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Ozan Unal a,c,*, Orhun Caner Eren a, Göktuğ Alkan a, Frederike Hermi Petzschner a, Yu Yao a, 
Klaas Enno Stephan a,b 

a Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland 
b Max Planck Institute for Metabolism Research, 50931 Cologne, Germany 
c Computer Vision Lab (CVL), ETH Zurich, 8092 Zürich, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Interoception 
Homeostasis 
Allostasis 
Allostatic self-efficacy 
Translational neuro-modeling 
Computational psychosomatics 

A B S T R A C T   

Interoception and homeostatic/allostatic control are intertwined branches of closed-loop brain-body interactions 
(BBI). Given their importance in mental and psychosomatic disorders, establishing computational assays of BBI 
represents a clinically important but methodologically challenging endeavor. This technical note presents a novel 
approach, derived from a generic computational model of homeostatic/allostatic control that underpins (meta) 
cognitive theories of affective and psychosomatic disorders. This model views homeostatic setpoints as proba-
bility distributions (“homeostatic beliefs”) whose parameters determine regulatory efforts and change dynami-
cally under allostatic predictions. In particular, changes in homeostatic belief precision, triggered by anticipated 
threats to homeostasis, are thought to alter cerebral regulation of bodily states. Here, we present statistical 
procedures for inferring homeostatic belief precision from measured bodily states and/or regulatory (action) 
signals. We analyze the inference problem, derive two alternative estimators of homeostatic belief precision, and 
apply our method to simulated data. Our proposed approach may prove useful for assessing BBI in individual 
subjects.   

1. Introduction 

Biological organisms face the fundamental challenge of ensuring 
homeostasis: their physical states have to be kept within certain ranges 
in order to avoid violating boundary conditions of life. In a dynamically 
changing world, this requires adaptive behavior, driven by computa-
tions which take into account current and future states of both the body 
and the external environment. To achieve this, brain-body interactions 
(BBI) are essential. BBI consist of complex mechanisms for conveying 
information about numerous dimensions of bodily state (e.g., tempera-
ture, osmolality and oxygenation of blood, levels of metabolically and 
immunologically important molecules; for reviews, see (Critchley & 
Harrison, 2013; Khalsa et al., 2018)) from the body to the brain, and 
using this information to deploy regulatory mechanisms in a reactive 
manner (homeostatic control) or in an anticipatory fashion (allostatic 
control; Sterling, 2012). 

It has been suggested that deciphering the mechanisms of BBI is not 
only important for understanding the physiological aspects of homeo-
static/allostatic regulation, but that human cognition is grounded and 
constrained by the fundamental necessity of ensuring bodily 

homeostasis (Stephan et al., 2016; Turner, 2019; Ziemke, 2016). For this 
reason, BBI play a key role in theories of mental and psychosomatic 
disorders (e.g. Badoud & Tsakiris, 2017; Barca & Pezzulo, 2020; Bonaz 
et al., 2021; Garfinkel et al., 2016; Henningsen et al., 2018; Khalsa et al., 
2018; Paulus, Feinstein, & Khalsa, 2019; Petzschner, Weber, Gard, & 
Stephan, 2017; Quadt, Critchley, & Garfinkel, 2018; Schulz et al., 2020; 
Smith, Badcock, & Friston, 2021; Stephan et al., 2016). (Here, we refer 
to “psychosomatic disorders" as including both the perception of aver-
sive bodily states in the absence of objectifiable pathology and the 
occurrence of somatic disorders due to unsuitable descending regulatory 
signals from the brain.) From a clinical perspective, it would therefore 
be highly desirable to have methods that can assess characteristics of BBI 
in human patients, in a non-invasive and quantitative fashion, as a basis 
for differentiating between alternative disease mechanisms (differential 
diagnosis). Additionally, it is possible that the same interoceptive 
dysfunction may be present in multiple clinical conditions (Smith et al., 
2020). 

A major challenge is that most (albeit not all) instantiations of BBI 
are organized as closed loops where homeostatic/allostatic actions 
change the state of bodily variables whose changes triggered regulation 
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in the first place. This means that, in disease, pathological changes can 
propagate within the closed loops between body and brain, and it is 
difficult to distinguish between primary and secondary pathological 
changes. One potential approach to address this problem are “compu-
tational assays": these are generative models of measured (physiological 
and/or cognitive) data which can be inverted to infer on likely mecha-
nisms (Stephan & Mathys, 2014). 

Computational assays of BBI do not exist yet. They differ from their 
counterparts in cognition or neurophysiology (Browning et al., 2020; 
Stephan, Iglesias, Heinzle, & Diaconescu, 2015) in that they need to 
consider the closed-loop problem and account for both physiological 
(bodily) and neuronal/cognitive (brain) data. The development of 
suitably structured computational assays together with controlled per-
turbations of bodily states has been proposed as a major goal for 
computational psychosomatics (Petzschner et al., 2017). In this paper, 
we present an initial methodological step in this direction. 

BBI comprise multiple processes (Petzschner et al., 2017; Petzschner, 
Garfinkel, Paulus, Koch, & Khalsa, 2021), including afferent signaling 
from the body (interosensation), inference on the underlying bodily 
states (interoception), predicting their future revolution (forecasting), 
regulatory processes (homeostatic and allostatic control), and moni-
toring the performance of BBI loops (metacognition). In this paper, we 
do not consider all components of BBI but focus on the question how one 
might estimate a single, but fundamental, property of regulatory pro-
cesses: the sensitivity of autonomic reflexes to (viscero)sensory inputs 
from the body. This sensitivity is conceptualized via the precision of 
probabilistic representations (homeostatic beliefs) at the lowest level of 
hierarchically arranged systems for allostatic control, as understood 
from a Bayesian (active inference) perspective. 

