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Dynamic Causal Modeling (DCM) is a Bayesian framework for inferring on hidden (latent) neuronal states, based on measurements of brain activity. Since its 

introduction in 2003 for functional magnetic resonance imaging data, DCM has been extended to electrophysiological data, and several variants have been developed. 

Their biophysically motivated formulations make these models promising candidates for providing a mechanistic understanding of human brain dynamics, both in 

health and disease. However, due to their complexity and reliance on concepts from several fields, fully understanding the mathematical and conceptual basis behind 

certain variants of DCM can be challenging. At the same time, a solid theoretical knowledge of the models is crucial to avoid pitfalls in the application of these 

models and interpretation of their results. In this paper, we focus on one of the most advanced formulations of DCM, i.e. conductance-based DCM for cross-spectral 

densities, whose components are described across multiple technical papers. The aim of the present article is to provide an accessible exposition of the mathematical 

background, together with an illustration of the model’s behavior. To this end, we include step-by-step derivations of the model equations, point to important aspects 

in the software implementation of those models, and use simulations to provide an intuitive understanding of the type of responses that can be generated and the role 

that specific parameters play in the model. Furthermore, all code utilized for our simulations is made publicly available alongside the manuscript to allow readers 

an easy hands-on experience with conductance-based DCM. 
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. Introduction 

Dynamic Causal Modeling (DCM) is a framework to construct genera-

ive models describing how putative neural mechanisms give rise to neu-

ophysiological data. By inverting these models, using generic Bayesian

echniques, it is possible to infer upon hidden (unobserved) neuronal

tates from measured data (for reviews, see Daunizeau et al. 2011 ,

riston et al. 2013 , Kiebel et al. 2008b , Stephan et al. 2009 ). As a mod-

ling technique, DCM has been used to study physiological processes

n the healthy human brain (for examples, see Garrido et al. 2008 ,

refkes et al. 2008 , Summerfield et al. 2006 ). In addition, it has also

een increasingly employed in the fields of Computational Psychiatry

 Adams et al., 2020 ; Breakspear et al., 2015 ; Brodersen et al., 2014 ;

rässle et al., 2020 , 2018 ; Schmidt et al., 2013 ) and Computational Neu-

ology ( Brodersen et al., 2011 ; Cooray et al., 2015 ; Gilbert et al., 2016 ;

osch et al., 2018 ; Shaw et al., 2019 ; Symmonds et al., 2018 ), with the

ope of not only providing mechanistic insights into pathophysiology,

ut also of developing the model into a useful clinical tool ( i.e. , a “com-

utational assay ”, Stephan et al., 2006 ; Stephan and Mathys, 2014 ). 

DCMs 1 are formulated using ordinary or stochastic differential equa-

ions which describe the dynamics of neural (hidden) states over time
∗ Corresponding author. 

E-mail address: pereira@biomed.ee.ethz.ch (I. Pereira). 
1 In this paper, we used the acronym "DCM" both to refer to the modeling 

pproach (dynamic causal modeling) and to its instantiation (dynamic causal 

odel). 
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 Marreiros et al., 2010b ). First proposed in Friston et al. (2003 ), DCM

as initially developed for functional magnetic resonance imaging

fMRI) data. In DCM for fMRI, the neuronal model is simple, assum-

ng a single state variable per region and modeling neuronal popula-

ion dynamics by using a bilinear or 2nd-order Taylor approximation

 Stephan et al., 2008 ). This relatively simple model is used to estimate

ow specific brain regions interact with each other through directed

ynaptic interactions (effective connectivity) and to evaluate whether

nd how this connectivity is influenced by experimentally controlled

actors and/or disease processes. David et al. (2006a ) extended this mod-

ling technique to event-related responses (ERPs) measured with elec-

roencephalography (EEG) or magnetoencephalography (MEG). In this

eminal work, DCM of ERPs was cast in terms of a neural mass model

ased on the Jansen-Rit model ( Jansen and Rit, 1995 ) which represents

 more sophisticated model of neuronal dynamics as compared to the

elatively abstract descriptions in DCM for fMRI. This biological real-

sm is afforded by the richer temporal information contained in electro-

hysiological measurements (on the order of milliseconds), as compared

o the coarse nature of the BOLD response (on the order of seconds)

 Huettel et al., 2014 ). 
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Fig. 1. General structure of DCMs. A DCM for electrophysiological data com- 

prises two parts: (1) the neuronal model , which delineates the dynamics 

𝑓 ( 𝑥 ( 𝑡 ) , 𝑢 ( 𝑡 ) , 𝜃) of the hidden states 𝑥 ( 𝑡 ) , as well as ensuing neuronal population 

activity, and (2) the observation model , which describes how source activity 

ℎ ( 𝑥 ( 𝑡 ) ) propagates through surrounding tissues (brain, skull, scalp) in order to 

generate the data 𝑦 ( 𝑡 ) registered at the level of the sensors. 𝑢 ( 𝑡 ) are the inputs 

to a neuronal population, 𝜃 represents the model parameters and Γ𝑥 and 𝜖 are 

stochastic noise terms. Figure created with Biorender.com. 
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Marreiros et al. (2009 ) introduced an important variant of DCM for

lectrophysiological data, describing a conductance-based model based

n the Morris–Lecar model ( Morris and Lecar, 1981 ). This conductance-

ased DCM (cbDCM) contains explicit representations of ionotropic re-

eptors with distinct time constants, namely the AMPA, NMDA and

ABA A receptors. Given the central role of these ionotropic receptors

n many psychiatric and neurological disease processes and given that

rugs targeting NMDA and GABA A receptors exist, this mechanistically

ne-grained formulation is of considerable interest for studying neu-

al circuits and their alterations in disease and under pharmacological

nterventions. For example, cbDCM has been applied to data from pa-

ients with monogenic channelopathies ( Gilbert et al., 2016 ) and NMDA

eceptor antibody encephalitis ( Symmonds et al., 2018 ) as well as to

ata from pharmacological studies in healthy volunteers and animals

 Adams et al., 2020a ; Moran et al., 2015 , 2011b ). 

Unfortunately, the literature introducing cbDCM and its mathemati-

al foundations is distributed over several papers and is not easily acces-

ible for the average neuroscientist or clinician. This tutorial-style paper

ffers a didactic treatment of the model, focusing on the underlying the-

ry and mathematical derivations. These derivations are here expanded

eyond what is presented in the original papers, in order to provide a

ore detailed, step-by-step description of the model. In addition, sev-

ral footnotes will be added along the way, so as to offer extra hints

ithout breaking the flow of the manuscript. Furthermore, we will dis-

uss practical aspects related to the inversion of DCMs using Statistical

arametric Mapping (SPM), a freely available open-source and widely

sed software package written in MATLAB. Notably, this paper is not

eant to provide an exhaustive review of the existing literature on vari-

nts of DCM for EEG/MEG. Comprehensive reviews on this topic as well

s general practice recommendations can be found in other publications

 Kiebel et al., 2008b ; Moran et al., 2013 ; Stephan et al., 2009 ). Finally,

his paper will not cover the topics of Bayesian inference or model in-

ersion in detail. More in-depth accounts of these concepts can be found

lsewhere ( Bishop, 2006 ; Friston et al., 2006 ). 

Generally, a DCM for electrophysiological data comprises two parts

 Fig. 1 ): the neuronal model , which delineates the intra- and inter-

euronal source 2 dynamics, and the observation model , which de-
2 In this context, a "source" refers to a neuronal population (or region) of the 

rain. This terminology is common because activity in a neuronal population 

onstitutes the source of signal. 

 

 

 

 

 

2 
cribes how source activity propagates through surrounding tissues

brain, skull, scalp) in order to generate the data registered at the level

f the sensors ( Kiebel et al., 2008c ). In this paper, for conceptual clarity,

e will first review how to characterize and distinguish the existing vari-

nts of DCM for EEG/MEG and local field potentials (LFP). In doing so,

e will provide insights as to which model could be used, depending on

he research question considered. Secondly, we offer an introduction to

onductance-based models. We outline the neuronal model of cbDCM,

oving from the single-neuron level to the population level, to the level

f the cortical column, before finally describing connectivity amongst

ources. In addition, we give an account of the observation model for

ross-spectral densities. In parallel, we review the literature where this

odel was introduced and described. However, since these seminal pa-

ers were published, the implementation of these models in SPM has

ndergone several refinements and modifications. Therefore, we also

eview some of the newer aspects of SPM that are relevant for the user.

The paper assumes that the reader has basic knowledge of neu-

oanatomy, neurophysiology, Bayesian statistics, and signal processing

echniques such as the Fourier transform and convolutions. A list of im-

ortant concepts, along with their definitions, is provided in Table 1 . 

. DCM variants 

DCMs for electrophysiological data come in two different flavors:

europhysiological and phenomenological. Phenomenological models

nclude DCM for induced responses and DCM for phase coupling

 Penny et al., 2009 ; Yeldesbay et al., 2019 ), and are characterized by

n evolution function of the neuronal states that is not closely related

o the underlying neurophysiology. These models will not be addressed

n this paper; however, for details, please consult the relevant literature

 Chen et al., 2008 ; Penny et al., 2009 ). The focus of the present pa-

er will therefore be on neurophysiologically-informed DCM variants,

hich can again be divided into several categories depending on sev-

ral dimensions (compare Fig. 2 ): 

• How the cortical column is described − We distinguish

"convolution-based" models, which primarily consider the cortical

column, from "conductance-based" variants, which start by modeling

a single cell’s electrophysiological properties ( Moran et al., 2013 ). In

addition, there are different ways of modeling a cortical column. The

first DCMs for electrophysiological data were based on the Jansen-

Rit model ( Jansen and Rit, 1995 ) and included 3 neuronal popu-

lations (excitatory pyramidal cells, excitatory spiny stellate cells,

and inhibitory interneurons), whilst the more recent “canonical-

microcircuit ” variant takes 4 populations into account (superficial

and deep pyramidal cells, spiny stellate cells and inhibitory interneu-

rons) ( Moran et al., 2013 ). 
• How the hidden states of the neuronal populations are mod-

eled − i.e. , whether a population’s density is summarized by a single

number (first-order statistic), as is the case for neural-mass models

(NMM); or whether higher-order statistics are also taken into ac-

count, as is the case for mean-field models (MFM). If one makes

the neuronal states not only a function of time (as in the NMM and

MFM), but also a function of space, one obtains a neural-field model

(NFM). 
• Whether or not there is an exogenous/experimental input −

Three types of neuronal activity can be captured: ( 1) Event-related

potentials (ERP), which correspond to the phase-locked response of a

neural system to a stimulus and can be characterised by averaging in

the time domain ( David et al., 2006b ). ( 2) Induced responses, which

constitute changes in neuronal oscillations that appear after a stim-

ulus, but are not phase-locked to this stimulus; they can be obtained

by averaging in the frequency domain ( David et al., 2006b ; Tallon-

Baudry and Bertrand, 1999 ). As explained before, DCM for induced

responses ( Chen et al., 2008 ) will not be discussed in detail in this

paper. ( 3) “Resting-state ” or “spontaneous ” activity, where no exoge-
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Table 1 

Important concepts and definitions. 

Concept Definition 

Statistic Index of some attribute of given data ( e.g., sample mean). “Moment ” is sometimes used interchangeably with “statistic ”, 

where the first moment corresponds to the mean and the second moment to the covariance. 

Time series “A series of values of a quantity obtained at successive times, often with equal intervals between them ”

( Oxford Dictionary, 2020a ). 

Resting-state A condition of unconstrained cognition in which there is no exogenous, experimental input and brain activity is therefore 

“spontaneous ”. 

Sensor “Device which detects or measures a physical property and records, indicates, or otherwise responds to it ”

( Oxford Dictionary, 2020b ) . In the context of this paper, it is used interchangeably with “channel ” or “electrode ”. 

Frequency band “Range of frequencies […] between two limits ” ( Oxford Dictionary, 2020c ). The main frequency bands used in EEG analysis 

include the delta ( < 4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–29 Hz) and gamma (30–79) bands 

( Mecarelli, 2019 ). 

