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Abstract—In this paper we discuss variational message passing-
based (VMP) inference in a switching Hierarchical Gaussian
Filter (HGF). An HGF is a flexible hierarchical state space model
that supports closed-form VMP-based approximate inference for
tracking of both states and slowly time-varying parameters.
Since natural signals often submit to regime-switching dynamics,
there is a need for low-complexity closed-form inference in
switching state space models. Here we extend the HGF model
with parameter switching mechanics and derive closed-form
VMP update rules for plug-in applications in factor graph-
based models. These VMP rules support both tracking of latent
variables and variational free energy as a model performance
measure. We show that the switching HGF performs better than
a non-switching HGF on modelling of a stock market data set.

I. INTRODUCTION

Hierarchical Dynamic Models (HDM) have often been used
to explain the variation of parameters and states of natural
processes [1]–[5]. The Hierarchical Gaussian filter (HGF) is
a specific type of HDM that is popular in the neuroscience
community, which is partly due to the availability of an
open source modelling toolbox [6]–[8]. The HGF is a multi-
layer nonlinear state space model where the variance of state
transitions at a particular layer is controlled by the states
at a higher layer. In the literature, parameters and hidden
states of the HGF can be recovered by closed-form variational
message passing updates. These properties makes the HGF an
interesting model for modeling of natural signals [9]–[11].

However, in many practical applications the observed signal
can be subject to Markovian regime-switching behavior [12],
[13]. The “classical” HGF model will fail to accurately de-
scribe a time series when the underlying dynamics are ruled
by parameter regime switches.

While it is not difficult to describe the forward mechanics of
regime-switching behavior in a generative model, inference for
states and parameters in these models is problematic. In [14], a
switching state space model (SSSM) that employs a variational
inference technique for tracking the posterior of the hidden
states was introduced. This work takes a pivotal position in the
literature and was followed by diverse further developments on
state inference for SSSMs [15]–[18]. Examples include effi-
cient Gaussian Sum Filtering to track a Gaussian Mixture state
posterior [19, Ch. 25] and Rao-Blackwellised particle filters
for state tracking by analytical marginalization of continuous
variables conditioned on sampled discrete latent variables [20].

In this paper, we develop a state and parameter infer-
ence framework for a Switching Hierarchical Gaussian Filter
(SHGF) that extends the original HGF by supporting a selec-

tor mechanism for the model’s parameters. The SHGF is a
complex generative model that features hierarchical regime-
switching dynamics, together with non-linear couplings be-
tween the layers. Since our target applications require real-time
inference on wearable devices, we are interested in developing
closed-form inference updates for states and (both slowly time-
varying and regime-switching) parameters, along with tracking
of a Bayesian evidence performance measure. Inference by
Monte Carlo sampling is computationally too expensive for
these applications. We build on previous work for the HGF
by representing the model as a factor graph and execute
message passing-based inference via divergence minimization
[10], [11]. The contributions of this paper include:
• In Section II, we present a new switching hierarchical

dynamical model, the SHGF. We map the SHGF onto a
Forney-style Factor Graph (FFG), which supports a fully
modular message passing-based approach to inference.

• In Section III, we identify and isolate a ”Gaussian with
controlled switching variance (GCSV) node” as the mod-
ule that causes inference issues.

• In Section IV-B, we derive new variational update rules
for the GCSV node and combine these rules with Ex-
pectation Propagation algorithm to show that the non-
conjugate operations can be handled by quadrature based
moment-matching [21] yielding a hybrid algorithm [22].

• We experimentally verify the proposed inference proce-
dure on synthetic data for a 2-layer SHGF in Section V.
We also provide a real-world example on a stock mar-
ket data set where we compare the SHGF to a (non-
switching) HGF model.

II. MODEL SPECIFICATION

Let yt ∈ R represent observations. We denote latent con-
tinuously valued states at layer i by x(i)t ∈ R and categorical
states by s(i)t ∈ {1, . . . ,Mi}. State transitions of categorical
variables are governed by transition matrices A(i) ∈ RMi×Mi

and continuous state transitions are parameterized by κ(i) ∈
RMi and ω(i) ∈ RMi .

