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Abstract

In this article, we address technical difficulties that arise when applying Markov chain

Monte Carlo (MCMC) to hierarchical models designed to perform clustering in the space

of latent parameters of subject-wise generative models. Specifically, we focus on the case

where the subject-wise generative model is a dynamic causal model (DCM) for functional

magnetic resonance imaging (fMRI) and clusters are defined in terms of effective brain

connectivity. While an attractive approach for detecting mechanistically interpretable

subgroups in heterogeneous populations, inverting such a hierarchical model represents

a particularly challenging case, since DCM is often characterized by high posterior corre-

lations between its parameters. In this context, standard MCMC schemes exhibit poor

performance and extremely slow convergence. In this article, we investigate the proper-

ties of hierarchical clustering which lead to the observed failure of standard MCMC

schemes and propose a solution designed to improve convergence but preserve compu-

tational complexity. Specifically, we introduce a class of proposal distributions which aims

to capture the interdependencies between the parameters of the clustering and subject-

wise generative models and helps to reduce random walk behaviour of the MCMC

scheme. Critically, these proposal distributions only introduce a single hyperparameter

that needs to be tuned to achieve good performance. For validation, we apply our pro-

posed solution to synthetic and real-world datasets and also compare it, in terms of com-

putational complexity and performance, to Hamiltonian Monte Carlo (HMC), a state-of-

the-art Monte Carlo technique. Our results indicate that, for the specific application

domain considered here, our proposed solution shows good convergence performance

and superior runtime compared to HMC.
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1 | INTRODUCTION

Dealing with the heterogeneity in clinical populations represents an

important challenge for neuroimaging. This is particularly the case for

psychiatry where contemporary diagnostic classifications group

together patients with presumably heterogeneous disease mecha-

nisms (Owen, 2014; Stephan et al., 2016). This heterogeneity is one

possible reason for the low success rate of clinical trials, and stratifica-

tion (e.g., by clustering the population into specific subgroups) might

considerably increase the power of clinical trials (Schumann
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et al., 2014). This is a particularly promising approach when such clus-

ters or subgroups are not defined in terms of abstract data features,

but are interpretable in terms of disease-relevant mechanisms

(Stephan et al., 2016).

This technical note addresses the specific problem of applying

Markov chain Monte Carlo (MCMC) to hierarchical clustering in the

context of generative embedding (GE). GE refers to a mapping from

data to feature space that is instantiated by a generative model

(Brodersen et al., 2011). Put simply, GE boils down to using

(a function of) posterior densities of model parameters in order to

define a feature space for subsequent machine learning. By achieving

theory-led dimensionality reduction jointly with interpretability of fea-

tures (in terms of data-generating mechanisms embodied by the gen-

erative model), GE can both enhance the performance and

interpretability of machine learning when applied to neuroimaging or

behavioural data (for reviews, see Frässle et al., 2018; Stephan

et al., 2017). However, the necessity of model inversion can make GE

technically challenging, particularly in hierarchical settings.

Here, we deal with the hierarchical unsupervised case of GE, that

is, group-level clustering in a high-dimensional space of latent vari-

ables. More specifically, this article deals with the challenge of

inverting a hierarchically structured generative model that distin-

guishes clusters of latent parameters from other (subject-wise) gener-

ative models, the (equally latent) dynamics of processes governed by

these parameters, and the observations resulting from these pro-

cesses. Specifically, we focus on hierarchical unsupervised GE (HUGE,

Yao et al., 2018) where the cluster formulation is based on Gaussian

mixture models and the subject-wise generative model is a dynamic

causal model (DCM). DCM is a nonlinear dynamic system model for

estimating effective (directed) brain connectivity from fMRI (Friston,

Harrison, & Penny, 2003) or electroencephalography/magnetoen-

cephalography (EEG/MEG) data (David et al., 2006). Like almost any

other biological dynamic system model (cf. Gutenkunst et al., 2007), it

may exhibit high posterior correlations among some of its parameters

(Stephan, Weiskopf, Drysdale, Robinson, & Friston, 2007), rendering

model inversion a difficult task.

Such challenges associated with parameter estimation are not

unique to dynamic system models of neuroimaging data. Generally,

dynamic system models are popular in scientific areas—including sys-

tems biology, medicine and neuroscience—that require an understand-

ing of complex data in terms of latent parameters that govern the

evolution of observed timeseries. Their application has been aided by

the development of a variety of model inversion methods based on

Hamiltonian Monte Carlo (HMC, Calderhead & Girolami, 2011;

Kramer, Calderhead, & Radde, 2014), MCMC (Xun, Cao, Mallick,

Maity, & Carroll, 2013), variational inference (VI, Friston, Mattout,

Trujillo-Barreto, Ashburner, & Penny, 2007; Meeds, Roeder, Grant,

Phillips, & Dalchau, 2019), or gradient matching techniques

(Calderhead, Girolami, & Lawrence, 2009; Wenk et al., 2019).

However, incorporating a dynamic systems model, such as DCM,

into a hierarchical clustering model exacerbates the difficulties associ-

ated with model inversion due to the interaction between the estima-

tion of the parameters of the DCM and the clustering model. In

particular, standard MCMC methods display a tendency to fail to con-

verge under these circumstances, an issue we address in this article.

The contributions of this article are as follows. First, we identify key

features in the structure of the hierarchical clustering model which

contribute to the convergence issues observed with MCMC. Based on

these insights, we then propose a heuristic solution tailored to hierar-

chical clustering, which aims to improve convergence while preserving

computational complexity. We demonstrate the effectiveness of our

solution on synthetic and real-world examples based on a hierarchical

clustering model for DCM known as HUGE (Yao et al., 2018). Finally,

we discuss the complexity and performance of our proposed solution

in comparison to HMC, an advanced, general purpose Monte Carlo

method designed to solve the convergence issues of standard MCMC

methods without relying on detailed knowledge of the specific

application.