Hidden state Unobserved quantity. “Hidden state ” is used interchangeably with “latent state ”. In deterministic forms of DCMs (where 

trajectories of states are fully determined by the values of the model’s parameters and [known] inputs), we wish to 

model the neuronal hidden states by inferring upon the model parameters using observable data. 

Density In the context of this publication, the term “density ” ( e.g. , as in “ensemble density ”) refers to the probability density 

function of a continuous random variable. 

Generative model A probabilistic model that describes the putative process by which data were generated. Mathematically speaking, 

generative models specify the joint probability density (product of likelihood and prior) over model parameters and 

measured data. By sampling from the prior, it is possible to generate synthetic data points ( Bishop, 2006 ). 

Forward model Mapping from hidden states ( e.g. , neuronal activity) to observed data ( e.g. , EEG measurements). “Forward model ” will be 

used interchangeably with “observation model ” ( Moran et al., 2013 ). A neuronal model and an observation model 

together make up a DCM. 

Model inversion In a Bayesian setting, the process by which a generative model is used to compute the posterior distribution of the model 

parameters. 

Mean field model (MFM) A population (ensemble) of spiking neurons can be modeled using a population density function which describes the 

probabilistic evolution of the population response over time. Such a mean field model (MFM) is described by the 

dynamics of the moments of the population density function ( Moran et al., 2013 ). MFMs have been used for more than 

half a century and are defined using concepts from statistical physics (refer to the Fokker-Planck equation below) 

( Beurle, 1956 ; Deco et al., 2008 ). Since EEG/MEG data reflect the activity of populations of neurons, MFMs are well 

suited for these data modalities. 

Neural mass model (NMM) If one only considers the first moment ( i.e. , the mean) of a MFM, one obtains a neural mass model (NMM) ( Deco et al., 

2008 ). NMMs are therefore a special case of MFMs ( Moran et al., 2013 ). 

Neural field model (NFM) NMMs and MFMs consider the evolution of the neuronal states only over time. However, this evolution can also be 

modeled over space ( e.g., across the cortical sheet). Models involving differential operators with both temporal and 

spatial terms are called neural field models ( Deco et al., 2008 ). 

Fokker-Planck equation The Fokker-Planck equation is a partial differential equation from statistical physics that allows one to describe, using a 

flow-diffusion process, the evolution of a probability density function of an ensemble of individual components ( e.g. , 

neurons) over time. The advantage offered by this approach is that it permits modeling of ensemble density dynamics in 

a deterministic manner, even if the dynamics of individual components are stochastic. 
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nous (experimental) input is present. In the latter case, the output

is summarized in the frequency domain, i.e ., we obtain resting-state

spectral oscillations. 
• How source data are estimated from the observed sensor data

− There are two main approaches to this ( Kiebel et al., 2008a ): (1)

point-source models explain the data using a small number of so-

called equivalent current dipoles (ECDs) to represent each source,

while (2) imaging models use a dense set of dipoles distributed

over the cortical sheet ( Daunizeau et al., 2006 ). In addition, the

type of data modeled, i.e. , EEG data, MEG data, or local field po-

tentials (LFP), also influence the specific form of the forward model

( Table 1 ), in particular, the form of the so-called “lead field matrix ”

(please refer to Section 8 for a more detailed discussion on these

topics). 

Importantly, the defining aspects considered above can be combined.

or example, it is possible to apply neural-mass or mean-field formula-

ions to convolution or conductance-based models ( Moran et al., 2013 ).

hoosing an adequate DCM variant involves careful consideration of

he data and problem at hand. This is because different (clinical) ques-

ions might be more naturally addressed by some variants than others.

or instance, in an autoimmune disorder called anti-NMDA receptor en-

ephalitis, auto-immune antibodies selectively target the NMDA recep-

or, leading to receptor hypofunction and a variety of severe psychiatric

nd neurological conditions, including psychosis and epilepsy. Hence,

n order to test disease-related hypotheses about NMDA receptor func-

ion directly, it may be advisable to use a DCM that can represent this
3 
eceptor explicitly, such as cbDCM. This was precisely the modeling ap-

roach followed by Symmonds et al. (2018 ) who used cbDCM to model

EG data from anti-NMDA receptor encephalitis patients and controls.

ence, the choice of the optimal DCM variant has to be tailored to the

pecific hypothesis about (disease-relevant) processes of interest. 

In the following, we define what constitutes a conductance-based

odel. 

. Conductance-based models 

The electrical properties of neurons can be described by the mem-

rane conductance associated with different ions. Hodgkin and Hux-

ey (1952 ) famously used this formalism to describe how sodium and

otassium currents can generate action potentials in the giant axon of

he squid. It has been extended to include other ions (see Morris and

ecar, 1981 ) and can accommodate active, neurotransmitter-mediated

on flow, as well as leaky ion channels and externally applied current

 Koch, 1999 ). Conductance-based models are hence models of excitable

ells ( e.g., neurons) that represent ion channels through their conduc-

ance ( Skinner, 2006 ). According to Dayan and Abbott, these models

ave been shown to " reproduce the rich and complex dynamics of real neu-

ons quite accurately " ( Dayan and Abbott, 2001 ). 

In the following sections, we will describe the conductance-based

euronal model implemented in DCM for electrophysiological data. In

ur description, we will move from the single-neuron level, to the level

f the cortical column, and finally describe macroscopic source connec-

ivity. 
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Fig. 2. DCM variants, along with examples of relevant publications ( Brown and Friston, 2012 ; David et al., 2006a ; Friston et al., 2012 ; Garrido et al., 2007 ; 

Gilbert et al., 2016 ; Kiebel et al., 2006 ; Marreiros et al., 2009 , 2010a ; Moran et al., 2007a , 2011a ; Pinotsis et al., 2012 , 2013 ). Models of induced responses are 

not considered. EEG: electroencephalography; LFP: local field potential; MEG: magnetoencephalography; MFM: mean field model; NFM: neural field model; NMM: 

neural mass model. Figure created with Biorender.com. 
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. Modeling a single neuron 

Conductance-based models describe how ions flow into and out of

xcitable cells via a parallel resistor-capacitor (RC) circuit. Using these

o-called equivalent circuit models, it is possible to model the dynamics

ssociated with specific ions or specific ligand-gated ion channels (also

eferred to as ionotropic receptors). Let us consider a neuron with two

lutamate receptors, AMPA and NMDA, and the GABA A receptor 3 (see

ig. 3 ). Note that both the AMPA and NMDA receptors are permeable

o multiple cations, not just sodium. A leak current L is also included,

o model the effect of other passive ion channels on the cell’s resting

embrane potential. 
3 AMPA, NMDA and GABA A receptors are associated with distinct time con- 

tants, a condition necessary for identifying their relative contribution to the 

easured potentials. 

 

e

𝐼  

4 
The equation of motion for the membrane potential V can be derived

y making use of two fundamental laws of physics. Specifically, we make

se of Kirchhoff’s current law ( Koch, 1999 ): 

 = 𝐼 𝑐 + 

∑
𝑘 

𝐼 𝑘 (1) 

here 𝑢 is the injected current, 𝐼 𝑐 the capacitive current, and I k is the re-

istive current associated with the 𝑘 -th channel. Rearranging this equa-

ion yields: 

 𝑐 = − 

∑
𝑘 

𝐼 𝑘 + 𝑢 (2)

We further use the current-voltage relation of a capacitor to re-

xpress the capacitive current 𝐼 𝑐 : 

 𝑐 = 𝐶 ⋅
𝑑𝑉 

(3)

𝑑𝑡 
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Fig. 3. Equivalent circuit model for a neuron. V intracellular 

and V extracellular indicate the intra- and extracellular po- 

tentials. The difference between these two quantities is 

called the membrane potential V, transmembrane poten- 

tial or membrane voltage. 𝑅 𝑘 indicates the resistance as- 

sociated with ion channel 𝑘 : either AMPA, GABA, NMDA 

or L. L denotes the passive leak current channels. Finally, 

𝑉 𝑘 represents the reversal potential for ion channel 𝑘 . 

Figure created with Biorender.com. 

Fig. 4. (Left) Voltage-dependent block of the NMDA receptor pore by Mg 2 + . Note how channel opening necessitates neurotransmitter binding as well as depolarization 

of the cell (figure adapted from Purves et al., 2018 ). (Right) 𝑚 ( 𝑉 )( 𝑉 − 𝑉 NMDA ) represented as a function of membrane voltage. The black line depicts the behavior of 

𝑚 ( 𝑉 )( 𝑉 − 𝑉 NMDA ) for the parameter value currently used in SPM12. Figure created with Biorender.com. 
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4 In the current implementation of SPM12: 𝛼NMDA is fixed and set to 0.06 (see 

mg _ switch.m ). 
In addition, we apply Ohm’s law to express the resistive current as-

ociated with each channel 𝑘 : 

 𝑘 = 

𝑉 − 𝑉 𝑘 

𝑅 𝑘 

= 𝑔 𝑘 
(
𝑉 − 𝑉 𝑘 

)
(4)

Here, 𝑉 𝑘 represents the reversal potential for channel 𝑘 and the con-

uctance g k = 1 /R k is given by the inverse resistance R k . By combining

qs. (2) –(4) , we can relate the membrane capacitive current to the cel-

ular ionic currents. 

𝐶 �̇� = 

( ∑
𝑘 

𝑔 𝑘 ( 𝑉 𝑘 − 𝑉 ) 

) 

+ 𝑢 

where ∶ 𝑘 ∈ 𝐿, AMPA , GABA (5) 

Note, however, that Eq. (5) does not yet contain a term that explic-

tly represents the NMDA receptor. This requires a slight extension be-

ause of the so-called voltage-dependent magnesium (Mg 2 + ) block of

he NMDA receptor. Indeed, at hyperpolarized potentials, magnesium

s present within the channel pore, effectively blocking it ( Fig. 4 , left).

epolarization of the membrane potential pushes Mg 2+ out of the pore,

llowing current to flow through the channel ( Purves et al., 2018 ). 

This Mg 2+ nonlinearity is described as follows ( Jahr and

tevens, 1990 ; Koch, 1999 ; Moran et al., 2011a ): 

 ( 𝑉 ) = 

1 
1 + 0 . 2 ⋅ 𝑒𝑥𝑝 

(
− 𝛼𝑁 𝑀 𝐷𝐴 ⋅ 𝑉 

) (6)
5 
here 𝛼NMDA represents the magnesium block parameter 4 ( Fig. 4 , right).

By adding a term that represents the NMDA receptor, as well as a

oise term ΓV , the final expression for the equation of motion for the

embrane potential 𝑉 is obtained ( Moran et al., 2011a ): 

𝐶 �̇� = 

( ∑
𝑘 

𝑔 𝑘 
(
𝑉 𝑘 − 𝑉 

)) 

+ 𝑔 NMDA 𝑚 ( 𝑉 ) 
(
𝑉 NMDA − 𝑉 

)
+ 𝑢 + Γ𝑉 

𝑘 ∈ 𝐿, AMPA , GABA (7) 

Where: 

• C is the membrane capacitance; 
• V the membrane potential; 
• �̇� the time derivative of V ; 
• g k represents the conductance for channel k; 
• V k is the reversal potential for channel k ; 
• u is the applied input current. For cells which receive no external

input: u = 0; 
• ΓV is a stochastic term which models Gaussian noise; 
• L denotes the passive leak current channels. 

We hence have our first set of differential equations, which model

he change in membrane voltage of a single neuron over time. Now, we

urn to the channel conductances. The leak channel conductance 𝑔 𝐿 is

ssumed to be fixed. Thus, we define the subsequent equation only for

https://github.com/spm/spm12/blob/master/toolbox/dcm_meeg/mg_switch.m
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(  

a  
 ∈ {AMPA, GABA A , NMDA} ( Moran et al., 2011a ): 

̇ 𝑘 = 𝜅𝑘 

(
γ𝑎𝑓𝑓 ⋅ σ𝑎𝑓𝑓 − 𝑔 𝑘 

)
+ Γ𝑔 (8)

here 𝜅k is the inverse time constant for the k th receptor, σ𝑎𝑓𝑓 models

he firing from afferent neurons weighted by γ𝑎𝑓𝑓 , which represents a

oupling parameter ( i.e. , represents connection strength). Γg represents

he stochastic component, again modeling Gaussian noise. 

