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a b s t r a c t 

Decoding others’ intentions accurately in order to adapt one’s own behavior is pivotal throughout life. 

In this study, we asked how younger and older adults deal with uncertainty in dynamic social environ- 

ments. We used an advice-taking paradigm together with Bayesian modeling to characterize effects of 

aging on learning about others’ time-varying intentions. We observed age differences when comparing 

learning on two levels of social uncertainty: the fidelity of the adviser and the volatility of intentions. 

Older adults expected the adviser to change his/her intentions more frequently (i.e., a higher volatil- 

ity of the adviser). They also showed higher confidence (i.e., precision) in their volatility beliefs and 

were less willing to change their beliefs about volatility over the course of the experiment. This led 

them to update their predictions about the fidelity of the adviser more quickly. Potentially indicative 

of stereotype effects, we observed that older advisers were perceived as more volatile, but also more 

faithful than younger advisers. This offers new insights into adult age differences in response to social 

uncertainty. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Throughout our lives we often consider the advice of oth-

ers when making important decisions. Which insurance should

we take? Is it better to buy or to rent a house? When rely-

ing on someone’s advice in such scenarios, it is pivotal to de-

code the other’s intentions accurately. However, this inference pro-

cess is imbued with various sorts of uncertainty. Others’ inten-

tions cannot be observed directly but can only be inferred from

their behavior and the outcomes associated with their advice.

Moreover, others’ intentions may also change over time, such that

we have to concurrently update our predictions about how sta-

ble and trustworthy another person is. Such social skills might

even become more essential the more we rely on the support
∗ Corresponding author at: Lifespan Developmental Neuroscience, Faculty of Psy- 

chology, Technische Universität Dresden, Zellescher Weg 17, Germany Tel.:+49 
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of others in older age. However, there is reason to hypothesize

that social inference in dynamic social contexts changes over the

course of the lifespan. Evidence from studies investigating learn-

ing in non-social environments indicates that older adults com-

pute and represent uncertainty in changing environments differ-

ently than younger adults ( Hämmerer et al., 2018 ; Nassar et al.,

2016 ). It is easily conceivable that these age-related differences in

dealing with uncertainty also play an important role when older

adults navigate social environments. Previous studies investigat-

ing the effects of aging on the visual processing of social stim-

uli ( Goh et al., 2010 ), on social evaluation ( Cassidy et al, 2012 ),

as well as on trust and trustworthiness ( Bailey et al., 2012 , 2015 ;

Suzuki et al., 2019 ), have revealed differences between younger

and older adults. Moreover, impairments regarding higher-order

socio-cognitive skills like Theory of Mind or mentalizing have been

demonstrated in older as compared to younger adults ( Henry et al.,

2013 ; Reiter et al., 2017 ). Studies regarding adult age differences

on trust, however, have showed mixed results ( Bailey et al., 2012 ,

2015 ; Bond Jr and DePaulo, 2008 ; Pak et al., 2017 ; Sutter and

https://doi.org/10.1016/j.neurobiolaging.2021.01.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neurobiolaging.2021.01.034&domain=pdf
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Kocher, 2007 ; Suzuki et al., 2019 , see Bailey and Leon (2019) for

a very recent meta-analysis), which was attributed to the differ-

ent methodological approaches used to study trust (e.g., self-report

vs. behavior, financial vs. nonfinancial expressions of trust). Ac-

cording to recent meta-analytical evidence, a consistent finding

across studies was that older adults were more trusting of the un-

trustworthy than younger adults ( Bailey and Leon, 2019 ). However,

notably, most of these studies did not use paradigms that required

participants to learn about, and adapt to, changing social input

over time. 

To investigate the question of how older adults deal with a dy-

namically changing social environment, and the uncertainties as-

sociated with it, we build on recent advances in computational

modeling of social interaction in younger adults ( Behrens et al.,

2008 ; Diaconescu et al., 2014 ). This research demonstrated that a

biologically plausible Bayesian framework, the Hierarchical Gaus-

sian Filter ( Mathys et al., 2011 , 2014 ), can be used to formally

capture the process of inferring the time-varying states of oth-

ers ( Diaconescu et al., 2014 ). The authors used an advice taking

paradigm to study how participants inferred, and learned about,

the fidelity of another person over time. In the Bayesian frame-

work, such social learning is captured at hierarchically organized

levels. The highest level (third) represents the volatility of the so-

cial environment, that is, the rate at which intentions change. One

level below (second level) represents the adviser’s fidelity, that is,

the tendency of the adviser to give accurate advice. The lowest

level (first) represents the observation of whether the advice re-

ceived was indeed accurate or not. Importantly, these levels are

connected. Knowing whether to disregard an unexpected outcome

(e.g., ignore one misleading piece of advice by someone who was

helpful in the past), or whether to take it seriously (e.g., revise

one’s belief about the adviser’s fidelity), depends on the preci-

sion of one’s beliefs. When the precision of beliefs about the ad-

viser’s fidelity is low, the agent is more sensitive to newly observed

outcomes. Thus, the agent will be more inclined to incorporate

prediction errors – that is, surprising outcomes not in line with

one’s prior belief of the adviser – into future predictions about

the adviser and adapt her behavior accordingly. Different neuro-

transmitter systems are suggested to be involved in signaling pre-

diction errors (PEs) on different levels. Whereas lower-level PEs

concerning the adviser’s fidelity were associated with dopaminer-

gic neurotransmission, higher level PEs about the adviser’s volatil-

ity were found in the cholinergic septum ( Diaconescu et al.,

2017 ). This dissociation on the level of neuro-modulation has

also been observed in nonsocial tasks ( Iglesias et al., 2013 ).

Importantly, both the dopaminergic and the cholinergic system

undergo marked change during aging ( Bäckman et al., 2006 ;

Grothe et al., 2012 ). 

