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In this technical note, we introduce a new method for estimating changes in respiratory volume per unit time (RVT) from respiratory bellows recordings. By using 

techniques from the electrophysiological literature, in particular the Hilbert transform, we show how we can better characterise breathing rhythms, with the goal 

of improving physiological noise correction in functional magnetic resonance imaging (fMRI). Specifically, our approach leads to a representation with higher time 

resolution and better captures atypical breathing events than current peak-based RVT estimators. Finally, we demonstrate that this leads to an increase in the amount 

of respiration-related variance removed from fMRI data when used as part of a typical preprocessing pipeline. 

Our implementation is publicly available as part of the PhysIO package, which is distributed as part of the open-source TAPAS toolbox 

( https://translationalneuromodeling.org/tapas ). 
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1 This is distinct from and complementary to RETROICOR, which seeks to 

correct for instantaneous artefacts caused by the interaction between breathing- 
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. Introduction 

There has been much recent interest in the impact of global arte-

acts on fMRI data ( Burgess et al., 2016; Ciric et al., 2017; Liu et al.,

018; Murphy and Fox, 2017; Satterthwaite et al., 2013; Schölvinck

t al., 2010 ), with many studies finding a link between physiological

rocesses —particularly breathing —and these global signals ( Byrge and

ennedy, 2018; Power et al., 2017a; 2020; 2019; 2017b ). However, de-

pite the fact that models for these physiological processes and their

mpact on fMRI are well established ( Birn et al., 2006; 2008; Chang

t al., 2009; Chang and Glover, 2009; Glover et al., 2000; Murphy

t al., 2013 ), much recent work has focused on improved data-driven

ethods for artefact removal ( Aquino et al., 2020; Glasser et al., 2018;

ower et al., 2018 ). This is likely for two reasons. Firstly, even though

hysiologically-derived confounds have the advantage that they have

 much greater a priori validity if one is concerned about mistakenly

emoving neural signal, there is a cost: they require extra data to be

ollected, inspected, and analysed ( Glasser et al., 2018; 2019; Power,

019; Power et al., 2020 ). Secondly, as Power et al. (2020) recently

emonstrated, these fMRI artefacts typically arise in the context of un-

sual breathing events —very deep breaths, apnoeas, etc. —that are by

efinition hard for algorithms designed with “normal ” tidal breathing

n mind to properly detect and characterise. 

What we introduce here is a method, inspired by work from the elec-

rophysiological literature, that seeks to address both of these concerns
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n the context of preprocessing recordings from respiratory bellows. We

ntroduce a new estimator for respiratory volume per unit time (RVT)

hat does not require peak detection —a process that often requires post

oc manual intervention —and demonstrate that this accurately captures

typical breathing events. Empirically, when used as a confound regres-

or, this also removes more variance from fMRI data compared to a

eak-based RVT estimator. Finally, for a much more detailed discussion

f both breathing and breathing-related issues pertaining to fMRI than

pace affords in this technical note, we refer the reader to the excellent

verview in Power et al. (2020) . 

.1. Respiratory models and fMRI denoising 

In the context of removing global fMRI confounds, the aim of the

ost commonly utilised breathing-related metric, RVT ( Birn et al.,

006 ), is to collapse simple measurements of breathing —typically from

eripheral physiological recordings, such as respiratory bellows —down

o a metric that will correlate over time with the pressures of blood gases

e.g. pCO 2 and pO 2 ) 
1 . There are two components to this: an increase in

reathing rate or an increase in breathing depth will tend to, for exam-
dical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, 8032 
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elated motions and field changes, and cardiac pulsatility ( Glover et al., 2000 ). 
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2 An analytic signal has no negative frequency components, and is often ex- 

pressed in terms of instantaneous amplitude and phase. The Hilbert transform 

is equivalent to what is perhaps the conceptually simplest frequency-domain 

method for generating this (setting amplitudes of negative frequencies to zero, 

and doubling those for positive frequencies). 
3 For example, compare the double peak in the envelope at 530 s in 

Fig. 1 —caused by the square top to the waveform —with the filtered respira- 

tory volume in Panel (b) of Fig. 3 . 
le, decrease pCO 2 . As such, RVT is simply the product of respiratory

olume (RV) and breathing rate. 

