDT (BF 10 = 9.105). In line with the
PM results, Bayesian post-hoc tests revealed moderate evidence for a
ifference between placebo and biperiden (posterior odds = 4.924) and
etween placebo and amisulpride (posterior odds = 3.505; see Table
7). For the other regions (SN/VTA and basal forebrain), there was weak
o moderate evidence in favour of the null model, i.e. absence of drug
ffects (see Table S6). 

Finally, for all other computational quantities (except 𝛿2 , were we
ound a weak effect in PPT/LDT) using Bayesian ANOVA the evidence
howed that the data (extracted from the three anatomical regions, re-
pectively) was best predicted by the null model (see Table S6). 

. Discussion 

The notion that the different neuromodulatory transmitters – such
s dopamine, acetylcholine, serotonin or noradrenaline – might serve to
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Fig. 6. Study 1 - Activations by the precision-weights 
A) whole-brain activations by 𝜓 2 ; Activation maps are shown at a threshold of p < 0.05, FWE peak-level corrected for multiple comparisons across the whole brain 
(red) overlayed on activation thresholded at p < 0.05, FWE peak-level corrected for multiple comparisons with an initial CDT of p < 0.001 (orange). 
B) whole-brain activations by 𝜓 3 ; Activation maps are shown at a threshold of p < 0.05, FWE peak-level corrected for multiple comparisons across the whole brain. 
C) activations by 𝜓 2 ; D) activations by 𝜓 3 ; C-D) Activation maps are shown at a threshold of p < 0.05, FWE peak-level corrected for multiple comparisons across 
the anatomical mask (red) overlayed on activation thresholded at p < 0.05, FWE cluster-level corrected for multiple comparisons with an initial CDT of p < 0.001 
(orange). WB: whole-brain; AM: anatomical mask. 
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ignal distinct computational quantities has a long history (for reviews,
ee Doya, 2008 ; Dayan, 2012 ; Iglesias et al., 2017 ). A seminal finding
as that phasic dopamine release appears to reflect reward PEs that may
rovide a teaching signal during instrumental learning ( Schultz et al.,
997 ; Montague et al., 2004 ). Human fMRI studies have found represen-
ations of PEs in putative dopaminoceptive regions, such as the midbrain
 D’Ardenne et al., 2008 ; Klein-Flugge et al., 2011 ; Diederen et al., 2016 ;
oward and Kahnt, 2018 ) or ventral striatum ( Pessiglione et al., 2006 ;
lascher et al., 2010 ; Daw et al., 2011 ; Daniel and Pollmann, 2012 ;
ackel et al., 2015 ; Diederen et al., 2016 ; Guggenmos et al., 2016 ). Ad-
itionally, recent meta-analyses differentiating between absolute PEs
i.e. “surprise PE ”; deviation between prediction and outcome) and
igned PEs found that the former was represented in the putative
opaminergic midbrain, whereas the latter were represented in the ven-
ral striatum ( Garrison et al., 2013 ; Fouragnan et al., 2018 ). In our study,
he low-level absolute PEs ( 𝛿1 and precision-weighted 𝜀 2 , respectively)
esemble the previously mentioned surprise PE and activated similar re-
ions, such as the midbrain. Similarly, the choice PEs ( 𝛿 and precision-
𝑐ℎ 

11 
eighted 𝜀 𝑐ℎ , respectively) showed a similar activation pattern as the
igned PE. It must be kept in mind, however, that differences in interpre-
ation exists between our Bayesian PEs and PEs from RL models. Whilst
n RL the goal is to maximize reward, in our Bayesian framework the
oal is to minimize (an approximation to) surprise by belief updating at
ultiple levels ( Mathys et al., 2014 ), where the uncertainty of beliefs

ffects the way PEs impact on learning. 
The signed choice PE computed in this study is different from the

igned reward PE (RPE) used in RL: while RPEs encode whether an out-
ome was better (positive RPE) or worse than predicted (negative RPE;
chultz et al., 1997 ; Fouragnan et al., 2018 ), in our case the signed
hoice PE represents the difference between the participant’s choice be-
ng correct and the a priori probability of this choice being correct (see
glesias et al., 2013 ). Finally, our low-level absolute PE corresponds to
ayesian surprise, i.e. the difference between the outcome and its a pri-
ri probability. 