Our work significantly goes beyond previous work on parameter

estimation for hierarchically structured generative models. For exam-

ple, Raman, Deserno, Schlagenhauf, and Stephan (2016) used standard

MCMC in an early version of the HUGE model, but did not provide a

detailed analysis on speed of convergence or computational complex-

ity. The same model is also discussed in Yao et al. (2018), who applied

VI instead of MCMC. Despite being extremely efficient, VI suffers

from a number of drawbacks, making the availability of a complemen-

tary MCMC-based inversion scheme desirable. Specifically, VI tradi-

tionally requires the use of conjugate priors, which may restrict the

expressiveness of the model and makes model extensions difficult. In

addition, the simplifying assumptions on the approximate posterior

required for VI mean that VI lacks both the asymptotic exactness and

the ability to approximate multi-modal posteriors afforded by MCMC.

Other hierarchically structured generative models of dynamic systems

include the parametric empirical Bayesian variant of DCM (Friston

et al., 2016) and hierarchically structured dynamic system models for

applications in system biology (Meeds et al., 2019). However, in the

latter two models, assignments of data points to groups are not

inferred, but have to be supplied with the data; these models can

therefore only be used for supervised learning (see also Ahn, Haines, &

Zhang, 2017).

The application of HMC to hierarchical models in general has

been discussed in Betancourt and Girolami (2015). In the present

paper, we focus on the combination of a hierarchical model structure

with a dynamic systems model. In addition, we take a different

approach to model inversion by attempting to augment standard

MCMC with specialized proposal distributions. In this context, we will

provide a detailed comparison of our proposed approach with HMC.

2 | METHODS

2.1 | MCMC for hierarchical clustering

In hierarchical clustering, a group-level clustering model (such as a

Gaussian mixture model in the case of HUGE) is combined with a

subject-wise generative model in such a way that the generative
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model is used to fit the subject-specific data points, while the cluster-

ing model is used to cluster the estimates of the latent parameters of

the subject-wise generative models. Figure 1 shows the graphical

model of this hierarchical clustering problem with K clusters and N

subjects, which contains the HUGE model as a special case. For each

of the n = 1, …, N subjects, θn represents the parameters of the gener-

ative model that connects the subject-specific data yn with the clus-

tering model. Here, the clustering model is represented by a Gaussian

mixture model, where cluster number k (1≤ k≤K) is described by its

mean μk and log-precision κk and is assigned a cluster weight π[k]. λn

denotes the precision of observation noise. Note that despite having

a fixed number of clusters K, the model can accommodate clustering

solutions with less than K cluster, by leaving some of the clusters

empty. Hence, K should be viewed as an upper limit on the number of

clusters expected in the dataset. This stands in contrast to traditional

clustering methods like k-means.

Assuming that the observation model can be expressed as a, pos-

sibly nonlinear, transformation g(�) with additive Gaussian noise:

yn = g θnð Þ+ ϵ,with ϵ�N 0,exp −λnð Þð Þ, ð1Þ

we can express the joint distribution of the hierarchical clustering

model as follows:

p yn,θn,λn,μk ,κk ,πð Þ=D π α0j Þ
YK

k =1
N μk m0,S0j ÞN κk ν0,T

−1
0

�� �� �
×

���

YN

n =1
N yn g θnð Þ,exp −λnð Þj ÞN λn μλ,π

−1
λ

�� �XK

k = 1
π k½ �N θn μk ,exp −κkð Þj Þð g,

��n

ð2Þ

where the symbols N(�) and D(�) denote the multivariate Normal and

Dirichlet distributions, respectively. In addition, α0 denotes the param-

eter of the prior over cluster weights, m0 and S0 the prior mean and

covariance of the cluster centres and ν0 and T0 the prior mean and

covariance of the cluster log-precision.

Performing Bayesian inference on this model requires the joint

estimation of the parameters of the subject-wise generative models

(θn and λn) and the parameters of the group-level clustering model (μk,

κk, and π). In principle, an attractive way to do this is to apply Monte

Carlo sampling, which offers a number of advantages including asymp-

totic exactness, lack of conjugacy requirements, and the availability of

well-established standard algorithms and software tools. One of these

standard algorithms is Metropolized Gibbs sampling, which can be

applied almost universally to any target distribution which can be

evaluated up to a multiplicative constant for arbitrary parameter com-

binations (Gelman, 2014). It works by sampling parameters, or groups

of parameters, in turn from their conditional distribution given the

remaining parameters of the model, employing the Metropolis–

Hastings (MH) algorithm whenever it is not possible to sample from

one of the conditional distributions directly. Specifically, for hierarchi-

cal clustering, this means sampling each of the following parameters

θn, λn, μk, κk, and π (1≤ n≤N, 1≤ k≤K) from its conditional distribution

given all the remaining parameters, which is done using MH, due to

the lack of conjugacy. The exact forms of these conditional distribu-

tions are given in the Supplementary Material.

However, a major weakness of Gibbs sampling in particular, and

MH in general, is slow convergence in the case of highly correlated

parameters (Bishop, 2006). In our case, the structure of hierarchical

clustering induces a strong correlation between the parameters of the

clustering model, specifically μk, and the parameters of the generative

model θn. This can be understood by noting that μk is the parent of θn

in the graphical model in Figure 1. Additionally, the parameters μk, κk,

and π are strongly anti-correlated, as they are co-parents of θn. Note

that despite being nominally unobserved, we are conditioning on the

current sample value of θn when drawing the parents during Gibbs

sampling. Hence, these variables suffer from the well-known

“explaining away” effect (Bishop, 2006).
When applying Gibbs sampling to hierarchical clustering in prac-

tice, these issues lead to very characteristic failure modes where

either some data points are stuck in the wrong cluster, or an empty

(or almost empty) cluster is stuck close to the prior mean m0. These

issues are exacerbated by generative models g(θn) with high posterior

correlations among their parameters; an issue that is frequently found

in generative models involving dynamical system formulations, such

as DCM. Examples illustrating these failure modes are provided in

Section 3.

