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a b s t r a c t 

Drugs affecting neuromodulation, for example by dopamine or acetylcholine, take centre stage among therapeu- 

tic strategies in psychiatry. These neuromodulators can change both neuronal gain and synaptic plasticity and 

therefore affect electrophysiological measures. An important goal for clinical diagnostics is to exploit this effect 

in the reverse direction, i.e., to infer the status of specific neuromodulatory systems from electrophysiological 

measures. 

In this study, we provide proof-of-concept that the functional status of cholinergic (specifically muscarinic) re- 

ceptors can be inferred from electrophysiological data using generative (dynamic causal) models. To this end, we 

used epidural EEG recordings over two auditory cortical regions during a mismatch negativity (MMN) paradigm 

in rats. All animals were treated, across sessions, with muscarinic receptor agonists and antagonists at differ- 

ent doses. Together with a placebo condition, this resulted in five levels of muscarinic receptor status. Using 

a dynamic causal model - embodying a small network of coupled cortical microcircuits - we estimated synap- 

tic parameters and their change across pharmacological conditions. The ensuing parameter estimates associated 

with (the neuromodulation of) synaptic efficacy showed both graded muscarinic effects and predictive validity 

between agonistic and antagonistic pharmacological conditions. 

This finding illustrates the potential utility of generative models of electrophysiological data as computational 

assays of muscarinic function. In application to EEG data of patients from heterogeneous spectrum diseases, e.g. 

schizophrenia, such models might help identify subgroups of patients that respond differentially to cholinergic 

treatments. 

Significance Statement 

In psychiatry, the vast majority of pharmacological treatments affect actions of neuromodulatory transmitters, 

e.g. dopamine or acetylcholine. As treatment is largely trial-and-error based, one of the goals for computational 

psychiatry is to construct mathematical models that can serve as “computational assays ” and infer the status 

of specific neuromodulatory systems in individual patients. This translational neuromodeling strategy has great 

promise for electrophysiological data in particular but requires careful validation. The present study demonstrates 

that the functional status of cholinergic (muscarinic) receptors can be inferred from electrophysiological data 

using dynamic causal models of neural circuits. While accuracy needs to be enhanced and our results must be 

replicated in larger samples, our current results provide proof-of-concept for computational assays of muscarinic 

function using EEG. 
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. Introduction 

Many pathophysiological theories of psychiatric conditions em-
hasize abnormalities of neuromodulation through transmitters such
s dopamine or acetylcholine ( Cohen and Servan-Schreiber, 1992 ;
igley and Picciotto, 2014 ; Howes and Kapur, 2009 ; Stephan et al.,
006 ; Tandon and Greden, 1989 ). Indeed, most drugs used in clinical
sychiatry affect synthesis, reuptake, or postsynaptic action of neuro-
odulatory transmitters. However, patients with the same diagnosis ac-

ording to ICD/DSM often show great variability in their response to the
ame treatment, a likely consequence of pathophysiological heterogene-
ty under contemporary diagnostic classification schemes ( Kapur et al.,
012 ; Krystal and State, 2014 ; Stephan et al., 2016 ). There is thus a
ressing need for clinical tests that pinpoint specific abnormalities of
euromodulation in individual patients. 

The present study is motivated by mechanistic theories that
ighlight cholinergic abnormalities in schizophrenia ( Friston, 1998 ;
tephan et al., 2006 , 2009a ) with a specific focus on muscarinic re-
eptors ( Raedler et al., 2007 ; Scarr and Dean, 2008 ). Empirically, both
ost-mortem and in vivo studies have provided evidence for abnormali-
ies in muscarinic receptor availability ( Raedler et al., 2003 ; Scarr et al.,
013 , 2009 ). Importantly, a ‘muscarinic receptor-deficit schizophrenia’
MRDS) subgroup was identified that was unrelated to treatment, ill-
ess duration, gender or age and characterized by substantially de-
reased numbers of muscarinic receptors in dorsolateral prefrontal cor-
ex and associated differences in gene expression and synaptic properties
 Dean et al., 2015 ; Gibbons et al., 2013 ; Scarr et al., 2018 , 2013 , 2009 ).
hese marked differences in muscarinic receptor function – across the
chizophrenia spectrum – have implications for treatment: not least be-
ause clozapine and olanzapine, two antipsychotics with particular effi-
acy but also side effects, have distinctive antagonistic activity at mus-
arinic receptors ( Raedler, 2007 ; Weiner et al., 2004 ) (for a comparative
verview of antipsychotics, see ( Kapur and Remington, 2001 )). There-
ore, if muscarinic receptor status could be determined non-invasively
nd cost-efficiently in individual patients, this might guide personalized
reatment selection. 

Unfortunately, with the exception of specialized positron emission
omography procedures, we currently lack non-invasive in vivo measures
f neuromodulatory transmitters in humans. An alternative approach
ests on generative models as computational assays of neuromodulation
 Friston et al., 2013 ; Stephan et al., 2006 ; Stephan and Mathys, 2014 ).
or example, dynamic causal models (DCM; David et al., 2006 ) de-
cribe how latent neuronal processes generate electrophysiological mea-
ures in terms of synaptic parameters that are sensitive to dopaminergic
 Moran et al., 2011 ) and cholinergic alterations ( Moran et al., 2013 ). So
ar, however, validation studies are lacking that employ more than one
ind of pharmacological perturbation and which examine the model’s
bility to predict neuromodulatory status out-of-sample. 

In this proof-of-concept study, we tested the feasibility of using DCM
o infer and predict muscarinic receptor function. We used a rodent
odel where pharmacological interventions can be repeated in the same

nimal with different doses and drugs. As an experimental paradigm, we
hose the auditory mismatch negativity (MMN) which is reliably im-
aired in schizophrenia ( Baldeweg et al., 2004 ; Erickson et al., 2016 ;
mbricht and Krljes, 2005 ) and is sensitive to cholinergic manipula-

ions (for review, see ( Garrido et al., 2009 )). Epidural EEG recordings
ere obtained bilaterally from primary and secondary auditory areas
f awake rats, thus avoiding any confounds by anaesthesia. All animals
nderwent five pharmacological conditions: (i) two dosages of the mus-
arinic antagonist scopolamine, (ii) vehicle, and (iii) two dosages of the
uscarinic agonist pilocarpine. The measured EEG activity was mod-

lled as arising from the neuronal dynamics within a set of connected
ortical microcircuits. The animal-specific parameter estimates of this
enerative circuit model served as features for subsequent out-of-sample
redictions (i.e., ‘generative embedding’; ( Brodersen et al., 2011 )). 
a  

2 
This approach allowed us to test whether dose-dependent changes
n muscarinic receptor function could be predicted, based on estimates
f neuronal processes in cortical circuits, from EEG measurements of
ndividual animals. Permutation statistics on classification accuracies
nsured that even in our relatively small sample, the conclusions are
rotected against overfitting ( Varoquaux, 2018 ). 