One layer of an N -layer switching hierarchical Gaussian
filter is defined by the state transitions

p
(
x
(i)
t |x

(i)
t−1, s

(i)
t , g

(i)
t

)
=

Mi∏
m=1

N
(
x
(i)
t |x

(i)
t−1, g

(i)
t

)[s(i)t =m]

(1a)

p
(
s
(i)
t |s

(i)
t−1,A

(i)
)
=

Mi∏
k=1

Mi∏
m=1

(
α
(i)
km

)[s(i)t =k][s
(i)
t−1=m]

(1b)
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where we used the following definition and constraint, respec-
tively, for every i = 1, . . . , N − 1:

g
(i)
t

(
x
(i+1)
t , κ(i)m , ω(i)

m

)
, exp

(
κ(i)m x

(i+1)
t + ω(i)

m

)
(2)

Mi∑
k=1

α
(i)
km = 1 . (3)

We use Iverson bracket notation in (1), which is defined as

[st = m] =

{
1 if st = m is true
0 otherwise

.

A non-switching HGF layer is recovered for Mi = 1. At the
top layer (i = N ), we assume non-switching random walk
dynamics with transition variance ξ:

p
(
x
(N)
t |x(N)

t−1

)
= N

(
x
(N)
t |x(N)

t−1, ξ
)
. (4)

While other likelihood functions are compatible with the
SHGF, for simplicity we will assume that observations are
generated by a Gaussian likelihood from the first (bottom)
layer hidden states with variance τ :

p
(
yt|x(1)t

)
= N

(
yt|x(1)t , τ

)
. (5)

As (2) shows, the essential characteristic of an HGF model is
that the variance of state transitions g(i)t for the continuously
valued states at layer i are controlled by a non-linear mapping
of the continuously valued state at layer i+1. In the extension
to a switching HGF, the mth component of the parameters κ(i)

and ω(i) of the nonlinear transformation (2) are selected by
a discrete categorical state s

(i)
t = m that evolves according

to Markovian dynamics given by (1b). After selection of the
component of parameters κ(i) and ω(i), the corresponding
transition in (1a) is selected by the categorical variable.
Columns of transition matrices A(i) define probability dis-
tributions that lie in Mi − 1 dimensional simplex (3).

A Forney-style factor graph (FFG) representation that corre-
sponds to the SHGF model and a description of the graphical
notation is given in Figure 1. An FFG is a representation of a
global factorized function, where nodes correspond to factors
and edges correspond to variables [23] [24]. For a detailed
explanation of the FFG formalism we refer to [23], [24].

III. PROBLEM STATEMENT

For a given SHGF model m and collection of data y ,
y1:T = [y1 . . . yT ], we are interested in obtaining the posterior
distributions for every layer i for the states p(x(i)t |y), p(s

(i)
t |y),

and parameters p(κ(i)|y), p(ω(i)|y), p(A(i)|y). Furthermore,
to score model performance, we are interested in computing
Bayesian evidence p(y|m).

To make matters concrete, suppose that we are interested in
obtaining p(x(i)t |y), then the corresponding Bayesian smooth-
ing equations are given by [25]

p
(
x
(i)
t |y

)
= p(x

(i)
t |y1:t)

∫
p(x

(i)
t+1|x

(i)
t )p(x

(i)
t+1|y)

p(x
(i)
t+1|y1:t)

dx
(i)
t+1 (6)

where the filtering equation is evaluated as

p
(
x
(i)
t |y1:t

)
=

p
(
x
(i)
t |y1:t−1

)
p
(
x
(i)
t |yt

)
∫
p
(
x
(i)
t |y1:t−1

)
p
(
x
(i)
t |yt

)
dx

(i)
t

. (7)
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+
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→
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Fig. 1: One time segment of an FFG corresponding to a 2-layer SHGF model. Nodes
represent the factors. An abbreviation of the underlying functional form of the factors are
given in the nodes. Small dark squares indicate an observation constraint and they send
point mass messages. Arrows represent messages flowing at an edge. Circled numbers
indicate a computation schedule that can be chosen differently. A dark circle refers
to a backwards message (from observations to latent variables). If dark messages are
set proportional to 1 (i.e., uninformative), then this message passing schedule results
in filtering, otherwise the schedule leads to smoothing. The selector node chooses the
components of κ(1) and ω(1), depending on the value of the categorical selector. The
output of the selector node are then passed to the non-linearity block (2). The dashed
box corresponds to the ”composite” GCSV node f

(i)
t defined by (8c).