In order to estimate homeostatic belief precision, we present a novel 
approach that is based on a generic framework of BBI and homeostatic/ 
allostatic control, the “Bayesian Allostat" (BA) model by Stephan et al. 
(2016). Clearly, this is not the only framework of BBI and homeo-
static/allostatic control that could be used; in particular, other schemes 
based on active inference offer sophisticated proposals for studying BBI 
(Allen, Levy, Parr, & Friston, 2019; Gu, Hof, Friston, & Fan, 2013; Paulus 
et al., 2019; Pezzulo, Rigoli, & Friston, 2015; Seth, 2013; Seth & Friston, 
2016; Smith et al., 2020). For our purposes, the advantage of the BA 
framework is that it provides a mathematically explicit proposal for the 
lowest level of a hierarchical control system, i.e. a reflex arc, while not 
requiring a specification of the processes that govern inference and 
forecasting processes at higher levels. 

In brief, the BA model by Stephan et al. (2016) assumes that the brain 
represents homeostatic setpoints in a probabilistic fashion - i.e. as 
probability distributions or “homeostatic beliefs" about desired bodily 
states - and “defends" these beliefs against deviations (induced by per-
turbations that induce dyshomeostasis) by eliciting regulatory actions. 
Here, action selection follows the same principle as in active inference 
(Friston, Daunizeau, Kilner, & Kiebel, 2010): actions are chosen to fulfill 
beliefs (here, homeostatic beliefs about bodily states), thus minimizing 
the brain’s surprise (in an information-theoretic sense) about sensory 
inputs. In the context of bodily regulation, this principle minimises the 
variability of bodily states and keeps them close to homeostatic set-
points; in other words, the entropy of bodily states is minimized (for a 
more detailed discussion, see Stephan et al., 2016). For bodily regula-
tion, actions could comprise, for example, descending neural signals to 
the autonomic nervous system or the emission of hormones via hypo-
thalamus and the pituitary gland. 

Unlike active inference, the BA model does not specify the algo-
rithmic nature of allostatic control but describes how the outcomes of 
(unspecified) allostatic computations lead to actions: via a change of the 
parameters (sufficient statistics) of homeostatic beliefs represented in 
autonomic effector regions that govern reflex arcs for bodily regulation. 
For example, given a forecasting mechanism that identifies future per-
turbations of homeostasis and threats of bodily integrity, changing the 
expectation (mean) of homeostatic beliefs triggers anticipatory 

regulatory actions automatically. Furthermore, and of particular 
importance for this paper, changing the precision of homeostatic beliefs 
(i.e., the inverse variance of the desired range of bodily states) de-
termines how rapidly cerebral regulatory actions will kick in when 
sensory inputs indicate a deviation of actual from expected bodily states 
(prediction error). (For a visualization of these mechanisms, see Fig. 2 
below.). 

These concepts are clinically relevant and have informed theories of 
specific clinical symptoms (e.g. fatigue; Manjaly et al., 2019; Stephan 
et al., 2016), disorders (e.g. depression: “allostatic self-efficacy"; Ste-
phan et al., 2016) as well as theories of psychotherapeutic interventions 
(e.g. mindfulness-based cognitive therapy, MBCT; Manjaly & Iglesias, 
2020). More generally, it has been argued that methods for character-
izing homeostatic beliefs in individual patients could be of major utility 
for differential diagnosis (Petzschner et al., 2017; Stephan et al., 2016). 

Here, we focus on the specific question how one might estimate the 
precision of homeostatic beliefs – which, in the BA model, determine the 
sensitivity of reflexes arcs and thus the deployment of regulatory actions 
– from measurements of bodily states and/or regulatory signals. 
Changes of the precision of homeostatic beliefs are particularly impor-
tant in situations where a perturbation or threat of bodily integrity can 
be predicted but not its exact nature or direction. In this situation, a 
targeted anticipatory action is precluded: in the absence of predictions 
about what exactly will happen, any anticipatory action that shifts set-
points could make matters worse. However, a remaining allostatic 
control option is to change the precision of homeostatic beliefs, which 
alters the reactivity of reflex arcs and thus the emission of regulatory 
responses in response to sensory inputs from the body. Notably, in this 
paper, we are not concerned with the characterization of anticipatory 
allostatic processes per se. Instead, we propose ways of estimating 
changes of homeostatic belief precision that transform such anticipatory 
processes into actions, by altering the sensitivity of autonomic reflexes 
to interoceptive signals. 

The paper is structured as follows. We first present a brief mathe-
matical summary of the BA model by Stephan et al. (2016) which rep-
resents the backbone of our approach. We then analyze the problem of 
inference in the context of this model. Based on this analysis, we 
introduce two methods for estimating homeostatic belief precision from 
measurements of both bodily states and regulatory signals. (In the 
Supplementary Material, we present full derivations and variations of 
our approach that only require information about bodily states or reg-
ulatory signals.) Finally, we illustrate the performance of our methods 
using simulated data. 

2. Methods 

2.1. The Bayesian Allostat (BA) model 

The approach presented in this paper is based on a probabilistic 
model of BBI and allostasis that was previously introduced in the context 
of the “allostatic self-efficacy" theory of fatigue and depression (Stephan 
et al., 2016). Here, we refer to this model as the “Bayesian Allostat" (BA) 
model. The BA model is based on the fundamental principle of homeo-
stasis: living systems interact with their environment in order to keep 
their physical states within certain ranges that do not violate biophysical 
boundary conditions of life (e.g. conditions that would prevent certain 
chemical reactions). In other words, living systems attempt to minimize 
the entropy of their internal states, at the expense of increased entropy 
outside the system (Schrödinger, 1943). 