In this study, we tested younger and older adults in a dynamic

advice-taking paradigm ( Diaconescu et al., 2017 ), interacting ei-

ther with a younger or an older adviser (manipulated in a within-

subject manner). Specifically, we investigated whether age groups

differ with regards to the computation of 2 main quantities: (1)

their beliefs about the probability of receiving accurate advice and

(2) their belief precision about the adviser’s fidelity. Estimating the

parameters of a hierarchical Gaussian filter from participants’ deci-

sions allowed for the individual quantification of (1) learning about

the fidelity of an adviser (i.e., the probability of receiving accurate

advice) at the lower level, and (2) how this fidelity changes over

time (i.e., the volatility of intentions) at the higher level. Based

on findings from the non-social domain ( Hämmerer et al., 2018 ;

Nassar et al., 2016 ), we expected to find higher volatility estimates

in older adults than younger adults. Furthermore, we were inter-

ested in whether such computations were altered as a function of

the social identity of the adviser (own age vs. other age adviser). 
2. Methods 

2.1. Sample 

The study sample consisted of a total of 82 participants (37

young adults [YA], age range 18–30 years and 46 older adults [OA],

age range 65–80 years). Participants were excluded from analy-

sis if they met the following a priori exclusion criteria: dementia

screening ( Nasreddine et al., 2005 ) below cut-off (n = 4), self-

report of a (current) diagnosed psychiatric condition (n = 2 de-

pression, n = 1 borderline personality disorder), neurological diag-

nosis (n = 1 stroke, n = 1 Parkinson’s disease), reporting problems

in discriminating stimulus colors during or after the experiment

(n = 2). N = 5 participants had to be excluded due to technical or

human errors during data acquisition. Thus, the final sample con-

sisted of 33 OA (20 female, mean age = 71.97 years, SD = 3.95)

and 34 YA (21 female, mean age = 24.35 years, SD = 3.11), a

sample size which was similar to recent studies detecting age dif-

ferences in decision-making under uncertainty ( Hämmerer et al.,

2018 ), or defining inter-individual differences on a related advice-

taking paradigm ( Henco et al., 2020 ; Sevgi et al., 2020 ). Partici-

pants provided written informed consent prior to study partici-

pation. They received 8.50 €/hour for participating and could win

extra-money in the decision-making experiment. Ethical approval,

in accordance with the Helsinki declaration, was granted by the TU

Dresden ethics committee. 

2.2. Experimental Task and Procedure 

The advice-taking task was applied behaviorally in a similar

manner as reported in Diaconescu et al. (2017) . Participants played

120 trials of a simple binary lottery game where they had to decide

whether to bet on blue or green, one of which would win at the

end of the trial. To come to this decision, participants could rely on

2 sources of information: (1) a pie chart displaying the true proba-

bilities of winning associated with the 2 colors (blue vs. green pie

charts: 75 � 25, 65 � 35, 55 � 45, 45 � 55, 35 � 65, and 25 � 75), and (2) a

piece of advice given by another person (the ‘advisor’), which was

presented via a video ( Fig. 1 ). To provide advice the advisor held

up a card in the color that he/she recommended to pick. The accu-

racy of the advice was randomized to the majority color of the pie

chart; hence, the accuracy of the advice was independent of the

pie chart probabilities. 

The participants were instructed that the adviser had been

playing the game in a session before and had been provided more

insight by the experimenter than themselves concerning which

color would win on each trial. They were instructed that because

of a different incentive structure, the adviser’s motivation to pro-

vide helpful advice might change over the course of the experi-

ment – it could be that an adviser is misleading at certain points

of the experiment, but helpful at other points. Participants were

told that it is thus important to constantly monitor the adviser’s

intentions in giving accurate or false advice. They were instructed

that their accurate predictions of the winning color would be fi-

nancially incentivized. This was visualized by a progress bar which

increased every time participants bet on the correct color, and de-

creased when participants missed a trial or predicted the wrong

color. By reaching certain thresholds (visualized by silver and gold

bars in the experiment) with their progress bar, they would gain

extra money on top of their basic study reimbursement. The valid-

ity of the advice was predetermined based on the dominant strat-

egy that previous real human advisers actually used in this task

( Diaconescu et al., 2014 ). This input structure (i.e. the trial-by-trial

sequence of congruency of the advice with the outcome) was held
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Fig. 1. Task and Raw Choice Data. (A) An example trial sequence. In a simple, roulette-like decision-making game, participants decided between green and blue on each 

trial, one of which was the winning color. Before making a choice, participants saw both (i) a pie chart indicating the true winning probability of the colors in the respective 

trial and (ii) the advice of another person, shown via video. After making a decision, participants received feedback indicated by an asterisk appearing on the winning part 

of the pie chart. By observing the congruency of the advice with the outcome, participants can update their belief about how likely the adviser is to give accurate advice 

(i.e., the adviser’s fidelity), and how much this changes over time (i.e., the adviser’s volatility). (B) Choice data for younger and older adults. The figure shows the proportion 

of advice following as a function of participants’ age group and the phase of the experiment (stable, volatile, stable). Predicted values of a mixed model were plotted using 

the predict function in R. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

constant across participants and was simulated based on an opti-

mal Bayesian learner. 

In accord with previous studies ( Behrens et al., 2008 ;

Diaconescu et al., 2014 , 2017 ), the advice was manipulated to be

stable and valid in a first phase of the experiment (40 trials),

volatile in a second phase (40 trials) and stable and valid again

in a last phase (40 trials) of the experiment. 

In order to investigate potential differences in social inference

as a function of the adviser’s age group (YA vs. OA), all participants

came to the lab twice, once interacting with an older adviser and

once interacting with a younger adviser (the order of the 2 within-

subject sessions was counterbalanced across participants). Advis-

ers were gender-matched to the participant. Participants were de-

briefed about the cover story after the second testing day. On aver-

age, the 2 testing sessions were m = 6.83 ±1.35 days apart (range

3–14 days). Two slightly different versions of the input structure,

created by exchanging the 2 stable phases, were used for the 2

testing days of the within-subject assessment (counter-balanced in

order). 

Note that this experimental set-up strongly builds on a previous

validation study in young adults ( Diaconescu et al., 2014 ). Notably,

Diaconescu et al. also included a control task, closely matched to

the social task described above, in which any intentionality was re-

moved from the adviser. In this control task, players were shown

to rely significantly more on the non-social cue, and less on the

social cue, lending evidence to the notion that the social intention-

ality manipulation adopted here is indeed effective. 