. Methods 

.1. Data acquisition 

The data for this study were acquired at the Max-Planck-Institute
or Metabolism Research at Cologne, Germany. All procedures were ap-
roved by the local governmental and veterinary authorities of Cologne
file number 9.93.2.10.35.07.056) and followed ARRIVE standards
 Kilkenny et al., 2010 ). For a detailed description of the acquisition pro-
ocol, see ( Jung, 2013 ). In brief, electrodes were implanted over the
rimary auditory cortex (A1, coordinates relative to bregma: 4 mm pos-
erior, ± 8 mm lateral, 4 mm ventral) and posterior auditory field (PAF;
econdary auditory cortex; coordinates relative to bregma: 6 mm pos-
erior, ± 8 mm lateral, 4 mm ventral) in both hemispheres of ten black
ooded rats. Electrode position was determined based on stereotaxic
ocation using the coordinates proposed by Doron et al. (2002) , who
istinguished the two tonotopic regions based on the firing pattern of
ingle neuron recordings. Following surgery, animals recovered for ten
ays. In five sessions, rats received different intraperitoneal injections:
 or 2 mg/kg of the non-selective muscarinic antagonist scopolamine, 3
r 6 mg/kg of the non-selective muscarinic agonist pilocarpine, or a 0.6
 NaCl-solution (vehicle). In order to avoid interactions between treat-
ents, drug injections were administered every third day, in a counter-

alanced order across rats. 
Acoustic stimuli were delivered in a sound-attenuated cage using a

ucker Davies Technologies® (TDT, Alachua, USA) System 3 and two
ree-field magnetic speakers (FF1, TDT). Stimuli consisted of short bursts
f band-pass filtered noise with bandwidths between 7-9 kHz and 16-18
Hz, respectively. In total, 1000 tones were presented at a frequency
f 2 Hz with 10 % deviant probability. Both bandwidths were used as
he standard tone once, in two individual sessions per drug condition.
ll electrophysiological measures were pre-amplified and transmitted

wireless) to a high frequency receiver (TSE Systems GmbH, Bad Hom-
urg, Germany). This setup allowed the rats to move inside the cage
ithout constraint. 

.2. Non-pharmacological dataset 

An additional set of six animals received a placebo only treatment
non-pharmacological dataset). These additional data served to opti-
ize the settings for the subsequent analysis of the pharmacological
ata. Importantly, they did not enter the main analysis. In brief, the
nalysis of the non-pharmacological dataset informed the selection of
he time window for the classical and model-based (DCM) analysis of
he data. Empirical priors for the dynamic causal modelling of phar-
acological data were informed by posterior estimates from the non-
harmacological dataset. 

The motivation for this two-step strategy was the following: The
CM used in this study (explained below) is a generative model of
voked responses (ERPs) with default parameter settings (e.g. priors)
hosen to explain human ERPs. However, ERPs in the (much smaller)
odent brain occur on a faster time scale, presumably due to faster time
onstants and shorter conductance delays. This requires adjustments to
he standard parameter settings in DCM. For this purpose, we used an
ndependent, non-pharmacological dataset that had been acquired as
art of our study. This dataset included 8 hemispheres with usable data.
s pre-specified in the analysis plan, we first inverted all models for
ll rats of the non-pharmacological group (individually for the 8 hemi-
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1 The all-caps notation is used to explicitly refer to the factor in the statistical 

model. 
pheres). We then defined the prior mean 𝐸[ 𝜋( 𝜃) ] for the pharmacolog-
cal group as the average of the posterior means 𝐸[ 𝑝 ( 𝜃|𝑦 )] of the non-
harmacological group (averaged over models and all 8 hemispheres).
otably, we retained the default DCM prior for modulatory influences,
ecause these influences are expected to depend upon the pharmacolog-
cal context. There are two complementary interpretations of the ensu-
ng empirical priors. One can think of them as a Bayesian model average
ith equal posterior model probabilities. 

 [ 𝜋( 𝜃) ] = 𝐸 [ 𝑝 ( 𝜃|𝑦 ) ] = 

1 
𝐻 

𝐻 ∑
ℎ =1 

1 
𝑀 

𝑀 ∑
𝑚 =1 

𝐸 

[
𝑝 
(
𝜃|𝑦 ℎ , 𝑚 

)]
. 

Note that we use 𝑦 as a shorthand notation for the data over all
nimals and hemispheres. Here, m denotes the model and M = 16 is the
umber of models considered. The index h indicates the hemisphere the
ata is coming from (H = 8). 

Alternatively, this corresponds to a parameter average in the space
panned by the parameters that are common to all models. As for the
rior variance, we used the variance of posterior means over models and
emispheres 

ar [ 𝜋( 𝜃) ] = var [ 𝐸 [ 𝑝 ( 𝜃|𝑦, 𝑚 ) ] ] . 

This means that the prior acknowledges the expected between-rat
ariability. 

.3. Analysis plan, data and code availability 

After analysis of the non-pharmacological data but prior to the
nalysis of the pharmacological data, a version-controlled and time-
tamped analysis plan was created. This plan detailed the analysis
ipeline ex ante (see Methods section) and is available online at
 https://gitlab.ethz.ch/tnu/analysis-plans/schoebietal_auditory_mmn_ 
cm_2020 ). The data are publicly available on the ETH research collec-
ion ( https://doi.org/10.3929/ethz-b-000464174 ) in a form adhering
o the FAIR (Findable, Accessible, Interoperable, and Re -usable) data
rinciples. Furthermore, all analysis code is publicly available on
ttps://gitlab.ethz.ch/tnu/code/schoebietal_auditory_mmn_dcm_2020 . 

.4. Preprocessing 

Preprocessing was implemented using Statistical Parametric Map-
ing SPM12 (ver. 6906) (Litvak et al., 2011). Electrophysiological data
ere down-sampled to 1000 Hz (including an anti-aliasing filter), and
and-pass filtered between 1 Hz and 30 Hz. Trials exceeding an ampli-
ude of 500 μV were considered artefactual and excluded from further
nalysis. This (liberal) threshold was chosen based on visual inspection
f the single trial ERPs. Comparing the average ERPs before and after
rtefact rejection showed negligible effects on the averaged waveforms.
inally, standard and deviant tone responses were averaged in a time
indow of 0 - 250 ms. Following standard procedures for MMN, we
veraged standards and deviants, respectively, over all corresponding
rials from both sessions, thus removing any potential confounds due to
requency differences in standards and deviants. 

All analyses were done individually for each hemisphere. Data from
 given hemisphere were excluded if the recording in one of the channels
A1 or PAF) was considered faulty (assessed through visual inspection
f the average ERPs prior to any statistical and model-based analyses).
his led to exclusion of one left hemisphere and three right hemisphere
ecordings. We excluded a hemisphere for all pharmacological condi-
ions, even if the recording was of poor quality in only one pharmaco-
ogical condition. 