The key difference of the BA model to classical textbook models of 
homeostatic control is that setpoints are neither assumed to be fixed 
entities nor that they are deterministic. Instead, in accordance with the 
general notion of the “Bayesian brain" (Friston, 2005; Knill & Pouget, 
2004), the BA model assumes that setpoints (1) are represented by the 
brain in a probabilistic fashion and (2) that setpoints can change 
dynamically. In other words, the BA model views setpoints as potentially 
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time-varying probability distributions over bodily states. From the 
cognitive neuroscience perspective, these distributions can be thought of 
as beliefs, held by the brain, about the states which the body should 
inhabit or, equivalently, as hypotheses about the states the body should 
be in. In this setting, minimizing the entropy of bodily states (by 
choosing appropriate regulatory actions) corresponds to minimizing 
interoceptive surprise (i.e. information-theoretic (Shannon) surprise 
about sensory inputs that the brain receives about bodily states) or, 
equivalently, maximizing the evidence for the hypothesis of being in 
homeostasis. Generally, the BA model is conceptually related to (and 
partially inspired by) the framework of active inference (Adams, Shipp, 
& Friston, 2013) but is (deliberately) less specific and differs in a number 
of aspects. For example, it does not specify how exactly perceptual 
inference and allostatic predictions take place, and it does not make any 
assumptions about specific approximations to surprise (such as the free 
energy approximation in active inference; Friston, 2009). Instead, it 
focuses on a generic description of a modular cognitive architecture that 
describes how homeostatic reflex arcs are controlled by allostatic pre-
dictions, as explained in the following. 

The basic architecture of the BA model consists of 2 intertwined 
loops, a lower and a higher level (see Fig. 1). (Strictly speaking, the 
model includes a third, metacognitive, level which, however, is not of 
relevance for this paper; see Stephan et al. (2016) for details.) The lower 
level consists of a closed-loop reflex arc between a given bodily state x 
and a brain structure that (1) receives sensory inputs (y) about this 
bodily state, (2) compares it to a probabilistic setpoint (homeostatic 
belief), resulting in a precision-weighted prediction error (pwPE) that 
determine the emission of (3) descending regulatory signals, with the 
goal of minimizing interoceptive surprise or, put differently, that future 
sensory inputs become more similar to what is expected under the ho-
meostatic belief. The higher level, which receives the same sensory in-
puts, is thought to perform inference (about current bodily states) and 
forecasting (about future bodily states) as a basis for anticipatory control 
signals that change the homeostatic belief at the lower level and thus 
alters the reactivity of the reflex arc. Notably, the existing formulation of 
the BA model only provides a mathematical formulation of the lower 
level and leaves the exact implementation of the higher level open. This 
modular structure is useful for the purpose of this paper - to develop 
estimators of the precision of homeostatic beliefs -–since it allows us to 
focus on the simpler lower level (which can be modeled with relatively 
few assumptions) without having to make any assumptions about the 
operations and mathematical formulations of the more complex higher 
level. 

The lower level of the BA model consists of three components: a 
likelihood function that describes how bodily states lead to noisy sen-
sory inputs received by the brain, a prior distribution over bodily states 
(homeostatic beliefs), and an “action function" describing how regula-
tory actions change bodily states. (For simplicity, in the following, we 
will consider the case of a single bodily state.) Importantly, the form of 
these functions in the BA is fairly general, and relatively few assump-
tions are necessary. Specifically, the assumptions made are that (1) 
homeostatic setpoints are represented probabilistically in the brain as 
probability distributions, (2) these probability distributions as well as 

sensory noise have a Gaussian form, and (3) the action function takes the 
form of a gradient descent. We emphasize that the statistical approach 
presented below does not require any additional assumptions and holds 
regardless of the choice of implementation details, such as the choice of 
observation functions, time constants, etc. In the following, we briefly 
summarize the key components of the BA model. 

In the BA model, the homeostatic belief (prior distribution over 
bodily state) is assumed to be represented by a Gaussian distribution 
with mean μprior and variance (inverse precision) π− 1

prior: 

p(x) = N

(
x; μprior, π− 1

prior

)
(1) 

Through afferent channels, the brain receives a noisy measurement 
of the bodily states x, i.e. the vicerosensory input y: 

yt = g(xt) + ηd,t with ηd,t ∼ N
(
0, π− 1

d

)
(2)  

Here, g denotes the mapping from bodily states to sensory inputs which 
the brain receives (i.e. a signal-generating or forward function, part of 
the likelihood in the brain’s generative model; compare Fig. 1) and ηd,t 

representing sensory channel noise (white Gaussian noise with variance 
π− 1

d ). To maintain homeostasis, the brain deploys regulatory processes in 
a reactive manner in forms of action sequences a, which aim to reduce 
any discrepancy between the actual sensory input and the input that is 
expected under the homeostatic belief. The action corresponds to a 
gradient descent on interoceptive (Shannon) surprise and depends on 

the precision-weighted prediction error, i.e. πt

(
yt − g

(
μprior

))
: 

at = − πt
(
yt − g

(
μprior

) )
∂xg (3) 

leading to a change of bodily state x: 

∂tx = λ− 1f (a(t) ) (4) 

In Eq. (4), for generality, λ represents the time constant of the specific 
regulatory action considered and f denotes a mapping from regulatory 
action to changes in x; please see Stephan et al. (2016) for details. 
Importantly, for the method of estimating homeostatic belief precision 
we propose below, these quantities do not need to be known as long as 
measurements of the actions are available. 

In this work, we consider the prior belief precision πprior in Eq. (1) to 
be a dynamic quantity (that changes in time according to allostatic 
predictions) and denote it as πt referencing the discrete time point t. A 
visualization of the model’s behavior can be seen in Fig. 2. The goal of 
this paper is to establish statistical methods for inferring the time- 
varying belief precision based on measurements of actions a and/or 
states x. 

2.2. Analyzing the problem of inferring belief precision in the BA model 

Writing the BA model as a Bayesian network results in the structure 
displayed by Fig. 3. The belief precision πt, action at and vicerosensory 
input yt form a v-structure which is encoded as . In other 
words, the belief precision πt and the sensory input yt are not 

Fig. 1. The general structure of the Bayesian Allostat (BA) model which provides the foundation for the approach described in this paper. For explanations, please see 
main text. The figure is adapted from Fig. 5 in Stephan et al. (2016) under the Creative Commons Attribution License (CC BY). 
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independent if the action sequence at is observed. Thus, observing the 
action states at′ and the state variable xt′ ∀t′ ∈ [1, ..., t], opens up the 
structure which enables the inference of the belief precision πt from the 
action at− 1 via (at− 1→xt→yt→at←πt). 