The other component to these fMRI-based models is the mapping

rom RVT to the blood-oxygen-level-dependent (BOLD) contrast. Any

hanges in the pressures of blood gases impact on key constituents of the

OLD contrast, such as blood volume (via vasodilation) ( Gauthier and

an, 2019 ). To account for these physiological processes and the in-

erent delays in the circulatory system, a respiratory response function

RRF) ( Birn et al., 2008 ) is used to map from RVT to the BOLD signal.

his is directly analogous to the hæmodynamic response function which

escribes the mapping from neural activity to BOLD, and similar physi-

logical models exist for changes in heart rate ( Chang et al., 2009 ). 

.2. RVT estimators 

As we describe in more detail later, current methods typically char-

cterise the recordings from respiratory bellows via peak detection, but

his has issues in terms of both robustness and temporal resolution. Here,

e use a decomposition based on the Hilbert transform to characterise

he respiratory recordings; this is a technique that has been more widely

sed in the context of characterising complex oscillatory waveforms

rom electrophysiological data ( Brookes et al., 2011; Cole and Voytek,

017; Engel et al., 2013; Hipp et al., 2012; Luckhoo et al., 2012; Nguyen

t al., 2019; Voytek et al., 2013 ). The crucial link is that the quantities

hat we need to define RVT, breathing depth and rate, are simply the

mplitude and (instantaneous) frequency of the breathing-related oscil-

ation in the bellows recordings. 

By way of contrast, RVT is typically estimated via peak detection,

s described by Birn et al. (2006) . Firstly, one detects points of maxi-

um inhalation and exhalation (i.e. peaks and troughs in the respira-

ory waveform). Given these, respiratory volume is defined as the dif-

erence in belt positions between peaks and troughs, and breathing rate

s the reciprocal of the time between successive peaks (with the relevant

uantities linearly interpolated as necessary). However, peak detection

s not robust to noisy recordings and fundamentally constrains the tem-

oral resolution of the model to the observed breath durations. Taken

ogether, these two issues are why RVT-based measures can often “miss ”

eep breaths ( Power et al., 2020 ). 

As such, alternatives to RVT with better estimability have been pro-

osed. For example, Chang et al. (2009) define a simple alternative to

eak-based methods by simply taking the standard deviation of the res-

iratory signal in a small window around the timepoint of interest. While

his has some of the purported benefits of our method, namely that it

does not rely on the accuracy of peak detection required for breath-to-

reath computations ”, it does not directly capture the effects of changes

n breathing rate. Similarly, Power et al. (2018) propose what is essen-

ially a hybrid of our approach and the above, by calculating the stan-

ard deviation of the respiratory envelope in a small window. Again,

his is a peak-free method, but does not permit a clean dissociation of

reathing depth and rate. 

While the above two measures are more robust, they lack the di-

ect physiological interpretability with regard to blood gas pressures

hat RVT offers. Therefore, our aim is to estimate RVT itself, and all

omparisons in this technical note are with a peak-based RVT estima-

or. We use the implementation in the PhysIO package ( Kasper et al.,

017 ), and this is publicly available as part of the TAPAS toolbox

 https://translationalneuromodeling.org/tapas ). 

. Methodology 

.1. Properties of the Hilbert transform and analytic signal 

The Hilbert transform is central to our method as it allows us to

erive an alternative representation of the respiratory recordings. For a
2 
iven real-valued signal, 𝑠 ( 𝑡 ) , we can define a unique analytic signal 2 ,

 𝑎 ( 𝑡 ) , in terms of the Hilbert transform  ( Gabor, 1946 ): 

 𝑎 ( 𝑡 ) = 𝑠 ( 𝑡 ) + 𝑗 

[
𝑠 ( 𝑡 ) 

]

= 𝑠 𝑚 ( 𝑡 ) 𝑒 𝑗𝜙( 𝑡 ) 
(1) 

here the second line is simply a rearrangement of the first into polar

oordinates. Much more detail on the properties of this approach can be

ound in, for example, Boashash (1992a) ; Huang et al. (2009) . 