The filtering process (7) requires evaluating

p
(
x
(i)
t |y1:t−1

)
=

∫
p
(
x
(i)
t |x

(i)
t−1

)
p
(
x
(i)
t−1|y1:t−1

)
dx

(i)
t−1

p
(
x
(i)
t |yt

)
= E\{x(i)

t }

[
f
(i−1)
t

]
(8a)

p
(
x
(i)
t |x

(i)
t−1

)
= E\{x(i)

t ,x
(i)
t−1}

[
f
(i)
t

]
(8b)

f
(i)
t , p

(
x
(i)
t |x

(i)
t−1, s

(i)
t ,κ(i),ω(i), x

(i+1)
t

)
(8c)

and the factor f (i)t in (8c) is further specified by (1a) and
(2). Note that computing the smoothing posterior (6) involves
computing the filtering posterior (7), which in turn involves an
exponentially growing number of summation terms due to the
expectations in (8a) and (8b) with respect to categorical states.
For example, if there are M categories, then there will be M
indexed Gaussians at time t = 1, M2 Gaussians at t = 2,
and Mk Gaussians at t = k [19, Ch. 25]. This explosion of
terms make inference intractable. In addition, the non-linear
couplings between the continuous state transitions in (8c)
cause the complexity of functional dependencies for evaluating
(8a) and (8b) to grow quickly. In short, the smoothing and
filtering solutions (6) and (7) are not analytically tractable.
In this work, we address approximating the filtering (7) and
smoothing solutions (6) for the SHGF model. Above we iden-
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tified the non-linearities inside the factor f (i)t and expectations
over internal categorical states in this factor as the problematic
issues. We call this factor f (i)t a “Gaussian with Controlled
Switching Variance” (GCSV), see the dashed box in Figure 1.

Our solution to smoothing and filtering relies on exploit-
ing the factorized structure of the SHGF model and uses
variational message passing-based inference on factor graphs.
This method supports solving the inference issues inside the
GCSV node in isolation and then use the GCSV factor as a
plug-in node in any factor graph, including the graph for the
SHGF model. To this end, next we introduce factor graphs
and variational message passing.

IV. VARIATIONAL MESSAGE PASSING

A. Variational Optimization

Consider a generative model over observations y and latent
variables z = {x, s,κ,ω,A} that has been specified in the
(prior-times-likelihood) form as

p(y, z) = p(y|z)p(z) . (9)
Variational methods approximate the intractable posterior
p(z|y) by an instrumental distribution q(z) by minimizing
the Kullback-Leibler divergence criterion between both dis-
tributions [26, Ch. 10]. Because direct computation of a
KL-divergence requires access to the unavailable posterior, a
common practice is to minimize a free-energy functional

F [q] , Ez
[
log

q (z)

p(y, z)

]
(10)

that is an upper-bound to the negative log-evidence and
requires access to the model specification (9).1 To make the
optimization tractable, q(z) is usually constrained. Depending
on the constraints, one can obtain various algorithms to find
the stationary solutions of the optimization problem [27]

q∗ = argmin
q
F [q] . (11)

In the SHGF model, we constrain the approximating distribu-
tion to be factorized into normalized terms over hierarchical
layers. We utilize a structured factorization that reflects the
first-order Markov assumption q(z) over the layers:∏

i

q
(
x
(i)
t , x

(i)
t−1

)
q
(
s
(i)
t , s

(i)
t−1

)
q
(
κ(i)

)
q
(
ω(i)

)
q
(
A(i)