In order to address convergence issues, advanced sampling

methods have been developed. HMC (Betancourt & Girolami, 2015;

Calderhead & Girolami, 2009; Duane, Kennedy, Pendleton, &

Roweth, 1987) is generally considered to be the state-of-the-art in

this field, designed to increase sampling efficiency and speed up

convergence for a wide range of target distributions. However, this

generality comes at the cost of higher complexity, both numerically

and in terms of implementation effort. In addition, it introduces the

need to tune additional hyperparameters to achieve optimal perfor-

mance (Behrens, Friel, & Hurn, 2012; Betancourt, 2016). In the fol-

lowing section, we introduce an alternative solution with the goal

of improving convergence of the Metropolized Gibbs sampler for

hierarchical clustering, while minimising the additional computa-

tional complexity.

F IGURE 1 Graphical model for the hierarchical clustering problem
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2.2 | Improving convergence for hierarchical
clustering

In the previous section, we have identified key features in hierarchi-

cally structured clustering models which are responsible for conver-

gence issues in MCMC-based inversion of these models. In order to

address these issues, we suggest constructing specialized proposal

distributions tailored to the dependency structure of the hierarchical

clustering model.

Specifically, we suggest using special proposal distributions during

the MH phase of the Metropolized Gibbs sampler which depend on

the sample value of the parameters which are not being sampled at

the current step. For example, when sampling from the conditional

distribution over cluster means μk given all remaining parameters, one

may use a proposal distribution which depends on the current sample

value of the other parameters (in the following, the (τ) in the exponent

denotes the current sample value, while the star in the exponent

denotes the proposal value):

q μ�k
� �

= q μ�k jθ τð Þ
n ,π τð Þ,…

� �
, ð3Þ

This departs from standard proposal distributions, such as using a

Gaussian kernel centred on the last sample value of μk itself:

q μ�k
� �

=N μ�k μ τð Þ
k ,σMH

��� �
:

�
ð4Þ

Note that our idea does not violate detailed balance since the target

distribution is the conditional distribution, and we only use the sample

values of the parameters we are currently conditioning on.

In theory, the optimal choice for such a proposal distribution

would be the conditional distribution itself. However, the inability to

sample from the conditional distribution directly is what necessitated

the MH step in the first place. In practice, we therefore alternate

between (a) a standard proposal distribution, like a Gaussian kernel

centred on the last sample, which is used to explore the current pos-

terior mode, and (b) a special proposal distribution, designed to disrupt

the random walk behaviour of the chain, for example, by proposing

jumps to possible locations of other modes of the posterior. The key

is that these special proposal distributions should be more effective if

they are informed by the current sample value of the other parame-

ters. Note that alternating between different transition operators in

MH is valid, as long as each individual transition operator is valid

(Brooks, Gelman, Jones, & Meng, 2011).

The idea of disrupting random walk behaviour in MH using spe-

cialized proposal distributions—for example, derived from extensive

domain knowledge—is not new. In fact, our approach was inspired by

Carlin and Chib (1995) who, after reformulating a model selection

problem in terms of a clustering model, faced convergence issues sim-

ilar to those seen in hierarchical clustering. However, what distin-

guishes our approach from previous methods is the insight that, in the

case of hierarchical clustering, the special proposal distributions can

make use of the sample value of the parameters currently not being

sampled to identify promising proposals. For example, when sampling

from the conditional distribution over clustering parameters, one may

use a proposal distribution informed by the current sample value of

the subject-level parameters. This eliminates the need for designing

proposal distributions based on domain knowledge, making the

method less application dependent. In addition, it also eliminates the

need for tuning the special proposal distribution in preliminary test

runs of the sampler, as was done by Carlin and Chib (1995).

Based on the issues with hierarchical clustering identified in the

previous section, we focus on two steps in the Metropolized Gibbs

sampler: (a) sampling from the conditional distribution over θn and

(b) sampling from the conditional distribution over the cluster parame-

ters π, μk, and κk.

For Step (a), our special proposal distribution is extremely simple:

sample the proposal θ�n randomly from the clustering model:

q θ�n
� �

=
XK

k =1
π τð Þ k½ �N θ�n μ τð Þ

k ,exp −κ τð Þ
k

� ���� �
,

�
ð5Þ

In order to satisfy detailed balance, we need to derive the

corresponding MH acceptance rate, which is given by:

a=min 1,
p θ�n
� �

q θ τð Þ
n jπ τð Þ,μ τð Þ

k ,κ τð Þ
k

� �

p θ τð Þ
n

� �
q θ�njπ τð Þ,μ τð Þ

k ,κ τð Þ
k

� �
8<
:

9=
;: ð6Þ

Inserting the expressions for the conditional distribution (see

Equation (S5) in the Supplementary Material) and the proposal distri-

bution from Equation (5), the acceptance ratio simplifies to the ratio

of likelihoods, since all terms depending on the cluster parameters

cancel out:

a=min 1,N
yn g θ�n

� �
,exp −λ τð Þ

n

� ���� �

N yn g θ τð Þ
n

� �
,exp −λnð Þ

��� �� o
:

0
B@

8><
>: ð7Þ

Therefore, this kernel has the convenient property that it has no free

hyperparameters which need to be tuned. In fact, the only parameter

that needs to be tuned in the entire approach is the frequency with

which to propose from this distribution as compared to the standard

Gaussian kernel. In the experiments presented in Section 3, this fre-

quency was chosen during a preliminary test run of the sampler and

kept fixed for all subsequent experiments. This was done in order to

keep the setup as simple as possible. However, the tuning process can

in principle be accomplished during the burn-in phase of the sampler,

removing the need for any preliminary test runs.

The second special proposal density (step (b) above) was designed

to address the problem of transitioning between different posterior

modes. Specifically, this proposal jointly samples cluster model param-

eters π, μk, and κk given the current sample values of θn, while allowing

transitions between posterior modes associated with different num-

ber of clusters. This is achieved using the following process. First, we
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sample a number k uniformly between 1 and K, where K is the maxi-

mum number of clusters in the model. Then, we use k-means to iden-

tify a plausible clustering solution with exactly k clusters and draw the

parameters, that is, weight, mean and covariance, of the first k clusters

from a distribution centred on this solution. Finally, if k is smaller

than K, the parameters of the remaining clusters from k + 1 to K are

sampled from the prior over clusters. The last step ensures that the

overall number of parameters stays constant, avoiding the complica-

tions arising from changing the dimensionality of the parameter space

(Green, 1995).