Although RPEs and outcome PEs have been linked to dopamine,
uestions of specificity and context-dependency have arisen, even for
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Fig. 7. Study 2 - Activations by the precision- 
weights 
A) whole-brain activations by 𝜓 2 ; Activation 
maps are shown at a threshold of p < 0.05, 
FWE peak-level corrected for multiple compar- 
isons across the whole brain (red) overlayed on 
activation thresholded at p < 0.05, FWE peak- 
level corrected for multiple comparisons with 
an initial CDT of p < 0.001 (orange). 
B) whole-brain activations by 𝜓 3 ; Activation 
maps are shown at a threshold of p < 0.05, 
FWE peak-level corrected for multiple compar- 
isons across the whole brain. C) activations by 
𝜓 2 ; D) activations by 𝜓 3 ; C-D) Activation maps 
are shown at a threshold of p < 0.05, FWE 
peak-level corrected for multiple comparisons 
across the anatomical mask (red) overlayed 
on activation thresholded at p < 0.05, FWE 
cluster-level corrected for multiple compar- 
isons with an initial CDT of p < 0.001 (orange). 
WB: whole-brain; AM: anatomical mask. 
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his most well-established link between neurotransmitters and compu-
ations. For example, recent work in humans using invasive voltam-
etry measurements of subsecond striatal DA release ( Kishida et al.,
016 ) failed to find a simple link between reward PEs and DA release.
nstead, this study suggested that striatal DA release reflects the inte-
ration of reward PEs with counterfactual prediction errors. More gen-
rally, dopamine was also found to support the formation of associa-
ions between neutral stimuli, without any reinforcement ( Young et al.,
998 ). Furthermore, following human fMRI findings that suggested the
ignalling of sensory PEs by midbrain neurons ( Iglesias et al. 2013 ), this
as been corroborated by subsequent studies ( Takahashi et al., 2017 ;
talnaker et al., 2019 ), leading to the notion that dopamine transients
ight encode generalized PEs that are not necessarily tied to rewards

 Gardner et al., 2018 ). 
Beyond PEs, there are numerous studies indicating that dopamine

ight also signal uncertainty (or its inverse, precision) in a vari-
ty of contexts ( Fiorillo et al., 2003 ; de Lafuente and Romo, 2011 ;
riston et al., 2012 ; Hart et al., 2015 ; Schwartenbeck et al., 2015 ). Alto-
ether, these potentially diverse roles of dopamine could be interpreted
s the possible reflection of a multiplexing principle ( Nakahara, 2014 ;
ardner et al., 2018 ), where different computational quantities are
roadcast in different frequency bands; this may be linked to differ-
nces in effects of phasic vs. tonic dopamine release ( Grace, 1991 ). An
lternative cause of diversity in dopamine function is the marked hetero-
eneity of dopamine neurons with regard to development, physiological
roperties and anatomical projection patterns (for review, see Roeper,
013 ). 
12 
PEs and uncertainty/precision are fundamental components of many
heories of learning and perceptual inference, and their signalling has
lso been linked to acetylcholine ( Yu and Dayan, 2005 ; Okada et al.,
011 ; Moran et al., 2013 ; Vossel et al., 2014 ; Marshall et al., 2016 ;
aude et al., 2016 ), noradrenaline ( Yu and Dayan, 2005 ; Payzan-
eNestour et al., 2013 ), and serotonin ( Cohen et al., 2015 ). These at-
empts to understand the physiological implementations of computa-
ions have received considerable attention, not least because of their
linical implications: If a tight link between neuromodulators and spe-
ific computational quantities existed, this might enable the develop-
ent of computational assays that inferred pathological alterations of
euromodulatory transmitters from combined behavioural and neu-
oimaging analyses ( Stephan et al., 2015 ; Iglesias et al., 2017 ). 