)
such that each factor

q
(
x
(i)
t

)
=

∫
q
(
x
(i)
t , x

(i)
t−1

)
dx

(i)
t−1 ≈ p

(
x
(i)
t |y

)
(12)

approximates the desired smoothing marginal (6) by imposing
a marginalization constraint on the joint. By means of varia-
tional calculus it can be shown that the stationary solutions to
the optimization problem (11) under the specified constraints
have the functional form
q∗
(
x
(i)
t , x

(i)
t−1

)
=

1

Z
(i)
xt,t−1

exp
(
E\{x(i)

t ,x
(i)
t−1}

[log p(y, z)]
)

(13)

where Z
(i)
xt,t−1 is a normalization constant. Due to the fac-

torized model structure, the stationary marginals (12) can

1In this paper, all expectations are with respect to the q distribution, so Ez

is short for Eq(z). Expectations taken with respect to all other variables but
z are denoted by E\z .

efficiently be obtained as multiplication of messages on a
factor graph corresponding to the SHGF model.

B. Factor Graphs, Message Passing and the GCSV Node

Forney-style factor graphs (FFG) are particularly useful for
signal processing purposes [28]. Inference on a model can
be interpreted as message passing on the corresponding FFG
[28]. One can obtain a variational message passing algorithm
to compute the stationary solutions (13). Due to the factorized
model structure, the computation of (13) localizes over the
time-segments of the FFG for the SHGF [10]. This means
that the model induces a factorization on the approximate
posterior q that supports computation of the local marginal
approximating the smoothing solution (6) by multiplication of

q
(
x
(i)
t

)
∝ −→ν

(
x
(i)
t

)←−ν (x(i)t

)
↑ν
(
x
(i)
t

)
(14)

where the messages are obtained via
−→ν
(
x
(i)
t

)
∝
∫
−→ν
(
x
(i)
t−1

)
p̃
(
x
(i)
t , x

(i)
t−1

)
dx

(i)
t−1 (15a)

←−ν
(
x
(i)
t

)
∝
∫
←−ν
(
x
(i)
t+1

)
p̃
(
x
(i)
t , x

(i)
t+1

)
dx

(i)
t+1 (15b)

p̃
(
x
(i)
t , x

(i)
t−1

)
, exp

(
E\{x(i)

t ,x
(i)
t−1}

[
log f

(i)
t

])
(15c)

↑ν
(
x
(i)
t

)
∝ exp

(
E\{x(i)

t }

[
log f

(i−1)
t

])
. (15d)

See Figure 1 for the messages around the GCSV node. Here
(15a) and (15b) correspond to forward and backward mes-
sages that are sent by the GCSV node. The upward message
to the upper layers is computed by (15d) and finally the
marginal is computed at an equality node by (14) through
multiplying forward, backward and upwards messages. By
iteratively computing equation set (15), we obtain a structured
variational message passing algorithm [29] [10]. In the FFG
corresponding to the SHGF, messages around nodes other than
GCSV can already be found in [30]. Around the GCSV node in
Figure 1, the computation of messages 8 , 13 , 14 , 15 , 16 and 18

is the bottleneck to inference in the SHGF model. Due to space
constraints we supply the algebraic operations to compute the
entire list of messages and marginals for the SHGF model in
a supplementary note2 and present the results for the GCSV
node in Table I under the assumptions of Table II. Messages
8 and 13 are Gaussian and message 18 is Categorical. The

functional forms of the remaining messages do not correspond
to known parametric exponential family distributions. We note
that the messages associated with the continuously valued
states have variances comprised of mixture of terms weighted
by the discrete state probabilities. This mixture behaviour is
the main difference with the HGF update equations.

Owing to the functional forms of messages 13 , 14 and 15 ,
the computation of marginals by multiplication, for example
(14) is no longer a conjugate multiplication. If the multiplica-
tion is not approximated by a parametric exponential family
distribution, then the complexity of the variational algorithm
grows and quickly becomes infeasible. Fortunately, there are
various ways to approximate non-conjugate multiplications.

2https://biaslab.github.io/pdf/isit2021/SHGF derivations.pdf
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TABLE I: Summary of message computations for the GCSV node. Computations require
quantities that are defined in Table II. See https://biaslab.github.io/pdf/isit2021/SHGF
derivations.pdf for derivations.