We used MATLAB for computational modeling, R for mixed

models and SPSS for repeated-measures MANOVAs. Trial-by-trial

decisions on whether to follow a piece of advice were subjected

to a logistic mixed effects model ( Bates et al., 2014 ) with the fol-

lowing fixed effects: participants’ age group, adviser’s age group,

phase, and trial number within-phase (in order to mimic trial-

by trial learning about the adviser’s changing intentions within

a certain phase). Testing session and version of the input struc-

ture were included as nuisance regressors. We included a maxi-

mal random effects structure as recommended by simulation stud-

ies ( Barr et al., 2013 ). Degrees of freedom were approximated and

p- values obtained using the R package afex ( Singmann et al., 2016 ).

Post-hoc tests were done using the package lsmeans ( Lenth, 2016 ).

None of our participants met our a-priori exclusion criterion of

missing more than 10% ( > 12) of all trials. 

2.3. Hierarchical Bayesian Social Inference Model 

In accord with previous work ( Diaconescu et al., 2014 ; 2017 ),

several cognitive models were applied to investigate age differ-
ences in updating beliefs about other people’s (time-varying, un-

certain) intentions (compare Fig. 2 a for an overview). The com-

putational framework adopted in this study is based on Bayesian

theories of brain function, which suggest that the brain maintains,

and continuously updates, a model of the environment and uses

this model to infer the hidden causes of the environmental inputs

it receives ( Friston, 2009 ). Note that the choice of computational

models applied here was based on our previously published vali-

dation study in young adults that used a very similar task as well

as the “Bayesian Brain” theory to explain social inference behavior

in young adults ( Diaconescu et al., 2014 ). See this model validation

study for more details regarding the class of models described in

the following. 

2.3.1. Learning models 

The Hierarchical Gaussian Filter (HGF), a hierarchical Bayesian

model of learning under uncertainty and volatility ( Mathys et al.,

2011 , 2014 ), is one formal implementation of the Bayesian

brain theory. According to the HGF, an agent uses observ-

able environmental inputs (in our paradigm this is the congru-

ency/incongruency of advice and outcome) to make inferences on

hidden states of its environment (in our case, the time-varying in-

tentions of the adviser). The HGF allows for the estimation of these

hierarchically coupled states that characterize participants’ learn-

ing about two types of environmental statistics—namely the prob-

ability and the volatility of the adviser giving correct advice (see

Fig. 2 B for a schema of this hierarchy). The HGF learning model

includes 3 free parameters (see Eq. 3 and Eq. 4 (Supplementary

Material) for a definition, Fig. 2 B for a graphical depiction, Table 1

for a conceptual description). κ , ω, and ϑ, determine how these

states evolve as a function of the inputs the participant receives

(pie chart, advice, trial outcome). The parameter κ represents the

coupling between the second and the third level, or how much

the learner utilizes the estimated adviser volatility at the higher

level when predicting the adviser’s fidelity. The parameter ω is

the constant or participant-specific component of log-volatility on

the second level. It captures the degree to which the learner up-

dates his/her beliefs about the adviser’s fidelity x (k ) 
2 

, independent

of the volatility. The parameter ϑ represents the meta-volatility or

the variance of the adviser’s volatility. 

Here, we consider 2 versions of the HGF: the full, 3-level ver-

sion (see Supplementary Methods) as well as a reduced, 2-level

version, which lacks the above described third level, and thus does

not postulate hierarchical learning about the adviser’s volatility

( Diaconescu et al., 2014 ). As a further (simpler) control model,

we fit the Rescorla-Wagner (RW) model, which is a standard re-

inforcement learning model. In the widely used RW model, val-
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Fig. 2. Model space and model selection. (A) Model Space. The model space was set up based on a 3 × 2 × 2 structure. Factor 1: The first factor represents the percep- 

tual/input model families (3-level HGF, reduced 2-level HGF, RW). Factor 2: In the case of the HGF, 2 response models were introduced. Decision noise when translating 

beliefs to decisions was either dependent on the trial-by-trial volatility (“volatility model”), or not (“decision noise model”). This cannot be formalized for the reduced 2-level 

HGF or RW, which does not describe computation of volatility. Factor 3: Different response models describe differential weighting of social (advice) and nonsocial (pie chart) 

information. These models propose that participants’ decisions are based on: both advice and pie chart information (“integrated: Cue and advice”), only advice (“Reduced: 

advice”) or only pie chart (“Reduced Cue”). Thus, at the bottom, the single models entering model selection (12 models in total) are shown. (B) Graphical depiction of the 

hierarchical Gaussian filter with an integrated response model (winning model). Beliefs are organized as a hierarchy (x1…x3). x1 is the binary sensory input indicating the 

accuracy (true/false) of the current piece of advice, x2 is the current probability that the advice is correct (the fidelity of the advice) and x3 is the current volatility of 

the adviser’s intentions. There are five ( ϑ, ω, κ , ζ , β) free parameters of the model. The parameter κ determines how strongly x2 is influenced by x3, ω represents the 

tonic learning rate on the second level. The parameter ϑ is the meta-volatility parameter, governing updating speed on the third level. To map beliefs onto decisions y, 

the response model computes the probability of the outcome given both the social (advice) and the nonsocial (pie chart) information. Decisions y are influenced by the 

parameter ζ , which determines the weight of the social cue relative to the nonsocial cue, and by β , which captures choice stochasticity. (C) Model stability across conditions. 

As each participant completed the task twice (within-subject design), interacting with an OA adviser and a YA adviser, we tested for model stability across both conditions. 

Log model evidences do not differ as a function of condition (left panel). BMS reveals evidence of no difference as a function of adviser’s age group condition (right panel). 

Thus, the strategy employed to solve the task does not differ when interacting with a YA vs. an OA adviser. See Panel A for (D) Model Selection across the single models. 

Using Family BMS, we pooled perceptual (middle panel) and response models (right panel) of the same kind and compared their plausibility given the data. Exceedance 

probability indicated that evidence was highest for the 3-level-HGF with the volatility-influenced decision noise in the perceptual model set, and for the integrated response 

model using advice and cue information. 
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Table 1 

Free parameters of the computational models with a conceptual description of how 

they influence learning about the adviser 

Parameter Conceptual description 

HGF 

mu2_0 A priori fidelity of the adviser 

sigma2_0 A priori variance of the adviser’s fidelity 

mu3_0 A priori volatility of the adviser’s volatility 

sigma3_0 A priori variance of the adviser 

kappa Coupling between second and third level: How much does 

the agent use volatility when updating fidelity? 

omega Degree to which the agent updates beliefs about fidelity, 

independent of volatility 

theta Meta-volatility: How fast is volatility updated? 

zeta Weighing Parameter of social and non-social information: 

How much does the agent rely on social information? 

beta Decision Noise: How tightly are choices mapped onto beliefs? 