.5. Classical analysis 

The MMN paradigm followed a classical oddball design, where the
efinition of the ‘Standard’ tone frequency did not change throughout a
ession. We compared the full ERP time series (0 – 250) ms for each of
3 
he four electrodes in a fully factorial 2 × 5 × N mixed effects ANOVA
N = 9 for left, N = 7 for the right hemisphere), with fixed effects factors
ONE 1 = [Standard, Deviant], PHARMA = [2mg scopolamine, 1mg scopo-
amine, vehicle, 3mg pilocarpine, 6mg pilocarpine] and their interac-
ion, and ANIMAL as a random effect (indicated by the notation ‘1|’): 

 { 𝑡𝑜𝑛𝑒, 𝑝ℎ𝑎𝑟𝑚𝑎, 𝑎𝑛𝑖𝑚𝑎𝑙 } = 𝛽0 + 𝛽1 ∗ 𝑇 𝑂𝑁𝐸 + 𝛽2 ∗ 𝑃 𝐻𝐴𝑅𝑀𝐴 

+ 𝛽3 ∗ 1 |𝐴𝑁 𝐼 𝑀 𝐴𝐿 + 𝛽4 ∗ 𝑃 𝐻 𝐴𝑅𝑀 𝐴 × 𝑇 𝑂𝑁𝐸 

In brief, we fitted the mixed effects ANOVA to every time point in the
ime window [0, 250] ms post stimulus, where we expected the MMN
nd thus potential drug effects. The selection of the time window was
ased on the preliminary analysis of the non-pharmacological dataset.
e corrected for multiple comparisons using an FDR correction (over

ime) (Benjamini and Yekutieli, 2001). The analysis only included those
ats in which all recordings (in all pharmacological conditions) were
alid. Electrodes were analysed separately. We did not additionally cor-
ect for electrodes but report the (FDR corrected) p-values to allow for
 visual intuition about the significance of the results (e.g. significance
hreshold under additional Bonferroni correction for p < 0.0125). 

All statistical analyses were performed using the open source sta-
istical software R (version 3.5.2) and the packages lme4, R.matlab and
merTest. 

.6. Dynamic causal modelling 

We modelled the data using a convolution based DCM for electro-
hysiological data ( David et al., 2006 ; Kiebel et al., 2009 ). In this neu-
al mass model, the average presynaptic firing rate (of a neural pop-
lation) is transformed into a postsynaptic potential by a convolution
perator, while the average potential is converted into average firing
ate via a sigmoid activation function. Anatomically, we used a canon-
cal microcircuit (CMC) model ( Bastos et al., 2012 ), where each corti-
al column (source) comprises two types of pyramidal cell populations,
n inhibitory interneuron and an excitatory (spiny stellate) population
 Fig. 1 A). The CMC naturally maps onto computations required for pre-
ictive coding ( Bastos et al., 2012 ) which provides a unifying frame-
ork for the neuronal computations underlying the MMN and accom-
odates cortical hierarchies, such as our two-level model (A1 and PAF)

 Lieder et al., 2013 ). The equations describing the model dynamics are
rovided in the Appendix A . 

In our setting, the DCMs comprised two reciprocally connected
ources, A1 and PAF. Driving input encoding auditory stimulation (by
ny tone) targeted region A1. Based on this basic structure, we explored
 full factorial model space comprising all possible combinations of mod-
lation by TONE (deviant vs. standard) on the forward connection, the
ackward connection and the intrinsic connection in both regions. This
esulted in 2 4 = 16 models ( Fig. 1 B), with 26 to 30 parameters (depend-
ng on the modulation structure). 

We made a number of changes to the default implementation of the
MC in SPM12, motivated by prior testing of the framework on the non-
harmacological dataset. These changes included the use of a custom-
ritten integration scheme for delay differential equations based on a

ontinuous extension of Euler’s method for ordinary differential equa-
ions ( Feldstein and Goodman, 1973 ; Schöbi, 2020 ). This was in re-
ponse to questions about whether the default integration methods im-
lemented in SPM12 are ideally suited for accurate parameter estima-
ion ( Lemaréchal et al., 2018 ). Furthermore, default priors for the main
nalysis of the drug data were replaced by empirical priors from the non-
harmacological data (see paragraph on non-pharmacological dataset).
inally, in order to avoid local extrema, we ran the Variational Bayes in-
ersion routine (i.e., Variational Laplace) under a multi-start approach
y sampling 100 starting values from the prior. 

https://gitlab.ethz.ch/tnu/analysis-plans/schoebietal_auditory_mmn_dcm_2020
https://doi.org/10.3929/ethz-b-000464174
https://gitlab.ethz.ch/tnu/code/schoebietal_auditory_mmn_dcm_2020
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Fig. 1. A) Connectivity pattern of the canonical microcircuit. Curved arrows indicate intrinsic (within region), straight arrows extrinsic (between region) or driving 

connections. Green colour indicates excitatory (triangular arrowheads), blue colour inhibitory connections (round arrowheads). Labelling indicates forward ( 𝐴 𝐹 ), 

backward ( 𝐴 𝐵 ) connections, or driving input (U) which entered A1. Note that forward and backward connections to different neuronal targets have separate 

parameters. The superscript distinguishes between these parameter in the A-Matrix (see Table 1 for more details). Arrowheads show the direction of the connection. 

Red connections depict putative modulation by TONE (shown on the outgoing connections). Pyramidal cell populations are depicted by triangles, stellate cells by a 

star and inhibitory neurons by a circle. B) Definition of model space. We consider 16 models, where connection strength (or excitability) can change by TONE. Red 

boxes indicate modulation by TONE, boxes 1 - 4 correspond to the connections on the left. 
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.7. Model selection and averaging 

Model goodness was assessed in terms of the negative free energy,
hich provides a lower-bound approximation to the log model evidence
 Friston et al., 2007 ). We used random effects Bayesian Model Selection
BMS) ( Stephan et al., 2009b ) to compute the posterior probability that
 specific model generated the data of a randomly selected subject from
he group. Specifically, we computed protected exceedance probabili-
ies ( Rigoux et al., 2014 ) to compare models. This metric rests on the
osterior probability 𝜑 that model 𝑘 ∈ { 1 , … , 𝐾 } is more probable than
ny other considered model 𝜑 𝑘 = 𝑝 ( 𝑟 𝑘 > 𝑟 𝑘 ′≠𝑘 |𝑦 ) given the group data 𝑦 ,
hile taking into account that differences may have arisen simply by

hance. In other words, the protected exceedance probability denotes
he probability that the frequency 𝑟 𝑘 of model k in the population is
arger than for any other model 𝑟 𝑘 ′≠𝑘 in the hypothesis set. 

Our primary interest, however, concerned the potential represen-
ation of drug effects in the estimated model parameters. Bayesian
odel Averages (BMA) were calculated on the individual animal level to
arginalize out model uncertainty ( Penny et al., 2010 ). In other words,

or a given model parameter, BMA computes its average posterior dis-
ribution over all models considered, where this average is weighted
y the posterior model probabilities. We used the BMA estimates in all
ubsequent statistical tests. 

.8. Statistics and classification 

Statistical analyses of the drug effects focused on estimates of DCM
arameters that have a biological interpretation in terms of synaptic ef-
cacy and plasticity. These include the connectivity (4), the kernel gain
6) and decay (4), and the modulatory parameters encoding a difference
n response to deviant tones (4) (18 parameter estimates in total). For
hese parameter estimates, three different approaches were considered
o test for pharmacological effects. 

First, we computed a generic 1 × 5 ANOVA with a fixed factor DRUG
nd a random effect ANIMAL. We performed this test separately for each
4 
MA parameter estimate as a dependent variable and used Bonferroni
orrection to correct for multiple comparisons. 