Messages Functional form

8 N
(
x
(1)
t |
−→m(1)

t−1,
−→v (1)

t−1 +
∑Mi

k=1 π
(1)
t,k exp

(
γ
(1)
t,k + β

(1)
t,k

)−1
)

13 N
(
x
(1)
t |
←−m(1)

t+1,
←−v (1)

t+1 +
∑Mi

k=1 π
(1)
t,k exp

(
γ
(1)
t,k + β

(1)
t,k

)−1
)

14 exp

(
−0.5

∑
j π

(1)
t,j

((
µ

(1)
t

)
j
x
(2)
t + h

(
x
(2)
t

)))
22 exp

(
−0.5

∑
k π

(1)
t,k

(
κ
(1)
k m

(2)
t + r

(
κ(i)

)))
23 exp

(
−0.5

∑
k π

(1)
t,k

(
ω
(1)
k + ζ

(1)
t exp

(
−ω(1)

k

)))
18

∏
j exp

(
−0.5

(
η
(1)
t,j + ζ

(1)
t exp

(
γ
(1)
t,j + β

(1)
t,j

)))[s(1)t =j
]

Auxilary Definition by moment statistics
η
(i)
t,j

(
µ

(i)
t

)
j
m

(i+1)
t +

(
ϑ
(i)
t

)
j

Ψ
(i)
t

(
Σ

(i)
t,t−1

)
11

+
(
Σ

(i)
t,t−1

)
22
−
(
Σ

(i)
t,t−1

)
12
−
(
Σ

(i)
t,t−1

)
21

Φ
(i)
t,j

(
µ

(i)
t

)2
j
v
(i+1)
t +

(
Ω

(i)
t

)
jj

(
m

(i+1)
t

)2
+ v

(i+1)
t

(
Ω

(i)
t

)2
jj

ζ
(i)
t

((
m

(i)
t,t−1

)
1
−
(
m

(i)
t,t−1

)
2

)2
+ Ψ

(i)
t

γ
(i)
t,j −

(
µ

(i)
t

)
j
m

(i+1)
t + 0.5Φ

(i)
t,j

β
(i)
t,j −

(
ϑ
(i)
t

)
j

+ 0.5
(
Ξ

(i)
t

)
jj

h
(
x
(i)
t

)
ζ
(i)
t exp

(
−
(
µ

(i−1)
t

)
j
x
(i)
t + 0.5

(
x
(i)
t

)2 (
Ω

(i−1)
t

)
jj

)
r
(
κ(i)

)
ζ
(i)
t exp

(
−m(i+1)

t κ
(i)
k + 0.5v

(i+1)
t

(
κ
(i)
k

)2)
For instance, Laplace approximation requires expanding the
multiplication into a Taylor series and finding a stationary
point where the gradient almost vanishes [26, Ch. 4.4]. Then
the multiplication is approximated with a Gaussian distribution
whose mean is a point where gradient vanishes and covariance
is the inverse Hessian [26, Ch. 4.4]. Another approach is
moment matching [25, Ch. 6] which gives rise to notable
algorithms such expectation propagation [31] and assumed
density filtering [32]. In [21], moment computations in expec-
tation propagation is achieved by quadrature methods. Along
the lines of moment matching, [10] implements a quadrature-
based approximation to the non-conjugate multiplication and
shows that quadrature-based moment matching outperforms
Laplace’s method. Here, we choose the quadrature-based mo-
ment approximation of [10] to handle message multiplications.

The quadrature-based moment matching approximation of
[10] starts by determining the normalization constant that cor-
responds to the marginal computed by (14). The computation
assumes that the messages←−ν (x(i)t ) and −→ν (x(i)t ) are Gaussian.
This allows us to write the normalization constant in the form
of a Gaussian integral with limits at infinity, i.e.,

Z(i)
xt

=

∫ ∞
∞
↑ν
(
x
(i)
t

)
N
(
x
(i)
t |m̃

(i)
t , ṽ

(i)
t

)
dx

(i)
t (16)

where m̃
(i)
t and ṽ

(i)
t are the corresponding statistics for the

Gaussian resulting from the multiplication of ←−ν (x(i)t ) and
−→ν (x(i)t ). Using Hermite polynomials, integration in (16) can
be obtained by Gaussian quadrature such that

Z(i)
xt
≈ 1√

π

∑
k

w
(i)
k ↑ν

(
ψ
(i)
k

√
2ṽ

(i)
t + m̃

(i)
t

)
(17)

where ψ(i)
k are points that are the roots of Hermite polynomials

TABLE II: Messages and marginals required in Table I.

