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a b s t r a c t 

Dynamic causal models (DCMs) of electrophysiological data allow, in principle, for inference on hidden, bulk 

synaptic function in neural circuits. The directed influences between the neuronal elements of modeled circuits 

are subject to delays due to the finite transmission speed of axonal connections. Ordinary differential equations 

are therefore not adequate to capture the ensuing circuit dynamics, and delay differential equations (DDEs) are 

required instead. Previous work has illustrated that the integration of DDEs in DCMs benefits from sophisticated 

integration schemes in order to ensure rigorous parameter estimation and correct model identification. How- 

ever, integration schemes that have been proposed for DCMs either emphasize speed (at the possible expense of 

accuracy) or robustness (but with computational costs that are problematic in practice). 

In this technical note, we propose an alternative integration scheme that overcomes these shortcomings 

and offers high computational efficiency while correctly preserving the nature of delayed effects. This integra- 

tion scheme is available as open-source code in the Translational Algorithms for Psychiatry-Advancing Science 

(TAPAS) toolbox and can be easily integrated into existing software (SPM) for the analysis of DCMs for elec- 

trophysiological data. While this paper focuses on its application to the convolution-based formalism of DCMs, 

the new integration scheme can be equally applied to more advanced formulations of DCMs (e.g. conductance 

based models). Our method provides a new option for electrophysiological DCMs that offers the speed required 

for scientific projects, but also the accuracy required for rigorous translational applications, e.g. in computational 

psychiatry. 
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. Introduction 

A key goal of Translational Neuromodeling (TN) and Computational

sychiatry (CP) is the development of generative models as “computa-

ional assays ” and their application to clinical questions in psychiatry

 Stephan and Mathys, 2014 ). One branch of the development of compu-

ational assays concerns circuit models which represent distinct aspects

f synaptic function, such as different types of receptors and neuromod-

latory processes, at the level of interacting neuronal populations. By in-

erting these models using Bayesian techniques, the goal of TN/CP is to

dentify subject-specific alterations of synaptic function which may sup-

ort the stratification of heterogeneous disorders and individual treat-

ent predictions ( Stephan et al., 2015 ). For example, computational

ssays of this sort have been used to examine dysfunction of specific ion
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hannels in monogenetic channelopathies ( Gilbert et al., 2016 ) or alter-

tions of NMDA receptor function due to autoimmunological processes

 Symmonds et al., 2018 ). 

One candidate method for this purpose is Dynamic Causal Mod-

lling (DCM) for electrophysiological measures ( David et al., 2006 ;

oran et al., 2013 , 2008 ) as implemented in the open-source soft-

are SPM (https://www.fil.ion.ucl.ac.uk/spm/). Due to the high tempo-

al resolution of electroencephalography (EEG) or magnetoencephalog-

aphy (MEG), data acquired with these methods contain information

bout (average) synaptic processes in (large) neuronal populations

 Gilbert et al., 2016 ; Neymotin et al., 2020 ). DCM for EEG/MEG mod-

ls electrical scalp potentials or magnetic fields, respectively, as arising

rom the dynamics of large neuronal populations (neural masses) that

nteract with each other through short-range and long-range synaptic

nteraction. The latent dynamics are based on the flow of charged ions

cross the cell membrane during the generation of action potentials, de-
ber 2021 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Definition of the notation. 

Variables Type Examples 

𝑡 scalar values or one dimensional mappings 𝑡, 𝑥 ( 𝑡 ) , 𝜏, …
𝐱 vectors or vector mappings 𝐱, 𝐟 0 
𝐉 matrices 𝐉 , 𝐃 
𝑥 i i th component of vector 𝐱 or function 𝑥 𝑖 , 𝑓 𝑖 

𝐽 𝑖𝑗 i th row / j th column of matrix 𝐉 𝐽 𝑖𝑗 , 𝜏𝑖𝑗 

𝐱̃ ( 𝑡 − 𝜏) (linear) approximation of 𝐱( 𝑡 − 𝜏) 𝐱̃ ( 𝑡 − 𝜏) , 𝐱̃ 
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endent on the density of afferent axonal connections, the density of

eceptors in the membrane and (indirectly) neurotransmitter availabil-

ty. These synaptic actions then describe the dynamics of a population

f cell types within a cortical column. In the simplest variant of DCM

or EEG, two distinct populations of excitatory cell types (stellate and

yramidal cells) and one inhibitory population constitute a single cor-

ical column. These populations are intrinsically (within-column) con-

ected to each other, and extrinsically connected to different columns.

mportantly, due to the finite transmission speed of axonal connections,

he directed influence one population exerts over another is subject to

elays. These delays render the differential equations used to describe

he neuronal population dynamics delay differential equations (DDEs),

equiring specialised integration schemes. 

The current default integration scheme employed for electrophysio-

ogical DCMs in SPM is based on an extension of an integration scheme

or ordinary differential equations (ODEs) (( Ozaki, 1992 ), for review,

ee ( Ostwald and Starke, 2016 )). This scheme effectively absorbs de-

ays into an adaptive, delay-dependent step size of a standard ODE step

nd is computationally highly efficient. It is important to note that this

ntegration scheme is not the state of the art for numerically precise

ntegration of DDEs (for an overview on DDE methods see ( Bellen and

ennaro, 2013 )), but it allows for fast, approximate integration of DDEs.

his computational efficiency is important since parameter estimation

hrough approximate Bayesian inference techniques (e.g. variational

ayes or Markov chain Monte Carlo) typically requires a large number

f integrations. 

In this technical note, we show simulations, some based on examples

ith analytical solutions, where this particular DDE scheme fails to ac-

urately account for delayed effects, causing non-negligible errors. This

xtends previous work by Lemarechal and colleagues ( Lemarechal et al.,

018 ) who demonstrated that, in DCM for EEG, model selection and

arameter inference can be affected considerably by the choice of inte-

ration method and that the DDE integration scheme in SPM may not

lways be highly accurate. Lemarechal et al. (2018) also demonstrated

hat alternative DDE integration schemes (i.e. the dde23 integrator in

ATLAB) provided accurate estimates of DCM parameters, however, at

he cost of impractically long computation times. 

Here, we extend the work by Lemarechal and colleagues by present-

ng an integration scheme newly applied to these models – Linearized

elayed Euler ( LDE ) – that combines robustness with computational ef-

ciency. 1 Using simulated and empirical data, we show that this method

ccurately accounts for delayed effects but is orders of magnitude faster

han the robust DDE integration method proposed by Lemarechal and

olleagues. Our DDE integration scheme is compatible with SPM and

reely available as part of the open-source software package TAPAS

https://www.translationalneuromodeling.org/tapas). 