RW 

v_0 A priori value of the advice 

alpha Learning rate (constant over trials): impact of prediction 

errors on the value of the advice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Prior means and variances for estimating HGF 

and RW model parameters 

Mean Variance 

HGF 

mu2_0 0 1 

sigma2_0 0 1 

mu3_0 1 1 

sigma3_0 1 1 

kappa 0 1 

omega −2 1 

theta 0 1 

zeta 0 1 

beta 48 1 

RW 

v_0 0.5 1 

alpha 0.4 1 

Note that prior means and variances were cho- 

sen based on Diaconescu et al. (2014) . κ , ϑ , 

ζ , μ( k =0 ) 
2 

, μ( k =0 ) 
3 

and α are estimated in logit 

space. The variances of σ and the decision 

noise parameter β are estimated in log space. 

Whereas the prior variances for all parameters 

are set to be rather broad, we selected a shrink- 

age prior mean for the decision noise parame- 

ter β , such that behavior is explained more by 

variations in the rest of the parameters rather 

than decision noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ues of choice options are updated using a prediction error that is

weighted by a learning rate. See Supplementary Methods for the

algorithmic implementation of the models. 

2.3.2. Response models 

Additionally, and in accord with previous work

( Diaconescu et al., 2014 ; 2017 ), we consider different versions

of response models in order to map beliefs to decisions. First, to

test whether participants rely only on (1) the pie chart informa-

tion, (2) the adviser’s information, or (3) integrate both sources of

information, we introduce a social weighing factor ζ that weighs

beliefs on the first level of the HGF before they are translated into

choices. We fit versions of the response model with ζ = 0 (i.e.,

agent exclusively relies on the pie chart probability), ζ = 1 (i.e.,

agent exclusively relies on the advice) and ζ as a free parameter

(compare Supplement, Eq. 7). Fitting ζ as a free parameter corre-

sponds to the assumption that an agent integrates both sources

(social and nonsocial) of information, and that individuals differ in

the degree to which they weigh either source. 

In sum, we varied 3 learning models (full 3-level-HGF, reduced

2-level-HGF , RW), with 3 variations of the social weighing factor ζ ,

and with, in the case of the full HGF, 2 variations of the decision

noise parameter β , totaling 12 models ( Fig. 2 a gives an overview

of the model space, and Table 2 lists priors of the free parameters).

After model fitting, belief trajectories of all participants were visu-

ally inspected. In the case of implausible trajectories, participants

were excluded from all further modeling analyses (n = 3). 

2.3.3. Model Fitting 

To fit the above described learning and response models to our

participants’ choice data, we used the freely available HGF tool-

box 2.0 ( Mathys et al., 2011 ; 2014 ) as part of the Translational Al-

gorithms for Psychiatry-Advancing Science tools ( https://www.tnu.

ethz.ch/en/software/tapas.html ). Maximum a posteriori estimates of

the parameters are obtained using variational Bayesian inversion

(for details see Mathys et al., 2011 ). The update equations take

the form of precision-weighted prediction errors following a form

similar to an extended Kalman filter and are hence analytically

tractable. All free parameters ( ϑ, ω, κ , ζ , β), the state variables μ1

and μ2, and their prior values were estimated for each participant

by using a quasi-Newton minimization algorithm. For details of the

update equations and the variational Bayesian inversion scheme,

see Mathys et al. (2011) and Daunizeau et al. (2010) . 
2.3.4. Bayesian Model Selection 

We used the freely available VBA toolbox to perform random-

effects Bayesian Model Selection (BMS) based on the negative vari-

ational free energy as an approximation of the log model evidence

( Daunizeau et al., 2014 ). BMS tests for and compares plausibility of

the competing models in the comparison set, given the data. Ex-

ceedance probabilities give the probability that one model is more

likely to have generated the data, relative to the other models in

the model space ( Stephan et al., 2009 ). BMS also accounts for the

complexity of a model (i.e., the number of free parameters). We

additionally employed family selection across the above-described

learning as well as response model variations (see Fig. 2 A and

B), by pooling models that share a common feature ( Penny et al.,

2010 ), i.e. across all response models and across all perceptual

models, respectively (see Diaconescu et al., 2014 for more details

of this application in the context of social learning). 

2.3.5. Parameter Recovery 

We ran a parameter recovery analysis for all free parameters

of the winning model. To this end, we used the empirically de-

rived (true) parameters to obtain estimated parameters for sim-

ulated agents based on the winning model. In other words, we

simulated responses based on all participants’ maximum a poste-

riori estimates of the parameters, and then fit the model to those

simulated responses in order to test whether we could recover

the same parameter estimates. We found significant correlations

between true and estimated parameters for all parameters of the

winning model (see S-Fig. 1). 

2.3.6. Analyzing Age Effects on Model Parameters 

All free parameters of the winning model were extracted and

analyzed as a function of (1) participant’s age group, (2) adviser’s

age group, (3) and their interaction, using a repeated-measures

MANOVA on all parameters of the model. This was followed up by

post-hoc t tests. Additionally, we extracted belief trajectories of (1)

the second level of the HGF, that is, states reflecting the evolution

of beliefs about the adviser’s fidelity, and (2) the third level of the

HGF, that is, states representing how beliefs about the volatility of

the adviser develop over the experiment. This analysis was done to

https://www.tnu.ethz.ch/en/software/tapas.html
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gain more specific insight into the dynamics of belief evolution as

a function of volatility, as well as the age differences therein. These

trial-by-trial trajectories were subjected to a hierarchical mixed

effects model with the following predictors: age group, volatility

phase (stable prevolatile; volatile; stable postvolatile), trial num-

ber within phase, as well as all interactions. In a second set of

regression models, we aimed to test the hypotheses that the ad-

viser’s age group alters the participants’ beliefs about the adviser.