We start by computing the statistics of the measured noisy action am
t 

(denoted by the superscript m) as follows: 

E
[
am

t ∣am
1:t− 1; πt

]
= − πt

(
g(xt) − g

(
μprior,t

) )
∂xg (5)  

Var
[
am

t ∣am
1:t− 1; πt

]
= π2

t ϕ− 1 + π− 1
a (6) 

For a detailed derivation, please see Appendix A.1. 
Solving Eq. (5) for the precision π results in an ill-posed problem 

statement as E
[
am

t ∣am
1:t− 1; πt

]/((
g(xt) − g

(
μprior,t

))
∂xg

)
→∞, meaning the 

belief precision is not recoverable from the expectation of the action 
sequence under the condition that E[x]→μprior. 

On the other hand, the variance of the action is determined by the 

scaled precision of the sensory data noise ϕ and the belief precision 
squared. To infer the belief precision πt , we propose a Standard Deviation 
based Precision Estimation (StdPE) method that utilizes Eq. (6) and is 
described in the next section. 

2.3. Standard deviation based precision estimation (StdPE) 

Assuming that (1) the regulatory actions are sampled from a differ-
entiable continuous function with its derivative being bound by some 
constant and that (2) multiple measurements of actions can be obtained 
to increase the measurement precision πa→∞, the belief precision πt can 
be estimated up to a scale factor 

̅̅̅̅
ϕ

√
(see Appendix A.2 for mathematical 

details). Notably, this only requires measurements of actions a - without 
any knowledge or assumptions about other variables like the sensory 
data precision πd, the time constant λ, the mapping g from bodily states 
to sensory inputs, or the function f determining the influence of actions 

Fig. 2. An extension to the simulated example of allostatic regulation of homeostatic control (with time-varying homeostatic belief precision) from Stephan et al. 
(2016). The x-axis denotes time, the y-axis arbitrary units. The upper panel shows an arbitrary physiological state х. The second and third panels show an 
approximation to interoceptive surprise (in terms of squared precision-weighted prediction error, pwPE2) and the associated action signal ɑ, respectively. The bottom 
panel displays the time-varying belief precision. The initial two-thirds of these panels show how external perturbations and their anticipation lead to both reactive 
and anticipatory actions, accompanied by changes in interoceptive surprise (see Stephan et al. (2016) for details). For this paper, the period between ① and ② is 
important: here, homeostatic belief precision increases in response to an anticipated perturbation whose nature (direction) is unknown. It can be seen that once 
homeostatic belief precision increases, both interoceptive surprise and action signals increase drastically, reflecting the heightened reactivity of the reflex arc and its 
attempt to control very small fluctuations in sensory input. Prior to a real perturbation, this amounts to an attempt of controlling sensory noise. On the other hand, 
once the perturbation occurs (spike between ① and ② in upper panel), control is exerted much more swiftly compared to previous perturbations during the 
simulation. Technical details: In the bottom panel, between time points ① and ②, belief precision rises and falls according to a biased second order damped harmonic 
oscillator given by h(z) = d2z

dt2 + 2γ dz
dt + ω2z + b, with b denoting a bias term that centers the function around a given time point. The harmonic function is 

modified such that h(z) = 0 for all terms before and after the minima and maxima to preserve the continuity of its derivative. For the simulations πd = 2, πa =

100, λ = 50, f = g = I were chosen. 
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on bodily states: 

πt ≈
̅̅̅̅
ϕ

√
⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var[am
t− N+1:t; πt]

√

(7)  

Here, N is the size of the causal window, i.e. a window chosen such that 
it only contains the N data points from before the time point t. For the 
full derivation, please see Appendix A.2. 

In essence, the precision is inferred by sliding a window over the data 
and computing the standard deviation of the windowed region. The 
standard deviation of the windowed action can be taken as an estimate 
for the scaled point-wise standard deviation of the last action point. It 
should be noted that the causal window we chose allows for the method 
to be performed in real time with the belief precision being inferred as 
new data arrives. When the method is applied for offline inference from 
previously acquired data, the window can be centered around the time 
frame t to reduce latency through sudden rises. 

Although perhaps obvious, it is worth mentioning that the reliance of 
StdPE on variance in the data means that the approach would fail in the 
limit of ϕ→∞ (see Appendix A.1). However, this is not a practical 
concern because it would require that either the sensory signal received 
by the brain (πd) is completely free of noise or that the mapping g (from 
bodily states to sensory inputs) becomes extremely steep. Neither of 
these conditions can be plausibly expected to be fulfilled. 

Eq. (7) provides an estimate of belief precision up to the scaling 
factor 

̅̅̅̅
ϕ

√
. While, under certain conditions, this is already useful for 

practical application (see Discussions for details), it is also possible, in 
principle, to obtain an exact estimate of belief precision. In the Sup-
plementary Material we propose a method to estimate ϕ from simulta-
neous measurements of x and y which enables exact estimates of the 
belief precision πt . 

2.4. Log-evidence based precision estimation (LEPE) 

A second strategy to infer the belief precision is to identify that value 
of belief precision which best explains the measured action sequence, in 
terms of maximizing its (log) evidence. In this section, we summarize the 
Log-Evidence Based Precision Estimation (LEPE) approach; the full 
derivation can be found in the Supplementary Material. 

Assuming that the belief precision is constant within a given time 
window, the log-evidence can be computed from the joint probability 
distribution of all actions using the chain-rule. Thus, the belief precision 
πt is inferred as the argument that maximizes the log-evidence. In other 
words, the estimated belief precision is taken from the most likely a 
posteriori distribution of the last action sequence. 