In a previous fMRI study using a sensory learning paradigm un-
er volatility, we found (and replicated in two separate samples) that
wo hierarchically related PEs were reflected by activity in two neu-
omodulatory systems: low-level precision-weighted PEs about sensory
utcomes activated the putative dopaminergic midbrain, whereas high-
evel precision-weighted PEs about the probability of the outcome acti-
ated the cholinergic basal forebrain ( Iglesias et al., 2013 ), specifically
he septum (Ch1-2 complex; Zaborszky et al., 2008 ). These results were
ntriguing since they suggested the feasibility of assaying two clinically
elevant neuromodulatory systems with a single paradigm. However, as
ighlighted in this previous study, it was not possible to conclude with
ertainty that these fMRI results truly reflected DA and ACh signals.
his is because the midbrain and basal forebrain are not exclusively
omposed of dopaminergic and cholinergic neurons, respectively, but
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Fig. 8. Significant pharmacological results in 
the midbrain 
A) Galantamine as compared to placebo in- 
creased the body-weight dependent 𝛿1 activity 
in the midbrain; the activation map is shown 
at a threshold of p < 0.05, FWE peak-level 
corrected for multiple comparisons across the 
anatomical mask (blue) overlayed on activa- 
tion thresholded at p < 0.05, FWE cluster-level 
corrected for multiple comparisons with an 
initial CDT of p < 0.001 (yellow). B) Amisul- 
pride as compared to placebo increased the 
𝜓 3 -related activity in the midbrain; the activa- 
tion map is shown at a threshold of p < 0.05, 
FWE cluster-level corrected for multiple com- 
parisons across the whole brain, with an ini- 
tial CDT of p < 0.001. The data were extracted 
from the significant peak voxel at the group 
level, removing the effects of group and sleepi- 
ness (A) or removing the effects of the covari- 
ates body weight and sleepiness (B), respec- 
tively. 
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ontain numerous types of neurons, e.g. GABAergic and glutamatergic
eurons (for reviews, Zaborszky and Duque, 2003 ; Duzel et al., 2009 ).
dditionally, dopaminergic midbrain neurons receive cholinergic affer-
nts ( Bolam et al., 1991 ; Oakman et al., 1995 ; Yeomans et al., 2001 ;
obayashi and Okada, 2007 ), and cholinergic basal forebrain neurons
eceive dopaminergic inputs ( Gaykema and Zaborszky, 1996 ). These
wo factors complicate the interpretation of midbrain/basal forebrain
ctivations considerably, as both dopaminergic and cholinergic mecha-
isms could explain activation of either region. To add even more com-
lexity, cholinergic mechanisms can not only alter the firing pattern
f DA neurons in midbrain (e.g., Yeomans et al., 2001 ; Kobayashi and
kada, 2007 ), but can also trigger striatal DA release via presynaptic re-
eptors on mesostriatal projections and independently so from DA neu-
on activity ( Threlfell et al., 2012 ). 

The present study represents an initial attempt to scrutinize the inter-
retability of our previous fMRI findings by investigating how pharma-
ological perturbations of DA and ACh would alter the representation
f precision-weighted PEs in dopaminergic and cholinergic nuclei. In
umans, this can only be tested by systemic administration of drugs, in
ombination with human neuroimaging. (Unfortunately, as discussed
elow, this approach has many possible confounds and limitations.)
ere, for two separate studies, we used a between-subject design where
articipants in study 1 either received 400 mg of the D2/D3-receptor
ntagonist amisulpride, 4 mg of the muscarinic (M1) receptor antag-
nist biperiden, or placebo, and in study 2 either 200 mg of the pro-
rug levodopa combined with 50 mg of benserazide, 8 mg of the acetyl-
holinesterase inhibitor galantamine, or placebo. The ideal result we
oped to find was that low- and high-level precision-weighted PE activ-
ty in the midbrain and basal forebrain would be selectively affected by
harmacological manipulations of DA and ACh, respectively. 
13 
This hypothesis was not supported by our data. In brief, we did not
nd clear-cut evidence for a dichotomy between low-level precision-
eighted PEs and DA on the one hand, and high-level precision-
eighted PEs and ACh on the other hand. This hypothesised dichotomy
id not emerge either when splitting the precision-weighted PEs in their
E and precision components. We did, however, find effects of interest
cross the anatomical ROIs that deserve discussion. 