Second, we tested for a parametric drug-effect relationship, where
e use the notion of a ‘drug-effect’ as the change in parameter estimates,
s we move from the drug with the most antagonistic effect (2 mg/kg
copolamine) to the drug with the most agonistic effect (6 mg/kg pilo-
arpine). This can be regarded as a more refined version of the ANOVA
bove, that leverages knowledge about generic dose-effect relationships.
or this analysis, we specified a mixed effects model for the same es-
imates used in the generic ANOVA, assuming a linear fixed effect of
RUG with 𝑋 𝑑𝑟𝑢𝑔 = [ … , −2 , −1 , 0 1 , 2 , …] 𝑇 corresponding to 1 and 2
g/kg of scopolamine, vehicle, and 3 and 6 mg/kg of pilocarpine re-

pectively and a random effect of ANIMAL (hemisphere specific). The
ots indicate different rats/hemispheres. The corresponding general lin-
ar model is: 

{ 𝑎𝑛𝑖𝑚𝑎𝑙, ℎ𝑒𝑚𝑖, 𝑑𝑟𝑢𝑔 } = 𝛽0 + 𝛽𝑑𝑟𝑢𝑔 ⋅𝑋 𝑑𝑟𝑢𝑔 + 𝛽𝑎𝑛𝑖𝑚𝑎𝑙 ⋅ 1 |𝑋 ( ℎ𝑒𝑚𝑖,𝑎𝑛𝑖𝑚𝑎𝑙 ) . 

For each parameter vector 𝜃 (e.g. modulation of the forward con-
ection), the values are ordered according to the subscript, i.e. animal,
emisphere and drug. Thus, 𝑋 𝑑𝑟𝑢𝑔 codes for a linear effect over pharma-
ological interventions. 

Finally, we tested for a mapping between the drug treatments and
CM parameter estimates using a linear support vector machine (SVM)
ith leave-one-out cross-validation (LOOCV) ( Allwein et al., 2000 ). This
rocedure asks whether one could predict the drug label from the model
arameter estimates. Specifically, this was based on the same 18 BMA
stimates used in the classical tests above. Hyperparameters of the SVM
ere optimized within each cross-validation set (using nested cross-
alidation). In order to quantify the information that could be gained
rom the DCM parameters, we tested five different classifications: In four
inary classifications, we compared the two extreme drug conditions
gainst each other and individually against the vehicle condition, and
he two antagonists vs. the two agonists. Finally, we applied a multiclass
lassification for all levels of the pharmacological factor. In order to be
ble to perform LOOCV in a balanced way, rats with data from only one
emisphere were omitted during classification. Please note that the left-
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ut animal of the outer loop was not used in the inner loop, so no leaking
f information was possible between test data and any parameter opti-
ized within the inner loop. Importantly, in the LOOCV approach we

dopted, it is not possible for the classifier to learn animal specific pa-
ameters based on the other hemisphere (which could be interpreted as
 leak of information from the parameters of the other hemisphere of
he same animal, or any other pharmacological condition). 

To estimate the requisite confidence intervals, we used 1000 ran-
om permutations of the drug labels (within-animal and hemisphere),
nd re-estimated the full classification (including the optimization of
he hyperparameters). The p-values then correspond to the proportion
f permuted drug-label configurations that would have afforded a better
lassification than the actual one. 

. Results 

.1. Classical analysis 

From the 20 recorded hemispheres (10 animals), the data from three
nimals were excluded because of poor recording quality in either left
nd/or right hemisphere, based on visual inspection. For the remaining
4 hemispheres, all 5 pharmacological conditions were included in the
nalysis, resulting in 70 data points for statistical analysis. Average ERPs
f all individual rodents and pharmacological conditions are provided
n the Supplementary Material. 

First, we ran a mixed effects ANOVA with fixed effects TONE and
HARMA, their interaction and a random effect of ANIMAL. We found
rolonged effects of TONE, PHARMA, and their interaction (see Fig. 2 )
n evoked responses. These effects are consistent over the time win-
ow of interest, electrodes and deviant probability. The effect of TONE,
vinced by the difference wave in Fig. 2 , exhibits two main peaks: an
arly negative peak around 25-50 ms and a “late ” positive peak around
5-125 ms. It is also these two peaks that showed consistent interactions
etween TONE and PHARMA in all regions. Interestingly, the earlier
eak is very dominant in the raw ERPs of both standard and deviant
ones, most notably visible in the right hemisphere electrodes, with the
wo pilocarpine conditions exhibiting an additional dip right after 50 ms
see the arrow in Fig. 2 ). This interaction clearly demonstrates that the
harmacological effect differed for the two conditions deviant and stan-
ard. The dynamic causal modelling analysis below provides an inter-
retation of this observation by means of drug dependent connectivity
hanges between the standard and deviant conditions (see Discussion). 

.2. Dynamic causal modelling 

The animal-specific ERPs were modelled using DCM. Notably, for
onsistency with the classification results described below, we use only
hose rats where both hemispheres were included in the data analysis
N = 7). 

Using multi-start Variational Laplace, we inverted each of the 16
odels shown in Fig. 1 initializing the gradient ascent with 100 different

tarting values (sampled from the prior over parameters), for each rat,
harmacological condition, and hemisphere. 

In terms of the primary measure of model goodness – the (nega-
ive) free energy – the multi-start approach was clearly beneficial. The
odel inversion with the highest free energy estimate was always from
 starting point that was not the prior mean of the parameters. Starting
rom the prior mean is the default often used. This finding illustrates the
ulti-modal nature of the objective function and the utility of multi-start
rocedures. 

Random effects model selection between the 16 competing DCMs did
ot yield a conclusive result ( Fig. 3 A), although there was a tendency for
ore complex models to perform better, especially for the agonist con-
itions where the (protected) exceedance probability was approaching
.95 ( Rigoux et al., 2014 ). The most complex model (model 16) per-
ormed consistently well across all pharmacological conditions. Runner
5 
ps included models of greater complexity, such as models 7, 9, 11, 12
nd 15. Common to all these models is the presence of a modulation of
he forward connection. 

The overall fit for the winning (most complex) model is illustrated
n Fig. 3 B by comparing the average prediction of the model (averaged
ver both hemispheres and rats) and empirical data. For reference, the
verage prediction would explain 88 % (2mg scopolamine), 88 % (1mg
copolamine), 93 % (vehicle), 93 % (3mg pilocarpine), 93 % (6mg pilo-
arpine) of the average signal variance. 

.3. Parameter estimation and statistics 

Since there was no unambiguous winning model in all pharmaco-
ogical conditions, we computed BMAs on the individual animal level,
ffectively marginalizing out the model from the posterior distributions.
ur primary interest were parameters with a biological interpretation

n terms of synaptic processes, i.e., extrinsic connection strengths, mod-
latory influences, kernel gains and decays (in total 18). We used these
MA estimates in two separate ANOVAs. First, we tested for any effect
f DRUG, while correcting for the random effect of ANIMAL. Second, we
ested for a linear effect of drug (i.e. across the different levels of mus-
arinic effects, from the highest antagonistic via vehicle to the highest
gonistic dose). ANOVAs were computed for each parameter of interest
nd Bonferroni corrected for the ensuing 18 tests. The results are sum-
arized in Table 1 and Fig. 4 . For the one-way ANOVA with random

ffect ANIMAL, there was a significant effect on the kernel gain of self-
nhibition of the superficial pyramidal cell in PAF, and on the kernel
ecay of the inhibitory cell, p < 0.05 (corrected). The latter parameter
s set to be the same for both regions. When testing for a linear effect of
rug, we observed a significant linear relationship in five parameters:
he forward connection to the deep pyramidal layer (c.f. 𝐴 

2 
𝐹 

in Fig. 1 ),
he modulation of the forward connections (A1 →PAF), the modulation
f the backward connections (PAF →A1), and the same two kernel pa-
ameters found in the previous ANOVA. 