In short, the model entails four hidden states : the membrane volt-

ge V and the conductance g k for all three receptors: AMPA, GABA A and

MDA. 

. Modeling a population of neurons 

Let us start by examining the equations of motion for the hidden

tates 𝑥 from the previous section Eqs. (7) and ( (8) ). Note that they are

tochastic differential equations of the form ( Fig. 1 ): 

̇  = 𝑓 ( 𝑥 ) + Γx (9)

This form corresponds to a Langevin equation ( Haken, 1983 ), where

 denotes a vector of neuronal state variables of interest, 𝑓 ( 𝑥 ) rep-

esents the deterministic part of the equation, and Γx is the stochas-

ic component. Neurobiologically, this stochastic component represents

ifferent sources of noise. An example at the single-neuron level is ther-

al noise, i.e., thermal fluctuations which trigger spontaneous confor-

ational changes in proteins that are part of the ion channels, some of

hich lead to opening or closing of the channel ( i.e., channel noise ). 5 For

n extensive review on the sources of noise in the brain, please see other

revious publications ( Destexhe and Rudolph-Lilith, 2012 ; Faisal et al.,

008 ). 

At this point, we are still at the level of single neurons. However,

echniques for measuring human brain activity noninvasively, such as

EG or MEG, cannot resolve the behavior of single neurons. Instead,

hey provide measurements of the activity of large populations (or

nsembles) of neurons. When moving to models of neuronal popula-

ion dynamics, capturing the stochastic dynamics of each neuron by

angevin equations would be too complex and computationally expen-

ive. Instead, one can formulate a partial differential equation that de-

cribes the temporal evolution of the probability density function of 𝑥 ,

ow seen as a random variable. This is called the Fokker-Planck equation

 Haken, 1983 ; Kadanoff, 2000 ) ( Table 1 ): it is a deterministic equation

hat captures the dynamics of a probability density of neuronal popula-

ion states (ensemble density). In other words, each neuron is treated as

 point in state space, the ensemble density describes their probability

ensity over state space, and the Fokker-Planck equation describes how

his ensemble density changes over time ( Deco et al., 2008 ). 

If we assume that the ensemble density can be represented by a Gaus-

ian distribution 𝑞( 𝑥 ) =  ( 𝜇, Σ) (the so-called Laplace approximation),

hese equations can be reformulated as ordinary differential equations

f the sufficient statistics of the population’s density. Of course, this as-

umption might entail some loss of information, if the ensemble density

s not well represented by a Gaussian distribution. In any case, under

he Laplace approximation, for each hidden state l in the j -th neuronal

opulation, the equations that describe the dynamics of the sufficient

tatistics are ( Marreiros et al., 2009 ; Moran et al., 2011a ): 

 ( 𝑥 ) =  ( 𝜇, Σ) (10)

̇
( 𝑗 ) 
𝑙 

= 𝑓 
( 𝑗 ) 
𝑙 

( 𝜇) + 

1 
2 
𝑇 𝑟 

( 

Σ( 𝑗 ) 𝜕 
2 𝑓 ( 𝑗 ) 

𝑙 

𝜕 𝑥 2 

) 

(11)

̇ ( 𝑗 ) = 

𝜕 𝑓 ( 𝑗 ) Σ( 𝑗 ) + Σ( 𝑗 ) 𝜕 𝑓 
( 𝑗 ) 𝑇 

+ 𝐷 

( 𝑗 ) + 𝐷 

( 𝑗 ) 𝑇 (12)

𝜕𝑥 𝜕𝑥 

5 Later, we will discuss how to model the so-called neuronal innovations, 

hich represent spontaneous endogenous fluctuations of the neuronal signal 

t the level of a network of sources. 

c  

b  

e  

c

6 
With Eqs. (10) –(12) , we have thus defined a mean-field model

MFM), where, 𝑓 
( 𝑗) 
𝑙 

is the deterministic part of the j -th neuronal popu-

ation’s l -th hidden state value, and D represents the so-called diffusion

oefficient. From Eq. (11) , we can see that in this mean-field formu-

ation the covariance matrix Σ( 𝑗) affects the dynamics of the mean of

he ensemble density. By contrast, in neural-mass models (NMMs), this

nterdependence between mean and variance is dropped, which means

hat the product of the Hessian 𝜕 2 𝑓 ( 𝑗) 
𝑙 

∕ 𝜕 𝑥 2 and the covariance matrix Σ( 𝑗) 

r the trace of the product has to evaluate to zero (for details, consult

arreiros et al., 2009 ). While NMMs enjoy much attention because of

heir relative simplicity, MFMs are capable of representing more com-

lex dynamics ( Marreiros et al., 2009 ). In the following equations, we

onsider the NMM formulation for cbDCM. 

In this case, one simply recovers the deterministic part of Eqs. (7) and

8) ( Marreiros et al., 2009 ): 

𝐶 �̇�
( 𝑗 ) 
𝑉 

= 

( ∑
𝑘 

𝜇( 𝑗 ) 
𝑔 𝑘 

(
𝑉 𝑘 − 𝜇

( 𝑗 ) 
𝑉 

)) 

+ 𝜇( 𝑗 ) 
𝑔 NMDA 

𝑚 

(
𝜇
( 𝑗 ) 
𝑉 

)(
𝑉 NMDA − 𝜇

( 𝑗 ) 
𝑉 

)
𝑘 ∈ 𝐿, AMPA , GABA (13) 

̇ ( 𝑗 ) 𝑔 𝑘 
= 𝜅

( 𝑗 ) 
𝑘 

(
𝜁
( 𝑗 ) 
𝑘 

− 𝜇( 𝑗 ) 
𝑔 𝑘 

)
(14) 

here the hidden state index 𝑙 from Eq. (11) now takes the values: 𝑙 ∈
 𝑉 , 𝑔 𝑘 } . In addition, 𝜇

( 𝑗) 
𝑉 

represents the j -th population’s mean voltage,

hereas 𝜇
( 𝑗) 
𝑔 𝑘 

is the population mean conductance for channel k . We can

ow express 𝜁
( 𝑗) 
𝑘 

, the input to the j -th neuronal population, as: 

( 𝑗 ) 
𝑘 

= 

∑
𝑖 

𝛾
( 𝑗,𝑖 ) 
𝑘 

𝜎
(
𝜇
( 𝑖 ) 
𝑉 

− 𝑉 𝑅 , Σ( 𝑖 ) 
)

(15) 

here 𝛾
( 𝑗,𝑖 ) 
𝑘 

represents a coupling parameter for channel type 𝑘 , from

opulation 𝑖 to population 𝑗. Moreover, 𝜎( ) is the cumulative distri-

ution function of the univariate normal distribution  ( 𝜇( 𝑗) 
𝑉 

− 𝑉 𝑅 , Σ( 𝑗) ) ,
here 𝑉 𝑅 represents the threshold potential ( −40 mV). Intuitively, 𝜎( )

an be understood as the proportion of active (spiking) afferent neurons.

ere, the variance Σ( 𝑗) is also a free parameter ( Moran et al., 2011a ). 

. Modeling a source 

Now that we are able to model the activity of single neuronal pop-

lations (as a reminder, we are not modeling single neurons but en-

embles of neurons), we can define a cortical column ( i.e. , a cortical

unctional unit). 

The original formulation of DCM for EEG by David et al. (2006a ) was

ased on the model by Jansen and Rit (1995 ), which was constructed

ased on previous experimental work with cats and humans ( Lopes Da

ilva et al., 1974 ). This initial formulation considered three different

euronal populations: excitatory pyramidal cells, excitatory spiny stel-

ate cells and inhibitory interneurons ( Fig. 5 ). Spiny stellate cells are

ound in layer IV of the cortical column, whereas the other two cell

opulations are considered to occupy both the supra- and infragranular

ayers. Subsequently, a canonical-microcircuit model for DCM was de-

eloped ( Bastos et al., 2012 ), which further divides the pyramidal-cell

opulation into two distinct superficial (supra-granular) and deep (infra-

ranular) subgroups, with distinctive connectivity patterns. In this set-

ing, it is therefore possible to differentially model the contribution of

ach pyramidal cell population to the signal, adding more detail to the

odel. 

The cell populations within a source interact through a set of intrinsic

or within-source) connections, represented in Fig. 5 . These connections

re defined based on the Jansen-Rit model ( Jansen and Rit, 1995 ), in

ase of the 3-population model. The intrinsic connections are encoded

y the coupling parameters 𝛾
( 𝑗,𝑖 ) 
𝑘 

from Eq. (15) . By fully defining a lay-

red circuit, with a specific set of neuronal populations and intrinsic

onnections, we have effectively described one source. 
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Fig. 5. Cortical column, based on the Jansen-Rit 

model ( Jansen and Rit, 1995 ). Spiny stellate cells are 

found in layer IV of the cortical column, whereas the 

other two cell populations are considered to occupy 

both the supra- and infragranular layers. Note that we 

model populations of cells, not individual neurons (fig- 

ure modified from Moran et al., 2013 ). For illustration 

purposes, the intrinsic glutamatergic connections me- 

diated by the AMPA and NMDA receptors are grouped. 

However, these can be modeled separately. For the cur- 

rent implementation in SPM12, refer to Section 11 . Fig- 

ure created with Biorender.com. 

Fig. 6. Example locations for modeled sources, connected via extrinsic, or 

between-sources connections. Figure created with Biorender.com. 
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. Modeling between-source connectivity 

In the previous section, we have explained how one can model a

ingle source. This source is then set to represent a specific brain re-

ion: for instance, the medial prefrontal cortex or a particular visual

rea. However, neural processes typically unfold as the result of inter-

ctions in a network of multiple sources. As can be seen in Fig. 6 , such a

etwork perspective can be taken by placing sources in several brain ar-

as, which are then connected via weighted extrinsic or between-source

onnections. 

In DCM for electrophysiological data, the definition of the between-

ource connections follows a simplified version of the connectivity rules

roposed by Felleman and Van Essen (1991 ). These were derived from

xperimental studies, most prominently on the monkey visual cortex.
7 
xtrinsic connections are divided into several types, based on the layers

n which they terminate. Forward connections , which run from hierar-

hically lower to higher areas and mainly originate from supragranular

ayers, terminate in (granular) layer IV, whilst backward connections ,

hich run from hierarchically higher to lower brain areas and mostly

riginate from infragranular layers, terminate in the supra- and infra-

ranular layers, avoiding layer IV. Lateral connections terminate in all

hree layers (see Fig. 7 ) ( David et al., 2006a , 2005 ). 

. Observation model 

To model how the dendritic signal ( i.e. , activity) from the pyramidal

ells gives rise to the modeled signal in the sensors ( e.g., EEG electrodes),

nother layer needs to be defined on top of the neuronal model. This

bservation model ℎ ( 𝑥 ( 𝑡 ) , 𝜃) thus transforms the source signal into the

ignal that is being modeled, and always includes a forward mapping

rom sources to sensors. In addition, the particular form of the obser-

ation model also depends on the type of signal modeled ( e.g., LFP or

requency-domain data). 