. Methods 

In general, 1 st order delay differential equations (DDEs) are charac-

erized by the following set of equations ( Bellen and Zennaro, 2013 ): 

̇
 ( 𝑡 ) = 𝑓 

(
𝑡, 𝐱 ( 𝑡 ) , 𝐱 

(
𝑡 − 𝜏1 

)
, 𝐱 
(
𝑡 − 𝜏2 

)
, ..., 𝐱 

(
𝑡 − 𝜏𝑘 

))
𝑡 0 ≤ 𝑡 < 𝑡 𝑓 

 ( 𝑡 ) = 𝚯0 ( 𝑡 ) , 𝑡 0 − 𝜏𝑗 ≤ 𝑡 < 𝑡 0 (1) 

here 𝐱 denotes the vector of state variables or states, 𝑡 denotes time,

nd 𝑡 0 and 𝑡 𝑓 are the initial and final timepoints, respectively. The

𝑗 ∈ [ 0 , ∞) ∀𝑗 ∈ { 1 , … 𝑘 } describe the non-negative delays of the sys-

em. Finally, the initial state function 𝚯0 needs to be defined for time

oints between 𝑡 0 − 𝜏𝑗 and 𝑡 0 , where 𝜏𝑗 is the maximal delay in the sys-

em. Table 1 summarizes the notation of variables in this paper. 

Introducing delays can have a number of important implications

or the behavior of a system. Most prominently, delays can stabilize or
1 The methods and results presented here are based on the PhD thesis by Dario 

chöbi at ETH Zürich ( Schöbi, D., 2020 ). 𝐱

2 
estabilize a system, can lead to non-uniqueness of solutions, and may

ake a system exhibit oscillatory or chaotic behavior when compared to

he sibling ODE system ( Bellen and Zennaro, 2013 ). One method to deal

ith simple delay problems uses a fine-grained integration mesh such

hat all delayed states fall on grid-points. An integration step can then

e computed via a classical ODE step, e.g. the forward Euler method

 Elsgolts, 1964 ). In his doctoral thesis, Feldstein (1964) introduced a

ethod where the grid-points are independent of the delays. He com-

ined an Euler step with a linear interpolation between grid-points to

pproximate delayed states. Because of the freedom in the choice of in-

erpolation and the discrete ODE step, this strategy is merely an example

f a whole class of DDE integration schemes, the so-called continuous ex-

ension of ODE methods ( Bellen and Zennaro, 2013 ). 

In this technical note, we will evaluate a continuous extension of

DE method, in combination with a forward Euler step, for the par-

icular problem of integrating DDEs in DCM. For a more comprehen-

ive list of DDE integration methods, we refer to existing literature (e.g.

 Balachandran et al., 2009 ; Bellen and Zennaro, 2013 ; Erneux, 2009 ;

mith, 2011 )). 

.1. Local linearization delayed integration ( spm_int_L ) 

In SPM12 (version 6906), the commonly used integration scheme

 spm_int_L ) for the integration of a system of dynamical equations is

ased on developments by Ozaki (1992) . Under the assumption that the

ystem is locally linear (in time), the integration can be performed effi-

iently and robustly through an adaptive step size incorporated in the

acobian ( 𝐉 ij = ( ∇ 𝐟 ) 𝑖𝑗 = 

𝜕 𝑓 𝑖 

𝜕 𝑥 𝑗 
) (the derivation of this update is provided in

zaki’s 1992 article): 

( 𝑡 + 𝑑𝑡 ) = 𝐱( 𝑡 ) + 

[
exp ( 𝐉 ⋅ 𝑑𝑡 ) − 𝐈 

]
⋅ 𝐉 −1 ⋅ 𝐟 ( 𝐱( 𝑡 )) (2)

Here, 𝐈 denotes the identity matrix. As a proposed solution for DDEs,

pm_int_L implements delays efficiently but approximately in the Jaco-

ian, which is motivated from a second linearization of the following

orm ( David et al. (2006) , their Appendix A1): 

̇  𝑖 ( 𝑡 ) = 𝑓 𝑖 ( 𝑥 1 ( 𝑡 − 𝜏𝑖 1 ) , 𝑥 2 ( 𝑡 − 𝜏𝑖 2 ) , ..., 𝑥 𝑛 ( 𝑡 − 𝜏𝑖𝑛 )) 
≈ 𝑓 𝑖 ( 𝐱( 𝑡 )) − 

∑
𝑗 

𝜏𝑖𝑗 𝐽 𝑖𝑗 𝑥̇ 𝑗 ( 𝑡 ) (3) 

nd thus 

𝐱̇ ( 𝑡 ) ≈ 𝐟 ( 𝐱( 𝑡 )) − ( 𝐃 ◦𝐉 ) ̇𝐱 ( 𝑡 ) 
̇
 ( 𝑡 ) ≈ 𝐐 

− 𝟏 𝐟 ( 𝐱( 𝑡 )) , 𝐐 = ( 𝐈 + 𝐃 ◦𝐉 ) (4) 

ith ◦ denoting the element wise multiplication and 𝐃 = 𝜏𝑖𝑗 the matrix

onsisting of the delay terms from state 𝑗 to state 𝑖 . In the following,

e will refer to this integrator as spm_int_L (i.e. the name of the func-

ion implementing this scheme in SPM12) . Combining the last line of

q. (4) with Eq. (2) , the update equations for spm_int_L are as follows: 

𝐱̇ ( 𝑡 ) = 𝐐 

− 𝟏 𝐟 ( 𝐱) = ̃𝐟 ( 𝐱) 

𝐽 𝑖𝑗 = 

𝜕 

𝜕 𝑥 𝑗 
𝑓 𝑖 = 

𝜕 

𝜕 𝑥 𝑗 
( 
𝑛 ∑

𝑘 =1 
𝑄 

−1 
𝑖𝑘 
𝑓 𝑘 ) 