.4. Classification 

Finally, we asked whether it was possible to predict the drug la-
el (or even level) from the model parameter estimates. We used the
MA estimates as features for a linear SVM with LOOCV. Here, in each
old, the classifier was trained on the drug labels of all but one rat and
hen the drug labels of the left-out rat was predicted. We computed the
alanced accuracy (BA) as performance score of classification and con-
idered the five classifications described in the Methods. We were able
o predict the individual drug levels in a multiclass classification with
1.4% BA ( p = 0.024, chance level: 20%). Also, we could distinguish be-
ween the most extreme antagonistic and agonistic effects with 92.9%
A ( p < 0.001, chance: 50%), between the highest dosage of pilocarpine
nd vehicle with 71.4% BA ( p = 0.032, chance: 50%), and between both
rugs with antagonistic and agonistic effects with 73.2% BA ( p = 0.001,
hance: 50%). Classification between the highest dosage of scopolamine
nd vehicle was not significantly different from chance, with 39.29% BA
 p > 0.10. Classification results are summarized in Fig. 5 . All p -values
eported here are based on permutation tests on the drug labels and
ere not corrected for multiple comparisons. However, all classifica-

ions with p < 0.01 are significant when Bonferroni corrected for the
ve tests under the chosen alpha level (indicated by two stars in Fig. 5 F).
ote that the permutation based statistical testing of classification ac-
uracies works robustly even in the context of relatively few data points
 Varoquaux, 2018 ), as is the case here. 

. Discussion 

In this study, we investigated changes in epidural EEG recordings
nduced by graded pharmacological manipulations of muscarinic re-
eptors during the auditory MMN. Using physiologically interpretable
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Fig. 2. Grand Average Evoked Responses and results 

from the mixed effects ANOVA. Average (over ani- 

mals and trials) Standard and Deviant tones are shown 

together with average difference waves for all drugs 

and both hemispheres (A: left hemisphere and B: right 

hemisphere, see Labels). Statistical results show p- 

values (FDR corrected) of the main and interaction ef- 

fects (without correction for electrodes). The red line 

indicates a threshold of p = 0.0125 (Bonferroni cor- 

rection over four electrodes). The arrow indicates the 

additional dip for the two agonistic interventions men- 

tioned in the paragraph. For details on colours and line 

types see the inset at the bottom of subfigure A. 
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CMs of auditory circuits, we were able to explain ERP changes across
ifferent levels of muscarinic receptor function in terms of synaptic con-
ections likely affected by the drugs. We then identified several model
arameter estimates that exhibited significant linear drug-effect rela-
ionships. Finally, we demonstrated that the estimated synaptic param-
6 
ters allowed us to predict drug type (antagonist versus agonist) with
early 93% accuracy and, less precisely, the dose under which a given
ataset had been recorded. To our knowledge, this represents the first
tudy using a graded manipulation of a neuromodulatory transmitter
uring the auditory MMN, from strong/weak inhibition via placebo to
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Fig. 3. A) Bayesian model selection (BMS). Protected Exceedance probabilities reported for all sixteen models and drugs. B) Average (over animals) data (coloured 

line) and prediction (black solid line) for model 16. Shaded area depicts standard error of the mean (s.e.m.) of the data (over animals and hemispheres), dotted lines 

depict s.e.m. of prediction (over animal and hemispheres). 
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eak/strong enhancement, using highly selective drugs and multiple
ecordings from both hemispheres in awake rodents. 

.1. Generative embedding – using DCM for model-based feature reduction 

When trying to predict the pharmacological state from the record-
ngs, one faces the problem that the dimensionality of the feature space
the recordings over time) is far greater than the number of labels (drug
tatus) to be predicted. A useful approach to address this problem is
enerative embedding ( Brodersen et al., 2011 ). Simply speaking, gen-
rative embedding uses a generative model to partition the data into
nexplained signal (noise) and explained signal and uses the parameter
7 
stimates as a compact, low-dimensional representation of the latter.
hat is, instead of using a noisy, high-dimensional set of features (the
riginal recordings), generative embedding uses a low-dimensional and
e-noised feature set for subsequent (un)supervised learning. While the
hoice of a specific generative model depends on the data type and the
odeler’s theory about the processes that generated the data, DCM has

een a frequent and successful choice in previous generative embedding
tudies of brain activity measurements ( Brodersen et al., 2013 , 2011 ;
rässle et al., 2020 ). 

In the present study, Dynamic Causal Modelling allowed us to reduce
he dimensionality of the problem from 1000 features (datapoints per
ecording) to 30 (or 18) features (parameter estimates), while main-
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Fig. 4. A) BMA estimates for all animals (n = 7). BMAs are computed on the first level and pooled over both hemispheres. Error bars depict SEM. Mixed effects (MFX) 

ANOVA on the BMA parameters are displayed. We considered two MFX models. First, a model with fixed factor DRUG (5 levels) and random effect ANIMAL. Black 

squares indicate significant results at p < 0.05 (Bonferroni corrected). Second, a MFX ANOVA with a linear, fixed effect of DRUG and random effect of ANIMAL. 

Black horizontal bars indicate significant results at p < 0.05 (Bonferroni corrected). X-axis labels indicate parameters. For more details on parameters see Table 1 . 

B) Zoomed in display of parameters showing a significant linear effect. Labelling according to Table 1 . 

t  

(  

g  

(  

t  

o  

k  

(  

s  

n  

o  

d  

r  

t  

t  

o  

n  

o  

a  

p  

i  

b

4

 

h  

m  

v  

t  

D  

r  

e  

t  

M  

n  

s  

i  

t  

t  
aining the overall information contained in the complete time series
as demonstrated by the good model fits). Notably, when performing
enerative embedding, it is not necessarily the goal to fit each specific
traditional) feature of classical ERP analyses, such as amplitudes or la-
encies of MMN components, but to reproduce the overall data as the
utput of a physiological system, reducing the dimensionality to some
ey parameters. As a concrete example, let us consider the first peaks
around 25 ms and 50 ms) of the primary auditory region for the 1mg
copolamine conditions (see Fig. 3 B): The timing of the second peak is
ot perfectly captured by the model. In order to fit this specific feature,
ne would have to adapt the model, e.g. by reducing constraints, adding
egrees of freedom, or using tailored noise functions that force the algo-
ithm to fit well in certain temporal windows. However, such changes
hat are tailored to explain specific features of the data would increase
he risk of overfitting in general (with detrimental effects for subsequent
ut-of-sample classification based on the parameter estimates) and are
ot in line with the goal of the present study. Here, the emphasis was on
btaining a plausible but compact representation of the overall signal
nd how it is affected by drugs. The fact that our model fits result in high
roportions of variance explained across all pharmacological conditions
8 
ndicate that information of the global signal was adequately captured
y the model. 