Given that this proposal density requires the use of k-means to

obtain an intermediate clustering solution, it may appear that consid-

erable computational overhead is being introduced. However, our

experiments in Section 3 show that the computational cost intro-

duced by our special proposal distributions is almost negligible. The

derivation of the acceptance ratio for this proposal distribution can be

found in the Supplementary Material. The key feature of this proposal

is that it allows transitions between posterior modes representing

clustering solutions with different number of clusters. For example, in

certain situations, the solution where all data points belong to one big

cluster might be equally plausible as the solution where data points

are divided into two smaller clusters. Transitioning between these two

solutions is extremely difficult for standard Gibbs sampling, but is pos-

sible with the proposal density introduced above.

Also, note that the proposal introduced above makes a joint

update to cluster weights, means and covariances. This is in contrast

to standard Gibbs sampling, where these variables are sampled suc-

cessively from their respective conditional distributions. This makes

the standard Gibbs sampling susceptible to the strong posterior corre-

lations between these parameters.

In Section 3, we present empirical evidence that our proposed

approach significantly improves convergence for hierarchical clustering

while avoiding the added complexity of advanced Monte Carlo schemes.

To this end, we apply our method to a hierarchical clustering model built

on a subject-specific generative model of effective brain connectivity;

the latter, a DCM of fMRI data is briefly introduced in the next section.

2.3 | Dynamic causal modelling

The approach introduced in Section 2.2 applies to hierarchical cluster-

ing, irrespective of the subject-specific generative model. However,

for the remainder of this article, we will focus on a hierarchical cluster-

ing model known as HUGE (Yao et al., 2018), which combines cluster-

ing with a class of dynamic systems models called DCM. In the

following, we provide a short introduction to DCM; specifically, its

implementation for fMRI data. For a more detailed description of

DCM for fMRI, we refer to the original paper by Friston et al. (2003).

DCM is a class of generative models for inferring effective con-

nectivity between brain regions from fMRI data (Friston et al., 2003)

or EEG or MEG data (David et al., 2006). A DCM for fMRI consists of

an evolution function (formulated as a bilinear or non-linear dynamic

systems model) which is linked to a nonlinear observation function.

Specifically, the evolution function f(�) describes the temporal evolu-

tion of neuronal population states x in a network of brain regions,

together with the evolution of activity-induced hemodynamic states s:

_x, _sð ÞT = f x tð Þ,s tð Þ,u tð Þð Þ ð8Þ

The evolution function is parameterized by parameters θ (see

below) and under the influence of known perturbations or external

inputs u. These inputs u could represent, for example, sensory stimuli

or cognitive interventions (such as cued attention).

Neuronal and hemodynamic states are linked via a nonlinear

observation function h(�) to the observed fMRI data y(t) = h(x(t), s(t)) + e

(t), under Gaussian assumptions about the noise (and dealing with

non-IID properties). For simplicity, this description ignores region-

specific parameters of this observation function; for more details on

the hemodynamic model, we refer to Friston, Mechelli, Turner, and

Price (2000) and Stephan et al. (2007).

Of particular interest for practical applications is the parameteri-

zation of the neuronal evolution function, that is, the part of f(�) which

describes the evolution of the neuronal activity x, consisting of a bilin-

ear evolution function with parameter matrices A, C and the set

B = {B(l) : l = 1,…, L} containing one matrix per input:

_x=Ax+
XL

l=1
ulB

lð Þx+Cu ð9Þ

Here, A represents the endogenous connectivity, that is, the connec-

tivity between regions in the absence of external influences. B(l) repre-

sents the modulatory influence of input l on the endogenous

connectivity in A. And finally, C represents the strength of inputs that

drive the regions directly.

Evaluation of DCM as a generative model requires numerical inte-

gration of the evolution function f, which, assuming the use of an effi-

cient integrator like the Euler method, requires O(TLR2) operations,

where R denotes the number of regions and T the length of the fMRI

time series. In comparison, the complexity of evaluating the observa-

tion function h is negligible. Note also that in contrast to other

domains which apply dynamic system models (Kramer et al., 2014),

the process of fitting DCM to neuroimaging data is mostly driven by

transients and less by the steady-state.

When using DCM as the subject-wise generative model in hierar-

chical clustering, the model parameters of interest would be represen-

ted by θ = {A, B, C}, while the predicted fMRI time series result from

the process of first integrating the DCM evolution equation f(�) and
then applying the observation function h(�).

2.4 | Hamiltonian Monte Carlo

HMC is considered to be the state-of-the-art in the field of general

purpose Monte Carlo sampler capable of avoiding random walk

behaviour and obtaining less correlated samples. However, the effi-

ciency of HMC comes at the cost of increased computational
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complexity per sample, which may offset the benefit of being able to

use shorter chains. This is because in order to obtain a new sample,

HMC needs to simulate Hamiltonian dynamics in a potential land-

scape defined by the target distribution, which requires numerically

integrating a dynamical system (Brooks et al., 2011). In this section,

we present a theoretical analysis of the complexity of HMC for hierar-

chical clustering models of DCM in comparison with more conven-

tional sampling techniques.

Theoretical analysis shows that the complexity of HMC of O

(D5/4) compares favourably to the complexity of basic methods, such

as Gibbs sampling, of O(D2) (Hoffman & Gelman, 2014), where D

denotes the dimensionality of the parameter space. However, this

complexity refers to the number of samples needed to explore the tar-

get distribution and does not account for the complexity of obtaining

each sample. On a sample-by-sample level, HMC introduces two

sources of additional complexity: the evaluation of gradients of the

target distribution and the simulation of the Hamiltonian dynamics.

While gradient evaluation may be addressed with automatic differen-

tiation techniques without increasing the order of numerical complex-

ity (Baydin, Pearlmutter, Radul, & Siskind, 2018), simulating the

Hamiltonian dynamics requires a symplectic integration scheme such

as the leapfrog integrator (Brooks et al., 2011), which needs two eval-

uations of the gradient of the target density per integration step.