= 

𝑛 ∑
𝑘 =1 

( 𝜕 
𝜕 𝑥 𝑗 

𝑄 

−1 
𝑖𝑘 
) 𝑓 𝑘 + 𝑄 

−1 
𝑖𝑘 

𝜕 

𝜕 𝑥 𝑗 
𝑓 𝑘 

≈
𝑛 ∑

𝑘 =1 
𝑄 

−1 
𝑖𝑘 
(∇ 𝐟 ) 𝑘𝑗 

= ( 𝐐 

− 𝟏 𝐉 ) 𝑖𝑗 
( 𝑡 + 𝑑𝑡 ) = 𝐱( 𝑡 ) + 

[
exp ( ̃𝐉 ⋅ 𝑑𝑡 ) − 𝐈 

]
⋅ 𝐉̃ − 𝟏 𝐟 ( 𝐱) 

(5) 
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(
𝑡 + dt 

)
= 𝐱 ( 𝑡 ) + 

[
exp 

(
𝐐 

− 𝟏 𝐉 ⋅ dt 
)
− 𝐈 

]
⋅ 𝐉 − 𝟏 𝐟 ( 𝐱 ) . (6) 

Please note that in Eq. (5), higher order derivatives, ∇ 

(k) 𝐟 are as-

umed to be small and are neglected for ( 𝑘 ≥ 2 ) in the chosen approxima-

ion. Thus, the term 

𝜕 

𝜕 𝑥 𝑗 
𝑄 

−1 
𝑖𝑘 

vanishes. The advantage of this integration

cheme is that one does not need to keep track of the history of the states,

s 𝐟 ( 𝐱( 𝑡 ) ) is only ever evaluated at the current timepoint. This makes the

pproach very efficient. Also, if the system is linear in the states (an

dditional assumption by spm_int_L , despite the non-linearity due to a

igmoid transformation), one only needs to compute the Jacobian once

ince ∇ 𝐟 is constant. There are schemes in place which would allow

or the continuous evaluation of the Jacobian (see spm_int_J.m ). How-

ver, they render integration one order of magnitude slower. A crucial

uestion about this method is how well the 1st order Taylor approxima-

ion on the dynamical equations (Eq.(3)-(6)) performs, particularly for

onger delays of extrinsic connections. 

.2. Continuous extensions of ODE methods and linearized delayed Euler 

 LDE ) 

Euler (forward) integration schemes have been around for two cen-

uries and assume that for a small timestep 𝑑𝑡 , the system will evolve in

he direction of its gradient (in time), i.e. 

( 𝑡 + 𝑑𝑡 ) = 𝐱( 𝑡 ) + 𝑑𝑡 ⋅ 𝐟 ( 𝐱) . (7)

Obviously, delays are not incorporated in Eq. (7) . In the spirit of con-

inuous extension of ODEs ( Feldstein, 1964 ), we used an approximation

o the states 𝑥 𝑖 ( 𝑡 − 𝜏𝑖𝑗 ) ≈ 𝑥̃ 𝑖 ( 𝑡 − 𝜏𝑖𝑗 ) by linearly interpolating between the

wo neighboring timesteps that are evaluated, 2 𝑘 and 𝑘 + 1 : 

𝑡 𝑘 < 𝑡 − 𝜏𝑖𝑗 < 𝑡 𝑘 +1 
𝑡 𝑘 +1 − 𝑡 𝑘 = 𝑑𝑡 

̃ 𝑖 ( 𝑡 − 𝜏𝑖𝑗 ) = 𝑥 𝑖 ( 𝑡 𝑘 ) + 

𝑥 𝑖 ( 𝑡 𝑘 +1 )− 𝑥 𝑖 ( 𝑡 𝑘 ) 
𝑑𝑡 

( 𝑡 − 𝜏𝑖𝑗 − 𝑡 𝑘 ) . 
(8) 

In full, the update ( 𝜑 ) of the Linearized Delayed Euler scheme ( LDE )

or any state i is given by 

 𝑖 ( 𝑡 + 𝑑𝑡 ) = 𝑥 𝑖 ( 𝑡 ) + 𝜑 𝑖 
(
𝑥 1 
(
𝑡 − 𝜏𝑖 1 

)
, … , 𝑥 𝑛 

(
𝑡 − 𝜏𝑖𝑛 

)
, 𝑑𝑡 

)
= 𝑥 𝑖 ( 𝑡 ) + 𝑑𝑡 ⋅ 𝑓 𝑖 

(
𝑥̃ 1 
(
𝑡 − 𝜏𝑖 1 

)
, … 𝑥̃ 𝑛 

(
𝑡 − 𝜏𝑖𝑛 

)) (9) 

A graphical illustration of this interpolation is provided in Fig. 1 . 

Two major points need to be considered for the choice of interpo-

ation method: one is the propagation of discontinuities (resulting from

umps in the derivative at the transition point), the other one concerns

o-called overlapping , i.e. when delays become smaller than the step size

f integration. The second problem can be easily solved by reducing the

tep size. The first problem is more difficult; however, it is not criti-

ally relevant in the context of DCM as the solution can be expected to

e relatively smooth at transition points. This is because in the typical

pplication scenario of modeling cortical circuits in mammalian brains,

he lag of the driving input is longer than the delays within the circuit.

n this case, the initial conditions are a steady state of the system. 

One intriguing property here is that the continuous extension ( ̃𝐱 )
s independent of the discrete ODE step ( 𝝋 ) used, and the same lin-

ar approximation of delayed states could be combined with a differ-

nt method of updating. For simplicity, we omit comparisons beyond

imple forward Euler updates. A broader overview on these topics and

xtensions, using for example the Ozaki update in combination with the

ontinuous extension, are provided in ( Schöbi, 2020 ). 

.3. Simulations 

We simulated responses based on three simple (delayed) dynami-

al systems. The systems were chosen for different reasons: for the first
2 Here, the discretized time points 𝑡 𝑘 , 𝑘 ∈ [ 0 , … , 𝑛 ] refer to the time points 

hosen for the numerical integration scheme. 

2

 

D  

3 
xample, there exists the particular case of a delay magnitude with an

nalytical solution that allows for clear predictions about the qualitative

roperties the integrated signal should display. The 2 nd and 3 rd exam-

le approximate and equal, respectively, the complexity of the dynam-

cal system underlying the convolution-based DCMs for event-related

otentials (ERPs); this model is explained below. For all systems, we

arametrically changed the magnitude of the delay to assess the regime

f numerical stability of the approximations used in the respective inte-

ration scheme. To this end, we compared the two integration schemes

entioned above – spm_int_L and LDE – to an integration scheme for

DEs in MATLAB, dde23 , which is Runge-Kutta based and allows for

he definition of local error bounds ( Shampine and Thompson, 2001 ;

hampine et al., 2000 ). Lemarachal et al. (2018) also used dde23 as a

eference. All simulations were performed at an integration step size of

 ms. For dde23 , we used a local error tolerance of 1E-6. 