.2. Effects of auditory deviance 

We observed clear effects of auditory deviance as evidenced by the
ighly significant effect of tone in two time windows (around 25-50
s and 75-125 ms, respectively). These effects are in line with a pre-

ious study of auditory MMN in rats that examined the same audi-
ory fields but used intra-cortical recordings and anaesthesia ( Nieto-
iego and Malmierca, 2016 ). However, our recordings, obtained epidu-

ally and in the absence of anaesthesia, do not show the same differ-
nces in MMN amplitude between A1 and PAF that were observed with
he intracortical LFP recordings of Nieto-Diego and Malmierca (2016) .
odel comparison suggested that both forward and backward con-

ections within a small auditory circuit comprising primary (A1) and
econdary (PAF) areas were modulated by the occurrence of surpris-
ng tones (deviants). This fits well with predictive coding accounts of
he MMN, where surprising events lead to (precision-weighted) predic-
ion error updates of an internal model, in order to minimize surprise



D. Schöbi, F. Homberg, S. Frässle et al. NeuroImage 237 (2021) 118096 

Table 1 

ANOVA statistics on the BMA estimates for the classical ANOVA, and the ANOVA where DRUG was treated as a factor with a linear effect from the 

most antagonistic to the most agonistic drug condition. 

Classical linear 

Class Connection Parameter F-Values 

p-Values 

(uncorrected) F-Values 

p-Values 

(uncorrected) 

A Matrix (A) SPC →SC 𝐴 1 
𝐹 

1.3705 0.2551 5.3372 0.0242 

SPC →DPC 𝐴 2 
𝐹 

2.5341 0.0496 10.1793 0.0022 (-) 

DPC →SPC 𝐴 1 
𝐵 

1.0172 0.406 0.4711 0.4950 

DPC →IC 𝐴 2 
𝐵 

0.6058 0.6598 0.9121 0.3429 

Modulation (B) A1 →A1 B1 2.8086 0.0334 5.8079 0.0189 

A1 →PAF B2 3.8664 0.0074 12.455 0.0008 ( + ) 
PAF →A1 B3 4.2405 0.0044 16.8168 0.0001 ( + ) 
PAF →PAF B4 0.5758 0.6813 0.0043 0.9479 

Kernel Gain (G) SPC →SPC (A1) G1 1.1165 0.3564 1.9527 0.1668 

SPC →SPC (PAF) G2 4.6626 0.0023 17.9828 0.0001 ( + ) 
SPC →SC (A1) G3 0.8903 0.4755 1.5026 0.2249 

SPC →SC (PAF) G4 1.3646 0.2572 0.6301 0.4303 

IC →SC (A1) G5 1.5008 0.2123 4.8325 0.0313 

IC →SC (PAF) G6 2.9784 0.0262 8.6147 0.0047 

Kernel Decay (T) SC T1 0.7326 0.5734 0.793 0.3766 

SPC T2 0.7238 0.5792 1.3634 0.2474 

IC T3 4.62 0.0026 16.2289 0.0002 (-) 

DPC T4 1.6404 0.1761 4.0477 0.0486 

All parameters are ordered as in Fig. 4 . The connection is explicitly provided with the following abbreviations: Superficial Pyramidal Cell (SPC), 

Deep Pyramidal Cell (DPC), Inhibitory Cell (IC), Stellate Cell (SC). Modulatory effects act on connections as illustrated in Fig. 1 . Bonferroni corrected, 

significant results (p < 0.05) in bold. Sign in bracket indicates direction of the linear effect. 

Fig. 5. Permutation statistics for multiclass 

(A) and binary (B - E) classifications based 

on the BMA results. Grey bars depict nor- 

malized histograms (density) of cross vali- 

dation (CV) accuracies of permuted labels. 

The solid line shows a Gaussian fit to the 

histograms. Dotted lines depict CV accuracy 

for the true labels. Numbers refer to the CV 

accuracy of the true labels (a) and the p- 

value, i.e. the percentage of permutations 

leading to a higher accuracy. F) Balanced 

accuracies for all classifications in (A-E). 

Stars indicate significance at p < 0.05 (1 star) 

and p ≤ 0.001 (2 stars) based on permuta- 

tion statistics. The black dashed line indi- 

cates chance level for the specific classifica- 

tions. 
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 Baldeweg, 2007 ; Garrido et al., 2009 , 2008 ). More specifically, pre-
ious modelling studies of the MMN suggested that the occurrence of
eviants modulate long-range glutamatergic connections as well as lo-
al gain adaption ( Garrido et al., 2008 ; Moran et al., 2013 ). Our results
re consistent with these findings, with slightly reduced emphasis on
ocal gain modulation. 

Our ANOVA, which was applied to each time point separately (and
orrected for the ensuing multiple tests) demonstrated that the differ-
nce between standard and deviant tones differed between drug condi-
ions, i.e. a significant interaction of the factors TONE (DEV vs. STD)
nd PHARMA. This interaction was found for large time windows of the
RP (see Fig. 2 ). A natural question would be to ask for clarification of
he qualitative nature of this interaction. In our case, this would require
9 
 large number of post hoc tests; at the same time, it would be difficult
o report the time-varying results in a compact manner. However, this
hallenge of interpretation also highlights one of the advantages of our
odel-based approach. That is, the DCM contains one class of param-

ters that represent the TONExPHARMA interaction effects: these are
he modulatory parameters (B) which express how much a connection
s changing under the presence of a deviant tone (relative to a standard
one). In other words, the plot of B parameter estimates in Fig. 4 indi-
ates whether the occurrence of a deviant tone leads to more positive or
ore negative connection strengths, and their changes over drug con-
itions indicate the nature of the interaction. This represents a compact
ummary of differential drug effects on DEV vs. STD tones that applies
o the entire ERP. 
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.3. Drug-effect relationships 

In addition to the classical ANOVA, the modulation of the A1 →PAF
orward connection exhibited a linear drug-effect relationship. The
ackward modulation also showed a significant positive linear rela-
ion to drug level. In other words, the more strongly muscarinic re-
eptors were activated, the stronger the increase in forward and back-
ard connection for deviant tones. This finding is in contrast with
 previous study in humans which investigated the effect of galan-
amine on the auditory MMN and reported mainly local gain increases
n A1 ( Moran et al., 2013 ). It is possible that this difference is due to
he different action of galantamine which increases the level of ACh
n general and may also allosterically potentiate nicotinic receptors
( Samochocki et al., 2003 ); but see ( Kowal et al., 2018 )). Physiolog-
cally, the drug-induced changes in glutamatergic long-range connec-
ions between auditory areas (which presumably draw on both AMPA
nd NMDA receptors; see discussion in ( Schmidt et al., 2013 )) could
e mediated by short-term changes in synaptic transmission. Specifi-
ally, muscarinic agents are known to change AMPA and NMDA re-
eptor function by various mechanisms, including phosphorylation or
hanges in subunit composition ( Di Maio et al., 2011 ; Grishin et al.,
005 ; Lopes et al., 2013 ; Marino et al., 1998 ; Shinoe et al., 2005 ;
hao et al., 2019 , 2018 ), for review, see ( Butcher et al., 2009 ). 