Unfortunately, in a dynamic systems model, such as DCM, evalua-

tion of the joint distribution and the associated gradients is often the

most expensive part. For DCM, the complexity of a single evaluation

is given by O(TLR2). Hence, evaluating the joint distribution for a

DCM-based hierarchical clustering model, such as HUGE, with data

from N subjects would require on the order of O(TNLR2) operations

due to the DCM part of the model alone. At the same time, the num-

ber of parameters of such a model is approximately given by

D = (N+K)LR2≈NLR2 (assuming N�K). This means that the evalua-

tion of the joint distribution alone would contribute O(TD) and O(JTD)

operations to Gibbs sampling and HMC, respectively, where J denotes

the number of steps used by the leapfrog integrator in HMC.

The optimum value for J depends on the structure of the target dis-

tribution itself and is difficult to determine a priori (Betancourt, 2016).

However, for typical DCMs, the length of the fMRI time series T is

approximately on the same order as LR2 (Friston et al., 2003). Hence, it

becomes clear that the cost of evaluating the DCM could very well dom-

inate the complexity of the entire inference algorithm, and may even

negate the advantage afforded by HMC in terms of providing more inde-

pendent samples if JT is of the same magnitude as D.

In the next section, we investigate this problem from an empirical

perspective by comparing the performance and computation time of

HMC and Metropolized Gibbs sampling on a set of synthetic and real-

world datasets.

3 | RESULTS

In this section, we present results from two experiments which illus-

trate the convergence issues encountered with standard Gibbs

sampling for hierarchical clustering, as well as the improvements

achieved using the approach proposed in Section 2.2. For comparison,

we also ran both experiments using HMC. For this purpose, we chose

the No-U-Turn sampler provided by stan (Stan Development

Team, 2020), because of its ability to automatically tune the hyper-

parameters of HMC for optimal performance. The code used to run

these experiments will be made available as part of the open-source

toolbox TAPAS (Translational Neuromodeling Unit, 2014). To account

for issues related to label switching, samples were relabelled with the

approach from Stephens (2000) throughout all our experiments. This

method was chosen because it unifies several previously established

relabeling schemes for MCMC. Details on the computing environment

can be found in the Supplementary Material.

Since the goal of this technical report is the development of an

efficient method for improving convergence of Gibbs sampling for

hierarchal clustering, we focus our quantitative analysis on the

assessment of the convergence of the samplers and the correctness

of the inference for synthetic data with available ground truth.

While convergence is assessed using the potential scale reduction

factor (PSRF) proposed by Brooks and Gelman (1998), the quality

of inference can be most conveniently summarized by calculating

the balanced purity (Brodersen et al., 2014) of the clustering result.

Although it may seem tempting to use a measure such as the root

mean squared (RMS) error of the posterior mean of the DCM

parameters, it should be noted that, for models with high posterior

covariance between its parameters, such as DCM, the posterior

may extend over a larger area or even be multi-modal, rendering

the posterior mean less informative. In most circumstances, an

RMS-based measure would likely reflect the posterior covariance

of the model instead of the accuracy of the inversion scheme. How-

ever, since we are dealing with a generative model, it is possible to

analyse model fit by visualising samples from the posterior over the

predicted BOLD signal. In the following, we provide a short intro-

duction to the PSRF and the balanced accuracy.

The PSRF was introduced by Brooks and Gelman (1998) in order

to assess the convergence of MCMC samplers. It quantifies the con-

sistency between independent chains by comparing the variance of

the samples within each chain with the variance of samples between

chains. Given m chains each containing n samples, the PSRF is calcu-

lated via the formula:

r̂ =
m+1
m

σ̂2+
W

−
n−1
mn

with σ̂2+ =
n−1
n

W +
B
n
, ð10Þ

where W and B/n denote the within-chain variance and between-

chain variance, respectively. Upon convergence, the PSRF should

approach a value of 1. In experimental settings, a value between

1 and 1.1 is generally accepted to indicate convergence of the

sampler.

The balanced purity (Brodersen et al., 2014) is a measure of the

quality of clustering solutions, where a value of 1 indicates a perfect

result, while a value of 0.5 indicates random assignment (for K = 2).

Given estimated Ω = (ω1,…,ωK) and true C = (c1,…, cJ) class
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assignments, the balanced purity is calculated from the purity using

the formula:

bp Ω,Cð Þ= 1−
1
K

	 

purity Ω,Cð Þ−ξ

1−ξ

	 

+
1
K

ð11Þ

where ξ is the degree of imbalance (i.e., the fraction of subject associ-

ated with the largest class) and the purity is defined as:

purity Ω,Cð Þ= 1
N

XK

k =1
max

j
ωk \ cj
�� ��: ð12Þ

Here, jωk\ cjj denotes the number of subjects in cluster k which are

associated with the true class j. The advantage of using the balanced

purity score is that it accounts for the biasing effects of an imbalanced

dataset, which affects the usefulness of the more traditional purity

score in dataset containing classes of varying sizes.

3.1 | Experiment 1: Synthetic data

In the first experiment, we used synthetic data with known ground

truth to validate and compare the different inversion methods. For

this purpose, we generated 20 synthetic datasets, where each dataset

contained 30 simulated subjects divided into two clusters with differ-

ent patterns of network connectivity. Repeating the experiment for

20 datasets introduces a range of variations which ensures that any

observed differences between the samplers are not simply due to ran-

dom properties of a particular dataset.

The time series data of each subject were generated using the

three-region DCM shown in Figure 2a with connectivity parameters

drawn randomly from a Gaussian distribution centred on the respec-

tive cluster mean. The cluster means were chosen to represent the

two distinct connectivity patterns shown in Figure 2b,c. The structure

of this DCM was inspired by an actual experimental design from van

Leeuwen, den Ouden, and Hagoort (2011). The numerical values of

the ground truth parameters are listed in the Supplementary Material.

For each dataset, we inverted the HUGE model using 3 different

approaches: standard Metropolized Gibbs sampling, the improved ver-

sion described in Section 2, and HMC as implemented in stan. For the

Gibbs samplers, four independent chains with 1 × 105 samples each

were run, which took less than 3.5 hr on average. The first half of each

chain was discarded for burn-in before convergence was assessed

using the PSRF.