The important aspect of this representation for the current work is

he way we have split our signal into two components: an instantaneous

agnitude, 𝑠 𝑚 ( 𝑡 ) , and an instantaneous phase, 𝜙( 𝑡 ) . We can do one final

earrangement to make this more explicit: 

 ( 𝑡 ) = ℜ𝔢 
[
𝑠 𝑎 ( 𝑡 ) 

]

= ℜ𝔢 
[
𝑠 𝑚 ( 𝑡 ) 𝑒 𝑗𝜙( 𝑡 ) 

]

= 𝑠 𝑚 ( 𝑡 ) cos 
(
𝜙( 𝑡 ) 

) (2) 

e plot this decomposition of a signal recorded from respiratory bellows

n Fig. 1 . Note that we use the term amplitude envelope interchangeably

ith magnitude, as this is the common description in the electrophysi-

logical literature. 

Finally, these two terms are exactly what we need to calculate RVT.

he respiratory volume (i.e. the difference between successive peaks

nd troughs) is simply twice the signal amplitude, 𝑠 𝑚 ( 𝑡 ) . Similarly, the

reathing rate is the instantaneous frequency, 𝑠 𝑓 ( 𝑡 ) , which is the tempo-

al derivative of the instantaneous phase: 

 𝑓 ( 𝑡 ) = 

1 
2 𝜋

𝑑𝜙( 𝑡 ) 
𝑑𝑡 

(3)

s a last step, we apply a low pass filter to these quantities to remove

ithin-cycle fluctuations. The breathing rhythm is not sinusoidal, so the

bove terms will contain some high-frequency content that represents

ithin-breath modulations of the waveform shape. Here, as in a typical

reprocessing pipeline, RVT is convolved with the RRF —which is itself

n aggressive low-pass filter —so this is not strictly necessary for fMRI

enoising, but we do so because it affords more intuitive visualisations

f the respiratory decomposition 3 . 

.2. Practical considerations and algorithmic approach 

While the Hilbert transform is theoretically well suited to the prob-

em at hand, deriving the necessary quantities can present a formidable

ractical challenge ( Boashash, 1992b; Huang et al., 1998 ). Noise —or,

ore specifically, multiple local extrema that are not part of zero-

entred oscillations —can cause the instantaneous frequency to become

egative ( Huang et al., 2009 ). Correcting for these effects is a core part of

he empirical mode decomposition (EMD) ( Huang et al., 1998 ), whereby

 single signal is decomposed into multiple modes, each of which is

 monocomponent signal that admits a “well behaved ” decomposition

nto amplitude and phase terms. However, this is a data-driven approach

hat does not guarantee that the main breathing rhythm will be repre-

ented by a single mode. 

As such, while we could take an EMD-based approach here, we do

omething simpler. Rather than decomposing the signal and then se-

ecting the breathing-related modes post hoc, we assume that we can

ake an approximately monocomponent signal by appropriately filter-

ng the breathing signal. In practice, this requires a few rounds of itera-

ive refinement, and the overall algorithm is detailed below. To aid the

nterpretation of the filtering operations below, note that the “normal ”

https://translationalneuromodeling.org/tapas
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Fig. 1. Example of the properties of the respiratory signal we extract 

via the Hilbert transform. The lower panel zooms in on a portion of the 

trace shown in the upper panel. Within each panel, in the upper half we 

overlay the amplitude envelope, 𝑠 𝑚 ( 𝑡 ) , on the respiratory bellows trace. 

In the lower half we show the information carried by the instantaneous 

phase, which we illustrate as cos 
(
𝜙( 𝑡 ) 

)
as per Equation 2 . The product 

of this oscillatory component and the amplitude recovers the original 

signal. A version of this plot showing a larger portion of the recorded 

signal is shown in Supplementary Figure S1. 
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Fig. 2. Graphical overview of the phase interpolation procedure used to ensure 

monotonicity. In brief, phase reversals are linearly interpolated from the time 

when the signal first crosses a threshold implied by the local minimum, to the 

equivalent time defined in terms of exceeding the local maximum. 