Thus, the factor “age group of the adviser” was included as a re-

gressor to the above-described models. Session and version of the

input structure were included as nuisance regressors in all mod-

els. Participant-specific slopes and intercepts for the within-subject

factors of interest, as well as their interactions, were estimated as

random effects of the model. Degrees of freedom were approxi-

mated as implemented in the R packages afex ( Singmann et al.,

2016 ) and lmerTest ( Kuznetsova et al., 2015 ). Post-hoc tests were

performed using the package lsmeans ( Lenth, 2016 ). 

2.3.7. Code Accessibility 

MATLAB code to fit the Hierarchical Guassian filter and Re-

inforcement Learning Models is available at https://github.com/

translationalneuromodeling/tapas/tree/master/HGF . Code to per-

form Bayesian Model Selection can be retrieved via https://

mbb- team.github.io/VBA- toolbox/ . 

3. Results 

3.1. Raw Choice Data 

In the hierarchical logistic mixed effects model, we found a sig-

nificant effect of phase, trial number, and their interaction ( χ ² >

63.97, all ps < 0.001, see Fig. 1 ) on participants’ trial-by-trial deci-

sions of whether to follow a piece of advice or not. This indicates

that the social volatility manipulation alters the participants’ ten-

dency of whether or not to follow the adviser. Fig. 1 b indicates

that, as expected, the tendency to follow the advice decreases in

the middle, volatile phase. Indeed, in both age groups, the volatile

phases differed from the stable phases in terms of following be-

havior ( z > 3.28, p < 0.001). Thus, both YA and OA adapt their

behavior according to the changing volatility in the social environ-

ment. With respect to age differences, we also observed a signif-

icant effect of participants’ age group ( χ ² = 6.18, p = 0.013) and

an interaction effect of participants’ own age group with phase

( χ ² = 12.60, p = 0.002, Fig. 1 b). Thus, YA and OA seem to differ

with regards to how they deal with the social volatility manipula-

tion in our task. Post-hoc tests revealed significant age differences

in the first stable phase ( z = 3.57, p < 0.001), and the post-volatile

phase ( z = 2.16, p = 0.03) such that OA followed the adviser less

than YA in these 2 phases. No significant difference was observed

in the middle volatile phase ( z = 1.05, p = 0.291) (compare Fig. 1 b).

3.2. Model-Based Analysis – Model Selection 

First, we tested for model stability across the 2 sessions

( Rigoux et al., 2014 ). We found evidence for model stability

across both advisers’ age group conditions (exceedance probabil-

ity, XP = 1, protected exceedance probability PXP = 1, Fig. 2 c). We

also found evidence for across-session (testing day 1 and 2) stabil-

ity (XP = 1, PXP = 1) . Thus, in a next step, we summed up the

log model evidence and tested for age group differences regard-

ing which model explained the data best. BMS revealed clear ev-

idence that both age groups were characterized best by the same

model (posterior probability that the groups have the same model

frequencies = 0.99). The winning model for the groups together
was the full HGF with volatility-influenced decision noise includ-

ing the social weighing parameter (M1, XP = 1, PXP = 1, see Fig. 2 c

and d). Family selection (i.e., pooling across models that share a

common feature) across all perceptual model classes revealed that

within the perceptual model family, the full HGF with volatility-

influenced decision noise had highest model evidence (XP = 0.99,

Fig. 2 d). Family selection across all response model classes showed

that the family comprising models with the social weighing factor

ζ , as a free parameter, outperformed the other response models

(XP = 1, Fig. 2 d). This indicates that participants integrate social

and nonsocial information instead of relying exclusively on one of

the 2 sources. When running model selection for each group sep-

arately, we obtained the same results. These results replicate pre-

vious studies in YA ( Diaconescu et al., 2014 , 2017 ). BMS also an-

swers questions about age differences regarding the strategy used

to solve the task by quantifying evidence for both the null and al-

ternative hypotheses. More specifically, BMS results demonstrate

that both age groups infer 2 quantities at the same time: the fi-

delity of the adviser and the volatility of the adviser’s intentions,

with the latter being used in the decision process. BMS also shows

that both age groups integrate social and nonsocial information to

come to their decisions. 

3.3. Model Bases Analysis – Parameter Comparison 

We extracted and subjected all seven free parameters of the

winning model (i.e., of M 1, the full HGF with volatility-influenced

decision noise in the response model, compare Fig. 2) to a

repeated-measures MANOVA to test for the effect of age group, ad-

viser’s age, and their interaction. This revealed a significant main

effect of one’s own age group on the HGF parameters ( F = 6.40,

p < 0.001). Post-hoc tests indicated that this difference was driven

by group differences on the initial values of μ2 ( F = 23.83, p <

0.001, Fig. 3 ) and μ3 ( F = 6.90, p = 0.01, Fig. 3 ). Thus, OA had lower

a priori beliefs about the fidelity of the adviser. A t-test against

zero showed that this was due to YA being optimistic about the fi-

delity of the adviser (initial μ2 significantly positive in both adviser

conditions, t ≥ 3.73, ps < 0.001), whereas OA seem to hold a more

neutral prior regarding the adviser’s fidelity (initial μ2 not signifi-

cantly different from zero in both adviser conditions, t ≤ 1.71, ps >

0.09). OA also had higher a priori beliefs about the volatility of the

adviser (initial μ3, Fig. 3 ). Interestingly, we further found a signif-

icant age group difference in ϑ, the-meta volatility parameter that

governs the speed of volatility updating ( F = 6.69, p = 0.012). OA

had lower values on the meta-volatility parameter (see Fig. 3 ), sug-

gesting that they update volatility more slowly than YA. None of

the other learning and response parameters differed significantly

between age groups ( F ≤ 1.92, p > 0.171). 

3.4. Model-Based Analysis – Age Differences in Belief Trajectories 

After we had established age differences in prior beliefs as well

as in the meta-volatility parameter, we were next interested to see

how these differences influenced belief evolution on the different

levels of the learning hierarchy. Whereas the analysis of the free

parameters reported above provides insights in terms of a sum-

mary statistic of the psychological processes of interest, in this

analysis we were specifically interested in how beliefs and age dif-

ferences therein changed dynamically over the experiment, as a

function of volatility. 