Messages Functional form
−→ν
(
x
(i)
t−1

)
N
(
x
(i)
t−1|
−→m(i)

t−1,
−→v (i)

t−1

)
←−ν
(
x
(i)
t

)
N
(
x
(i)
t |
←−m(i)

t ,←−v (i)
t

)
.

Marginals Functional form
q
(
x
(i−1)
t , x

(i−1)
t−1

)
N
(
x
(i+1)
t,t−1 |m

(i+1)
t,t−1 ,Σ

(i+1)
t,t−1

)
q
(
x
(i+1)
t

)
N
(
x
(i+1)
t |m(i+1)

t , v
(i+1)
t

)
qt
(
κ(i)

)
N
(
κ(i)|µ(i)

t ,Ω
(i)
t

)
qt
(
ω(i)

)
N
(
ω(i)|ϑ(i)

t ,Ξ
(i)
t

)
q
(
s
(i)
t

) ∏Mi
k=1

(
π
(i)
t,k

)[s(i)t =k
]

and w(i)
k are the corresponding weights [25, Ch. 6]. Once the

normalization constant (17) has been determined, the moments
of the distribution corresponding to the non-conjugate multi-
plication (14) can be evaluated by

E
[(
x
(i)
t

)n]
=

∑
k

↑ν
(
ψ
(i)
k

√
2ṽ

(i)
t +m̃

(i)
t

)(
ψ
(i)
k

√
2ṽ

(i)
t +m̃

(i)
t

)n

√
πZ

(i)
xt

.

Using the first two moments we can now approximate the
non-conjugate multiplication by a Gaussian distribution. Due
to one dimensional nature of the problem Gauss-Hermite
integration does not suffer from curse of dimensionality and is
computationally feasible. In our experiments we fix the order
of Gauss-Hermite polynomials to 11 and plan to address the
effect of polynomial order in further research.

V. EXPERIMENTS

All experiments have been implemented with the Julia pack-
age ForneyLab [33]. The source code for the experiments
can be found at https://github.com/biaslab/SGCV.

A. Verification

To verify the proposed inference algorithm, we built a 2-
layer (2-L) SHGF model (see Fig. 1) where ω(1),κ(1) ∈ R3.
We generated N = 100 data sets with T = 500 observation
points in each set. We used weakly informative priors for x(1)0 ,
x
(2)
0 , s(1)0 and A(1), but informative for ω(1), i.e. ω(1) ∼
N (ω∗, I) where ω∗ ∼ N (ωtrue, I) (ωtrue denotes ground-truth
parameters). Note that in these experiments we did not learn
κ(1). As the update equations for κ(1) and xt are symmetrical,
one of these random variables should be observed. Otherwise,
learning of κ(1) together with ω(1) and xt would lead to
identifiability issues. An approach to overcome identifiability
is to constrain κ(1) further. For example, constraining the
support set of κ(1) from RM1 to [0, 1]M1 and bounding the
variance of state transitions that κ(1) undergoes, is an approach
that can help learning of κ(1).