It is worth emphasizing that while StdPE can be used to determine 
belief precision up to a scale factor without having to make any as-
sumptions, for LEPE, one must know or assume sensory input precision 

πd as well as the mapping g from bodily states x to the sensory inputs y 
which the brain receives (please see Eq. (2) and the term ϕ in the deri-
vation of LEPE in the Supplementary Material). 

3. Results 

In this section we provide simulations that demonstrate the two 
inference methods introduced in the Methods section, along with further 
investigations of the chosen parameters for the model and inference 
method. For simulations, we follow Stephan et al. (2016) and chose the 
state-input mapping (g) and action-state mapping (f) as identity func-
tions, the time constant of the regulatory action λ = 50, the precision of 
the action measurement πa = 100 and the precision of the sensory 
channel πd = 2. The window size for each method is chosen as N = 15 
time steps unless stated otherwise for a simulation with 2000 time steps. 
All simulations have been implemented in MATLAB R2019a (Math-
Works Inc., Natwick, MA, USA). The code is publicly available at github. 
com/ouenal/inference-on-homeostatic-belief-precision. 

3.1. Results for StdPE 

Fig. 4 shows the results of the StdPE method applied to the simulated 
case presented in Section 2.1. 

In Fig. 4.a, the belief precision is estimated up to a scale factor with 
an unknown scale factor ϕ. For an easier visual comparison, both the 
ground truth and the estimation are normalized onto the [0, 1] interval 
based on the means of their top-10 minimum and maximum values. As 
shown in this plot, StdPE can successfully infer the belief precision up to 
a scale factor. 

The exact estimation of the belief precision πt is shown in Fig. 4.b 
where we set the scale factor ϕ to its simulated value. The results 
demonstrate that, in this specific simulation scenario, StdPE recovers the 
time-varying homeostatic belief precision accurately. 

3.2. Results for LEPE 

Fig. 4 also shows the estimated belief precision for the simulated case 
using the LEPE method. As LEPE requires that the scale factor ϕ is set to 
some value, in Fig. 4.a., we use an arbitrary guess (ϕ = 1, %50 of its true 
value), and normalize the resulting belief precision estimation as in 
Section 3.1. In Fig. 4.b. we show the results where the scaled precision of 
the sensory data noise ϕ is set to its true value (ϕ = 2). It can be seen 
that, in the chosen simulation scenario, LEPE infers the belief precision 
up to a scale factor when ϕ is unknown (but a value is guessed), and to its 
exact value when ϕ is known. 

3.3. A more challenging simulation 

In this section we provide the graphical results for a more chal-
lenging simulation with more frequent precision changes while retain-
ing the mean state prior μprior curve and external perturbations to the 
system. 

The simulated model is shown in Fig. 5 with the results for an un-
known scale factor ϕ in Fig. 6.a and a known ϕ in Fig. 6.b. 

3.4. Quantitative comparison of StdPE and LEPE 

To quantitatively assess the quality of estimation, we compute the 
Mean Absolute Percentage Error (MAPE) of the estimated belief preci-
sion against its ground truth. The MAPE is given by: 

MAPE =
1
T
∑

t=1:T
|
πt − πgt

t

πgt
t

| (8) 

with the estimated belief precision πt, ground truth belief precision 
πgt

t and total time steps T. MAPE states the percentile error of each 

Fig. 3. The Bayesian Allostat (BA) model described in Stephan et al. (2016) 
displayed as a Bayesian network. x: bodily state; y: sensory input received by 
the brain; ɑ: regulatory action; π: homeostatic belief precision; λ: time constant 
of action; t: time index. 
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estimate compared to its ground truth, averaged across the entire 
sequence. 

Fig. 7 (top panel) shows the MAPE of two simulations (Simulation 1: 
Section 2.1 and Simulation 2: Section 3.3) for both proposed methods 
with varying Signal-to-Noise-Ratios (SNR = Var[x]/Var[y] = πdVar[x]). 

As seen, StdPE performs well for a wide range of SNR values, with 
MAPE < 18% across all simulations. Similarly LEPE performs well for 
low SNR values of < 0.25, however, as SNR increases, so does the esti-
mation error. As an inverse relation between estimation error and SNR is 
highly counterintuitive, it is important to clarify why this is observed. 

Fig. 4. Belief precision inference results for StdPE and LEPE. Shown are the ground truth belief precision in black and the estimated belief precision in red for StdPE, 
and in blue for LEPE. Best viewed in color. (a) Scaled belief precision estimation. While StdPE can be used directly to estimate the belief precision up to a scale factor, 
LEPE requires a value to be guessed for ϕ. In the given example this value is set to ϕ = 1 (simulation with ϕ = √2). For visual purposes the ground truth and 
resulting estimations are normalized onto the [0,1] interval based on the average of their maximum and minimum 10 values. (b) Exact belief precision estimation 
using StdPE and LEPE with ϕ = √2. 

Fig. 5. A second simulated example of allostatic regulation of homeostatic control with more frequent belief precision changes than Fig. 2. For the simulations 
πd = 2, πa = 100, λ = 50, f = g = I were chosen. 
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For the derivation of LEPE, it is assumed that through numerous 
measurements of the action a, the measurement noise is reduced suffi-
ciently that it can be ignored. In the simulations, this is represented as πa 

= 100. The simplification to a quadratic equation assumes that ϕπ− 1
a →0 

and ϕ2π− 1
a →0 hold. The second assumption, however, gets less appro-

priate if the sensory channel precision πd increases to very high values, 
as the scale factor is given by ϕ = πd(∂xg)2. In this case, the second 
assumption will, at some point, fail which then renders LEPE inaccurate. 

We further show an additional investigation for the chosen window 
size N in Fig. 7 (bottom panel). As expected, a small window size fails to 
correctly identify the variance due to a lack of available data points. This 
is reflected by the initial rapid decrease in the MAPE as the window size 
increases. In contrast to this observation, a window size that is too large 
has the drawback of not being able to capture incoming precision 
changes. As the belief precision changes, the measured variance is 
affected by the previous measurements which can cause a latency in the 
estimation if the window size approaches the time scale of signal 
changes, or an underestimation of the belief precision if the signal length 

is smaller than the window size. 

