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Psychiatry faces fundamental challenges with regard tomechanistically guided differential

diagnosis, as well as prediction of clinical trajectories and treatment response of individual

patients. This has motivated the genesis of two closely intertwined fields: (i) Translational

Neuromodeling (TN), which develops “computational assays” for inferring patient-specific

disease processes from neuroimaging, electrophysiological, and behavioral data; and

(ii) Computational Psychiatry (CP), with the goal of incorporating computational assays

into clinical decision making in everyday practice. In order to serve as objective and

reliable tools for clinical routine, computational assays require end-to-end pipelines

from raw data (input) to clinically useful information (output). While these are yet to be

established in clinical practice, individual components of this general end-to-end pipeline

are being developed and made openly available for community use. In this paper, we

present the Translational Algorithms for Psychiatry-Advancing Science (TAPAS) software

package, an open-source collection of building blocks for computational assays in

psychiatry. Collectively, the tools in TAPAS presently cover several important aspects

of the desired end-to-end pipeline, including: (i) tailored experimental designs and

optimization of measurement strategy prior to data acquisition, (ii) quality control during

data acquisition, and (iii) artifact correction, statistical inference, and clinical application

after data acquisition. Here, we review the different tools within TAPAS and illustrate how

these may help provide a deeper understanding of neural and cognitive mechanisms of

disease, with the ultimate goal of establishing automatized pipelines for predictions about
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individual patients. We hope that the openly available tools in TAPAS will contribute to the

further development of TN/CP and facilitate the translation of advances in computational

neuroscience into clinically relevant computational assays.

Keywords: TAPAS, Translational Neuromodeling, Computational psychiatry, Computational psychosomatics,

computational assays, open-source, software

INTRODUCTION

Contemporary psychiatry uses disease classifications that are
almost entirely based on syndromes (i.e., patterns of symptoms
and signs) as defined by the Diagnostic and Statistical Manual of
Mental Disorders [DSM; (1)] or the International Classification
of Diseases [ICD; (2)]. While these schemes are valuable in that
they provide a stratification of mental illness that relates to the
subjective phenomenology of patients, they are inherently limited
as they do not rest on pathophysiological or aetiological concepts
of diseases. As a consequence, clinical labels proposed by DSM
or ICD (e.g., schizophrenia or depression) typically have limited
predictive validity with regard to clinical trajectories and do not
inform the optimal treatment selection in individual patients
(3, 4). Furthermore, clinical and scientific evidence suggests that
these labels do not describe distinct categorical entities, but
rather spectrum disorders that are characterized by substantial
heterogeneity and overlap (5–7).

This has motivated novel approaches to advance our
understanding of the pathophysiological and psychopathological
processes underlying diseases, and to ultimately inform
differential diagnosis and treatment prediction in individual
patients (8). In addition to the rise of (epi)genetic approaches,
advances in computational neuroscience have fueled hopes that
it may become possible to establish quantitative diagnostic
and prognostic computational tools that significantly
improve clinical practice in psychiatry. In particular,
mathematical models of neuroimaging data, as obtained
using functional magnetic resonance imaging (fMRI) and
electro/magnetoencephalography (EEG/MEG), hold great
promise as they might offer readouts of the symptom-producing
physiological processes underlying brain disorders (9–14).
Similarly, advances in computational models of human behavior
may enable inference on psychopathological processes at the
computational (information-processing) level (15–20).

Efforts to exploit these scientific advances can be
grouped into two separate yet overlapping approaches.
Primarily methodological efforts toward the development
of “computational assays” for inferring brain disease processes
from neuroimaging, electrophysiological, and behavioral data are
referred to as Translational Neuromodeling (TN); by contrast,
Computational Psychiatry (CP), Computational Neurology
(CN), and Computational Psychosomatics (CPS) are concerned
with concrete applications in the respective clinical domains,
with the ultimate goal of incorporating computational assays
into routine clinical decision-making (Figure 1). Although many
of the tools in TAPAS are equally useful for CN and CPS, here
we focus on CP as this is arguably the most developed of the
computational clinical neurosciences (16, 21–29, 114, 119).