 

 

 

reathing rate in adults —from both subjects resting in a supine position

nd undergoing MRI scanning —is approximately 0.25 Hz ( Power et al.,

019; Tobin et al., 1983 ). 

Our proposed algorithm for RVT estimation based on the Hilbert

ransform consists of the following general steps: 

1. PhysIO preprocessing: Remove low frequency drifts (less than

0.01 Hz) from the breathing signal, and remove high-frequency noise

above 2.0 Hz. This version of the breathing signal is used for both

RETROICOR and the peak-based RVT estimate in the physiological

pipelines used in the Results section. This is the raw trace shown in

Panel (a) of Fig. 3 . 

2. Lowpass filter the data again to more aggressively remove high-

frequency noise above 0.75 Hz. This is the raw trace shown in Fig. 1 .

The combined frequency response of these first two filtering steps is

shown in Supplementary Figure S2. 

3. Decompose the signal into magnitude and phase components via the

Hilbert transform. 

4. Linearly interpolate any periods where the phase timecourse de-

creases, using the procedure in Fig. 2 , to remove any artefactual

negative frequencies. Reconstruct the oscillatory portion of the sig-

nal, cos 
(
𝜙( 𝑡 ) 

)
, and lowpass filter at 0.75 Hz to remove any resulting

artefacts. This procedure is repeated 10 times, with the new phase

timecourse re-estimated from the filtered oscillatory signal. 
3 
5. Calculate RV from the signal magnitude and instantaneous breathing

frequency as the numerical derivative of the phase timecourse. These

estimated quantities are then filtered at 0.2 Hz to average the within-
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Fig. 3. Comparison between the predictions from our Hilbert-based decomposi- 

tion and a method based on peak detection. The portion of the respiratory trace 

is the same as in the lower panel of Fig. 1 , and includes a large inhalation at 

530 s, followed by an apnoea lasting approximately 15 s. In (a) we show the 

detected peaks, which are the complete set of summary statistics used to define 

RVT as per Birn et al. (2006) . An extended version of this plot is shown in Sup- 

plementary Figure S3. In (b), (c) , and (d) we compare the inferred respiratory 

volume, breathing rate, and RVT respectively. 

 

 

 

fi  

p  

p  

p  

p  

c

3

3

 

a  

d  

v  

t  

(  

p  

m

 

t  

o  

a  

r

3

 

b  

Y  

t

 

a  

o  

A  

d  

i  

o  

l  

c  

t  

b  

P  

d  

i  

5  

a  

t  

m  

i  

s  

m  

b  

t

 

t  

m  

m  

t  

c  

u  

b

 

d  

f

3

 

t  
cycle fluctuations caused by the non-sinusoidal breathing waveform.

Finally, estimates are thresholded to remove physiologically implau-

sible values. 

All filters, except for the common preprocessing, are 10 th -order in-

nite impulse response, with the cut-offs stated in terms of the half-

ower frequency. Filters are run forwards and backwards to ensure zero-

hase responses, and use 10 s of circular padding (i.e. designfilt ,
adarray , and filtfilt in MATLAB). The filters used during the
4 
reprocessing are 20 th -order and use 100 s of padding due to the low

ut-off frequency of the filter used to remove drifts in the signal. 

. Results 

.1. Data overview and preprocessing pipeline 

Here, we demonstrate the performance of our method on data from

 pharmacological fMRI study ( Iglesias et al., 2021 ). Briefly, we analyse

ata from 69 subjects who were scanned while performing an audio-

isual associative learning task after receiving a minimal dose of ei-

her a dopaminergic antagonist (amisulpride), a cholinergic antagonist

biperiden), or placebo. Full details of the fMRI acquisition parameters,

reprocessing pipeline, and task analyses can be found in the Supple-

entary Material. 