Figure 3 (top panels) shows plots of the PSRF values of the model

parameters of HUGE across all synthetic datasets. Each dot repre-

sents the PSRF value of one model parameter of HUGE for one of the

20 synthetic datasets. Model parameters include subject-level DCM

parameters, measurement noise precision, cluster mean and variance

and cluster weights. The PSRF values for our improved Gibbs sampler

are mostly within the range of 1–1.1 which is generally accepted to

indicate convergence of the sampler. However, for the standard Gibbs

sampler, the PSRF values indicate failure of convergence for some of

the datasets. This impression is confirmed by Figure 4, showing

(A)

(B) (C)

F IGURE 2 (a) Dynamic causal model (DCM) network for generating synthetic datasets. (b) Sub-network corresponding to the first cluster.
(c) Sub-network corresponding to the second cluster
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histograms of the balanced purity over the datasets. In the compari-

son between standard and improved Gibbs sampler, we observe a

clear improvement of the overall performance across the datasets.

In order to gain a better understanding of the failure mode of

standard Gibbs, we chose one representative dataset and plotted the

posterior estimates of subject assignment estimated for each chain

F IGURE 3 Top: Range of potential scale reduction factor (PSRF) of standard and improved Gibbs sampling observed across all synthetic
datasets. Bottom: Range of PSRF values for different sets of parameters obtained with Hamiltonian Monte Carlo (HMC) for chains of length

200, 400, and 800 samples. Horizontal black lines mark the threshold of PSRF = 1.1, which is commonly accepted to indicate convergence. Each
dot represents the PSRF value for one model parameter in HUGE associated with one of the 20 datasets
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F IGURE 4 Top: Histograms over
balanced purity values obtained with
standard (left) and improved (right) Gibbs
sampling. Bottom: Histograms over
balanced purity values obtained with
Hamiltonian Monte Carlo (HMC) for
chains of length 200 (left), 400 (middle),
and 800 (right)
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individually (Figure 5). This reveals that for standard Gibbs half of the

chains (i.e., Chains 1 and 3) are stuck in a local maxima of the posterior

density corresponding to an incorrect clustering. At the same time,

Figure 6 shows a difference of over 100 in the mean log-joint proba-

bility between the chains. This indicates that Chains 1 and 3 are most

likely stuck in low probability regions of the parameter space which

are hard to get out of, for example, a local maximum in the posterior

distribution. Conversely, for the improved version, all chains con-

verged to the same area of the parameter space (Figure 5, right) with

roughly the same mean log-joint probability (Figure 6, right). In addi-

tion, the estimated posterior subject assignment closely matches the

ground truth assignment. Since the initial states of the chains are ran-

domized, this result indicates that our improvements to the Gibbs

sampler reduce the chance for chains to be trapped in local maxima of

the posterior landscape.

In order to assess how well the model fits the data, we calculated

the difference between the posterior samples of the predicted BOLD

signal and the ground truth BOLD signal. Specifically, we used the

DCM forward model to generate, for every posterior sample of the

DCM parameters (after burn-in), the predicted BOLD response and

calculated the root-mean-square error with respect to the ground-

truth BOLD signal of the synthetic dataset. Figure 7 shows this error

normalized by the SD of the ground-truth signal for the subjects of

the same dataset shown in Figure 5. This plot reveals spikes in the

error of certain subjects for the standard Gibbs sampler, while the

improved sampler shows a uniformly low error. Interestingly, the
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F IGURE 5 Posterior subject assignment for one exemplary synthetic dataset, estimated for each chain individually with standard (left) and
improved (right) Gibbs sampling. The blue line separates the first 15 subject generated from the first cluster from the last 15 subjects generated
from the second cluster
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subjects showing high error (subjects 8, 18, and 20) seem to coincide

with those subjects that are stuck in the wrong cluster in Figure 5. A

visualization of posterior samples of the predicted BOLD response in

Figure 8 reveals that the error seems to be because one chain con-

verged to a parameter configuration leading to a poor prediction for

the BOLD signal, possibly coupled with a high estimate for the vari-

ance of the measurement noise.

In order to compare our improved Gibbs sampler to HMC, we

implemented the HUGE model in stan and inverted the model for

each of the synthetic datasets. As with our Gibbs sampler, stan sam-

ples 4 independent chains per dataset, discards the first half of each

chain for burn-in and pools the remaining samples over all chains to

obtain convergence statistics and posterior quantiles. Since HMC has

been designed for efficiency, HMC requires less samples to explore

the target distribution than a sampler based on random-walk Monte

Carlo. Hence, it is not appropriate to choose the same chain length for

HMC and Gibbs sampling. Instead, a more sensible approach would

be to run HMC until convergence, as assessed by the PSRF, and com-

pare how many sample and how much computation time were

required relative to Gibbs sampling. In time sensitive applications,

which might arise, for example, in clinical settings, an alternative

approach would be to allocate a time budget and compare which sam-

pler is able to converge within this budget. Following this strategy, we

repeated the entire experiment three times with three different set-

ting for the chain length: 200, 400 and 800 samples. Based on prelimi-

nary experiments, we predicted that these settings would limit the
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computation time to less than a day. For comparison, the Gibbs sam-

pler converged within 3.5 hr on average.

The histograms over balanced purity values in Figure 4 show that,

using chains of 800 samples, HMC achieved a similar clustering per-

formance as our improved Gibbs sampler with 105 samples, con-

firming a superior efficiency per sample for HMC. However, Figure 3

reveals that the PSRFs are far from the value of 1, especially for the

cluster mean and DCM connectivity parameters, indicating that the

sampler has not converged, even for the maximum setting of

800 samples.

A simple solution would be to increase the length of the chains.

Unfortunately, Figure 9 shows that even for the shortest chains of

200 samples, the computation time of HMC exceeds that of Gibbs

sampling with 105 samples. Note that these experiments were con-

ducted on a high performance computing (HPC) cluster equipped with

processors which differ in speed. However, when repeating the sam-

pling with HMC on a local workstation equipped with more powerful

processors than the HPC cluster, we did not observe any significant

speedup.