First, we found a body-weight dependent pharmacological effect on

1 -related activity in the SN/VTA: compared to placebo, galantamine
nhanced the positive relation between body weight and low-level PE
 𝛿1 )-related activity in this region ( Fig. 8 A). More specifically, δ1 -related
idbrain activity decreased with higher body weight in the placebo con-
ition but increased under galantamine. While the cholinergic effect on
he midbrain is not directly in line with our previous hypothesis and
he current literature linking sensory PEs to midbrain DA signalling, the
ffects of galantamine might have occurred via cholinergic receptors
n dopaminergic midbrain neurons. For example, cholinergic projec-
ions from PPT and LDT affect DA neuron activity via both nicotinic
nd muscarinic receptors ( Zhou et al., 2003 ). Galantamine is an acetyl-
holinesterase inhibitor enhancing ACh levels and also acts as allosteric
odulator of presynaptic nicotinic ACh receptors, increasing receptor

ensitivity ( Noetzli and Eap, 2013 ). Most studies examining the activa-
ion of nicotinic and muscarinic receptors on DA midbrain neurons have
ound excitatory effects (e.g. Dani and Bertrand, 2007 ; Schilstrom et al.,
007 ; Blaha et al., 1996 ; for review, Zhou et al., 2003 ). Unless these
ffects follow a nonlinear dose-response relationship, they should de-
rease with higher body weight (and thus presumably lower plasma
evels of galantamine), whereas we found the opposite. Activation of
uscarinic receptors on dopamine neurons in the SN/VTA can also ex-

rt inhibitory effects on midbrain dopamine neurons but this may be re-
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Fig. 9. Significant pharmacological results in putatively the cholinergic nuclei 
A) Biperiden as compared to placebo increased the 𝛿1 -related activity in PPT/LDT; B) biperiden as compared to placebo reduced the 𝛿2 -related activity in PPT/LDT; 
C) amisulpride as compared to placebo reduced the 𝛿2 -related activity in PPT/LDT; D) amisulpride as compared to biperiden increased the body-weight dependent 
𝛿2 -related activity in PPT/LDT. The fMRI results overlayed on the structural image are shown at a threshold of p < 0.05, FWE peak-level corrected for multiple 
comparisons across the whole brain (blue) and uncorrected at the cluster-level, with an initial CDT of p < 0.001 (yellow). The data were extracted from the 
significant peak voxel at the group level, removing the effects of the covariates body weight and sleepiness (A, B, C) or removing the effects of group and sleepiness 
(D), respectively. 
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tricted to phasic cholinergic transmission ( Fiorillo and Williams, 2000 ;
ut see Miller and Blaha, 2005 ). In brief, it is not immediately clear how
he observed increase in δ1 -related midbrain activity with higher body
eight (and thus presumably lower galantamine levels) can be recon-

iled with the known interactions between the dopaminergic midbrain
nd cholinergic PPT/LDT. 

A second finding was that biperiden affected low-level PEs ( 𝛿1 ) and
he high-level PE ( 𝛿2 ) in a brainstem region corresponding to putatively
he cholinergic PPT/LDT ( Fig. 9 A and B, regions overlap). These effects
ere independent of body weight, i.e. reflecting mean pharmacological

ffects on activity in PPT/LDT related to both prediction errors. This
s partly compatible with our previous study ( Iglesias et al., 2013 ) –
here we had found an activation of the precision-weighted high-level
E in a cholinergic region, the basal forebrain – and results from recent
ehavioural studies that used the HGF and cholinergic manipulations
 Vossel et al., 2014 ; Marshall et al., 2016 ). The biology behind possi-
le dopaminergic and cholinergic effects on PPT/LDT activity, however,
s complex and deserves a brief discussion to illustrate the numerous
ays in which drugs can affect these nuclei and their interactions with