4. Discussion 

In this technical note, we have introduced two statistical techniques 
for estimating the precision of homeostatic beliefs in the context of the 
Bayesian Allostat (BA) model by Stephan et al. (2016). We have illus-
trated the application of these methods to simulated data where ground 
truth (i.e. the actual temporal trajectory of belief precision) was known 
and examined their behavior across different levels of SNR. In the 
following, we discuss limitations and strengths of the current approach, 
how these could be applied to experimental measurements, and how it 
might be improved in the future. 

First, we wish to emphasize that the present paper should be seen as 
an early - and still rather incomplete - step towards computational assays 
of BBI. This is true both conceptually - because we cover only a single 
aspect of BBI, i.e. homeostatic belief precision - and because our 
approach has only been tested on synthetic data so far, evaluating 
whether a known ground truth (the temporal trajectory of homeostatic 

Fig. 6. Belief precision inference results for StdPE and LEPE on Simulation 2 (Fig. 4). Shown are the ground truth belief precision in black and the estimated belief 
precision in red for StdPE, and in blue for LEPE. Best viewed in color. (a) Scaled belief precision estimation. While StdPE can be used directly to estimate the belief 
precision up to a scale factor, LEPE requires a value to be guessed for ϕ. In the given example this value is set to ϕ = 1 (simulation with ϕ = √2). For visual purposes 
the ground truth and resulting estimations are normalized onto the [0,1] interval based on the average of their maximum and minimum 10 values. (b) Exact belief 
precision estimation using StdPE and LEPE with ϕ = √2. 

Fig. 7. Quantitative analysis of the inference methods based on the Mean Average Percentile Error (MAPE). Simulation 1 results (Fig. 2) for StdPE are shown in red 
and for LEPE are shown in blue. Simulation 2 results (Fig. 4) for StdPE are shown in purple and for LEPE in green. Top panel: MAPE visualized across varying Signal- 
to-Noise-Ratio (SNR) changes. SNR is computed as SNR = πd Var[x]. Bottom panel: MAPE visualized across varying window sizes to show the influence of the 
window size. It can be seen that the window size N must be sufficiently large enough that the variance can be accurately estimated. 
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belief precision) can be recovered from simulated data. We would have 
liked to test our approach on empirical data but, unfortunately, do not 
yet have a suitable dataset that allows for a meaningful practical 
demonstration. This is because, as we explain below in more detail, 
applying our approach in practice usually requires measurements of 
regulatory (action) signals at a minimum. These measurements are not 
easy to obtain with standard methods (see below), should be acquired 
with a sufficient sampling rate (relative to the time constant of the reflex 
arc) and of sufficient duration to result in a larger number of data points. 
Furthermore, these data should be acquired under an experimental 
manipulation that elicits allostatic (i.e. anticipatory) control in response 
to an upcoming bodily perturbation of unknown direction whose pre-
dictability has a known start point and a known duration. The third 
condition is necessary to ensure one has well-defined predictions against 
which the method can be tested, i.e. a clearly defined temporal interval 
in which changes in homeostatic belief precision are expected. As 
explained in more detail below, while it is not impossible to apply the 
proposed approach when only measurements of bodily states are 
available, this would require additional experimental measurements in 
order to determine λ (the time constant of regulatory action) and f (the 
mapping from action to changes in bodily states). 

The BA model and our statistical estimation approaches that rest on 
it are fairly general, and relatively few assumptions are necessary. 
However, one fundamental assumption of our model must be kept in 
mind: the notion that homeostatic setpoints are represented probabi-
listically in the brain. To our knowledge, this general assumption - which 
derives from the general “Bayesian brain" notion that the brain con-
structs representations of the world which reflect uncertainty (Knill & 
Pouget, 2004) - has not yet been examined in empirical (i.e. neuro-
physiological) studies. If this assumption turns out to be wrong and 
homeostatic setpoints are found to be represented by the brain as 
quantities without uncertainty, our model would lose its conceptual 
foundation. 

Beyond the limitations discussed above, the methods we propose also 
have notable strengths: they are mathematically simple, extremely fast, 
and do not require complex optimization algorithms. Furthermore, the 
generic BA model they refer to is not limited to specific applications or 
particular process models of allostatic control, but applies to all types of 
BBI that represent a closed loop between sensory inputs and regulatory 
action. This generality may also create opportunities for testing pre-
dictions from specific process models such as active inference. As 
explained above, the BA model suggests two ways how allostatic pre-
dictions can be transformed into actions that regulate bodily states: (i) 
shifting the expectation (mean) of homeostatic beliefs, or (ii) changing 
their precision. The former case elicits anticipatory action while the 
latter changes the sensitivity of reflex arcs to sensory input from the 
body (i.e. the case considered by this paper). Changes in precision can 
also be detected by models based on active inference; for an example, 
see Smith et al. (2020). Predictions from a specific active inference 
model could thus potentially be cross-validated by the approach pre-
sented in this paper, for example, by comparing ratios in estimated 
precision before and after experimental interventions designed to elicit 
changes in the precision (not expectations) of homeostatic beliefs. 

In practice, given the robust behavior of StdPE in our simulations 
across a wide range of SNR and since it requires less information, we 
recommend primarily using StdPE, instead of LEPE. In the following, we 
would like to describe how StdPE could be applied in practice, 
depending on which measurements are available. Generally, three 
different use cases can be distinguished:  

(i) Measurements of regulatory (action) signals only are available: 
Having measurements of action signals is sufficient to compute 

homeostatic belief precision up to a scaling factor 
̅̅̅̅
ϕ

√
(see Eq. 