3.2 | Experiment 2: Experimental dataset

In the second experiment, we analysed a real-world dataset from an

fMRI experiment investigating speech perception in stroke patients

compared to healthy controls. The cohort included 26 healthy con-

trols and 11 patients. For details of the experimental setup, see Leff

et al. (2008). In a previous DCM-based analysis of this dataset

(Schofield et al., 2012), a task-relevant network containing six regions

(with three regions in either hemisphere) was identified. For hierarchi-

cal clustering, we simplified the network by removing two subcortical

regions with low signal-to-noise ratio, resulting in the four-region net-

work shown in Figure 10. This is in line with the approach from Yao

et al. (2018).

As before, we inverted HUGE using both standard and improved

Gibbs sampling and HMC. Settings were kept identical to the syn-

thetic case except for the chain length, which was increased to

600,000 samples including 300,000 burn-in for Gibbs. The choice of

chain length was partly based on previous experience with a similar

clustering model (Raman et al., 2016). Individual chains were sampled

in parallel on an HPC cluster, with each chain having access to a single

core. The HPC contains a variety of CPUs from different manufac-

tures with clock speeds ranging from 2.3 to 3.7 GHz and jobs are

assigned to a random node. A summary of the composition of the

HPC can be found on its website (https://scicomp.ethz.ch/wiki/Euler).

Sampling required 140 × 103 s (approx. 40 hr) on average for both

versions of Gibbs sampling. Note that the computation time of the

improved version of Gibbs is on average only 4% higher than that of

standard Gibbs, indicating that the overhead introduced by our special

proposal distributions is almost negligible. Also note that computation

time is not a linear function of the number of regions of the DCM, but

depends on many factors such as the number of connections, the

number of subjects, the length of the time series, the type of the

DCM (linear, bilinear, nonlinear), and so forth. However, the analysis

from Section 2.4 showed that the complexity of the sampler does

scale linearly with the number of subjects. This is relevant for applica-

tions involving large-scale datasets such as, for example, the Adoles-

cent Brain Cognitive Development Study, the Human Connectome

Project or the UK Biobank. Using this linear relation to extrapolate the

computation time for this experiment to a dataset of 100 subjects, we

would expect an average computation time of 105 hr (approx.

4.5 days), which is still less than the computation time of HMC for the

present experiment. In this context, it is also important to note that

for Gibbs sampling the subject related computations can be easily

F IGURE 9 Comparison of the range of computation times for
Hamiltonian Monte Carlo (HMC) (blue) and Gibbs sampling (black).
HMC200: HMC with 200 samples, HMC400: HMC with 400 samples,
HMC 800: HMC with 800 samples, and Gibbs1e5: Gibbs sampling
with 105 samples

F IGURE 10 The four-region dynamic causal model (DCM)
network structure used for the analysis of the experimental dataset
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parallelized, which could potentially reduce the computation time sig-

nificantly if suitable hardware is available. In contrast, for HMC sam-

plers, parallelization is less trivial since the simulation of the

Hamiltonian dynamics is inherently sequential in nature.

Figure 11 shows the posterior assignment estimated from sam-

ples of all four chains. It is apparent that the clusters obtained with

improved Gibbs sampling match far better onto the known sub-

groups of controls and patients. The balanced purity achieved with

the improved method is 86%, whereas standard Gibbs sampling only

achieves 60%. The reason for this difference becomes apparent when

plotting the posterior assignment estimated for each chain individu-

ally. Figure 12 shows that, similar to Experiment 1, the chains from

standard Gibbs are stuck in different local maxima of the posterior,

while for the improved version, all chains converged to the same con-

figuration. We again compared the mean log-joint probability between

chains (Figure 13) and observed a difference of 100 for standard

Gibbs and only 5 for the improved method.

Unlike the first experiment, there is no ground truth BOLD signal

available for comparison. As an alternative, we compare the model

prediction to the observed BOLD signal by analysing the squared dif-

ference between these signals for standard and improved Gibbs sam-

pling. To this end, we obtain, for each subject, 10 equidistant samples

from the posterior over DCM parameters from the post burn-in phase

of each chain. The equidistant subsampling minimizes the correlation

between samples. Each sample is used to generate a predicted BOLD

signal, which in turn is used to calculate the squared difference to the

observed signal. A Wilcoxon rank-sum test between all squared differ-

ences for standard and improved Gibbs samplers reveals that the

median squared difference from samples obtained with standard

Gibbs sampler is significantly higher than the median squared differ-

ence from samples obtained with improved sampler (p = .006). In addi-

tion, we also visualize the quality of model fit by plotting the mean

log-likelihood of each chain for both standard and improved Gibbs

sampling in Figure 14. Not only is the log-likelihood of the improved

method higher, indicating a better model fit, but the log-likelihood

values are also more consistent across chains for the improved

sampler.

This observation is also reflected in the PSRF (Figure 15, top),

which, for the improved sampler, lies below 1.1 for most parameters,

with a few exceptions. On the other hand, for standard Gibbs, the

PSRF of most parameters exceed 1.1, indicating poor convergence.

Further convergence statistics like effective number of samples and

autocorrelation times are reported in the Supplementary Material.

Figure 16 shows a section of the sample trace for the cluster mean for

both standard and improved Gibbs. Notice the lack of label switching,

that is, the clusters switching places due to the symmetries of the

clustering model, for standard Gibbs, which is another sign that the

sampler is failing to explore the entirety of the posterior distribution.

In order to compare the performance of our improved Gibbs sam-

pler to HMC on this real-world dataset, we used stan to invert HUGE

for this dataset. Sampling 4 chains in parallel, each 200 samples long,

with HMC took about 432 × 103 s (approx. 120 hr or 5 days). How-

ever, the posterior subject assignments and the PSRF shown in

Figure 15 bottom, indicate that a chain length of 200 samples was not

sufficient for convergence. Unfortunately, we were not able to repeat

the experiment with longer chains, due to limitations on computation

time on the HPC cluster used for the experiment.