Linear but not deviant-specific pharmacological effects were found
n two of the DCM parameters. To discuss these results in more detail,
e consider their effects on the two pyramidal cell (PC) populations (see
ig. 1 ), since those directly contribute to the measured EEG signal. We
bserved an increase in the gain of inhibitory self-connections of super-
cial PCs in the PAF, resulting in a smaller (in absolute values) initial
eak of the ERP. Furthermore, there was a decrease in the time constant
f the inhibitory cell, i.e. faster decay. The inhibitory cell directly drives
eep PCs but has no direct influence on superficial PCs. Since deep PCs
re (intrinsically) driven only by ICs in the model, a faster decay of in-
ibition will result in less deactivation of deep PCs. This, in turn causes
he overall signal to decay more slowly after the first peak. Both results
a graded expression of (absolute) amplitude and its decay back to zero
can be observed in the ERPs in Fig. 2 , around 25-50 ms. A similar di-

hotomy of muscarinic action into a fast (net inhibitory) and a slower
epolarizing effect was observed in vitro ( McCormick and Prince, 1985 ).

A central aim of the present study was to test the feasibility of pre-
icting muscarinic receptor status, out of sample and from parameter
stimates of a physiologically interpretable circuit model. The strat-
gy of using parameter estimates from a generative model for sub-
equent (un)supervised learning is known as ‘generative embedding’
 Brodersen et al., 2011 ) and plays a central role in attempts to establish
omputational assays for psychiatry ( Stephan et al., 2017 ). For example,
ecent work suggested that dopaminergic and cholinergic alterations can
e predicted out-of-sample from eye movements ( Aponte et al., 2020 ).
he generative embedding approach has two main advantages: it offers a
heory-led dimensionality reduction (from high-dimensional noisy data
o a small set of model parameter estimates), and it enables the inter-
retation of machine learning results in terms of biological mechanisms
epresented by a model. 

In this study, generative embedding suggested that a relatively sim-
le model of a small cortical circuit can be used to predict muscarinic
eceptor status from EEG data. When considering the different phar-
acological conditions separately, the most robust discrimination was

btained under the muscarinic agonist pilocarpine. That is, all classifi-
ations involving pilocarpine ( Fig. 5 A, B, D and E) resulted in balanced
ccuracies significantly above chance, and the higher the difference in
osage, the better the classification. By contrast, distinguishing the mus-
arinic antagonist scopolamine from placebo proved more challenging.
here could be several reasons for this, including drug differences of
euronally effective dosage regimes or strong non-linearities in drug-
ffect relationships. 
10 
While the classification accuracies for different dose levels are not
et close to clinically required levels of precision, the more general ques-
ion of whether muscarinic receptor function had been diminished or
nhanced (antagonist vs. agonist) could be answered decisively with a
alanced accuracy above 90%. If this result could be replicated in a
uman EEG study – with a sufficiently large sample size – a compu-
ational assay for distinguishing hyper- vs. hypo-activity of muscarinic
eceptors might be feasible. As described in the Introduction: given the
mportance of individual neuromodulatory differences in schizophrenia
 Stephan et al., 2009a ), the likely existence of schizophrenia subgroups
ith differences in muscarinic receptors ( Scarr et al., 2018 , 2009 ), and

he distinctive anti-muscarinic properties of clozapine and olanzapine as
wo of the most potent antipsychotics (for review, see ( Kapur and Rem-
ngton, 2001 ), such an assay could find important clinical applications
or differential diagnosis and treatment selection in schizophrenia. 

.4. Limitations and outlook 

While relatively large for rodent studies with in vivo recordings, the
ample size of our study is not sufficient to quantify out-of-sample pre-
iction accuracy with high precision ( Varoquaux, 2018 ). However, even
n small sample scenarios, permutation tests (as used in our study) yield
 robust and valid measure of whether the estimated prediction accu-
acy is significantly different from chance ( Varoquaux et al., 2017 ). Still,
he results should be interpreted with caution and need to be replicated
n (human) studies of larger size. 

Another limitation is that the generative model used in this study
oes not allow one to directly map synaptic parameters onto a particu-
ar neurotransmitter system. In other words, there is no single parame-
er in our model that explicitly represents muscarinic function. Instead,
t is likely that we are observing a net effect of pharmacologically al-
ered muscarinic receptor function on several mechanisms represented
n the model, like synaptic connectivity strength and neuronal gain. For
xample, it is known that muscarinic receptors change glutamatergic
ynaptic transmission through influencing both NMDA and AMPA re-
eptors ( Di Maio et al., 2011 ; Grishin et al., 2005 ; Lopes et al., 2013 ;
arino et al., 1998 ; Shinoe et al., 2005 ; Zhao et al., 2019 , 2018 ); an

ffect that can be (and was) observed in the estimates of model param-
ters encoding glutamatergic long-range connections. Similarly, mus-
arinic receptor activation strongly affects neuronal excitability and
ain ( McCormick et al., 1993 ; Shimegi et al., 2016 ); this effect is cap-
ured by estimates of parameters representing the gain of postsynaptic
ernels. Here, however, our model suggests an increase in self-inhibition
f the superficial PC population, which differs from reports of mus-
arinic agents reducing GABA release ( Salgado et al., 2007 ). Interest-
ngly, the majority of DCM studies on cholinergic modulation or non-
harmacological interventions thought to affect neuromodulation (e.g.
ttention and gain control) identify inhibitory connections involving su-
erficial PCs; especially those trying to explain high-frequency (gamma)
nduced responses ( Auksztulewicz and Friston, 2015 ; Bastos et al., 2015 ;
ogelson et al., 2014 ; Pinotsis et al., 2014 ; Shaw et al., 2017 ). While
ore detailed models have been developed to characterise cholinergic

ffects on ERPs ( Clearwater et al., 2008 ) or sleep EEG ( Li et al., 2020 ;
chellenberger Costa et al., 2016 ), these models are more complex than
he DCM described in this paper, with many more parameters, and have
ot been fitted to data yet. 

It is important to note that the intraperitoneal injections of the drugs
esulted in systemic changes of muscarinic action. Hence, some of the
bserved effects might be due to changes in neural processing in dif-
erent cortical regions, e.g. prefrontal cortex, which could then subse-
uently affect the MMN in auditory areas via long-range synaptic con-
ections. While a direct application of the drugs to A1 and PAF (e.g.
hrough iontophoresis) could be used to avoid this limitation in animal
tudies, the intraperitoneal injections with their systemic effects have
he advantage of being closer to the situation in human patients who
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ould usually receive drugs in a manner (e.g. orally or via i.m./i.v. In-
ections) that also induces systemic effects. 

In terms of translating our modelling results from rats to humans,
here are two important considerations. First, the availability of an inde-
endent non-pharmacological dataset enabled us to define empirical pri-
rs that better reflect rat-specific neurophysiological parameters, such
s conductance delays. Our model inversion results suggest that con-
uctance delays of cortico-cortical connections may be much shorter in
odents than in humans (about one order of magnitude). This would be
onsistent with the general observation that species with larger brains
end to have longer axonal conduction delays on average ( Swadlow and

axman, 2012 ). Accounting for species-differences in conductance de-
ays is important as their estimates influence the propagation of any
ondition-specific effects in the network – including the prominent phar-
acological effects we observed for forward and backward connections.

econd, when developing EEG-based computational assays for human
isorders that are known (e.g., multiple sclerosis) or suspected to show
lterations of conductance delays, it would seem prudent to adopt a sim-
lar approach as presented in this paper and estimate disorder-specific
onduction delays from an independent dataset. 