We use this dataset to compare the performance of our RVT estima-

or to the peak-based approach implemented in PhysIO. As well as a set

f qualitative comparisons, we run a group-level paired t-test to formally

ssess which method results in the stronger removal of respiratory-

elated variance. 

.2. Qualitative behaviour 

In Fig. 3 we compare the quantities inferred from the raw respiratory

elt recordings. We focus on a single deep breath (i.e. a sigh ( Li and

ackle, 2017 )), as this is the type of breath that Power et al. (2020) noted

hat RVT can miss. 

In Panel (a) we show the detected maxima and minima, which

mounts to the complete description of the data for peak-based meth-

ds (the equivalent Hilbert-based decomposition is shown in Fig. 1 ).

s detailed in Kasper et al. (2017) , PhysIO uses a sophisticated peak

etection algorithm that includes some assumptions about the regular-

ty with which successive peaks appear in time. However, in the case

f this particular complex waveform caused by the sigh, this results in

ocal maxima and minima being incorrectly identified. This could be

orrected post hoc —though this can be a time intensive procedure —or

he assumption of regularity could be relaxed. However, as evidenced

y other ambiguities in Supplementary Figure S3, and as discussed in

ower et al. (2020) , there is unlikely to be an optimal setting for peak

etection algorithms. In this instance, one would manually mark a max-

mum at 528 s, a trough at 532 s, and the next maximum would be at

43 s; however, this is an incredibly sparse representation of 15 s of data

nd one which would conflate the increase in respiratory volume with

he decrease in respiratory rate. Counter-intuitively therefore, the RVT

ethod used here is more similar to an RV measure (i.e. the changes

n breathing rate are small). Finally, note that while empirical results

uggest that avoiding rate and depth changes cancelling in this manner

ay well improve denoising by reducing the number of “missed ” deep

reaths, one would rather have an RVT estimator that was sensitive to

hese two effects separately ( Power et al., 2020 ). 

Finally, in Panels (b), (c), and (d) we compare the inferred respira-

ory volumes, breathing rates, and RVT itself. What is clear is that our

ethod correctly identifies the changes in volume and rate, and further-

ore, because we have a measure that is well defined for all points in

ime, these are not temporally overlapping. This leads to the expected

hanges in RVT, namely a rise driven by an increase in breathing vol-

me, followed by a drop to well below baseline driven by the reduced

reathing rate. 

The Supplementary Material contains one extra visualisation of the

ata from this subject: in Supplementary Figure S4 we compare the in-

erred RVT regressors with the greyplot of the fMRI data itself. 

.3. Quantitative performance 

In Fig. 4 we compare the main effect of the RVT-based regressors at

he group level. As detailed in the Supplementary Material, we run two
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Fig. 4. Comparison of the fMRI-RVT associations for our Hilbert- 

based RVT estimator and a method based on peak detection. In the 

upper two panels we show the t-stats for the main effect of the RVT 

regressors across the group (peak-level FWE-corrected at 𝑝 = 0 . 05 ). 
In the lower panel we show the significant differences between the 

two as estimated via a group-level paired t-test (cluster-level FWE- 

corrected at 𝑝 = 0 . 05 with cluster-forming threshold 𝑝 = 0 . 001 ). 
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eparate group-level analyses to visualise the mean effect of RVT for the

wo different estimators, followed by a paired t-test analysing the differ-

nces between the methods. While both approaches show the expected

attern of strong positive effects distributed throughout the grey matter

 Birn et al., 2006; 2008; Chang et al., 2009; Chang and Glover, 2009;

ower et al., 2017b ), the bottom panel demonstrates how our method

emoves significantly more respiratory-related variance from the fMRI

ata. 