In its simplest form, the observation model is nothing more than a

rojection from sources to the sensors. This projection is assumed to be

inear and instantaneous and can be expressed as follows ( Kiebel et al.,

009 ): 

̂ 𝑖 ( 𝑡 ) = ℎ ( 𝑥 ( 𝑡 ) , 𝜃) = 𝐿 ( 𝜃) 𝑥 ( 𝑡 ) (16)

Here, �̂� 𝑖 ( 𝑡 ) represents the predicted measurements at sensor 𝑖 ,

 ( 𝑥 ( 𝑡 ) , 𝜃) the observation model with parameters 𝜃, 𝑥 ( 𝑡 ) is the pyra-

idal cell activity and 𝐿 ( 𝜃) the lead field or gain matrix . This ma-

rix describes the passive conduction of the electromagnetic field from

ources to sensors and can assume different forms, depending on the

ource reconstruction technique used as well as on the data modal-

ty considered ( i.e. , EEG, MEG or LFP). Specifically, as discussed in

ection 2 , two main types of approaches to source reconstruction ex-

st ( Daunizeau et al., 2006 ). The first are called “dipole fit ” models, and

epresent sources with a small number of ECDs (up to five). These mod-

ls are fast to compute, but provide limited spatial representation of



I. Pereira, S. Frässle, J. Heinzle et al. NeuroImage 245 (2021) 118662 

Fig. 7. Depiction of the several types of extrin- 

sic, or between-source connections. Please note 

that the vertical arrangement of the 3 types of 

neurons should not be misinterpreted as state- 

ments about layers. While spiny stellate cells 

are only present in the granular layer (layer 

IV), pyramidal cells and inhibitory interneu- 

rons are located in both supragranular layers 

(layers II/III) and infragranular layers (layers 

V/VI). It is assumed that the exogenous input 

enters a source via the spiny stellate cells in 

the granular layer (layer IV). In addition, given 

that the apical dendrites of cortical pyrami- 

dal cells are mostly arranged perpendicularly 

to the cortical surface and in parallel with re- 

spect to each other, it is considered that pyra- 

midal cells are the main generators of the mea- 

sured M/EEG response ( Hauk, 2013 ). For LFP, 

it is the arrangement and orientation of the 

dendritic tree versus the soma, along with the 

parallel arrangement of the apical dendrites, 

that make pyramidal cells the main generators 

of signal. As such, in DCM for electrophysio- 

logical data, pyramidal cells are assumed to 

have the most important contribution to the 

measured signal. Figure created with Bioren- 

der.com. 
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𝜅
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6 While this is true for the raw ( i.e. , unprocessed) data, in practice, principal 

component analysis (PCA) is often used as a preprocessing step to reduce the 

dimensionality of the data. 
7 Refer to Section 11 for a detailed account of how these fluctuations are 

modeled in SPM12. 
he signal ( Daunizeau et al., 2006 ; Kiebel et al., 2008a ). More recently,

imaging ” approaches have been formulated, which model sources us-

ng a dense set of dipoles. While imaging approaches offer more spatial

etail, they also involve estimating a much larger number of parameters,

aking them more computationally intensive procedures. A detailed

iscussion of these methods as well as their exact implications for the

ead field matrix can be found in earlier publications ( Daunizeau et al.,

006 ; Kiebel et al., 2008b , 2008a , 2006 ). Furthermore, as mentioned

reviously, the data modality also influences the form of the lead field

atrix. For example, in EEG, it is not uncommon to reduce the dimen-

ionality of the data using, for instance, singular value decomposition.

hus, in this case, the dimensions of the lead field matrix will be: num-

er of components times the number of hidden states. When working

ith LFP data with few channels that are spatially sufficiently sepa-

ated, one might forego the dimensionality reduction step and assume

hat each source is sensed by a single sensor only ( i.e., there is no mixing

f source signal at the sensor level). In this case, the lead field matrix

ill be a diagonal matrix with dimensions: number of channels times

umber of hidden states. 

To complete the model of time series data 𝑦 𝑖 ( 𝑡 ) , one now only needs

o furnish the model with assumptions about the measurement noise

∼  ( 0 , Σ) : 

 𝑖 = �̂� 𝑖 + 𝜖 (17)

In ERP models of LFP or M/EEG data, predictions and data are dealt

ith in the time domain. However, one can also summarize the data

n the frequency domain by computing what is called the cross power

pectral density (or cross-spectral density , CSD). This allows for a

ompact representation of long time series measurements and is typi-

ally done with “resting-state ” data, i.e. , a situation without any exper-

mentally controlled stimuli in which brain activity consists of “sponta-

eous ” oscillations. This is the scenario we will consider in the following.

The CSD can be seen as a relationship between two time series as a

unction of frequency. More specifically, one can think of the CSD as a

requency domain analysis of the covariance between two signals. The

SD 𝑆 𝑖𝑗 ( 𝜔 ) between two signals 𝑦 𝑖 ( 𝑡 ) and 𝑦 𝑗 ( 𝑡 ) is given by: 

 𝑖𝑗 ( 𝜔 ) = 𝔼 
[ { 𝑦 𝑖 }  

{
𝑦 𝑗 
}]

(18)
8 
here 𝔼 represents the expectation operator, { 𝑦 𝑖 } is the Fourier trans-

orm of signal 𝑦 𝑖 ( 𝑡 ) and { 𝑦 𝑖 } the complex conjugate of { 𝑦 𝑖 } . For the

pecial case 𝑖 = 𝑗, 𝑆 𝑖𝑗 ( 𝜔 ) is called the power spectral density (PSD). 

Since electrophysiological measurements are performed using sev-

ral sensors, we obtain as many time-series as we have channels. 6 If one

omputes the CSD for each possible pair of signals 𝑦 𝑖 ( 𝑡 ) and 𝑦 𝑗 ( 𝑡 ) , one ob-

ains a symmetric matrix for each considered frequency 𝜔 . This means

hat the full CSD, for all considered frequencies, is a three-dimensional

ensor ( Fig. 8 ). 

Consequently, if we aim to model data in the frequency domain, we

eed to add yet another step to the observation model that maps time-

eries data ( Eq. (17) ) to CSD, according to Eq. (18) . For a linear system,

his is done most efficiently by expressing the mapping between the

o-called neuronal fluctuations (or endogenous oscillations; recall that

e are in a resting-state scenario) and the measured signal in terms of

he kernel of this system ( Friston et al., 2012 ). As we will see in the

ext section, in this case, the forward mapping simply corresponds to a

onvolution of the neuronal fluctuations with the derived kernel. 

. Modeling cross-spectral densities 

In this section, we will specify a generative model of predicted CSD

or resting-state data, based on a mapping between neuronal fluctua-

ions or innovations 𝑢 𝑘 ( 𝑡 ) ∈ ℝ (which can be thought of as baseline

scillations of neuronal signal driving the neural populations 7 ) and ob-

ervable signals 𝑦 𝑖 ( 𝑡 ) ∈ ℝ . Under linear assumptions, this mapping is de-

ned by convolving the neuronal innovations with their corresponding

ernel 𝜅𝑘 
𝑖 
( 𝜏, 𝜃) . A kernel 𝜅𝑘 

𝑖 
( 𝜏, 𝜃) is specified as follows ( Friston et al.,

012 ): 

𝑘 
𝑖 ( 𝜏, 𝜃) = 

𝜕 𝑦 𝑖 ( 𝑡 ) 
𝜕 𝑢 ( 𝑡 − 𝜏) 

(19) 
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Fig. 8. Expressing time-domain data in the frequency domain. CSD = cross spectral density; PSD = power spectral density. Figure created with Biorender.com. 
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Here, 𝜃 are the parameters we wish to estimate, 𝑘 indicates the 𝑘 -

h innovation and 𝑖 the 𝑖 -th channel ( Friston et al., 2012 ). Note that

 𝑘 ( 𝑡 − 𝜏) is defined with a time lag 𝜏. Indeed, there is a delay between

he generation of inputs 𝑢 𝑘 ( 𝑡 − 𝜏) and that of the signal 𝑦 𝑖 ( 𝑡 ) . 
Finally, note that, for ease of writing, the Fourier transform will now

e indicated by a capital letter ( e.g. , 𝐾 

𝑘 
𝑖 
= { 𝜅𝑘 

𝑖 
} ). For further simplicity,

e follow the notation from Friston et al. (2012 ) and omit the dependen-

ies on the frequency 𝜔 and parameters 𝜃 in the following derivations.

he predicted CSD are denoted as 𝑆 𝑖𝑗 ( 𝜔, 𝜃) . According to Eq. (18) , the

redicted CSD 𝑆 𝑖𝑗 ( 𝜔, 𝜃) is formulated as follows: 

 𝑖𝑗 ( 𝜔, 𝜃) = 𝔼 
[  

{
𝑦 𝑖 
}
⋅  

{
𝑦 𝑗 
}]

= 𝔼 

[ 

 

{ ∑
𝑘 

𝜅𝑘 
𝑖 
∗ 𝑢 𝑘 

} 

⋅  

{ ∑
𝑙 

𝜅𝑙 
𝑗 
∗ 𝑢 𝑙 

} 

] 

= 𝔼 
[ ∑

𝑘 

∑
𝑙 

𝐾 

𝑘 
𝑖 
⋅ 𝑈 𝑘 ⋅𝐾 

𝑙 
𝑗 
⋅ 𝑈 𝑙 

] 
= 𝔼 

[ ∑
𝑘 

∑
𝑙 

𝐾 

𝑘 
𝑖 
⋅𝐾 

𝑙 
𝑗 
⋅ 𝑈 𝑘 ⋅ 𝑈 𝑙 

] 
= 

∑
𝑘 

∑
𝑙 

𝐾 

𝑘 
𝑖 
⋅𝐾 

𝑙 
𝑗 
⋅ 𝔼 

[
𝑈 𝑘 ⋅ 𝑈 𝑙 

]
(20) 

It is therefore assumed that the CSD can be represented as a sum of

onvolved neuronal innovations. In the last step, we use the fact that

he expectation operator is linear and that 𝑈 𝑘 and 𝑈 𝑙 are our random

ariables of interest (in the frequency domain). In addition, as will be

een later, since the equations of motion are linear in 𝑢 𝑘 ( 𝑡 ) , the kernel

oes not depend on the neuronal innovations, therefore allowing us to

ull the first two terms out of the expectation. 
9 
The real and imaginary parts of 𝑈 𝑘 are assumed to be identically and

ndependently distributed (i.i.d.), as follows ( Friston et al., 2012 ): 

 

(
𝑅𝑒 

(
𝑈 𝑘 

))
=  

(
0 , γ𝑘 

)
(21)

 

(
𝐼𝑚 

(
𝑈 𝑘 

))
=  

(
0 , γ𝑘 

)
(22)

Note that if two random variables 𝑋 and 𝑌 are independent, then

heir covariance is zero. This means that: 𝑐𝑜𝑣 ( 𝑋, 𝑌 ) = 𝔼 [( 𝑋 − 𝔼 [ 𝑋])
 𝑌 − 𝔼 [ 𝑌 ] )] = 0 . Applying this standard definition of the covariance, we

btain the following relation: 

𝑜𝑣 
(
𝑅𝑒 

(
𝑈 𝑘 

)
, 𝑅𝑒 

(
𝑈 𝑙 

))
= 𝔼 

[
𝑅𝑒 

(
𝑈 𝑘 

)
− 𝔼 

[
𝑅𝑒 

(
𝑈 𝑘 

)]]
⋅ 𝔼 

[
𝑅𝑒 

(
𝑈 𝑙 

)
− 𝔼 

[
𝑅𝑒 

(
𝑈 𝑙 

)]]
= 𝔼 

[
𝑅𝑒 

(
𝑈 𝑘 

)
− 0 

]
⋅ 𝔼 

[
𝑅𝑒 

(
𝑈 𝑙 

)
− 0 

]
= 𝔼 

[
𝑅𝑒 

(
𝑈 𝑘 

)]
⋅ 𝔼 

[
𝑅𝑒 

(
𝑈 𝑙 

)]
= 0 (23) 

The same applies to the imaginary component of 𝑈 𝑘 : 

𝑜𝑣 
(
𝐼𝑚 

(
𝑈 𝑘 

)
, 𝐼𝑚 

(
𝑈 𝑙 

))
= 𝔼 

[
𝐼𝑚 

(
𝑈 𝑘 

)]
⋅ 𝔼 

[
𝐼𝑚 

(
𝑈 𝑙 

)]
= 0 (24) 

In addition, note that, using the linearity of the expectation operator,

he expression for 𝔼 [ 𝑈 𝑘 ⋅ 𝑈 𝑙 ] can be rewritten as: 

 

[
𝑈 𝑘 ⋅ 𝑈 𝑙 

]
= 𝔼 

[(
𝑅𝑒 

(
𝑈 𝑘 

)
+ 𝑗 ⋅ 𝐼𝑚 

(
𝑈 𝑘 

))(
𝑅𝑒 

(
𝑈 𝑙 

)
− 𝑗 ⋅ 𝐼𝑚 

(
𝑈 𝑙 

))]
= 𝔼 

[
𝑅𝑒 

(
𝑈 𝑘 

)
⋅ 𝑅𝑒 

(
𝑈 𝑙 

)]
− j ⋅ 𝔼 

[
𝑅𝑒 

(
𝑈 𝑘 

)
⋅ 𝐼𝑚 

(
𝑈 𝑙 

)]
+ 𝑗 ⋅ 𝔼 

[
𝐼𝑚 

(
𝑈 𝑘 

)
⋅ 𝑅𝑒 

(
𝑈 𝑙 

)]
+ 𝔼 

[
𝐼𝑚 

(
𝑈 𝑘 

)
⋅ 𝐼𝑚 

(
𝑈 𝑙 

)]
(25) 

here 𝑗 denotes the imaginary number: 𝑗 = 

√
−1 . 
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Thus, if 𝑘 ≠ 𝑙: 

 

[
𝑈 𝑘 ⋅ 𝑈 𝑙 

]
= 0 (26)

ince the aforementioned i.i.d. assumption also implies that the cross-

erms from Eq. (25) are zero. 