(7)). This scaling factor depends on quantities that can be 
assumed to be stable within an individual, at least under the same 
measurement conditions (i.e. the precision of sensory inputs from 

the body, πd, and the mathematical form of the mapping from 
bodily states to sensory input, g(x); see Eq. (A.6) in the Appen-
dix). Therefore, estimating homeostatic belief precision based on 
measurements of action signals alone could be useful to investi-
gate the impact of therapeutic interventions (e.g. psychotherapy) 
within the same individual. By contrast, since ϕ could differ 
across subjects, estimates of homeostatic belief precision ob-
tained from regulatory signals alone should not be compared 
across individuals.  

(ii) Measurements of bodily states only are available: 
Computing homeostatic belief precision using the StdPE 

approach rests on information about action signals (see Eq. (7)). 
If only measurements of bodily state are available, one could, in 
principle, compute the action signal according to Eq. (16) in the 
Supplementary Material. However, this would require knowledge 
or assumptions about two unknown variables: (i) λ, the time 
constant of regulatory action, and (ii) f , the mapping from action 
to changes in bodily states. Both quantities would need to be 
known or estimated, for example, based on separate experimental 
measurements of regulatory signals and the ensuing changes in 
bodily states.  

(iii) Measurements of both regulatory (action) signals and bodily 
states are available: 

In this case, homeostatic belief precision can be computed fully (not 
only proportionally, as in the first case). Specifically, Section 2 (Eqs. 
(11–15)) in the Supplementary Material describes how the scaling factor 
ϕ could be estimated that is required by Eq. (7) in the main text (Please 
note that, as shown in the Supplementary Material, estimating ϕ also 
requires measurements of the sensory inputs y.). 

Following this summary of different use cases,we now turn to the 
question what kind of bodily states and regulatory signals could be 
measured with existing and emerging techniques. 

There are several bodily states that can be measured easily and 
repeatedly in time, in a manner that is non-invasive and safe, and whose 
homeostatic regulation is reasonably well understood. For example, this 
includes a number of cardiac and vascular variables that can be 
measured continuously, such as blood pressure, heart rate, or heart rate 
variability (HRV) (for a review of HRV, see (Acharya, Joseph, Kanna-
thal, Lim, & Suri, 2006)). Similarly, a wide range of respiratory variables 
can be assessed, including frequency of breathing, tidal volume, inspi-
ratory pressure, or partial pressure of oxygen or carbon dioxide. Elec-
trodermal activity is another potentially interesting measure that can be 
obtained continuously and with relatively small technical effort (for 
review, see (Posada-Quintero & Chon, 2020)). Finally, time-varying 
concentrations of hormones from somatic glands, such as catechol-
amines or cortisol produced by the suprarenal gland, can be measured in 
discrete time steps on the order of minutes, using continuous blood 
sampling techniques; for examples, see (Bhake et al., 2019; Ward et al., 
1983). 

Measurements that reflect descending regulatory processes are 
technically considerably more challenging, although both neuronal and 
endocrine candidate signals exist. On the endocrine side, one could 
consider repeated plasma level measurements of pituitary hormones 
which determine activity of bodily glands, such as ACTH (e.g. (Sharma, 
Aoun, Wigham, Weist, & Veldhuis, 2014)). With regard to neural sig-
nals, it would be necessary to obtain recordings from structures that are 
purely efferent in function and, ideally, specifically affect a bodily state 
of interest. In principle, it is possible to directly record from sympathetic 
nerves in humans. This approach, called microneurography, involves 
the insertion of microelectrodes into a postganglionic sympathetic nerve 
bundle and can differentiate between sympathetic activity related to 
regulation of blood pressure versus thermoregulation (for review, see 
(Hart et al., 2017)). However, this approach is invasive and requires 
highly trained specialists. A less invasive approach would entail imaging 
techniques to record activity from organ-specific autonomic ganglia or 
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pre-ganglionic nuclei in the spinal cord. To our knowledge, non-invasive 
imaging of autonomic ganglia in humans has not been achieved yet. 
However, the new technique of optoacoustic imaging (e.g. (Gottschalk 
et al., 2019)) has interesting potential in this regard and, following 
appropriate validation, might be able to record activity in accessible 
autonomic ganglia. Imaging autonomic nuclei in the spinal cord should, 
in principle, be feasible using high-resolution spinal fMRI (for review, 
see (Tinnermann, Büchel, & Cohen-Adad, 2020)). However, we are not 
aware that such studies have already been conducted, and it is not clear 
which degree of organ-specificity can be achieved. Finally, it would be 
possible to use high-resolution fMRI to record activity from brainstem 
nuclei known to send regulatory efferents to the autonomic nervous 
system (e.g. periaqueductal gray, dorsal nucleus of vagus nerve, nucleus 
ambiguus). Here, the challenge is that, from the perspective of the BA 
model, visceromotor nuclei would be expected to contain both neurons 
representing setpoints (homeostatic beliefs) and neurons computing 
precision-weighted prediction errors (that drive regulatory efferent 
signals). This assumption is not experimentally verified, to our knowl-
edge, but if it were correct, it would mean that fMRI signals from vis-
ceromotor nuclei could not be used in a “raw" fashion but would first 
need to be partitioned (e.g. using computational models) into signal 
components that are specific for homeostatic setpoints and for predic-
tion errors, respectively. 