.3.1. Delayed, one-dimensional exponential decay 

Consider the following dynamical system ( Fig. 2 A) 

̇  ( 𝑡 ) = 𝑓 ( 𝑥 ( 𝑡 − 𝜏) ) = − 𝑎 ⋅ 𝑥 ( 𝑡 − 𝜏) , 
 ( 𝑡 < 0 ) = 𝑎 

(10) 

hile simple, this system has an interesting property. For 𝜏 = 0 , it is
imply a decaying exponential 𝑥 ( 𝑡 ) = 𝑎 ⋅ exp ( − 𝑎𝑡 ) . For 𝜏 = 𝜋∕2 , the ana-

ytical solution (except for short-lived effects introduced by the initial

ondition) is a superposition of a sine and cosine function, i.e. an oscil-

ating system. While there is no analytical solution for values between

 and 𝜋∕2 , one would expect a smooth transition and thus an increas-

ngly oscillatory behavior of the solution when 𝜏 approaches 𝜋∕2 . This

ntuition is confirmed by the simulations. 

Under the approximations of spm_int_L the integration steps are given

y 

 ( 𝑡 + 𝑑𝑡 ) = 𝑥 ( 𝑡 ) − 

1 
𝑎 
exp (− 

1 + 𝑎 ( 𝑑𝑡 − 𝜏) 
1 − 𝑎 ⋅ 𝜏

) 𝑓 ( 𝑥 ( 𝑡 )) (11)

In the one-dimensional case, 𝑄 = ( 1 + 𝐷◦𝐽 ) (as per Eq. (4) ) is a

calar, and therefore, the spm_int_L update is equivalent to a forward

uler update of the non-delayed system, with an adjusted step size of

 

1 
𝑎 
exp ( − 

1+ 𝑎 ( 𝑑𝑡 − 𝜏) 
1− 𝑎 ⋅𝜏 ) . Hence, if the system is integrated with spm_int_L , it

ill never show oscillatory behavior. In addition, for finite 𝑑𝑡 , the sys-

em shows a singularity for 𝜏 = 1∕ 𝑎 . 

.3.2. Two damped, harmonic oscillators with forward coupling 

For the second example, we considered two coupled harmonic oscil-

ators (HOs), a system that closely resembles the equation underlying

onvolution-based DCMs: 

̇  1 = 𝑥 2 
̇  2 = − 𝑓 1 𝑥 2 − 𝜔 

2 
1 𝑥 1 + 𝑐 ⋅ 𝑢 ( 𝑡 ) 

̇  3 = 𝑥 4 
̇  4 = 𝜅𝑥 2 ( 𝑡 − 𝜏) − 𝑓 2 𝑥 4 − 𝜔 

2 
2 𝑥 3 

( 𝑡 ) = 𝐱 𝟎 ( 𝑡 ) , 𝑡 ≤ 𝜏

(12) 

ere, the second HO receives delayed (by 𝜏) input with coupling

trength 𝜅 from the first ( Fig. 2 B). The other variables parameterize

he HO. Initial conditions are defined by 𝐱 0 ( 𝑡 ) . Only the first oscillator

s driven by some external driving input 𝑢 ( 𝑡 ) . All obvious dependencies

n 𝑡 are omitted. This system is in close analogy to the dynamics of

wo coupled neuronal populations of the DCM for ERP formalism. The

nly difference arises from constraints on the parameter (e.g. critical

amping, equality of parameters across oscillators, etc.) and the lack of

 sigmoid transformation in the output of the populations (effectively

 sigmoid transformation of state 𝑥 2 in the coupling to 𝑥 4 ). In other

ords, this system constitutes a minimal set of a DCM, with only two

opulations and one connection. 

.3.3. Convolution-based DCM for ERP 

Finally, we turn to the case of a basic convolution-based

CM with three populations. This model, originally introduced by
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avid et al. (2006) , can be applied to different features of electrophys-

ological recordings. Here, we consider its application to ERPs (i.e. av-

raged responses over trials). 

We connected two regions, with a forward connection from region

 to region 2, and a backward connection from region 2 to region 1

 Fig. 2 C). Region 1 received a standard, truncated Gaussian driving in-

ut (the default input in the DCM for ERP framework (see spm_erp_u.m )).

his input excites the network, resulting in a change of the post-synaptic

otentials 𝑣 ( 𝑡 ) of the populations over time, modeled as 

̈ 𝑖 ( 𝑡 ) = 

[ 

𝑛 ∑
𝑗=1 

𝐻𝜅
[
( 𝐴 𝑖𝑗 + 𝛾𝑝𝑗 ) 𝜎𝑗 ( 𝑡 − 𝜏𝑖𝑗 ) + 𝐶 𝑖 𝑢 𝑖 ( 𝑡 ) 

]] 

− 2 𝜅𝑣̇ 𝑖 ( 𝑡 ) − 𝜅2 𝑣 𝑖 ( 𝑡 ) . (13)

hese equations come from a convolution operation between incoming,

re-synaptic firing ( 𝜎) of other populations and a convolution kernel ( ℎ )

 ( 𝑡 ) = 

𝑡 

∫
−∞

ℎ ( 𝑡 − 𝜏) 𝜎( 𝜏) 𝑑𝜏. (14)

his convolution kernel ℎ ( 𝐻, 𝜅, 𝐴, 𝛾, 𝐶 ) incorporates the joint effects

f the synaptic kernel 𝐻 , the connection parameters 𝐴, 𝛾 and the input

arameters 𝐶; it reflects the overall synaptic responses of a population

o incoming inputs. In Eq. (13) , the subscript 𝑖 refers to the 𝑖 𝑡ℎ state

n the system of equations depicted in Fig. 2 C. For the six populations

onsidered, this results in six second-order DDEs, or 12 first-order DDEs

espectively, i.e. 12 states. The set of kernel parameters 𝐻, 𝜅, 𝐴, 𝛾, 𝐶

ay vary for the different populations. In Fig. 2 C, we illustrated this

pecifically for the two extrinsic connections 𝐴 𝐹 and 𝐴 𝐵 (which are

onsidered forward and backward connections due to their different ter-

inals). The driving input 𝑢 ( 𝑡 ) defines the exogenous stimulation. An

xplicit example of a set of state-equations can be found in Appendix A

f Schöbi et al. (2021) . 