If 𝑘 = 𝑙: 

 

[
𝑈 𝑘 ⋅ 𝑈 𝑘 

]
= 𝛾𝑘 + 0 + 0 + 𝛾𝑘 

= 2 𝛾𝑘 
= 𝜆𝑘 (27) 

here we define a new variable 𝜆𝑘 to be the spectral density of the neu-

onal innovations. 

Therefore, making use of Eqs. (26) and (27) , Eq. (20) simplifies to: 

 𝑖𝑗 ( 𝜔, 𝜃) = 

∑
𝑘 

∑
𝑙 

𝐾 

𝑘 
𝑖 ⋅𝐾 

𝑙 
𝑗 
⋅ 𝔼 

[
𝑈 𝑘 ⋅ 𝑈 𝑙 

]
= 

∑
𝑘 

𝐾 

𝑘 
𝑖 ⋅𝐾 

𝑘 
𝑗 
⋅ 𝔼 

[
𝑈 𝑘 ⋅ 𝑈 𝑘 

]
= 

∑
𝑘 

𝐾 

𝑘 
𝑖 ⋅𝐾 

𝑘 
𝑗 
⋅ 𝜆𝑘 

= 

∑
𝑘 

𝑆 

𝑘 
𝑖𝑗 ( 𝜔, 𝜃) (28) 

One hence sees that the predicted cross-spectrum 𝑆 𝑖𝑗 ( 𝜔, 𝜃) is a linear

ixture of the cross-spectra induced by each innovation ( Friston et al.,

012 ). Importantly, rather than making assumptions about the neuronal

nnovations in the time domain, one can instead directly parameterize

he spectral density of the neuronal innovations, 𝜆𝑘 . For this, the follow-

ng form has been suggested based on previous theoretical and experi-

ental work ( Destexhe and Rudolph-Lilith, 2012 ; Shin and Kim, 2006 ;

tam and de Bruin, 2004 ; Stevens, 1972 ): 

𝑘 ( 𝜔 ) = 𝛼 + 

𝛽( 1 ) 

𝜔 

𝛽 ( 2 ) 
(29)

Here, 𝛼 represents white noise and the second term colored noise,

ith 𝛽(2) indicating the “color ” of the noise 8 and 𝛽(1) its magnitude. In

he most recent version of SPM, this is implemented somewhat differ-

ntly. We will review precisely how SPM models the spectral density of

he neuronal innovations in Section 11 of this paper. 

.1. Specifying the kernel 

To be able to generate predictions, we now need to specify the ker-

els 𝜅𝑘 
𝑖 
( 𝜏, 𝜃) . These can be computed analytically under further sim-

lifying assumptions. We first define the forward mapping which links

ndogenous innovations 𝑢 to hidden states 𝑥 and finally to the observed

ignal 𝑦 𝑖 (for channel 𝑖 ). This mapping contains both the equations of

otion �̇� = 𝑓 ( 𝑥 ( 𝑡 ) , 𝜃, 𝑢 ( 𝑡 ) ) and the observation model ℎ ( 𝑥 ( 𝑡 ) , 𝜃) . For nota-

ional simplicity, we omit in the following derivations the dependency of

oth these functions on 𝜃, 𝑢 and 𝑥 , thus expressing them as �̇� ( 𝑡 ) and ℎ ( 𝑡 ) ,
espectively. Furthermore, we define 𝐽 = 𝜕 ̇𝑥 ∕ 𝜕𝑥 as the Jacobian of the

euronal system. Using the chain rule ( Friston et al., 2012 ): 

𝑘 
𝑖 ( 𝜏, 𝜃) = 

𝜕 𝑦 𝑖 ( 𝑡 ) 
𝜕 𝑢 𝑘 ( 𝑡 − 𝜏) 

= 

𝜕 𝑦 𝑖 ( 𝑡 ) 
𝜕ℎ ( 𝑡 ) 

⋅
𝜕ℎ ( 𝑡 ) 
𝜕𝑥 ( 𝑡 ) 

⋅
𝜕𝑥 ( 𝑡 ) 

𝜕𝑥 ( 𝑡 − 𝜏) 
⋅
𝜕𝑥 ( 𝑡 − 𝜏) 
𝜕 ̇𝑥 ( 𝑡 − 𝜏) 

⋅
𝜕 ̇𝑥 ( 𝑡 − 𝜏) 
𝜕 𝑢 𝑘 ( 𝑡 − 𝜏) 

(30) 

By assuming a linear differential equation with Jacobian 𝐽 = 𝜕 ̇𝑥 ∕ 𝜕𝑥 ,
e have: �̇� ( 𝑡 ) = 𝐽 ⋅ 𝑥 ( 𝑡 ) 
8 As can be seen in Eq. (29 ), in colored noise, the power spectral density 

s, for positive 𝛽(2) , inversely proportional to the frequency 𝜔 of the signal 

 Szendro et al., 2001 ). 

10 
Therefore: 𝑥 ( 𝑡 ) = exp ( 𝐽𝑡 ) ⋅ 𝐶 , where 𝐶 represents the initial condi-

ions of this system. One can hence re-express this equation as: 𝑥 ( 𝑡 ) =
xp ( 𝐽𝜏) ⋅ 𝑥 ( 𝑡 − 𝜏) 

Thus, by inserting this last expression into Eq. (30) : 

𝑘 
𝑖 ( 𝜏, 𝜃) = 1 ⋅ 𝜕ℎ ( 𝑡 ) 

𝜕𝑥 ( 𝑡 ) 
⋅ exp ( 𝐽𝜏) ⋅

( 

𝜕 ̇𝑥 ( 𝑡 − 𝜏) 
𝜕𝑥 ( 𝑡 − 𝜏) 

) −1 
⋅

𝜕 ̇𝑥 ( 𝑡 − 𝜏) 
𝜕 𝑢 𝑘 ( 𝑡 − 𝜏) 

= 

𝜕ℎ ( 𝑡 ) 
𝜕𝑥 ( 𝑡 ) 

⋅ exp ( 𝐽𝜏) ⋅
( 

𝜕 ̇𝑥 ( 𝑡 ) 
𝜕𝑥 ( 𝑡 ) 

) −1 
⋅

𝜕 ̇𝑥 ( 𝑡 ) 
𝜕 𝑢 𝑘 ( 𝑡 ) 

= 

𝜕ℎ ( 𝑡 ) 
𝜕𝑥 ( 𝑡 ) 

⋅ exp ( 𝐽𝜏) ⋅ 𝐽 −1 ⋅
𝜕 ̇𝑥 ( 𝑡 ) 
𝜕 𝑢 𝑘 ( 𝑡 ) 

(31) 

Note that the omission of the delay 𝜏 from the first to the second line

s justified by the fact that 𝜕 ̇𝑥 ( 𝑡 )∕ 𝜕𝑥 ( 𝑡 ) is linearly approximated and that

he equations of motion �̇� ( 𝑡 ) are linear with respect to the inputs. Thus,

aking the derivative at one or a later time point is assumed to yield the

ame result. In addition, because of the second linearity, note that the

ernel expression does not depend on 𝑢 𝑘 ( 𝑡 ) . 

.2. Adding noise 

To complete the specification of the forward mapping to cross-

pectral data, it is presumed that the data is a mixture of the output of

he forward mapping ( i.e., predicted cross-spectra 𝑆 𝑖𝑗 ( 𝜔, 𝜃) and channel

oise 𝜆𝑐 ( 𝜔 ) ) and Gaussian error 𝜖𝑖𝑗 ( 𝜔 ) ( Friston et al., 2012 ): 

 𝑖𝑗 ( 𝜔 ) = 𝑆 𝑖𝑗 ( 𝜔, 𝜃) + 𝜆𝑐 ( 𝜔 ) + 𝜖𝑖𝑗 ( 𝜔 ) 
= 

∑
𝑘 

𝐾 

𝑘 
𝑖 
⋅𝐾 

𝑘 
𝑗 
⋅ 𝜆𝑘 + 𝜆𝑐 ( 𝜔 ) + 𝜖𝑖𝑗 ( 𝜔 ) (32) 

Where it is assumed that: 

𝑐 ( 𝜔 ) = 𝜂 + 

𝜈( 1 ) 

𝜔 

𝜈 ( 2 ) 
(33)

Re 
(
𝜖ij 

)
∼  ( 0 , Σ𝜖

)
(34) 

Im 

(
𝜖ij 

)
∼  ( 0 , Σ𝜖

)
(35) 

The spectral density of the channel noise 𝜆𝑐 ( 𝜔 ) is parameterized us-

ng a white ( 𝜂) and a colored component. In addition, the real and imag-

nary parts of the error term are assumed to follow the same Gaussian

istribution, with mean 0 and variance Σ𝜖 . Once again, this is imple-

ented somewhat differently in the most recent version of SPM and the

xact procedure will be reviewed in the Section 11 . 

As a final remark, note the conceptual differences between the chan-

el noise and Gaussian error terms: channel noise represents structured

oise which is integrated in the forward mapping, and contains param-

ters which are estimated during model inversion. On the other hand,

aussian error should be interpreted as measurement noise. This term

urnishes the form of the likelihood function (see next section) and is

efined by hyperparameters. 