he dopaminergic midbrain. PPT/LDT not only contain cholinergic, but
lso glutamatergic, GABAergic and dopaminergic neurons ( Pahapill and
ozano, 2000 ; Kobayashi and Okada, 2007 ; Okada et al., 2011 ), re-
eive cholinergic, glutamatergic and GABAergic afferents ( Ye et al.,
010 ), and project widely to other (sub)cortical regions, including the
opaminergic midbrain ( Lodge and Grace, 2006 ; von Bohlen und Hal-
ach & Dermietzel, 2006 ; Mena-Segovia et al., 2008 ; Okada et al., 2011 ).
rojections from the SN to PPT include both inhibitory and excitatory
onnections ( Granata and Kitai, 1991 ; Okada et al., 2011 ), and SN
eurons are endowed with muscarinic receptors ( Vilaró et al., 1990 ;
evey et al., 1991 ; Zubieta and Frey, 1993 ). Furthermore, the PPT re-
eives input from the ventral pallidum which, in turn, receives GABAer-
14 
ic projections from the dopaminergically innervated ventral striatum
 Lee et al., 2000 ). This circuitry offers ample targets for DA and ACh in
ffecting PPT/LDT activity. 

A third finding was that amisulpride significantly increased activa-
ion of the right midbrain by 𝜓 3 , the precision-weight on the third level
f our model ( Fig. 8 B); this particular precision-weight corresponds to
he degree of the agent’s uncertainty about the log-volatility 𝑥 ( 𝑘 ) 3 (i.e.
he precision that modulates the influence of the high-level PE on log-
olatility estimates). In the placebo condition SN responses were nega-
ively related to the participant’s precision-weight at the third level, and
his negative relation disappeared under amisulpride and turned into
 positive relation. The precision of beliefs about action selection has
een related to dopaminergic processes ( de Lafuente and Romo, 2011 ;
chwartenbeck et al., 2015 ; Parr and Friston, 2017 ), while expected
ncertainty (i.e. the difference between the degree (conditional prob-
bility) of cue validity and certainty) has been linked to choliner-
ic signalling ( Yu and Dayan, 2005 ; Iglesias et al., 2013 ; Parr and
riston, 2017 ) and unexpected uncertainty (uncertainty about state
ransitions) to noradrenergic signalling ( Yu and Dayan, 2005 ; Payzan-
eNestour et al., 2013 ; Parr and Friston, 2017 ). Here we find a dopamin-
rgic modulation of 𝜓 3 -related activity in a dopaminergic region, sug-
esting a dopaminergic role in signalling higher level precision estimates
as further shown by the average effect of 𝜓 3 ). 

Our second hypothesis concerning pharmacological effects on rep-
esentations of the computational quantities across the whole-brain
as more exploratory. Nevertheless, given the prominence of certain
euroanatomically characterised projections, for the lower-level com-
utational quantities ( 𝜀 2 , 𝛿1 , and 𝜓 2 ) effects would have been ex-
ected in major dopaminergic projection regions such as the basal gan-
lia, hippocampus, amygdala, cingulate and frontal cortex ( Wise, 2004 ;
entivoglio and Morelli, 2005 ; Schultz, 2012 ) and for the higher-level
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omputational quantities ( 𝜀 3 , 𝛿2 , and 𝜓 3 ) in cholinergic projection re-
ions such as the cortex, hippocampus, amygdala, thalamus and hy-
othalamus ( Mesulam et al., 1983 ; Newman et al., 2012 ). 

Our whole-brain analyses did not result in a clear picture of how
sub)cortical activity related to the different computational quantities
as modulated by the different drugs. We therefore only shortly sum-
arise some of the whole-brain drug effects found compared to placebo

see Tables 37 and 38 in the Supplementary Material for all whole-brain
harmacological effects). 

Some of the dopaminergic effects were in line with expectations,
or example, under amisulpride we found a deactivation by the lower-
evel precision-weighted PE, 𝜀 2 , in the putamen and the lower-level
recision-weight, 𝜓 2 , activity in the caudate (a body-weight dependent
ffect). Furthermore, we found that levodopa increased 𝛿1 -related activ-
ty in the inferior parietal cortex. However, we also found unexpected
opaminergic effects. For example, in the caudate, we found an unex-
ected dopaminergic effect on the higher-level PE, with amisulpride de-
reasing 𝛿2 -related activity, and we found increased 𝛿1 activity in the
audate under amisulpride (i.e. as opposed to the deactivation we ex-
ected under 400mg of amisulpride). 