Importantly, the pre-synaptic firing of a population results in a de-

ayed (indicated by 𝜏𝑖𝑗 ) de-/hyper-polarization of a connected popula-

ion, hence posing the problem of integrating delayed differential equa-

ions. The transformation from post-synaptic potential to synaptic fir-

ng undergoes a sigmoid transformation ( 𝜎), rendering the system in

q. (13) non-linear. 
4 
. Results 

.1. Integration of 1D, HO and ERP system 

To illustrate the general behavior of the two integration schemes

utlined above and to assess the representation of delays, we started

ith two simple dynamical systems where the effects of delays can be

nderstood analytically (first example) or intuited (second example).

s a third example, we integrated a convolution-based DCM for ERPs

onsisting of two reciprocally connected sources. The specification of

he parameters, delays, and initial conditions for the integration of the

hree systems are provided in Table 2 (the corresponding dynamical

quations are specified in Eq. (10) , (12) and (13) ). For the decaying

xponential, we chose a decay constant such that the signal decays rea-

onably fast over the integration interval. For the HO, we opted for a

arametrization such that the outputs of the oscillators show qualita-

ively similar oscillations as under standard DCM for ERP assumptions.

inally, for the full DCM model, we chose a strong forward connection

 𝐴 𝐹 ), a backward connection ( 𝐴 𝐵 ) set to average strength, a driving in-

ut entering only the first region ( 𝐶 1 ) and a delay from first to second

egion ( Fig. 2 C). Put simply, this corresponded to a higher-dimensional

ibling of the harmonic oscillator simulations (second example). 

When inspecting the integrated signals in Fig. 3 , one can observe

hat the linear approximation in spm_int_L results in three, non-negligible

ypes of errors with regard to the qualitative and quantitative effects that

elays impose on the dynamics. 

First, and most strikingly, in the case of the one-dimensional de-

ayed exponential decay, it fails to produce the oscillations that are pre-

icted by the analytical solution for this system (see Methods). Instead,

t reaches a mathematical singularity (i.e. infinitely fast exponential de-

ay towards zero) at delays equal to the time constant of the system. 

Additionally, spm_int_L violates predictions about the temporal suc-

ession of activity within the network for the dynamics of a coupled HO

nd the ERP model. Activity in the second (delayed) region in both sys-

ems is evoked at times forbidden under the increasing delays (its activ-

ty starts deviating from zero at times shorter than the delay), violating

ausality (see the length of the black bar in comparison with activity

voked under the two extreme delay conditions). Also, an artefactual
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Table 2 

Integration settings for the delayed, one-dimensional exponential decay (1D), the coupled harmonic oscillators (HO) and the convolution-based DCM 

(ERP). All parameters not explicitly stated for the ERP model were set to the values of the prior means in SPM’s procedure for parameter estimation. 

The values for the parameters of the ERP model correspond to their natural description in log-space. Time window of integration 𝒕 ∈ [ 0 , 0 . 5 ] 𝒔 and step 

size 𝒅 𝒕 = 0 . 001 𝒔 were kept equal for all systems. 

System Initial condition Parameters Delays 

1D 𝑥 ( 𝑡 < 0 ) = 10 𝑎 = 10 𝜏 ∈ [ 0 , 0 . 1 ] 

HO 𝐱( 𝑡 < 0 ) = [ 
0 
⋮ 
0 
] 𝑤 1 = 10 ⋅ 𝜋

𝑤 2 = 10 ⋅ 𝜋
𝑓 1 = 20 
𝑓 2 = 20 
𝜅 = 6 ⋅ 𝜋

𝜏 ∈ [ 0 , 0 . 1 ] 

ERP 𝐱( 𝑡 < 0) = [ 
0 
⋮ 
0 
] 𝐴 𝐹 = 1 

𝐴 𝐵 = 0 
𝐶 1 = 0 

𝐷 1 →2 ∈ [ 0 , 1 . 6 ] 

A B

C

C
1

A
F

A
B

Fig. 2. Simulation setup of delay differential equations for the three dynamical 

systems. Dashed lines represent delayed connections. A) One-dimensional expo- 

nential decay; B) Two damped, harmonic oscillators with forward coupling; C) 

Convolution-based DCM for ERP. Symbols depict distinct neuronal populations; 

arrowheads depict inhibitory / excitatory influence. 
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3 Here, c ritical must be understood in a qualitative fashion for when the lin- 

ear approximation becomes inaccurate. Critical magnitudes for delays are most 

likely a function of the integration step size and the frequencies of the system. 
4 To avoid the risk of comparing suboptimal solutions due to local extrema, 

computational optimization of the models was performed starting from 100 

starting values (i.e. a multistart procedure). All results presented correspond 

to the solution based on the starting value resulting in the highest negative free 

energy (also see Schöbi, D., 2020 ). 
eak arises in the ERP model at around 100 ms. This also emerged in

he simulations by Lemarechal et al. (2018) . In addition, changes in de-

ays lead to large effects on the amplitude in the second regions, but

ardly impact peak times. 

Finally, the approximation fundamentally affects the underlying fre-

uencies represented in the system (as is visible in the period of the

scillations in Fig. 3 or in a Fourier transform of the signal (not shown)).

In comparison, the continuous extension for ODE methods proposed

n the present paper, i.e. the LDE scheme, performs well in all three set-

ings. The error remains small even for the delays of highest magnitude,

reserving the frequencies of the true systems. Provided a reasonably
5 
mall step size is used and delays do not exceed critical thresholds, 3 the

ew scheme thus represents a viable alternative to the computationally

ore expensive reference scheme dde23 . The dependence of the error of

he LDE scheme on step size is illustrated in the Supplementary Material.

We formally assessed the delay-dependent integration error by com-

uting the difference as well as the Pearson correlation coefficient of

he integrated signals compared to the reference scheme ( dde23 ). The

esults are summarized in Fig. 4 . One can relate the integration errors to

he intrinsic time constants of the system. Evidently, spm_int_L performs

easonably well if delays are small wrt. the time constants of the system:

s can be seen in the rightmost column of Fig. 4 , the correlation between

he integrated signal by spm_int_L and the reference dde23 is very high

or small delays and only drops to 𝜌 = 0 . 8 for delays of around 𝜏 = 80 , 15
nd 27 ms for the three systems; these delay magnitudes correspond to

pproximately 80% , 6% and 13 . 5 % of the time constants ( Table 3 ). By

ontrast, LDE showed stable performance (near-perfect correlation with

de23 ) across all delays. We will discuss these implications for real data

n the Discussion. 