0. Model inversion 

In the previous sections, we discussed how the forward model of cb-

CM for cross-spectral densities is constructed, i.e. , how data could be

enerated from a set of parameters. Typically, however, we face the in-

erse challenge: given some measured data 𝑦 , how can one obtain the

ost probable parameter distribution which could have generated the

iven data? In the context of generative models, solving this inverse

roblem is called model inversion or inference. This rests on Bayes’ the-

rem: for a given model 𝑚 , parameter estimation is equivalent to com-

uting the posterior distribution of the parameters 𝜃 given the observed

ata 𝑦 ( David et al., 2006a ), according to Bayes’ rule: 

𝑝 ( 𝜃|𝑦, 𝑚 ) = 

𝑝 ( 𝑦 |𝜃, 𝑚 ) 𝑝 ( 𝜃|𝑚 ) 
𝑝 ( 𝑦 |𝑚 ) 

where ∶ 𝑝 ( 𝑦 |𝑚 ) = ∫ 𝑝 ( 𝑦 |𝜃, 𝑚 ) 𝑝 ( 𝜃|𝑚 ) 𝑑𝜃 (36) 



I. Pereira, S. Frässle, J. Heinzle et al. NeuroImage 245 (2021) 118662 

 

t  

𝑝  

d  

fi  

t  

b  

i  

t  

I  

p  

t  

p  

n  

i  

v  

D  

2  

t  

b  

s  

I  

B  

e  

p  

t

𝐹

 

E  

t  

a  

a  

k  

f

 

F  

p

𝑞  

 

i  

d

𝑞

 

𝑗  

m  

a  

e  

a  

t  

m  

2  

t  

i  

i

 

c  

a  

a  

Fig. 9. SPM GUI. The dropdown menu within the blue box will allow you to 

choose an observation model, whereas the menu in the red box will permit you 

to select a neuronal model. 
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According to Eq. (36) , computing the posterior 𝑝 ( 𝜃|𝑦, 𝑚 ) requires

he likelihood 𝑝 ( 𝑦 |𝜃, 𝑚 ) , the prior 𝑝 ( 𝜃|𝑚 ) and the normalization constant

 ( 𝑦 |𝑚 ) (also called model evidence). The forward mapping from hid-

en states to observable signals described in the previous section de-

nes the likelihood function. In addition, priors can be specified over

he parameters (for examples, see Marreiros et al. (2010a ). However,

ecause the normalization constant (or model evidence) 𝑝 ( 𝑦 |𝑚 ) is an

ntegral which can be very difficult to compute, calculating the pos-

erior distribution of the parameters can be seldom done analytically.

nstead, model inversion typically relies on approximate inference. Ap-

roximate inference approaches are of two types, depending on whether

hey rely on stochastic or deterministic approximations. Stochastic ap-

roaches include Markov Chain Monte Carlo and other sampling tech-

iques, which have the property that they would approach exact results

f infinitely many samples could be drawn ( Bishop, 2006 ). Model in-

ersion using sampling methods has been successfully implemented for

CM ( Chumbley et al., 2007 ; Raman et al., 2016 ; Sengupta et al., 2016 ,

015 ). However, these techniques are associated with increased compu-

ational demands. Thus, in the context of DCM, deterministic methods

ased on parametric approximations to the posterior distribution, de-

pite their potential issues with local optima, are most commonly used.

ndeed, the standard inversion technique used in DCM is Variational

ayes (VB). In short, VB approximates the log of 𝑝 ( 𝑦 |𝑚 ) (the log model

vidence) with a lower bound that is based on a parametric and com-

utable approximation 𝑞 ( 𝜃) to the posterior. This lower bound is called

he negative free energy 𝐹 ( 𝑞, 𝑦 ) : 

 ( 𝑞, 𝑦 ) = ⟨log 𝑝 ( 𝑦 |𝜃, 𝑚 ) 𝑞 ⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Expected log-likelihood 

− 𝐷 KL [ 𝑞 ( 𝜃) ‖𝑝 ( 𝜃|𝑚 ) ] 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Kullback − Leibler divergence 

(37) 

The goal is to maximize this quantity 𝐹 ( 𝑞, 𝑦 ) . However, note how

q. (37) shows that the negative free energy comprises two distinct

erms. Specifically, the expected log-likelihood can be thought of as an

ccuracy term whereas the Kullback-Leibler (KL) divergence between

pproximate posterior and prior represents a complexity term (also

nown as Bayesian surprise) ( Friston, 2010 ). The complexity term ef-

ectively serves as a regularization term which acts against overfitting. 

VB applied to the inversion of DCMs make two major assumptions.

irstly, it is assumed that 𝑞 ( 𝜃) can be factorized over disjoint sets of

arameters, as follows ( Bishop, 2006 ; Friston et al., 2006 ): 

 ( θ) = 

M ∏
𝑖 =1 

𝑞 𝑖 
(
θ𝑖 

)
(38)

This is called the mean-field approximation. Under this assumption,

t can be shown that the optimal solution 𝑞 ∗ 
𝑖 
( θ𝑖 ) can be expressed as (for

etails, please consult Bishop, 2006 ; Friston et al., 2006 ): 

 

∗ 
𝑖 

(
𝜃𝑖 

)
= 

exp 
(
𝔼 𝑗≠𝑖 

[
log 𝑝 ( 𝑦, 𝜃|𝑚 ) 

])
𝑍 

𝑖 
(39) 

Where 𝔼 𝑗≠𝑖 [ ⋅] represents the expectation taken over all 𝑞 𝑗 ( θ𝑗 ) where

 ≠ 𝑖 , and 𝑍 

𝑖 constitutes a normalization constant. In addition to the

ean field approximation, each 𝑞 𝑖 ( θ𝑖 ) is defined to be Gaussian (Laplace

pproximation) ( Friston et al., 2007 ). We can easily see in Eq. (39) that

ach 𝑞 ∗ 
𝑖 
( θ𝑖 ) is dependent on the other factors 𝑞 ∗ ∖ 𝑖 ( θ∖ 𝑖 ) . Thus, under these

pproximations, model inversion of DCMs rests on iteratively updating

he sufficient statistics of 𝑞 𝑖 ( θ𝑖 ) ( i.e., mean and covariance) in order to

aximize the negative free energy ( Friston et al., 2006 ; Kiebel et al.,

009 ). After convergence, 𝐹 ( 𝑞, 𝑦 ) represents our best approximation to

he log model evidence and, simultaneously, 𝑞 ( 𝜃) will be the best approx-

mation to the true posterior 𝑝 ( 𝜃|𝑦, 𝑚 ) (where “best ” is to be understood

n reference to the chosen form of 𝑞 ( 𝜃) ). 
Finally, note that CSDs are a special case. Indeed, when dealing with

omplex-valued data, the negative free energy needs to be expressed in

 way that separates the real and imaginary parts, and hence splits the

ssociated prediction errors ( Friston et al., 2012 ). Once this is done,
11 
he standard scheme described above can be used to infer the DCM

arameters. For more details, please refer to the relevant publication

 Friston et al., 2012 ). 

1. Implementation in SPM 

SPM is a free and open-source MATLAB software package developed

t the Functional Imaging Laboratory (FIL), Wellcome Trust center for

euroimaging, London. It contains a set of tools to analyze neuroimag-

ng data (e.g., fMRI, EEG, MEG) and can also be used to specify and

stimate DCMs. Since the original papers introduced the theoretical un-

erpinnings of the models, various additions and changes have been

ade in the SPM code. We here provide an overview of some of the

elevant aspects of the current implementation of (conductance-based)

CM in SPM. Notably, this section does not attempt to contain an ex-

austive list of all changes. Instead, we explore only those aspects that

e deem most relevant for the user. 

1.1. Choosing your model 

If you use the SPM graphical user interface (GUI) and try to define

 DCM, you will see a window similar to the one in Fig. 9 . You will be
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Table 2 

SPM options for the neuronal model. Verification of which functions are called by which options can be done by consulting the 

spm_dcm_x_neural.m function. 

Option Neuronal model selected 

ERP (evoked-response potential) 3-population convolution-based NMM. 

SEP (sensory evoked potential) Variant of the ERP model, with different fixed parameter values (see spm_fx_sep.m). As with the ERP 

model, this is a 3-population convolution-based NMM. 

LFP (local field potential) 3-population convolution-based NMM. This model is conceptually the same as the ERP model, except 

for the inhibitory within-source connections: the inhibitory population has recurrent 

self-connections. These were included to allow for modeling of high-frequency oscillations in the 

beta band ( Moran et al., 2007b ). 

CMC (canonical microcircuit) 4-population convolution-based NMM 

NMM (neural mass model) 3-population conductance-based NMM. 

MFM (mean field model) 3-population conductance-based MFM. 

CMM (canonical microcircuit model) 4-population conductance-based NMM. 

NMDA 3-population conductance-based NMM (defining an MFM is also possible, but not via the GUI). This 

model includes the NMDA receptor. 

CMM_NMDA 4-population conductance-based NMM. This model includes the NMDA receptor. 

NFM (neural field model) 3-population convolution-based NFM. Although possible via the GUI, combining this option along 

with an ERP or CSD observation model does not make sense and will consequently return an error 

(see spm_dcm_x_neural.m). 

Table 3 

SPM options for the observation model. Verification of which functions are called by which options can be done by consulting the 

spm_api_erp.m function. 

Option Observation model selected 

ERP (evoked-response potential) Observation model for ERPs. Returns predictions in the time domain. Can be used with all of the 

above neuronal models, except the NFM. 

CSD (cross-spectral density) Observation model for resting-state data. Returns predictions in the frequency domain. Can be used 

with all of the above neuronal models, except the NFM. 

TFM (time-frequency model) DCM of induced cross-spectra. SPM will automatically choose a CMC neuronal model for you (see 

spm_dcm_tfm.m and spm_fx_cmc_tfm.m). 

IND (induced responses) DCM of induced responses. SPM will automatically choose the associated neuronal model for you (see 

spm_dcm_ind.m and spm_fx_ind.m). This model is not covered in the present publication (for 

details, refer to Chen et al., 2008 ). 

PHA (phase coupling) DCM for phase coupling. SPM will automatically choose the associated neuronal model for you (see 

spm_dcm_phase.m and spm_fx_phase.m). This model is not covered in the present publication (for 

details, refer to Penny et al., 2009 ). 

NFM (neural field model) Can only be used with the NFM neuronal model. 

Fig. 10. Within-source connectivity for the 3-population source model, as im- 

plemented in the spm_fx_mfm.m and spm_fx_nmda.m functions. Figure created 

with Biorender.com. 
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Fig. 11. Within-source connectivity for the 4-population source model, as im- 

plemented in the spm_fx_cmm.m and the spm_fx_cmm_NMDA.m functions. In 

the latter function, the inhibitory connection from the superficial pyramidal cell 

population to the spiny stellate cells is not represented (this is indicated by a 

less strong line in the figure). Figure created with Biorender.com. 

w  

r

1
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(  

(  
onfronted with many options for both the observation and the neuronal

odels. To facilitate usage and provide guidance, we have listed the

vailable options in SPM12 in Tables 2 and 3 and explain their meaning

ith regard to the framework introduced in Section 2 of this paper. 

1.2. Modeling intrinsic connectivity 

The intrinsic connectivity rules for the conductance-based models

mplemented in the current version of SPM differ from what was ini-

ially described by David et al. (2006a ). Figs. 10 and 11 illustrate the
12 
ithin-source connectivity patterns currently implemented in SPM, with

eference to the relevant functions. 

1.3. Modeling the neuronal innovations 

Within SPM, the spectral density of the neuronal innovations 𝜆𝑘 

s modeled somewhat differently from what was discussed previously

 Eq. (29) ). In SPM, 2 parameter classes are used to this effect: a and d

see spm_ssr_priors.m and spm_csd_mtf_gu.m). The former models 1∕ 𝜔
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Fig. 12. SPM GUI. This window appears during model inversion. The upper 

plots visually contrast data (dotted lines) and model predictions (solid lines). 

Note that real and imaginary parts of the data are plotted separately. On the 

lower panel, the graph displays the difference between conditional ( i.e. , poste- 

rior) and prior expectation, as a function of the parameter (x axis). Notice how 

some parameters’ posterior estimates distance themselves from the prior values, 

while others do not. 
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Fig. 13. Models used in the simulations. On the left, model 1 includes one single 

source. On the right, model 2 contains 2 sources. These sources are coupled 

via one single extrinsic forward connection, from source 1 to source 2. Figure 

created with Biorender.com. 
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10 Note that these cosine functions are modeling frequency-domain (and not 

time-series) data. Thus, these frequencies cannot be equated to the frequencies 

of the time-domain data. Furthermore, note that using a linear combination of 

cosine functions is a data-driven process. Thus, the range of frequencies picked 

up depend on the characteristics of the data. 
colored) noise, whereas the latter contains the coefficients for a set

f cosine functions. These cosine functions form a basis set that al-

ow for flexibly estimating structure in the neuronal innovations that

eviates from the 1∕ 𝜔 component, while keeping the representation

f this structure compact (compare the common use of discrete co-

ine transform basis functions in image processing). This basis function

pproach to modeling endogenous fluctuations is, to our knowledge,

ot mentioned explicitly in the published literature on DCM for cross-

pectral data; however, it is implemented in the more recent versions of

PM. 