For the cholinergic drugs, we found, consistent with our expecta-
ions, that biperiden reduced activation by the higher-level PE, 𝛿2 , in the
uneus. By contrast, galantamine unexpectedly reduced 𝛿2 -dependent
ctivity in the anterior insula, middle cingulate cortex, precuneus, supra-
arginal, angular, and middle frontal gyrus (a body-weight dependent

ffect). Furthermore, we found unexpected cholinergic effects on corti-
al activity related to the lower-level precision-weighted PE 𝜀 2 (e.g. a
ody-weight dependent increase of activity in the superior frontal gyrus
nd angular gyrus under galantamine) and the lower-level PE 𝛿1 (e.g.
educed activity in the cuneus under biperiden) (for details see Tables
7 and 38). 

Returning to our main hypothesis, what are the possible reasons that
e failed to find the expected dichotomy between low-level precision-
eighted PEs and DA on the one hand, and high-level precision-
eighted PEs and ACh on the other hand? A first obvious reason is that
ur hypotheses were simply false, and the expected effects do not exist
or are too subtle to be detected under the power that our experiment
ffords). Having said this, a number of previous results did support a
elation between the computational quantities we tested and DA/ACh.
or example, with regard to ACh, its link to the high-level precision-
eighted PE 𝜀 3 is not only motivated theoretically by the concept of

expected uncertainty ” ( Yu and Dayan 2005 ; see Supplementary Ma-
erial in Iglesias et al 2013 ), but supported by findings from two be-
avioural studies ( Vossel et al., 2014 ; Marshall et al., 2016 ). Notably,
oth of these studies used a learning paradigm with volatility and em-
loyed the same type of computational model (i.e., three-level HGF)
s our study. Vossel et al. (2014) boosted ACh levels using the AChE
nhibitor galantamine and found the expected increase in high-level
recision-weighted PEs ( Vossel et al., 2014 ). Marshall et al. (2016) used
he muscarinic receptor antagonist biperiden and reported the opposite
ffect on high-level precision-weighted PEs; however, these effects were
ot specific, and biperiden was found to influence more computational
ariables. 

A second potential reason is that we may have failed to achieve suf-
ciently high plasma levels of our drugs. Given that this was a basic
cience study with healthy volunteers and that the drugs used can have
on-trivial side effects, we wished to minimise any risks for the par-
icipants. We therefore administered the drugs only once and chose a
inimal dose (400 mg amisulpride, 4 mg biperiden; 8 mg galantamine,
00 mg levodopa combined with 50 mg of benserazide). This dose
ay have turned out to be too low; a possibility that is suggested by

he lack of any behavioural drug effects in our study (for comparison,
arshall et al. 2016 found marked effects of biperiden during a similar

earning paradigm using 6 mg biperiden, i.e., a dose that was 50% higher
han ours). Furthermore, since we did not obtain individual drug plasma
evels, we decided to use body weight as a proxy variable. This was done
15 
n order to account (at least approximately) for the volume of distribu-
ion, one of several factors that determine inter-individual variability
n pharmacokinetics (see below). Clearly, this is a crude approximation
ince the relation between body weight and volume of distribution is
ot necessarily linear for a given drug. 

A third possible reason is that pharmacological fMRI suffers from
everal general methodological limitations and problems of interpreta-
ion in general. To begin with, for many neurophysiological and cog-
itive processes pronounced individual differences in drug effects have
een observed (for a review on dopamine in this regard, see Cools and
’Esposito, 2011 ). This heterogeneity has multiple sources, including in-
ividual differences in effectively achieved drug concentrations (phar-
acokinetics) and in drug efficacy per se (pharmacodynamics: the re-

ation between concentration and effect of a drug; for review, see
oden and George, 2002 ). These differences can be substantial – for ex-
mple, the pharmacokinetics of dopamine in healthy individuals differs
y more than a factor of 10 ( MacGregor et al., 2000 ) – and may explain
hy, under the same drug intervention, different individuals are pushed

o either side of frequently observed convex dose-response relationships
e.g., “inverted U ”; Cools and D’Esposito, 2011 ; Pearson-Fuhrhop et al.,
013 ). 