.2. Application to empirical data 

The profound differences observed in our simulations suggest that

he choice of integration scheme for DDEs matters when using DCM for

ts typical purpose, i.e., estimating the parameters of a circuit from em-

irical data using Bayesian inference and identifying the most plausible

ircuit structure through Bayesian model selection (BMS). This issue has

lready been investigated by ( Lemarechal et al., 2018 ); here, we extend

his analysis by comparing the parameter estimates and model selection

esults from an existing dataset ( Jung, 2013 ; Jung et al., 2013 ) between

he classical spm_int_L and the newly proposed LDE integration schemes.

In brief, we inverted a two-region-DCM 

4 of local field potential (LFP)

easures in rats from primary (A1) and secondary auditory cortices

PAF). All animals ( N = 8) underwent an auditory mismatch negativ-

ty paradigm (MMN), and we investigated how the occurrence of an

nexpected (deviant) tone altered the connectivity between these two

uditory sources (for a complete DCM analysis based on the new LDE

ntegration scheme, see ( Schöbi et al., 2021 )). Thus, the network used

as very similar to the one illustrated in Fig. 2 C, with the exception that

e used a four cell-population model (canonical microcircuit) to model
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Table 3 

Underlying frequencies, intrinsic time constants and critical delays where the Pearson 

correlation between spm_int_L and dde23 drops to 0.8. The dominant frequencies were 

computed through a Fourier transform. Please note that in the case of the HO and ERP 

system, the frequency components of the signal lie in some range around the dominant 

frequency. 

System dominant intrinsic frequencies intrinsic time constant (in ms) 𝜏( 𝜌 = 0 . 8 ) 

1D N.A. 100 80 (80%) 

HO ∼4 Hz ∼250 15 (6%) 

ERP ∼5 Hz ∼200 27 (13.5%) 
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Fig. 3. Integrated signals for different levels of delays for all three systems (top: exponential decay, middle: coupled HO, bottom: ERP). MATLAB’s RK-based 

integration scheme ( dde23 ) served as a reference. The black bar illustrates the maximum delay. For the coupled HO and the ERP model, the dashed line illustrates 

the response of the first region (not directly subject to delays). For visual clarity, for the ERP model we only show voltage traces of pyramidal cells. The dashed lines 

represent the activity of the non-delayed (i.e. driven) populations. 
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i  
 single cortical column ( Bastos et al., 2012 ). We included all different

ptions how a deviant might change either synaptic gain of the regions,

r the strength of long range, extrinsic (presumably glutamatergic) con-

ections, resulting in a model space of 2 4 = 16 models. For each model,

e computed a score of model goodness (the negative free energy as an

pproximation to the log evidence ( Penny, 2012 )) and averaged over the

osterior means. Fig. 5 illustrates that the conclusions drawn from this

nalysis do indeed depend on the integration scheme used to perform

nference. 

In terms of model selection, we could observe a difference in the

elected winning model ( Fig. 5 A). The LDE integration scheme deems
6 
odel 16 (i.e. a model including all modulations) the most likely model

o have generated the data. By contrast, spm_int_L considers model 9 the

inning model. In this model, the self-inhibition of the superficial pyra-

idal cell in region 1 is not modulated by deviant . In principle, one can

lso formally draw a comparison between the two integration schemes,

here the LDE scheme clearly outperforms spm_int_L , in the sense that

t achieves a higher negative free energy for each of the models consid-

red. While BMS might not be the most common approach to assess the

oodness of an integration scheme, it is useful to provide a holistic per-

pective as long as all other components (data, generative model, model

nversion methods) are identical and only the DDE integration scheme
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3

s changed (see also Lemarechal et al., 2018 ). In particular, given that a

ifference in the negative free energy > 3 is typically considered as deci-

ive evidence for one model versus another, the far greater differences

hown in Fig. 5 illustrate that DDE-dependent differences can be of a

agnitude which are relevant for the conclusions drawn from model

omparison. 

In terms of posterior estimates, we observed differences in a num-

er of parameter estimates, in particular modulatory parameters, ker-

el decays, kernel gain, and delays ( Fig. 5 B). The values in ( Fig. 5 B) are

-transformed, assuming repeated measures, i.e. 

Posterior Est imat es [ transformed ] = 

mean ( Δ𝐄𝐩 ) 
𝑠𝑑 ( Δ𝐄𝐩 ) (15)

or Δ𝐄𝐩 = 𝐄 𝐩 LDE − 𝐄 𝐩 spm _ int _ L , where 𝐄𝐩 denotes the posterior means. 5 

Additionally, we found a number of sign flips in the estimates of

odulatory and delay parameters when comparing the two integration

chemes ( Fig. 6 ). This is a concern when using parameter estimates as

eadouts of neuromodulatory action since wrongly inferred direction-

lities of effects (i.e., excitatory vs inhibitory) could lead to significant

isinterpretations. 
5 For 𝑁 = 8 , normalized values of around z = 0.83 correspond to p < 0.05 (un- 

orrected). 

 

f  

c  

p  

7 
The multistart procedure we used here makes it computationally in-

easible to use dde23 in the same fashion (see the following section on

he speed of the integration schemes). In order to evaluate the solutions

rom spm_int_L and LDE in comparison to dde23 in an efficient manner,

e used the posterior means computed with spm_int_L and LDE , and in-

egrated the system with dde23 using the respective values. 

Fig. 7 compares the difference in the predictions for two datasets

rodents). Clearly, the prediction for one of the rodents differs vastly

etween s pm_int_L and dde23 ( Dataset A ), in particular with a large dif-

erence in the posterior auditory region (PAF). On the other hand, LDE

eems to produce a very similar prediction to dde23 for the same parame-

er values. Both findings are in agreement with the previous simulations

compare Fig. 3 ). There is a hint of a small integration artefact visible

n LDE (Dataset B), which however should be well within the levels of

xpected (irreducible) noise of the generative model. 