In SPM, a is defined as a matrix: 

 = 

[ 

𝑎 11 𝑎 12 ⋯ 𝑎 1 𝑛 

𝑎 21 𝑎 22 ⋯ 𝑎 2 𝑛 

] 

(40)

here 𝑛 represents the number of sources in the DCM. As for the first

imension of a , for each source 𝑖 , the colored noise ( 1∕ 𝜔 ) component
( 𝑖 ) 
𝑎 ( 𝜔 ) is described as: 

( 𝑖 ) 
𝑎 ( 𝜔 ) = exp 

(
𝑎 1 𝑖 

)
⋅ 𝜔 

− exp ( 𝑎 2 𝑖 ) (41)

𝜆
( 𝑖 ) 
𝑎 ( 𝜔 ) is then a scalar value. If one does this operation for all sources,

ne obtains the 1 × 𝑛 vector 𝜆 ( 𝜔 ) for each frequency 𝜔 : 
𝑎 

13 
𝑎 ( 𝜔 ) = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝜆
( 1 ) 
𝑎 ( 𝜔 ) 

𝜆
( 2 ) 
𝑎 ( 𝜔 ) 
⋮ 

𝜆
( 𝑛 ) 
𝑎 ( 𝜔 ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

𝑇 

(42) 

d is also a matrix, of the following form: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑑 11 𝑑 12 ⋯ 𝑑 1 𝑛 
𝑑 21 ⋱ ⋱ 𝑑 2 𝑛 
⋮ ⋱ ⋱ ⋮ 

𝑑 41 𝑑 42 ⋯ 𝑑 4 𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(43)

Note that the first dimension indicates the number of cosine func-

ions used to model 𝜆𝑘 and that it can be arbitrarily defined. In the

urrent version of SPM, this number has been set to 4, while previous

ersions worked with 8 cosine functions. 10 Once again, the parameters

re defined in a source-specific manner. The component 𝜆𝑑 ( 𝜔 ) of the

pectral density of the neuronal innovations is modeled for all sources

sing matrix multiplication. 

𝑑 ( 𝜔 ) = exp ( 𝐶 ( 𝜔 ) × 𝑑 ) (44) 

Here, 𝐶( 𝜔 ) is a row vector containing the contribution (weight) of

ach cosine function for frequency 𝜔 . In newer versions of SPM with

 cosine functions, this is therefore a 1 × 4 vector. In addition, exp ()
ndicates the elementwise exponential. Therefore, 𝜆𝑑 ( 𝜔 ) also constitutes

 1 × 𝑛 vector for each frequency 𝜔 . 

The 1∕ 𝜔 and cosine components are then combined using an elemen-

wise product: 

( 𝜔 ) = 𝜆𝑎 ( 𝜔 ) ◦𝜆𝑑 ( 𝜔 ) (45) 

here 𝜆( 𝜔 ) corresponds to the vector of neuronal innovations indexed

y 𝑘 in Eq. (32) . 

1.4. Modeling noise 

We now address the channel noise terms introduced in Eqs. (32) and

33) . In SPM, the colored channel noise added to the predicted CSD is

ubdivided into what is called non-specific channel noise (which de-

cribes the contribution of common noise sources, e.g. , in a common

eference channel) and specific channel noise ( Moran et al., 2009 ). The

hite noise component 𝜂 ( Eq. (33) ) is set to zero; yet, white noise can,

n principle, still be represented, as we will see below. Mathematically,

he model is expressed as follows: 

 𝑖𝑗 ( 𝜔 ) = 

∑
𝑘 

𝐾 

𝑘 
𝑖 ⋅𝐾 

𝑘 
𝑗 
⋅ 𝜆𝑘 + 𝑆 

𝑛𝑜𝑖𝑠𝑒 
𝑖𝑗 ( 𝜔 ) + 𝜖𝑖𝑗 ( 𝜔 ) (46)
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Table 4 

Priors distributions used for the simulations: the parameters are defined using a log normal distribution, in order to satisfy certain positivity and negativity 

constraints. For convenience, we provide the names of the functions where the priors are defined, as well as the functions where these parameters play a relevant 

role and are used. Abbreviations: ss = spiny stellate cell population, sp = superficial pyramidal, ii = inhibitory interneuron and dp = deep pyramidal cell populations. 

Parameter 𝜙
𝒊 

𝜙𝑖 = 𝜋𝑖 exp ( 𝜃𝑖 ) 
𝜃𝑖 =  ( 0 , 𝜎2 

𝑖 
) 

Meaning and relevant equation Prior mean Prior variance 𝝈2 
𝒊 

Relevant SPM functions 

Σ( 𝑗) Variance of univariate 

normal distribution 

 ( 𝜇( 𝑗) 
𝑉 

− 𝑉 𝑅 , Σ( 𝑗) ) 
( Eq. (15) ) 

𝜋𝑆𝑖𝑔𝑚𝑎 = 32 1/64 spm_cmm_NMDA_priors.m 

spm_fx_cmm_NMDA.m 

𝜅 Ion channel rate constant 

( Eq. (8) ) 

𝜋𝐴𝑀𝑃𝐴 = 1000∕4 
𝜋𝐺𝐴𝐵𝐴 = 1000∕16 
𝜋NMDA = 1000∕100 

1/64 spm_cmm_NMDA_priors.m 

spm_fx_cmm_NMDA.m 

𝐶 Membrane capacitance ( Eq. (5) ) 𝜋𝑠𝑠 = 128∕1000 
𝜋𝑠𝑝 = 128∕1000 
𝜋𝑖𝑖 = 256∕1000 
𝜋𝑑𝑝 = 32∕1000 

1/16 spm_cmm_NMDA_priors.m 

spm_fx_cmm_NMDA.m 

𝛾
( 𝑗,𝑖 ) 
𝑘 

Coupling parameter for 

within-source connectivity 

( Eq. (15) ) 

𝜋𝛾 = 0 to 128, 

depending on the 

exact connection 

1/32 (if connection defined by 

modeler) or 0 (if connection is 

not defined) 

spm_cmm_NMDA_priors.m 

spm_fx_cmm_NMDA.m 

𝑎 1 Amplitude of the colored 

component of the neuronal 

innovations ( Eq. (41) ) 

𝜋𝑎 1 
= 1 1/128 spm_ssr_priors.m 

spm_csd_mtf_gu.m 

𝑎 2 Exponent of the colored 

component of the neuronal 

innovations ( Eq. (41) ) 

𝜋𝑎 2 
= 1 1/128 spm_ssr_priors.m 

spm_csd_mtf_gu.m 

𝑑 Weight of cosine function 

( Eq. (44) ) 

𝜋𝑑 = 1 1/128 spm_ssr_priors.m 

spm_csd_mtf_gu.m 

𝑏 1 Amplitude of non-specific 

channel noise ( Eq. (48) ) 

𝜋𝑏 1 
= 1 1/128 spm_ssr_priors.m 

spm_csd_mtf_gu.m 

𝑏 2 Exponent of non-specific channel 

noise ( Eq. (48) ) 

𝜋𝑏 2 
= 1 1/128 spm_ssr_priors.m 

spm_csd_mtf_gu.m 

𝑐 1 Amplitude of specific channel 

noise ( Eq. (48) ) 

𝜋𝑐 1 
= 1 1/128 spm_ssr_priors.m 

spm_csd_mtf_gu.m 

𝑐 2 Exponent of specific channel 

noise ( Eq. (48) ) 

𝜋𝑐 2 
= 1 1/128 spm_ssr_priors.m 

spm_csd_mtf_gu.m 
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Here, we have substituted 𝜆𝑐 ( 𝜔 ) with 𝑆 

𝑛𝑜𝑖𝑠𝑒 
𝑖𝑗 

( 𝜔 ) . In SPM, two parame-

er classes model channel noise: b and c . Each of these parameter classes

s a 2 × 1 vector: 

 = 

[ 
𝑏 1 
𝑏 2 

] 
c = 

[ 
𝑐 1 
𝑐 2 

] 
(47)

here b contains the parameters that model non-specific channel noise,

hereas c models specific channel noise. Non-specific noise affects the

ull cross-spectra, whereas specific noise only affects the power spectra.

 

𝑛𝑜𝑖𝑠𝑒 
𝑖𝑗 

( 𝜔 ) is then expressed as: 

 

𝑛𝑜𝑖𝑠𝑒 
𝑖𝑗 ( 𝜔 ) = 

{ 

exp 
(
𝑏 1 − 2 

)
⋅ 𝜔 

− exp ( 𝑏 2 ) + exp 
(
𝑐 1 − 2 

)
⋅ 𝜔 

− exp ( 𝑐 2 ) if ∶ 𝑖 = 𝑗 

exp 
(
𝑏 1 − 2 

)
⋅ 𝜔 

− exp ( 𝑏 2 ) otherwise 

(48) 

Note that b and c are not single-channel-specific and that, in the

xtreme case where 𝑏 2 or 𝑐 2 take very small negative numbers, both

 exp ( 𝑏 2 ) and − exp ( 𝑐 2 ) will be close to zero and 𝑆 

𝑛𝑜𝑖𝑠𝑒 
𝑖𝑗 

( 𝜔 ) will essentially

odel white noise. The exponential functions in the expression ensure

ositivity and negativity constraints in the magnitude and exponent,

espectively, of the noise terms. 

1.5. Inverting models 

Inverting DCMs can be done in SPM either via the GUI or pro-

rammatically. While using the GUI might at first be a more intuitive

pproach, inverting models at scale is best done by writing a script

hat automatically fits DCMs over, for instance, multiple subjects,

r different conditions. To showcase model inversion, we have used

-channel cross-spectral LFP data from an anaesthetized rodent. This

ataset is freely available and can be downloaded from the SPM

ebsite: https://www.fil.ion.ucl.ac.uk/spm/data/dcm_csd. In addi-

ion, the SPM developers have written a tutorial on model inversion
14 
sing this dataset and the GUI (for details, see Chapter 45 of the

PM12 Manual, Ashburner et al. 2018 ). For this publication, we

ave written a short script to invert a simple 2-region DCM on these

mpirical data. The code is freely available and can be found at:

ttps://gitlab.ethz.ch/tnu/code/pereiraetal_conductance_based_dcm. 

n SPM, DCMs are specified using MATLAB structure arrays. This is

he construct one uses to tell SPM which neuronal model and which

bservation model are to be used, as well as to specify how many

ources one wishes to define and their associated connectivity. Once

his is done, it is possible to call spm_dcm_csd.m, a “master function ”

hich estimates the posterior parameter estimates of the model. The

ctual model inversion is performed by the spm_nlsi_GN.m function,

hich fits the generative model using the procedure described in

ection 10 . Once the inversion is started, SPM will open a new window

imilar to the one shown in Fig. 12: 

In addition, during model inversion, one sees an output similar to

he following in the MATLAB command window: 
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Fig. 14. Simulated data using model 1, as specified in Fig. 13 . The prior parameter values from SPM12 were used to perform the simulations of plots A, B and 

C. For these three plots, the value of each parameter was altered up to two prior standard deviations away from the prior mean. +2 𝜎 indicates that two standard 

deviations were added to the prior parameter value, whereas −2 𝜎 signals that two standard deviations were removed. In addition, data were also simulated using 

the prior value for the parameter. Only the magnitude of the PSD is plotted. (A) Changes in the value of 𝜅𝐴𝑀𝑃𝐴 are more strongly reflected in the 15–30 Hz interval. 