In addition to this individual variability, human pharmacological
MRI experiments can be difficult to interpret. One issue is that the
onsequences of systemically administered drugs can fundamentally dif-
er across the brain, not only depending on which receptor subtypes
re present in a given region, but also whether presynaptic (autore-
eptors) or postsynaptic receptors are primarily affected by the drug
t the chosen dose ( Schoemaker et al., 1997 ; Rosenzweig et al., 2002 ).
or example, as presynaptic D2 receptors (autoreceptors) can be ac-
ivated at lower dopamine levels than postsynaptic D2 receptors, low
oses of a dopaminergic challenge could mainly act on autoreceptors,
hereas at high doses postsynaptic receptors are more strongly, but
ot exclusively, affected ( Beaulieu and Gainetdinov, 2011 ). Amisul-
ride seems to conform to this profile and exert mainly presynaptic ef-
ects on dopamine autoreceptors at low doses and therefore enhance
opamine neuron activity ( Di Giovanni et al., 1998 ) and dopamine re-
ease ( Lieberman, 2004 ), whereas at higher doses it additionally (and
ossibly more strongly) affects postsynaptic dopamine D2 and D3 recep-
ors ( Rosenzweig et al., 2002 ). Disambiguating these two opposing ef-
ects is difficult under systemic administration (cf. van der Schaaf et al.,
014 ). Finally, drug can exert vascular effects in addition to neuronal
nes. For example, neuroanatomical and neurophysiological evidence
xists that both dopaminergic and cholinergic (muscarinic) drugs affect
ascular tone and thus hemodynamic signals such as cerebral blood flow
e.g., Vaucher and Hamel, 1995 ; Krimer et al., 1998 ; Choi et al., 2006 ;
ecrux et al., 2017 ). 

Another potential limitation of our study is that the type of task em-
loyed here – a sensory prediction task that was deliberately speeded to
void the possibility that subjects might be employing complex cognitive
trategies not easily captured by the type of learning models considered
ere – necessitates an experimental design in which cues and outcomes
re temporally close together. Additionally, a fixed time interval be-
ween cue and outcome is mandatory in order to avoid temporal predic-
ion errors. In BOLD measurements, this can induce high correlations
n the respective signals; an issue that can be aggravated when using
emporal derivatives to account for variability in the onset of BOLD re-
ponses. In principle, it is thus possible that some or even all of our PE
esults could reflect trial-wise prediction effects. However, animal stud-
es (with electrophysiological techniques that have much higher tempo-
al resolution and avoid such correlations) only found that DA neuron
ctivity reflected trial-wise sensory PEs, but failed to find any relation
etween DA neuron activity and trial-wise predictions about sensory fea-
ures of the outcome (for summary, see discussion in Takahashi et al.,
017 ). While we cannot fully rule out that the situation may differ in
umans, we therefore do not consider the design of our task a severe
imitation for the interpretation of our results. 
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Finally, one of the strengths of our study – the computational analysis
f expressed behaviour – also constitutes a potential limitation. As any
omputational model, the analysis relies on hypotheses about the cog-
itive strategy employed by participants. Although several alternatives
re compared formally (Bayesian model selection), our modelling ap-
roach probably does not capture the full variability of cognitive strate-
ies likely employed by our participants. Furthermore, although BMS
dentified the same model as most plausible in all pharmacological con-
itions, the differences between models varied, suggesting that cognitive
trategies may have been modulated by the drug applied. 

Given these many possible confounds and problems of interpreta-
ion, our present results may not decisively refute our initial hypothe-
is. In future studies and analyses, we hope to extend the present anal-
ses in several ways in order to rule out vascular effects and control for
ndividual differences in pharmacokinetics. For example, we have con-
ucted EEG studies with a similar task and measuring individual plasma
evels. This approach will not allow for investigating activity in brain-
tem nuclei, unfortunately. Furthermore, we are considering to move
o within-subject cross-over designs as the presence vs. absence of drug
n the same subject enables new types of analyses that can detect undi-
ected drug effects, absorbing much of the inter-individual variability
iscussed above (for a compelling demonstration of this approach, see
iray et al., 2017 ). We hope that further studies of this sort will help
larify the nature of the hypothesised relation between low- and high-
evel PEs on the one hand and dopaminergic and cholinergic processes
n the other hand. 
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