Once suitable experimental measures of bodily states and regulatory 
signals are available, the approach presented in this paper might have 
useful clinical applications. Before discussing these, it is worth remem-
bering that, according to the BA model, the precision of homeostatic 
beliefs determines how quickly and vigourously the brain will respond 
to bodily inputs that signal dyshomeostasis. If this precision is low, 
regulatory action is sluggish and there is a risk that severe perturbations 
of bodily states may not be corrected sufficiently quickly. On the other 
hand, a high homeostatic belief precision enables the brain to respond 
very rapidly; simply speaking, this is because the range of “permissible" 
(expected) bodily states becomes very narrow and even small changes in 
bodily states lead to reflex-like actions that “defend" the homeostatic 
belief. This, however, comes at the cost that regulation now becomes 
sensitive to small changes in sensory inputs from the body, and sensory 
noise alone may be sufficient to drive the system into a state where it 
continuously emits regulatory actions in the absence of any meaningful 
perturbations. This scenario is visible in Fig. 2 where high-amplitude 
action signals, driven by interoceptive surprise, begin to emerge as 
soon as homeostatic belief precision is tightened in anticipation of an 
upcoming perturbation (see the red “spike" in the top panel between 

points ① and ②), leading to a period with massive amounts of regula-
tory action that is simply driven by sensory noise. This constellation is 
reminiscent of the symptomatology in affective and psychosomatic 
disorders, e.g. anxiety or stress disorders, where beliefs about upcoming 
threats may trigger descending neural and endocrine influences that 
lead to prolonged activation of the sympathetic nervous system, with 
possible adverse consequences for cardiovascular, immunological and 
metabolic systems (compare the concept of “allostatic load" (McEwen, 
1998)) Peters, McEwen, and Friston (2017). 

With these considerations in mind, the BA model by Stephan et al. 
(2016) highlights that homeostatic beliefs represent prime targets for 
psychotherapeutic or psychoeducational interventions. For example, 
mindfulness-based techniques (compare (Manjaly & Iglesias, 2020)) or 
hypnotherapeutic interventions with a bodily focus may prove useful to 
alter homeostatic beliefs and thus change the reactivity of brain-based 
reflex arcs for homeostatic control. In this context, subject-specific es-
timates of homeostatic belief precision and its change to controlled 
perturbations of bodily states might usefully guide clinical decisions. For 
example, accurate estimates of homeostatic belief precision could be 
useful for differential diagnosis and choosing individualized treatments, 
provided reference distributions for a population are known. Another 
option is to use estimates of homeostatic belief precision for evaluating 
the success of psychotherapeutic treatments. For the latter case, an es-
timate of homeostatic belief precision could even be useful when it 
cannot be computed exactly but only up to a scaling factor (compare Eq. 
(7) and subsequent discussion). This is because the estimate only de-
pends on quantities (i.e. precision of sensory channels and the mapping 
from bodily states to sensory inputs; see Eq. (6) and the definition of ϕ 
directly after Eq. (A.6)) that can be expected to be stable properties of an 
individual, at least as long measurements are taken for the same bodily 
state and experimental setting. 

The above considerations highlight the clinical potential of accurate 
estimates of BBI. In this paper, we have presented some early and small 
steps towards these goals but have only been able to evaluate the pro-
posed methods on synthetic data. How well the proposed methods work 
in practice remains to be tested empirically once suitable datasets, 
which fulfill the criteria described above, become available. 
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Appendix A. Derivations of equations  

Appendix A.1. Statistics of Action a: Derivation of Eqs. (5–6) 

Inserting Eq. (2) into 3 yields the following expression for the action sequence: 

at = − πt
(
g(xt)+ ηd,t − g

(
μprior

) )
∂xg (A.1) 

The act of measuring the action at and bodily state xt introduces two additional noise terms that are included in the measured action am
t and 

measured state xm
t , respectively. 

am
t = at + ηa,t with ηa,t ∼ N

(
0, π− 1

a

)
(A.2)  

xm
t = xt + ηx,t with ηx,t ∼ N

(
0, π− 1

x

)
(A.3) 

which results in the following formulation: 

am
t = − πt

(
g(xt)+ ηd,t − g

(
μprior

) )
∂xg+ ηa,t (A.4) 

Using the fact that the sum of Gaussian random variables also follows a Gaussian distribution, the measured regulatory action am
t can be fully 

described by its expectation and variance. Given that the action states am
t′ and the state variable xm

t′ ∀t′ ∈ [1, ..., t − 1] are observed, the statistics of the 
measured action am

t are computed as: 
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E
[
am

t ∣am
1:t− 1; πt

]
= E

[
− πt

(
g(xt) + ηd,t − g

(
μprior,t

) )
∂xg + ηa,t

]

= − πt
(
E[g(xt) ] − E

[
g
(
μprior,t

) ] )
∂xg

= − πt
(
g(xt) − g

(
μprior,t

) )
∂xg

= − πtθt

(A.5) 

with θt =
(

g(xt) − g
(

μprior,t

))
∂xg denoting the prediction error (i.e. the difference between the actual sensory input and the sensory input expected 

under the prior mean), scaled by the derivative of the mapping from bodily states to sensory inputs, ∂xg. 
Furthermore, 

Var
[
am

t ∣am
1:t− 1; πt

]
= Var

[
− πt

(
g(xt) + ηd,t − g

(
μprior,t

) )
∂xg + ηa,t

]

= π2
t

(
Var

[
ηd,t

] )
(∂xg)2

+ Var
[
ηa,t

]

= π2
t ϕ− 1 + π− 1

a

(A.6)  

with ϕ− 1 = π− 1
d (∂xg)2 denoting the transformation of the sensory input precision through the second derivative of g, the mapping from bodily states to 

sensory inputs (see Supplementary Material on how this term can be estimated). 

Appendix A.2. StdPE: Derivation of Eq. (7) 

πt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϕ
(
Var

[
am

t ∣am
1:t− 1; πt

]
− π− 1

a

)√

⇒πt ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϕVar[am
t− N+1:t; πt

]
− ϕπ− 1

a

√ (A.7) 

Multiple measurements of the action sequence at can be used to increase the measurement precision πa, as the sum of white Gaussian noise terms 
will converge to their mean μa = 0. When a large number of measurements are available, assuming that the precision of the measurement noise πa→∞, 
Eq. (A.7) simplifies to: 

πt ≈
̅̅̅̅
ϕ

√
⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var[am
t− N+1:t; πt]

√

(A.8)  

with 
̅̅̅̅
ϕ

√
denoting the scaling factor. Thus the precision at time point t can be estimated as the square root of the variance of the windowed action 

sequence up to a scaling factor. Details on how this scaling factor can be determined can be found in the Supplementary Material. 

Appendix B. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.biopsycho.2021.108190. 
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