(B) Increases in the weight of the connection from the spiny stellate cells to the superficial pyramidal cells gives rise to a predicted increase in the magnitude of the 

spectra, which is more evident below 20 Hz. (C) Changes in the value of parameter Σ( 𝑗) lead to alterations similar to those observed in subplot A. (D) This subplot 

is somewhat different from the other three. Here, the magnesium switch was parameterized and 𝛼NMDA was allowed to vary. However, since no prior distribution is 

defined within SPM12, the values tested were manually chosen (see legend), and fall within those evaluated in a previous publication ( Moran et al., 2011a ). The 

white dotted line corresponds to the default value in SPM12. 𝛼NMDA plays an important role by determining which frequency band is associated with the maximal 

magnitude. 
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Note how the command window indicates the number of the itera-

ion, whether the value of the negative free energy has increased (de-

oted by “( + ) ”) or decreased ("(-) ”), the current value for the negative

ree energy, as well as the predicted and actual change in the nega-

ive free energy value at each iteration. When the difference between

egative free energy values at successive iterations falls below a de-

ermined threshold (in SPM, this threshold is 0.01), the algorithm is

hought to have converged and the DCM has been fitted. All results are

tored within the DCM Matlab structure array and one can now inspect

CM.Ep for the expectations of the posterior parameter estimates, as

ell as DCM.Cp for the posterior covariance matrix. 
15 
2. Simulations 

So far, we have reviewed the mathematical equations for cbDCM for

ross-spectral densities derived from electrophysiological data. In addi-

ion, we discussed some aspects of the implementation in SPM that we

eemed useful for the reader. In this section, we conclude this second,

ore practical part of the paper by making use of simulations to provide

n intuitive and qualitative understanding of the role certain parameters

lay in the generation of cross-spectra. 

To do this, we define two simple models ( Fig. 13 ) of cross-spectral

FP data. Both models are cbDCMs with four neural populations per

ource and the NMDA receptor. The first model contains only one source

o illustrate the effect of within-source parameters. The second model

ncludes two sources to illustrate the effect of between-source parame-



I. Pereira, S. Frässle, J. Heinzle et al. NeuroImage 245 (2021) 118662 

Fig. 15. Simulated data, now changing the value of 𝑎 2 , the exponent for the 

colored noise component of the neuronal innovations. 
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ers. Specifically, in the second model, one single extrinsic connection

s defined, from source 1 to source 2. 

To examine the effect of changing specific parameter values on the

SD, we start by taking the prior mean, as defined in SPM12, to generate

ata. We then change the value of single parameters using the standard

eviation of the prior distribution of that parameter ( i.e., the prior stan-

ard deviation). Specifically, we alter the value of single parameters up

o two prior standard deviations away from the prior mean. Note that

arameters in SPM12 are generally defined in log normal space and

ubsequently scaled. Thus, for each parameter 𝜙𝑖 : 𝜙𝑖 = 𝜋𝑖 exp ( 𝜃𝑖 ) , where

𝑖 =  ( 0 , 𝜎2 
𝑖 ) . The scaling factor 𝜋𝑖 is responsible for transforming the

arameter into the actual physical quantity of interest. Table 4 repro-

uces the sufficient statistics of the prior distributions used in SPM12

nd for these simulations. 

In one set of simulations, we changed the current parameteriza-

ion in SPM12 to illustrate the effect of the magnesium nonlinearity.

hile the magnesium block parameters are fixed by default in the cur-

ent SPM implementation, they have been parameters of interest in sev-

ral previous studies. For example, Moran et al. (2011a ) parameterized

he magnesium switch as in Eq. (6) . In this publication, we also de-

ne αNMDA as a parameter of interest and, instead of defining a prior

istribution and using the method outlined above, we set it to val-

es similar to those previously tested in this publication ( Moran et al.,

011a ). 

In the following, we plot the synthetic data. Please note that the

hoice of frequency interval, as well as the parameters that are tested

nd the range over which the parameter values are varied represents an

xemplary selection. Furthermore, we here deliberately defined simple

odels by restricting ourselves to models with 1 to 2 sources and LFP

ata. Our aim is to provide an illustration of the dynamics of the models

nd not to comprehensively test the model or explore what cbDCM can

r cannot do. The complexity of cbDCM means that it is not always

asy to predict how changes in one parameter will affect the spectra.

hus, if the reader wishes to inspect other parameter settings, the

ode for these simulations is freely available and can be accessed here:

ttps://gitlab.ethz.ch/tnu/code/pereiraetal_conductance_based_dcm. 

his is meant to offer an easy, hands-on experience with cbDCMs and

e encourage the reader to experiment with the code. 

2.1. Single-source model 

We start by analyzing the parameters of the neuronal model.

ig. 14 shows the results of the simulations when one changes the values
16 
f four different parameters (please note that the y -axes of the plots are

caled differently). In the context of this first single-source LFP model,

e assume only one electrode is present, and therefore have only one

hannel ( Fig. 8 ), and only one plot per parameter tested. 

Let us start with κAMPA , the AMPA receptor rate constant ( Eq. (8) ,

ubplot A in Fig. 14 ). Visually, one sees that changes in this parameter’s

alue lead to more apparent alterations in the peak around 20 Hz, with

ecreases in the value of κAMPA leading to an increase in the magnitude

f the PSD. Subplot B is similar to the previous plot, with the difference

hat the parameter changed is the within-source coupling parameter 𝛾
( 𝑗,𝑖 ) 
𝑘 

 Eq. (15) ), weighting the connection from the spiny stellate cells ( 𝑖 ) to

he superficial pyramidal cells ( 𝑗). This particular connection was cho-

en because the superficial pyramidal cells constitute the neural pop-

lation that is assumed (within SPM12 for 4-population conductance-

ased models) to most significantly contribute to the measured signal

for a detailed discussion on the contribution of the different popula-

ions, refer to Murakami et al. 2006 ). Increases in the strength of this

onnection would intuitively lead to an increase in the magnitude of the

pectra, which is what is observed in Fig. 14 . This effect is much more

ronounced for frequencies below 20 Hz. 

Parameter Σ(j) (the variance of the univariate normal distribution

rom Eq. (15) ) is assumed to take on the same value for all neuronal

opulations in the model. When testing this parameter, we obtained an

ffect qualitatively similar to that observed for κAMPA (subplot C). Fi-

ally, we turn to 𝛼NMDA , the magnesium non-linearity parameter, which

xerts a profound influence on the PSD, and determines which frequency

and is associated with the maximal magnitude. In the current imple-

entation of SPM12, 𝛼NMDA is fixed to 0.06, yet has been used as a

ree parameter in various previous publications ( Moran et al., 2011a ;

ymmonds et al., 2018 ). In our simulations (subplot D), values below

.06 are associated with maximal PSD in the lower frequencies ( < 5 Hz).

onversely, as the value of 𝛼NMDA is increased, a significant rise in the

alue of the spectra in the 15 to 25 Hz interval occurs, with the beta band

13–29 Hz) eventually becoming the band associated with the maximal

SD. 

Fig. 15 displays the data generated by modifying the value of 𝑎 2 , the

xponent of the colored noise component of the neuronal innovations

 Eq. (41) ). Changes in 𝑎 2 lead to a qualitative effect again similar to that

een for κAMPA and Σ(j) , albeit with more pronounced alterations in the

requencies below 20 Hz. 

Changes in the cosine set parameters of the neuronal innovations also

ead to interesting alterations. For this set of simulations, we change the

alue of a single parameter up to 5 prior standard deviations away from

he prior mean, to make the qualitative effect more apparent. Fig. 16

hows how changes in the value of the 4th cosine function coefficient

ead to differences in the strength of an oscillation on top of the prior

pectral density. In particular, with more extreme values of the param-

ter, one can observe more pronounced oscillations around the prior

alue ( 0σ). 

Finally, we investigated the effect of the channel noise. Fig. 17 shows

he data simulated after changing the value of 𝑐 2 , the exponent of the

pecific, colored channel noise ( Eq. (48) ). It is evident that under our

urrent settings, the changes induced in the power-spectra are subtle. By

nspecting the full band, one does not see any changes. Even after “zoom-

ng in ” on very high frequencies, the effect still appears very modest.

his is likely due to the fact that, under the prior settings, the amplitude

f the channel noise is given by exp ( −2 ) (compare Eq. (48) ). 

2.2. Two-source model 

The two-source model was defined specifically to study the effect of

he extrinsic connectivity parameters on the power- and cross-spectral

ensities. As pointed out previously, this second model incorporates 2

ources. These are connected via one single forward projection from

ource 1 to source 2. Again, by modeling LFPs, we can assume one elec-

rode per source, therefore having a total of two channels ( Fig. 8 ). In
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Fig. 16. Same as Fig. 15 , now changing the 

value of 𝑑 41 , the 4-th cosine function coefficient 

for source 1. The left plot shows the results over 

the full band, whereas the right plot “zooms 

in ” on the lower frequencies (1–13 Hz), for a 

clearer visualization of the effect the parame- 

ter has on model output. 

Fig. 17. Same as Fig. 15 , now changing the 

value of 𝑐 2 , the exponent of the specific colored 

channel noise. 

F  
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i  

a  

i  

i  

2  

s  

2

 

c  
ig. 18 , we simulate data after changing the value of the single AMPA-

ediated extrinsic connectivity parameter. Only the upper half of the

anels is shown, given the symmetry in the data. The magnitude of the

omplex spectra is plotted and the panel titles indicate which channels

re being considered. As expected, the extrinsic connectivity parameter

nfluences the scaling of the spectra, with higher values being associ-

ted with increased magnitude of the CSD. Note that the cross-spectra
17 
n panel CSD 1/1 are not affected by changes in this parameter. This

s because we define no backward connection from Source 2 (Channel

) to Source 1 (Channel 1). Therefore, changes in the connection from

ource 1 to Source 2 will only elicit changes in the signal from Source

, and will not affect the signal from Source 1. 

To summarize, while all of the parameters are associated with

hanges in the model output, the qualitative and quantitative degree
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Fig. 18. Simulated data using model 2, as specified in Fig. 13 . The prior parameter values from SPM12 were once again used to perform the simulations. In this 

setting, the weight of the AMPA-mediated extrinsic connection from source 1 to source 2 was altered, up to two prior standard deviations away from the prior mean. 

Only the upper half of the panels is shown, given the symmetry in the data. The panel titles indicate which channels are being considered. Only the magnitude of 

the cross-spectra is plotted. Figure created with Biorender.com. 
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t  
f change vary depending on the parameter considered. For instance,

hile 𝑐 2 exerted a very modest effect on the cross-spectra, other param-

ters, such as 𝑎 2 , had a much more marked effect on the model output.

n addition, certain parameters seem to preferably affect one frequency

and over another. For instance, while the intrinsic connectivity pa-

ameter affected mostly the lower frequencies, other parameters, such

s κAMPA , exerted a greater influence on the beta band. Finally, certain

arameters showed an interesting qualitative effect, such as the cosine

omponent of the neuronal innovations and, in particular, the magne-

ium nonlinearity parameter 𝛼NMDA . 

3. Summary and conclusions 

With the increasing use of more complex and sophisticated mod-

ls in neuroscience, understanding the conceptual and mathematical

rinciples behind these models has become more challenging. DCM
18 
or electrophysiological data, which was the focus of the present pa-

er, builds on previous neurophysiological models and works with sev-

ral layers of approximation. Keeping track of these steps is a diffi-

ult but crucial task if one is to understand the foundations of this

lass of generative models and be able to judge their strengths but also

imitations. 

In this paper, we have discussed the different DCM variants for elec-

rophysiological data and reviewed cbDCM in particular. We have de-

cribed the neuronal model in detail, explaining how single-neuron dy-

amics can be incorporated in a microcircuit model. We then turned to

he observation model and derived it for resting-state electrophysiolog-

cal data (CSDs). 

In a second, more practical part of this paper, we reviewed several

spects related to the current implementation of these models in SPM.

n particular, we discussed how intrinsic connectivity is represented for

he 3- and 4-population neuronal models, and detailed how neuronal
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nnovations and channel noise are modeled. Finally, we presented sim-

lations from very simplistic models, in order to equip the reader with

 first qualitative understanding of how changes in specific parameters

an alter the model’s output. 

We hope this tutorial paper will prove useful not only for readers

tarting to work with DCM for electrophysiological data, but also to

cientists with more experience with these models. 
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