Thus, in the next analysis step, we subjected participant-specific

trial-by-trial trajectories of the evolution of beliefs on different lev-

els of the hierarchy ( μ3 , π3, μ2 ), to a mixed model with the follow-

ing fixed effects: one’s own age group, volatility phase, trial num-

ber within phase. 

https://github.com/translationalneuromodeling/tapas/tree/master/HGF
https://mbb-team.github.io/VBA-toolbox/
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Fig. 3. Parameter comparisons. Parameter comparisons between age groups showed significant effects of age group on the priors of μ2 and μ3 . Older adults had lower a 

priori beliefs about the fidelity of the adviser (μ2 ) and higher a priori beliefs about the volatility of the adviser (μ3 ). Additionally, the meta-volatility parameter ( ϑ) differed 

as a function of age group. Older adults updated volatility less than did younger adults. No significant difference was observed with regards to parameters of the response 

model. In the cat-eye plots, dots represent medians, asterisk the mean and vertical lines the inter quartile range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1. Trial-by trial beliefs about the adviser’s volatility and their 

precision 

As per our volatility manipulation, the model predicting the

evolution of volatility beliefs (μ3 ) revealed significant main effects

of phase and trial number within phase, as well as their interaction

(all χ ² > 121.64, all p < 0.001). These proof-of-concept findings

confirm that volatility estimates are updated according to our ex-

perimental manipulation throughout the course of the experiment

in both age groups. Regarding age differences, we found a signifi-

cant main effect of age group ( χ ² = 6.17, p = 0.013), with higher

volatility estimates in OA as compared to YA. This is in line with

the finding of older adults’ higher prior on volatility. Note that the

main effect of age, without significant interaction effects with trial

or phase, suggests that the stronger a priori beliefs about volatility

of the adviser in OA persist over the course of the task, even in the

face of reduced environmental volatility (as per our manipulation

in phase 1 or 3). 

In OA, the reduced meta-volatility ( ϑ) described above (compare

Fig. 3 ) leads to volatility beliefs being adapted less, even in the

face of environmental stability. The HGF posits that belief updat-

ing is governed by the precision of beliefs: If precision is low, new

input should be given more weight and belief updating should be

upregulated; if precision is high, more weight is assigned to one’s

prior beliefs. Thus, reduced volatility updating might be related to

OA’s higher precision on the third level. To test this hypothesis,

we subjected trial-by trial precision estimates ( π3 ) to the same re-

gression model as described above. As a proof-of-concept finding,

this revealed significant main effects of phase and trial number

within phase, as well as their interaction, (all χ ² > 292.34, all p

< 0.001). These findings suggest certainty about one’s beliefs vary

in phases of different volatility, throughout the course of the ex-

periment. Most interestingly, however, we also observed a main

effect of age group ( χ ² = 5.31 , p = 0.021), which was due to OA

displaying higher precision in their beliefs about volatility than YA

( Fig. 4 a and c). Moreover, a significant interaction of trial number

within phase and age group was observed ( χ ² = 5.84, p = 0.016,

Fig. 4 a). This suggests age differences in the evolution of precision

within the volatility phase. Examining this further by comparing

the slopes of trial number on trial-by-trial precision estimates, per

 

group, we observed that the association was more negative in OA

than in YA ( z ratio = 2.42, p = 0.016), showing preserved modifia-

bility of precision estimates within phase, as a function of changing

volatility in the environment. 

3.5. Beliefs about the adviser’s fidelity 

In a Bayesian framework, as formalized in the HGF, how we es-

timate volatility impacts learning on the lower level (in our case:

learning about the fidelity of the adviser, see Fig. 2 B and meth-

ods). If the world is perceived as more volatile, we should update

the lower level beliefs about probability more quickly than when

it is perceived as stable. Given the significantly higher estimates of

volatility in OA, we predicted that this should also influence learn-

ing about fidelity in OA versus YA, on the lower level. 

The model predicting trial-by trial beliefs about the adviser’s fi-

delity (μ2 ) again showed a significant effect of phase, trial num-

ber within phase (i.e., learning over the course of one phase),

and their interaction (all χ ² > 166.22, all p < 0.001). Regarding

age group differences, in line with our raw choice data analysis,

we observed a significant interaction of age group and phase ( χ ²
= 6.81, p = 0.033). Post-hoc tests showed that the only signifi-

cant difference between age groups was in the last phase, where

OA had higher estimates of the adviser’s fidelity than YA (z ra-

tio = 2.29, p = 0.022). We also observed a significant interaction

effect of age group and trial number ( χ ² = 7.39, p = 0.006). Com-

paring the slopes of the effect of trial number between groups re-

vealed that OA changed beliefs more on a trial-by-trial basis ( z ra-

tio = 2.80, p = 0.005). The computational quantity that directly

captures this speed of updating on a trial-by-trial level is the learn-

ing rate on the second level, α2 . Thus, the finding that OA change

beliefs more on a trial-by-trial basis gives rise to the hypothesis of

differences in the second-level learning rate. Repeating the above-

described model to predict trial by trial fluctuations of the learn-

ing rate α2 , we found a higher learning rate in OA compared to

YA ( χ ² = 3.98, p = 0.046, Fig. 4 c). Additionally, we observed a

trial number by age group interaction ( χ ² = 5.36, p = 0.021). In-

terestingly, the learning rate co-varied more with trial number in

OA ( z ratio = 2.36, p = 0.02) as compared to YA. The latter was

also moderated by phase ( χ ² = 6.22, p = 0.045). As can be seen
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Fig. 4. Age differences in the evolution of beliefs, precision, and learning rate on different levels of the hierarchy. (A) Left: Evolution of volatility estimates (i.e., μ3 of the 

HGF) through the course of the experiment as a function of participants’ own age group . Right: Evolution of precision about volatility. (B) Left: Evolution of fidelity estimates 

(i.e., μ2 of the HGF) over the course of the experiment as a function of participants’ own age group. Right: Learning rate of the second level as a function of participants’ 

own age group. (C) Mean values of belief-precision concerning volatility (third level) and the learning rate on fidelity (second level). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from Fig. 4 b, learning rate fluctuations differed most strongly be-

tween groups in the first, and the second, unstable phase. There

were no age-related significant differences on precision on this

level. 