Our findings suggest that using DCM for model-based feature ex-
raction is a promising way forward in order to classify pharmaco-
ogical status based on ERP data. We emphasise that generative em-
edding is not the only option for this classification attempt. One
ould in principle use any other feature derived from the EEG time
eries (e.g. specific ERP features) or even the raw time series as in-
ut to the classifier. Generally, there is a huge number of options
ow features for classification could be extracted from the rich dataset
t our disposal. However, a comparison of different feature sets was
eliberately not attempted as it was outside the scope of our study
see the a priori analysis plan at https://gitlab.ethz.ch/tnu/analysis-
lans/schoebietal_auditory_mmn_dcm_2020 ). In this study, the goal was
ot to claim any superiority of generative embedding compared to other
ossible approaches. Instead, we set out to test whether parameter esti-
ates of a specific model (DCM) are plausibly linked to pharmacological
anipulations and can afford predictions of drug status. 

The effects of neuromodulatory transmitters on neuronal dynamics
nd ensuing electrophysiological measurements have been examined by
umerous computational models (for example, for cholinergic effects,
ee Clearwater et al., 2008 ; Li et al., 2020 ; Schellenberger Costa et al.,
016 ). By contrast, much work remains to be done to obtain genera-
ive models of neuromodulatory effects (i.e. probabilistic models that
epresent the joint probability of parameters and data and can there-
ore be inverted) which are directly interpretable. Specifically, to date,
o generative models exist that represent neuromodulatory transmit-
er action explicitly, through distinct biophysical parameters (although
ee Fogelson et al. (2014) and Auksztulewicz and Friston (2015) for an
pplication of DCM with top-down connections under neuromodulatory
ontrol). This represents an area of active ongoing research. Our current
ndings – that changes in muscarinic receptor function can be inferred

rom auditory mismatch signals using a generative model (DCM) of a
ortical circuit – illustrate the potential of generative embedding for de-
eloping computational assays for psychiatry. Pending further improve-
ents and validation in human populations, such assays might eventu-

lly play a useful role for differential diagnosis, stratification, and treat-
ent predictions in heterogeneous psychiatric disorders. 
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ppendix A. Modelling details 

ynamic Causal Model – Equations 

Electrophysiological recordings were obtained from two auditory
ites: The primary auditory cortex (A1) and the Posterior Auditory Field
PAF). Both sites (sources) were modelled as an individual cortical col-
mn, consisting of four cell populations: A deep and superficial pyrami-
al cell population (DPC, SPC), a population of (excitatory) stellate cells
SC) and an inhibitory population (IC) (see Fig. 1 A). 

The dynamics within and between these populations are described
s a circuit, where the electrical potential in each population depends on
he incoming (afferent) neuronal firing of other populations and the pop-
lations own activity. This circuit (or network) is illustrated in Fig. 1 A
nd 1 B and was motivated by the canonical microcircuit described in
astos et al. (2012) 

The equations describing the post-synaptic potential of a single pop-
lation ( state ) are based on a convolution operation between the afferent
ring ( 𝜎) and a (population specific) kernel ( ℎ ) which is parametrized
y a gain ( 𝐺) and a decay ( 𝑇 ): 

 ( 𝑡 ) = 

𝑡 

∫
−∞

ℎ ( 𝑡 − 𝜏) 𝜎( 𝜏) 

 ( 𝑡 ) = 

𝐺 

𝑡 𝑒 
− 𝑡 
𝑇 
𝑇 

https://gitlab.ethz.ch/tnu/analysis-plans/schoebietal_auditory_mmn_dcm_2020
https://gitlab.ethz.ch/tnu/code/schoebietal_auditory_mmn_dcm_2020
https://doi.org/10.3929/ethz-b-000464174
https://doi.org/10.1016/j.neuroimage.2021.118096
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These two equations can be recast in the form of a second order
ifferential equation ( David et al., 2006 ): 

̈ ( 𝑡 ) = 

𝐻 

𝑇 
𝜎 − 

2 
𝑇 
�̇� ( 𝑡 ) − 

1 
𝑇 2 

𝑣 ( 𝑡 ) , 

here 𝜎 = 𝜎( 𝑣 𝑎𝑓𝑓 ) converts the postsynaptic potential of an afferent
onnected population into a firing rate by means of a sigmoid trans-
orm. Transmission delays can be incorporated by defining 𝜎( 𝑣 𝑎𝑓𝑓 ) =
( 𝑣 𝑎𝑓𝑓 ( 𝑡 − 𝜏) ) , which we omit here for readability. 

Hence, for a given source 𝑟 = { A1 , PAF } and population 𝑝 =
 SPC , SC , IC , DPC} , the post synaptic potential is given by: 

̈ 𝑝 𝑟 
= 

1 
𝑇 𝑝 

[ ∑
𝑖 

𝐴 𝑖 𝑝 𝑟 
𝜎𝑖 ( 𝑣 ) + 

∑
𝑗 

𝐺 𝑗 𝑝 𝑟 
𝜎𝑗 ( 𝑣 ) − 2 ̇𝑣 ( 𝑡 ) − 

1 
𝑇 𝑝 

𝑣 ( 𝑡 ) 

] 

Here, we distinguished between extrinsic ( 𝑖 , between column) and
ntrinsic ( 𝑗, within column) connections, as they are subject to different
ain constants. Therefore, 𝐴 and 𝐺 can be understood as indicator ma-
rices, where a (non-zero) coefficient denotes the existence and gain of
 particular connection (therefore, 𝐻 is absorbed into 𝐴 and 𝐺 in this
ast equation). 

We illustrate this for the case of the superficial pyramidal cell popu-
ations in A1 (all other state equations can be derived analogously): 

The SPC in A1 receives two afferent connections ( Fig. 1 A):
PC A1 → PC A1 (intrinsic) and DPC PAF → PC A1 (backward) and a self-
onnection: SPC A1 →SPC A1 (intrinsic). 

Therefore, the post-synaptic potential of SPC A1 is given by the fol-
owing equation: 

̈ SP 𝐶 𝐴 1 
( 𝑡 ) = 

1 
𝑇 SPC 

[
− 𝐴 

1 
𝐵 
𝜎

(
𝑣 DP 𝐶 PAF 

)
+ 𝐺 𝑆𝐶 𝐴 1 

𝜎

(
𝑣 𝑆𝐶 𝐴 1 

)
− 𝐺 SP 𝐶 𝐴 1 

𝜎

(
𝑣 SP 𝐶 𝐴 1 

)
− 2 ̇𝑣 SP 𝐶 𝐴 1 

( 𝑡 ) − 

1 
𝑇 SPC 

𝑣 SP 𝐶 𝐴 1 
( 𝑡 ) 
] 

How the kernel parameters are constrained across regions and popu-
ation types can be seen in the notation used here: Decay parameters ( 𝑇 )
re fixed across regions but different across populations; Of all potential
ntrinsic gain parameters ( 𝐺), only six are estimated (see Table 1 ). The
emaining ones are kept fixed. 

Finally, please also note the sign of the connections in consistency
ith the color of the connections in Fig. 1 A. 
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