.3. Speed comparison 

We tested the runtime for all three integration schemes for two dif-

erent sizes of the networks ( Table 4 ). Since none of the integrators was

arefully optimized for speed, the numbers below are only meant to

rovide an approximate comparison. Table 4 shows that spm_int_L is
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Fig. 6. Detailed comparison of parameter estimates regarding modulation and delay. Single dots represent single inversion results. Dotted lines depict the same, 

underlying data (i.e. animal). A) Modulation parameter estimates (B, see Fig. 5 B) for intrinsic modulation in A1 and PAF and modulation of forward (FW) and 

backward (BW) connections. B) Delay parameter estimates (D, see Fig. 5 B) for forward (A1 →PAF) and backward (PAF →A1) delays. 
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a

xtremely efficient since the only added complexity compared to the

on-delayed Ozaki (ODE) integration is the computation of a single

atrix inversion. Our continuous extension of the LDE method does

ot substantially increase the runtime. Specifically, for two sources,

t is slower than spm_int_L by a factor of approximately 2.5, a differ-

nce that increases only linearly with the number of regions. By con-

rast, dde23 requires much more computational resources. The rea-

on is two-fold. First, dde23 performs multiple RK steps, i.e. multiple

valuations of the dynamic equation. Secondly, it uses subsampling to

ontrol the error, thus requires more integration steps. The latter dis-

dvantage of course is reduced, when one considers subsampling for

he other integrators, or time-dependent evaluations of the Jacobian

 spm_int_J ). 
8 
DCM analyses of empirical electrophysiological datasets that con-

ider multiple sources (regions) often involve on the order of 40 free

arameters (e.g. see ( Garrido et al., 2007 )). In this case, a single opti-

ization step requires around 41 integrations (one for the prediction, 40

or the gradients). On the other hand, the standard variational Bayesian

ptimization algorithm in SPM (variational Laplace) requires roughly

0–80 steps to invert a model. If one assumed an additional integra-

ion cost of 4 s for dde23 compared to the other integrators, this would

mount to a difference of well over two hours per model, per subject, per

ondition. In fact, at a relative error tolerance of 0.1%, dde23 took over

ix hours for the inversion of a single model consisting of five regions

 Lemarechal et al., 2018 ). In comparison, spm_int_L would only require

 couple of minutes to perform the full inversion. 
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Fig. 7. Integrated systems with dde23 based on the pa- 

rameter estimates computed using spm_int_L and LDE. 

Prediction for two different datasets (rodents) shown 

for illustration. Dashed lines depict the predicted ac- 

tivity in A1, solid lines depict the predicted activity in 

PAF (standard condition). 

Table 4 

Average integration time for the three types of DDE integrators and a two and four region DCM 

(18 and 36 states respectively). Signals are integrated over 500 ms (at an integration step size of 

1 ms). Averages were computed over 1000 random initialization of the delays. 

2 Sources 4 Sources 

spm_int_L LDE dde23 spm_int_L LDE dde23 

average integration time (in ms) 42 112 1251 47 239 4714 

average integration time (in % of dde23 ) 3.4 9 100 1 5.1 100 
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. Discussion 

An attractive strategy in Translational Neuromodeling and Com-

utational Psychiatry (TN/CP) is the development and clinical use of

computational assays ”, i.e. generative models for inferring disease

echanisms from non-invasively obtained neurophysiological and be-

avioural data ( Stephan and Mathys 2014 ). Biophysically interpretable

etwork models, in particular, have a promising potential for enabling

atient-specific inferences about synaptic dysfunction (( Adams et al.,

020 ; Gilbert et al., 2016 ; Moran et al., 2011 ; Murray et al., 2012 ;

ymmonds et al., 2018 ); for review, see ( Frässle et al., 2018 )). A spe-

ific class of generative models potentially suitable for this approach are

CMs of electrophysiological data (( David et al., 2006 ); for review, see

 Kiebel et al., 2009 )). 

One critical condition for turning generative models into tools for

outine clinical use is that parameter estimates obtained by these models

an be interpreted reliably. This, in turn, requires sufficient robustness

f the numerical procedures involved, such as approximate Bayesian in-

erence techniques and the integration of (delay) differential equations.

ere, we focused on the latter issue. 

In this technical note, we followed up on the previous work by

emarechal et al. (2018) who demonstrated that the standard integra-

ion method used in SPM12 for the integration of the DDEs underlying

lectrophysiological DCMs might not always have the desired degree of

ccuracy, with potentially detrimental consequences for parameter es-

imation and their interpretation in terms of synaptic function. While

emarechal et al. (2018) provided an alternative integration scheme

ith high accuracy, based on MATLAB’s dde23 integrator, this solution

s up to two orders of magnitude slower than the default scheme, de-

ending on the desired error tolerance ( Lemarechal et al., 2018 ). It is
9 
herefore still an open question how the accuracy of integrating DDEs

n DCMs could be improved while avoiding excessively long compute

imes. In this study, we provide an answer to this question and suggest

 novel DDE integrator for DCM – Linearized Delayed Euler ( LDE ) – that

s highly accurate and yet computationally efficient. 

In a first step, we confirmed the earlier finding by

emarechal et al. (2018) that the default integration scheme does

ot always accurately account for delay effects. We demonstrated this

y performing simulations using three different dynamical systems

ith known properties. In these simulations, spm_int_L failed to capture

elays appropriately, resulting in considerable integration errors if

elays became too large in comparison to the intrinsic time constants

f the system. For example, spm_int_L did not result in the analytically

redicted oscillation of a one-dimensional, delayed exponential decay

nd violated the temporal succession of activity propagation imposed

y the delays in a network of coupled harmonic oscillators. By contrast,

hese problems were not visible when applying the newly developed

DE or dde23 . 

Our results from applying DCM to empirical data using both spm_int_L

nd LDE illustrated that conclusions can differ when different DDE

chemes are used. Both network identification (assessed through fixed-

ffects BMS) and parameter estimates differed considerably between

pm_int_L and LDE . Model comparison, in terms of the negative free en-

rgy as an approximation to log evidence, indicated that the use of

DE greatly improved the performance of the generative model: The

ifference in negative free energy Δ𝐹 , i.e. the difference in approxi-

ate log-model evidence, across the two integration schemes was sub-

tantially above standard thresholds used for deciding between com-

eting models ( Penny, 2012 ). In order to compare the solutions from

pm_int_L and LDE against an independent (accurate but slow) integra-
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ion scheme, we integrated the system with MATLAB’s dde23 using the

osterior means estimated under spm_int_L and LDE , respectively ( Fig. 7 ).

his comparison indicates that LDE produces very similar predictions to

de23 for the same parameter values, whereas marked differences occur

nder spm_int_L . This result is in agreement with the simulation analysis

 Fig. 3 ). 