In sum, OA started the experiment with lower expectations

about the adviser’s fidelity. However, due to their pronounced and

stable beliefs about intentions being volatile (i.e., higher μ3 es-

timates throughout, see Fig. 4 a), along with a reduced tendency

to update them (i.e., reduced meta volatility parameter theta), OA

were also well prepared to adjust their fidelity beliefs over the

course of the experiment (i.e., higher learning rates regarding the

fidelity, μ2 , see Fig. 4 b). 

3.6. Effects of the adviser’s age group on volatility and fidelity 

estimation 

In the next analysis step, we were interested in whether the

age group of the adviser also influenced beliefs about the ad-

viser on the different levels of the learning hierarchy. Thus, we

included the factor “age group of the adviser” into the above-

described models to predict (1) the adviser’s fidelity, (2) the ad-

viser’s volatility. Please note that the input structure was predeter-

mined and, in reality, advisers did not differ as a function of their

age group (YA vs. OA, see methods). Despite this fact, the adviser’s

age group did have an influence on how participants estimated

volatility throughout the experiment. We observed a significant in-

teraction of the participants’ own age group and the adviser’s age

group, moderated by phase ( χ ² = 7.11, p = 0.029). Post-hoc tests

showed that the significant adviser age differences in volatility we

described above were only present when comparing the adviser

condition in YAs ( χ ² = 2.24, p = 0.03), but not when comparing

the adviser conditions in OA O OA ( z rati o = 0.32, p = 0.75). This

was due to YA displaying higher volatility estimates when interact-
ing with OA as compared to YA, particularly in the middle volatile

( z ratio = 2.61, p = 0.009) and the last phase ( z = 2.18, p = 0.029).

The model also revealed significant interactions of the adviser’s

age group and trial ( χ ² = 6.30, p = 0.012) as well as of one’s own

age group, adviser’s age group, phase, and trial ( χ ² = 6.74, p =
0.035). Fig. 5 A shows that whilst YA updated their volatility be-

liefs more when interacting with OA in all phases, OA showed this

tendency only in the last phase of the task. 

The adviser’s age group also had an effect on how fidelity was

estimated ( Fig. 5 B). We again observed an interaction of one’s own

age group, adviser’s age group and phase on beliefs about fidelity

of the adviser (μ2, χ ² = 6.49, p = 0.039). Interestingly, this interac-

tion effect was driven by adviser age group effects in YA who as-

signed significantly more fidelity to OA advisers i n the first stable

phase ( z ratio = 3.00, p = 0.003, see Fig. 5 ). Contrary to this effect

in YA, no significant difference in μ2, as a function of adviser’s age,

was found in OA. 

4. Discussion 

In this study, we employed a hierarchical Bayesian modeling

framework to describe social learning about others’ intentions in

younger and older adults. We found that both our own age as

well as our counterpart’s age affect how we learn about others in

dynamically changing social contexts. In general, model selection

suggests that both age groups use the same hierarchical Bayesian

model to infer the changing intentions of an adviser, and that

both younger and older adults integrate social and non-social in-

formation to decide on what to choose. Interestingly, differential

age group effects emerged when comparing learning about differ-

ent sources of social uncertainty. Older adults were more confident

about their appraisals of environmental volatility, namely that the

adviser’s intentions are instable. At the same time, they were more

uncertain and thus updated their beliefs more quickly when mak-
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Fig. 5. Differences in belief evolution as a function of the adviser’s age group. (A) Beliefs about the adviser’s volatility as a function of participants’ age, advisers’ age, and 

phase. (B) YA assigned significantly more fidelity to OA advisers in the first stable phase than to YA advisers. No significant adviser’s age effect on the belief about fidelity 

was found in OA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ing predictions about the adviser’s fidelity (i.e., their probability of

offering accurate recommendations). We found that, before learn-

ing about the adviser, older adults had an a priori expectation that

the adviser was more volatile, and thus changed their intentions

more during the task than younger adults. Older adults showed

higher confidence (larger higher-level belief precision) in these be-

liefs and were less willing to change them over the course of learn-

ing, as indexed by the significantly lower meta-volatility parameter

values ( ϑ). From a Bayesian perspective, when confronted with an

unexpected outcome (e.g., a misleading piece of advice from some-

one you trusted before), knowing whether to disregard it (e.g., to

consider it a sign of incomplete information/a mishap) or whether

to take it seriously, as evidence that the adviser’s intentions have

changed, depends on the precision of one’s higher-level beliefs.

More specifically, when the precision about the adviser’s chang-

ing intentions is high, as in the case of older adults here, agents

expect the adviser’s strategy for providing helpful suggestions to

change more, and thus are sensitive to incoming prediction errors,

which could reveal a contextual change. This does not necessarily

mean that they react overly strongly to any new prediction errors.

Rather, because they expect the adviser to change, they adapt more

to global rather than local changes in advice validity and thus ad-

just their beliefs about contextual changes in the adviser’s fidelity

more. Indeed, in line with this interpretation, we found that older

adults who were equipped with a more precise belief that the ad-

viser’s strategy will change, adapted their learning rate and with it

their beliefs about fidelity more quickly. 

Interestingly, these results are in accord with previous stud-

ies in the non-social domain and extend them to social inference.

Our finding of older adults’ stronger prior beliefs about volatility

is consistent with very recent findings of age-related differences in

learning in uncertain environments ( Hämmerer et al., 2018 ). In that

study, OA were similarly found to overestimate reversal probabili-

ties (and thus volatility) in a reversal learning paradigm. Our obser-

vation of a reduced meta-volatility parameter and thus more pre-

cise higher-level beliefs about the instability of adviser’s intentions

is in line with the proposal of reduced Bayesian higher-level belief

belief updating and the maintenance of a “more robust model of

the world” in healthy aging ( Moran et al., 2014 ). Similar to nonso-

cial contexts, we find that higher-level beliefs about intentions (i.e.,

on the third level of the HGF) are more precise and therefore less

susceptible to change in older compared to younger adults. This

may equip older adults with increased adaptability to changes in

the other’s trustworthiness but also with increased rigidity about

how quickly that may change in time. Interestingly, our findings
also resonate with a very recent study applying the same Bayesian

framework as our study, which demonstrated that impressions

about morally bad agents are more volatile and more rapidly up-

dated than impressions about good agents ( Siegel et al., 2018 ).