It should be noted that the experimental dataset from this

section has been analysed in Yao et al. (2018) using VB, which

achieved a balanced purity of 91%. While this may seem to indicate

that VB is more accurate than MCMC, it is important to note that,

unlike for synthetic datasets, the known sub-groups of controls and

patients in this experimental dataset only represent an external refer-

ence, instead of ground truth parameter settings of the model. In
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F IGURE 11 Subject assignment for Experiment 2, estimated from samples pooled over all chains. Top left: standard Gibbs, top right:
improved Gibbs, bottom: Hamiltonian Monte Carlo (HMC). The blue line separates the controls (first 26 subjects) from patients (last 11 subjects)
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addition, a close inspection of the results reveals that the difference in

balanced accuracy is due to a single subject (subject 27), who is

assigned to the correct group by VB with high certainty, while the

MCMC assignment for this subject is ambiguous, which may simply

reflect the well-known tendency of VB to return overconfident

results.
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F IGURE 12 Subject assignment for Experiment 2, estimated for each chain individually for standard (left) and improved (right) Gibbs. The
blue line separates the controls (first 26 subjects) from patients (last 11 subjects)
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In order to gain more insight into why these subjects were

assigned to the wrong cluster, we plot the posterior means of the

subject-specific DCM parameters in Figure 17. This plot shows that

the DCM parameters of two of the incorrectly assigned subjects were

indeed consistent with the DCM parameters of the wrong group,

while the parameter estimate for the third incorrectly assigned subject

lies between the two groups. This indicates that the BOLD signals of

these subjects simply lead to DCM parameter estimates that are con-

sistent with the wrong cluster.

4 | DISCUSSION

In this technical note, we introduced a set of proposal densities tai-

lored to improving the convergence of MCMC samplers for hierarchi-

cal clustering. Comparing our approach to HMC in terms of

computational complexity, the analysis in Section 2.4 showed no clear

theoretical advantage for either method. In practice, computation time

may vary depending on the particular application. Hence, we con-

ducted extensive empirical tests on synthetic and real-world datasets,

from which several conclusions can be drawn.

First, combining hierarchical clustering with dynamic system

models such as DCM presents a formidable challenge to standard

MCMC samplers due to the strong posterior correlation present, not

only between clustering and DCM parameters, but also among the

DCM parameters themselves. In addition, the inherent symmetries of

clustering models induce multiple modes in the posterior.

Second, designing specialized proposal densities tailored to the

specific challenges posed by the hierarchical clustering model repre-

sents an effective solution in practice, leading to better clustering per-

formance in terms of balanced purity and also faster convergence. At

the same time, the proposal densities we introduced in Section 2.2

have only a single free parameter (i.e., the mixing ratio between pro-

posal distributions) which would need to be tuned for optimal

performance.

Third, our experiments revealed that even state-of-the-art gen-

eral purpose Monte Carlo methods, such as HMC, which were specifi-

cally designed to avoid random walk behaviour and efficiently sample

from highly complex target distributions, struggle to converge reliably

in timeframes as often required for solving computational problems

(i.e., days). Despite being more efficient, that is, requiring fewer
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samples to explore the target distribution, HMC takes longer to run

than Metropolized Gibbs sampling with our special purpose distribu-

tions and, for our empirical data, did not converge over the timeframe

available on our local shared cluster (5 days). This indicates that, in

practice, the overhead of having to simulate the Hamiltonian dynam-

ics negate the advantage afforded by HMC of being able to obtain

more independent samples.

Concerning the last point, it is important to note that we do not

believe this observation to be a consequence of inefficient implemen-

tation, since we used the HMC implementation provided by stan,

which translates the model into a C program and compiles it before

running the sampler. This means that, in our experiments, the HMC

sampler enjoyed the run time advantages of a compiled language,

while our Gibbs sampler was implemented in MATLAB, with only the

numerical integration of the DCM evolution equation being

implemented in C. For both methods, individual chains were run in

parallel.

Fourth, we would like to note that, although we have tested our

improved Gibbs sampler on HUGE, which is a DCM for fMRI-based

hierarchical clustering model, our proposed approach can be extended

easily to hierarchical clustering based on other generative models or

other DCM variants, such as DCM for EEG. Clearly, in contrast to the

HMC sampler in stan (and samplers provided by other toolboxes), our

approach does not generalize across models; instead, the proposal

densities need to be adapted to the specific model used. However, as

demonstrated above, an analysis of the dependency structure in the

overall hierarchical clustering model provides guidance for this rela-

tively straightforward step.

Compared to Yao et al. (2018), the MCMC-based approach pres-

ented here offers conceptual and practical advantages, which comple-

ment VB-based model inversion. Due to its asymptotic exactness,

MCMC may be used as a principled way to guard against estimation

errors of VB which arise from multi-modal posteriors or local minima

in the objective function. Concretely, one could use VB to quickly

obtain a preliminary result and proceed with further analysis while

running MCMC to confirm that the clustering found with VB is not,

for example, due to a local minimum in the free energy landscape. On

the practical side, MCMC is more flexible when it comes to modifica-

tions of the model, while for VB even seemingly trivial modifications

such as choosing a different prior distribution would require red-

eriving the update equations, which represents a major effort. This

point is of particular importance since the model will be released as

open-source software, allowing interested users to introduce their

own modifications.

Clustering subjects of heterogeneous populations is finding

increasing application in neuroimaging, particularly in application to

psychiatry (Brodersen et al., 2014; Dinga et al., 2019; Drysdale

et al., 2017; Feczko et al., 2018; Feczko et al., 2019; Marquand,

Wolfers, Mennes, Buitelaar, & Beckmann, 2016; Wolfers et al., 2019),

where the considerable heterogeneity of diseases according to cur-

rent classifications represents a central problem (Stephan et al., 2016).

The ability to detect unknown subgroups could greatly improve our

means of stratifying psychiatric populations and conduct more power-

ful clinical trials. This is particularly the case when subgroups are not

simply defined in terms of data features, but are interpretable in terms

of physiological processes that generated the data—a main motivation

behind hierarchical formulations of GE. The technical improvement

proposed in this article may find useful application in future studies

that utilize GE for a stratification of heterogeneous disorders.
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