Given the observed weaknesses of spm_int_L , can it be used in prac-

ice and when is it safe to do so? Our simulations showed that the

nswer to this question depends on the relation between delays and

he time constants of the system of interest. As shown in Fig. 4 , rele-

ant differences occur for delays as small as approx. 10% of the time

onstants of the system. This has implications for the practical appli-

ation of spm_int_L to human EEG/MEG data, the most common use

ase of electrophysiological DCMs. For example, auditory ERPs typically

how frequencies in the range of 10 – 20 Hz, i.e. time constants of 50–

00 ms ( Haenschel et al., 2000 ). Conduction delays in human cortex

re not known for all types of connections; however, information exists

n callosal connections in human cortex whose mean estimates range

etween approximately 5–10 ms, albeit with considerable variability

 Caminiti et al., 2013 ). Across species, animal studies have reported de-

ays between 0.5 ms and 42 ms for cortico-cortical connections (for a

eview of existing studies, see ( Swadlow and Waxman, 2012 )). Thus,

xpected delays are in a range where differences in the accuracy of in-

egration schemes are likely to be numerically relevant. 6 We emphasize

hat this does not mean that the use of spm_int_L in electrophysiological

CMs will necessarily lead to flawed inferences. Instead, the impact of

otential inaccuracies will depend on the specific circuit considered and

n the experimental paradigm that perturbs its activity; these factors

etermine delays and time constants which, in turn, determine which

egree of accuracy is needed for the DDE integrator. 

As described above (Eqs. 3–6), spm_int_L rests on absorbing a delay

perator into the Jacobian. It should be noted that this scheme can be

eneralised, using a high-order Taylor expansion ( Friston et al., 2014 ).

his is particularly important when dealing with fast electrophysiolog-

cal responses; for example, gamma band activity in induced responses.

n this situation, one can use an extension of spm_int_L , as described

n the appendix of Friston et al. (2014) . This high-order approximation

meliorates some of the problems discussed above; however, it comes at

 computational cost. In brief, this is because the first-order approxima-

ion enables the delay operator to be computed analytically. However,

hen one includes higher-order terms, one has to find the roots of a

atrix polynomial (e.g., using a Robbins-Munro algorithm). Typically,

hen integrating electrophysiological systems that show fast fluctua-

ions, one needs to increase the order of the delay approximation con-

iderably (the default is N = 256 in spm_dcm_delay in SPM) (Karl Friston,

ersonal communication). For smoothly varying evoked responses in the

lpha range, the first-order ( N = 1) approximation can be sufficient – al-

hough, our analyses suggest that an LDE would be preferred because it

s more robust. 

In order to avoid the necessity for a case-by-case analysis and resolve

ncertainty, it is desirable that a DDE integration method is in place that

an be used universally. The sophisticated dde23 DDE integrator in MAT-

AB represents one option; however, its poor computational efficiency

enders it a suboptimal choice for many practical applications of DCM. 

.1. Limitations and outlook 

Estimation of delays and network dynamics is of course not restricted

o DCM for ERP, and DCM is not the only method to estimate causal ef-

ects in (brain) networks. For example, the dynamical system described

ere (and the integration scheme) are based on the assumption of absent
6 The current prior in SPM12 expects conductance delays between cortical 

olumns on the order of 9-25 ms (i.e. approximately 95% of the prior probability 

ass). 

i  

v  

p  

C  

A

10 
tochastic neuronal fluctuations. Taking these stochastic processes into

ccount would require different types of integration schemes. In recent

ears, a variety of integration schemes for dealing with delayed effects in

ynamical systems have been proposed and/or evaluated. For example,

uckwar et al. (2020) recently showed that an Euler–Maruyama method

s not suitable for the integration of stochastic differential equations in

he Jansen and Rit model. More generally, but with an empirical ap-

lication to local field potentials, Schumacher et al. (2015) provided a

ramework to estimate delays and the flow of information employing

 model of a hidden (stochastic) driver and an observed, driven state.

n contrast to DCM, knowledge of the parametric form of the function

riving the observed state is not needed in this setting, but can be es-

imated with nonparametric methods. Ye et al. (2015) adopted a per-

pective on causality based on ( Sugihara et al., 2012 ), where delays are

stimated using convergent cross mapping. Notably, these two last con-

epts offer novel interpretations of the delay problem, rather than pro-

iding a method of numerically integrating delay differential equations.

mbrogioni et al. (2017) proposed a method to decompose EEG/MEG

ignals based on a combination of stochastic differential equations and

aussian processes. However, in their paper, they did not consider de-

ays. A comparison of our approach with these various other methods

ould go beyond the scope of this paper, given that the motivation of

ur paper was to present and evaluate a robust method that seamlessly

ntegrates into the existing and widely used framework for DCM for

RPs. Still, these alternative methods may prove to be useful bench-

arks for future methodological work. Finally, it is worth keeping in

ind that the integration scheme alone is not the only aspect to con-

ider when testing the robustness of the model inversion framework

sed here. Methods like simulation-based model calibration ( Talts et al.,

018 ) may prove useful for evaluating the robustness of the inversion

f generative models like DCM in the future. 

In summary, we proposed and implemented an alternative DDE in-

egration scheme based on the principle of continuous extension of

DE methods ( Feldstein, 1964 ). Across all simulations, the new LDE

ntegrator respected the nature of delayed effects at reasonable step

ize. Importantly, this did not lead to a marked increase in compu-

ation time ( Table 4 ). While this paper focuses on the application of

DE to the convolution-based formalism of DCMs, the new integra-

ion scheme can be equally applied to more advanced formulations

f DCMs (e.g. conductance based models). It is also notable that our

cheme could in principle accommodate different update steps (e.g.

uler, Ozaki, Runge-Kutta, etc.) and can thus be extended flexibly.

aving said this, even with the simple Euler formulation described in

his article, it performed well in comparison to the reference scheme

 dde23 ). To facilitate the use of this method, the MATLAB code that in-

egrates LDE smoothly into the existing functionality of SPM12 is pub-

icly available as part of the open-source software collection TAPAS

https://www.translationalneuromodeling.org/tapas). 

We hope that the availability of this method and its compatibility

ith the SPM functions for DCMs will facilitate a wide application in

he community, help avoid integrator-dependent confounds in the ap-

lication of DCMs for EEG/MEG, and generally contribute to the devel-

pment of computational assays in TN/CP. 
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