. Discussion 

In summary, we have demonstrated that the quantities we can de-

ive via the Hilbert transform —instantaneous estimates of amplitude

nd phase —naturally map onto the quantities we need to estimate RVT.

his furnishes us with a simple method that allows us to calculate a time-

esolved version of RVT, rather than one defined in terms of a sparse set

f peaks and troughs. We have demonstrated that this can better cap-

ure atypical breathing events, even in the context of non-sinusoidal os-

illations with large and rapid changes in amplitude and phase. Finally,

hen convolved with the RRF as part of a typical fMRI preprocessing

ipeline, our RVT estimates remove more respiratory-related variance

rom fMRI data than our baseline peak-detection-based method. 
5 
One of the aspects of our method we have emphasised through-

ut this technical note is the way it can dissociate changes in the

epth and rate of breathing. However, the summary metric typically

sed for denoising, RVT, is the product of these two quantities. As

ower et al. (2020) note, this introduces an ambiguity as “a larger-than-

ormal breath transpiring over a longer-than-normal time may appear

uantitatively just like a typical breath occurring over a typical time ”,

r, in other words, RVT “is by definition relatively insensitive to out-

ier breath volumes so long as they [inversely] scale with breath times ”.

ur results speak to this in two ways. Firstly, what our results hint at

s that this is often primarily an artefact of the low time-resolution im-

lied by reducing a signal down to its peaks alone, and not RVT itself.

ig. 3 clearly shows how the changes in rate and depth we infer are not

emporally coincident around a large and slow breath, and therefore

e still see large changes in RVT in this instance. Secondly, however,

f there are distinct differences in physiological responses to depth and

ate changes ( Birn et al., 2008; Lynch et al., 2020; Power et al., 2020 )

hen our method provides both time series separately. This would allow

ne to derive fMRI regressors for both effects, which may improve the

enoising performance for respiratory artefacts. 

Next, in so far as our approach implies a model for the data, it is em-

odied by Equation 2 : 𝑠 ( 𝑡 ) = 𝑠 𝑚 ( 𝑡 ) cos 
(
𝜙( 𝑡 ) 

)
. There are two key assump-

ions here. Firstly, that the Hilbert transform provides a physically mean-
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ngful separation of fluctuations in magnitude and phase. The Hilbert

ransform is convenient, but splitting one time-varying signal into two

ime-varying quantities is an underdetermined problem that admits dif-

erent solutions ( Boashash, 1992a ). Similarly, the interactions between

he two quantities can themselves carry meaningful information ( Huang

t al., 2016; Nguyen et al., 2019 ). Therefore, it may be that other decom-

ositions or regularisation strategies improve performance. Secondly,

he implicit assumption is that we can remove the vast majority of noise

y appropriately filtering 𝑠 ( 𝑡 ) . Again, this is an oversimplification in the

resence of structured artefacts caused by, for example, contractions

f the abdominal musculature unrelated to breathing or belt slippages

 Power et al., 2020 ). A more formal model might explain the data better

ere. 

On the other hand, the simplicity of our model allows one to apply

t robustly to a wide range of data, which may render it a useful quality

ontrol measure in and of itself. For example, given the magnitude and

hase timecourses one could reconstruct the signal as modelled, and

hen compute a time-resolved measure of goodness-of-fit to the original

ecording. This may prove useful if it could, for example, be used to flag

bad ” timepoints that warrant manual inspection. 

Finally, the other key aspect of the removal of these respiratory arte-

acts is the mapping from RVT to the BOLD signal via the RRF. It may be

he case that our RVT estimator requires a subtly different RRF because

t characterises large breaths in a slightly different manner. However,

iven the substantial variability in physiological responses over subjects

nd brain regions ( Chen et al., 2020; Falahpour et al., 2013; Kassinopou-

os and Mitsis, 2019 ), we suspect that the use of flexibly parameterised,

ubject-specific response functions will dramatically improve the per-

ormance of denoising algorithms, and hope that the method proposed

ere is a useful addition to the overall physiological noise modelling

ipeline. 

. Conclusion 

In this technical note we have introduced a new method for esti-

ating RVT from respiratory recordings for the purpose of removing

hysiological artefacts from fMRI data. We have demonstrated how this

an both improve the detection of atypical breathing events and more

trongly attenuate global fMRI artefacts as compared to current tech-

iques. 
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