Older adults in our study had a less positive (albeit more realis-

tic) prior view of the adviser than younger adults and were more

inclined to update this view than younger adults. This differs from

previous findings, where older adults were shown to trust more

in untrustworthy social information than younger adults. Meta-

analytical evidence suggests that adult age difference with respect

to trust are generally subject to variability as a function of the ex-

perimental set-up that is used in a specific study. This also might

explain the discrepant results of the present study, as other than

in previous research, in our experiment, participants were required

to constantly update the trustworthiness of the adviser ( Bailey and

Leon, 2019 ). The current findings thus add to the emerging liter-

ature on adult development of social cognition. Accumulating ev-

idence points to the fact that social cognitive function differs be-

tween younger and older adults ( Bolenz et al., 2017 ; Henry et al.,

2013 ; Reiter et al., 2017 ). A limitation of many of the previously

applied paradigms might be that they did not explicitly test social

inference as it evolved over the course of the experiment. That is,

these paradigms did not require participants to constantly update

beliefs about others, but asked for “one-shot” ratings about others’

minds (compare e.g., Baron-Cohen et al., 1985 ; Kanske et al., 2015 ;

Reiter et al., 2017 ). Our findings thus extend the existing adult de-

velopmental literature toward inference in a dynamically changing

social environment. Our results demonstrate that this dynamic na-

ture is indeed dealt with differently by younger and older adults

– we show higher, more precise beliefs about volatility and more

quickly changing learning rates about the fidelity of the other in

older adults. Thus, it appears important that future age compara-

tive studies more explicitly take this dynamic nature into account.

Natural social interactions are indeed characterized by the demand

to continuously update our models about the social environment

in order to simulate and predict others’ behavior accurately and to

react to it appropriately ( Siegel et al., 2018 ; Suzuki et al., 2012 ). 

Parallel to age differences in nonsocial learning tasks, the find-

ings here might indirectly speak to the notion that social infer-

ence is realized by means of at least partially overlapping pro-

cesses with learning about other (nonsocial) features of the envi-

ronment ( Behrens et al., 2008 ). However, recent evidence also indi-

cates domain-specificity in social development, namely that social

and non-social cognition develop differently ( Reiter et al., 2017 ). 
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The present study was built on a nondeceptive previous study

( Diaconescu et al., 2014 ). That previous study used true interac-

tions between the player and a human adviser ( Diaconescu et al.,

2014 ), whereas the current study used pre-recorded videos of

the advisers. The standardized advice structure we used in this

study was pre-determined in a way that mimicked the behavior

of the real human advisers in Diaconescu et al. Nevertheless, the

videos used in the present study might have reduced the social

aspect of the task and thus the ecological validity. Future studies

could include a direct non-social comparison task (such as e.g.,

Diaconescu et al., 2014 ; Garvert et al., 2015 ) to investigate the

specificity of the social effects. 

Another recent study ( Diaconescu et al., 2017 ) has used the

same Bayesian modeling approach as presently to unravel neu-

ral correlates of social learning. The authors showed that learn-

ing at different levels of the hierarchy mapped onto distinct

neuro-modulatory systems. Learning about the volatility of the

others’ intentions (as reduced in older adults in the current

study) was associated with activation in the cholinergic basal fore-

brain. Learning about the adviser’s fidelity (pronounced in older

adults here) activated the dopaminergic midbrain. These differ-

ences between younger and older adults may be linked to aging-

related changes in neuromodulation. Of note, both the cholinergic

and the dopaminergic systems undergo marked change over the

course of the lifespan ( Bäckman et al., 2006 ; Dreher et al., 2008 ;

Grothe et al., 2012 ; Schliebs, 2006 #5084). Evidence from earlier

computational studies of aging neuromodulation ( Li et al., 2001 ;

Li et al., 2006 ) suggest that older adult’s deficient neuromodula-

tion (particularly dopaminergic modulation) would result in noisier

neural information processing. More specifically, it was suggested

that the computational consequences would be reduced precision

of neurocognitive representations of learning experiences and in-

creased intraindividual cognitive variability (cf. empirical data from

MacDonald et al., 2012 ). These effects in turn could contribute to

age differences in making cognitive and social inference under un-

certainty. Future pharmacoimaging studies are needed to investi-

gate the relationship between aging-related changes in neuromod-

ulation and changes in dynamic social inference learning. 

Besides age differences on the side of the observer, we also ob-

served age differences as a function of the adviser’s age. Given that

validity of the advice was pre-determined in a standardized man-

ner, and thus held constant between older and younger advisers,

these findings might be interpreted as stereotype effects. Our re-

sults showed that younger adults expected older adults to change

their intentions more frequently but also held a belief about higher

fidelity in older advisers compared to younger advisers. Social psy-

chology research has established such stereotype effects towards

older people before (“ageism,” e.g., Cuddy and Fiske, 2002 ). Previ-

ous qualitative and cluster analyses showed that “doddering but

dear”, that is, inconsistent but warm, types of stereotypes ex-

ist about older adults in the general population. It is interesting

to speculate that our quantitative-computational findings (maybe

most tentatively interpreted as “fickle but dear” older adults) might

mirror these qualitative findings in part. While more research is

needed to clearly map the different approaches onto each other,

our study might serve as an example of how to use computational

approaches for stereotype research ( Siegel et al., 2018 ; Tamir and

Thornton, 2018 ). 

5. Conclusions 

In summary, adopting a Bayesian modeling account, we show

age differences between older and younger adults when dynam-

ically updating beliefs about the intentions of younger and older

counterparts. Older adults were characterized by an enhanced
learning rate about the adviser’s fidelity due to their high con-

fidence in their higher and more precise volatility estimates. We

also observed computational evidence for the fact that older and

younger advisers are perceived differently during social interac-

tions: young adults assigned more volatility and more fidelity to

older advisers than to younger advisers. In sum, the study offers

insight into the behavioral and computational mechanisms that

underlie age differences when dealing with changes in dynamic so-

cial interactions. Taken together, these findings showcase the utility

of quantitative models to construct individual fingerprints in order

to test socio-developmental hypotheses. 
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