We ran the proposed message passing algorithm on the full
SHGF graph with T = 500 time segments and 500×10 nodes
in total for the entire data set. The update schedule for one-
time segment of SHGF is shown in Fig. 1. Fig. 2 reports the
results of the verification experiments. The verification results
indicate that the hybrid VMP algorithm consistently decreases
free-energy averaged over the entire data set and converges to
stationary solutions of the minimization problem (11).
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Fig. 2: Verification results. (top-left) Evolution of free energy per variational iteration
averaged over data sets (N = 100) and number of observations (T = 500). The curve
indicates that the proposed algorithm consistently minimizes free energy and converges
to stationary solutions. (top-right) An example of the inference of the upper layer random
walk. The red signal indicates the second layer continuous state x

(2)
t that corresponds

to the observations at the bottom figure. The blue curve is the estimate of the state
obtained by the VMP algorithm. The estimate recovers the trend of the second layer
state. (bottom) An example of observations from one of the data sets that are used to
verify the algorithm. Each color represents a particular regime (switch). Observations are
color-coded according to the regimes they are generated from. The mode of categorical
distributions corresponding to the switch variables for the entire time points are marked
below the signal. The plot indicates that recovery of switching regimes matches the
ground truth.

B. Validation

In order to validate our model, we applied the SHGF
model to a real-world data set. The data set corresponds to
AAPL stock prices (downloaded from https://finance.yahoo.
com/quote/AAPL/). We wanted to test if the stock price evo-
lution exhibits regime-switching dynamics over a consecutive
period of T = 252 days. We used the minimized variational
free energy as a model performance score and compared 4
different models: a 2-layer HGF [10], 2-layer SHGFs with 2
and 3 categories, and a 3-layer SHGF. To keep the comparison
fair we used identical priors for the states and parameters
where possible. Fig. 3 highlights the results of validation
experiments. The 2-layer SHGF with 2 categories results in
lower free energy than the 3-layer SHGF (too complex) and
HGF (too simple). The 2-layer SHGF with 3 categories assigns
vanishing probability to the 3rd category, so the 2-layer SHGF
with 2 regimes is optimal. This indicates that the underlying
prices submit to two-category regime switching dynamics.

VI. CONCLUSIONS

We introduced a Switching Hierarchical Gaussian Filter
(HGF) to model regime-switching non-stationary time series.
The proposed model extends the classical HGF by assuming
that the parameters in each layer are selected by a discrete
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Fig. 3: Validation results. (top-left) Free energy plots corresponding to a 3-layer SHGF
with 2 categories, a 2-layer SHGF with 3 categories, a 2-layer SHGF with 2 categories
and a 2-layer HGF, where the observations are AAPL stock prices. All SHGF models
outperform the 2-layer HGF, indicating that the prices indeed exhibit switching behavior.
Since the 2-layer SHGFs performs better than a 3-layer SHGF, we conclude that the extra
model complexity of the 3rd layer outweighs the increased accuracy due to the 3rd layer.
The 2-layer SHGF with 3 categories performs almost as well as the one with 2 categories.
The inference results for 3 categories indicate that the model actually assigns a vanishing
probability to the third category, meaning that it actually settles for 2 categories. (top-
right) Second layer state trajectories for the 3-layer SHGF, 2-layer SHGFs and 2-layer
HGF models obtained from the AAPL stocks. The 3-layer SHGF is quite active due to
the presence of an extra layer. The 2-layer SHGFs and HGF are smoother. These three
trajectories share a similar trend where the volatility makes two peaks around t = 60
and t = 200. On average, the HGF model attributes a higher volatility to the stock prices
than the SHGF model. (bottom) Black dots correspond to the stock prices. The green
curve represents the belief trajectory for x

(1)
t obtained by the 2-layer SHGF model.

In order to avoid clutter in the plot, we only present the model with the lowest free
energy (2L-SHGF-2). We display a zoomed version on the smooth behavior of the belief
trajectory. The obtained switches are color coded and displayed beneath the prices. Based
on the model, there are 2 underlying regimes governing the prices.

state, which in turn evolves according to a hidden Markov
model. We presented a closed-form variational message pass-
ing framework to track all states and the transition matrix (a
matrix of parameters) for the discrete states. The presented
message passing framework relies on hybridization of conju-
gate and non-conjugate variational message update rules. We
verified that the proposed inference algorithm finds the sta-
tionary solutions of the minimization problem and consistently
minimizes free energy. After verification, we showed that the
SHGF provides improved results over the HGF on modelling
of stock prices. Crucially, the closed-form update rules for
the problematic GCSV factor allow it to be used as a plug-in
node in any factor graph, thus enabling message passing-based
inference for alternative hierarchical dynamic models.
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