Developments of computational assays are often based
on generative models of neuroimaging or behavioral data.
Generative models describe how measured data may have been
caused by a particular (neuronal or cognitive) mechanism; their
inversion allows computational assays to operate on inferred
states of neural or cognitive systems (16, 29). This mechanistic
interpretability is crucial in many clinical contexts. Additionally,
traditional machine learning (ML) plays a central role in TN/CP,
for example by translating the inferences from computational
assays into patient-specific predictions, an approach referred to
as “generative embedding” (30).1

While early TN/CP proposals date back over a decade [e.g.,
see Stephan et al. (31)], computational assays are yet to enter
into routine clinical practice in psychiatry. In order to achieve
translational success, computational assays will have to build
on automatized and validated end-to-end pipelines and tools
for optimal data acquisition. These pipelines need to support a
complete analysis stream that takes raw data as input, and outputs
clinically actionable results that are derived from inferred latent
(hidden) computational quantities with pathophysiological or
psychopathological relevance. Such an end-to-end pipeline will
incorporate a series of fundamental steps (Figure 2): (i) Design,
(ii) Conduct, (iii) Check and Correct, (iv) Preprocessing, (v)
Inference, (vi) Clinical application. Each of these components
poses significant challenges given the complex nature of the
acquired data and of the computational tools. Here, we review the
current state of development toward such an end-to-end pipeline,
with a particular focus on our own work and software.

Considerable efforts have recently been made to develop
standardized and user-friendly software packages that could
serve as individual components for computational assays. For
instance, in the context of neuroimaging data, packages like
Statistical Parametric Mapping [SPM; (32)], FMRIB Software
Library [FSL; (33)], or Analysis of Functional NeuroImages
[AFNI; (34)] are widespread tools and cover several aspects of the
aforementioned end-to-end pipeline, including preprocessing
of neuroimaging data and statistical inference (typically in the
framework of General Linear Models). Similarly, for behavioral
data, software packages like the VBA Toolbox (35), hBayesDM
(36), KFAS (37), COMPASS (38), or HDDM (39) allow inference
on computational (information processing) quantities. This list is
non-exhaustive andmore software packages could be mentioned.
While all of these packages have proven highly valuable to study
behavior and brain function in humans, none of them has been

1ML is also used “on its own” in CP and applied directly to measured data, e.g., for

producing patient-specific predictions or discovering structure in heterogeneous

populations (222–224, 226–228). In this paper, however, we focus on approaches

where ML operates on estimates provided by generative models.
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FIGURE 1 | Taxonomy for different disciplines in the computational neurosciences and their relation to clinical questions. Translational Neuromodeling (TN) develops

and validates mathematical models for addressing clinical problems, whereas Computational Psychiatry (CP), Neurology (CN), and Psychosomatics (CPS) then apply

these methods to clinically relevant questions. Reprinted with permission from Frässle et al. (13). Copyright 2018 Wiley.

designed with the specific goal of constructing a pipeline for
clinically useful computational assays.

In this paper, we focus on the Translational Algorithms
for Psychiatry-Advancing Science (TAPAS) software package
which represents a collection of toolboxes that, collectively,
aim to advance computational modeling of neuroimaging and
behavioral data. While applicable to study human behavior and
brain function in health, TAPAS differs from the aforementioned
software packages in that its designated purpose is to provide
clinically useful tools at every stage of the aforementioned end-
to-end pipeline in order to advance translational success of
computational approaches to psychiatry. TAPAS is primarily
written in MATLAB (with some components in C and Python)
and distributed as open-source code under the GNU General
Public License 3.0 (https://www.translationalneuromodeling.
org/tapas). It does not represent a single unified piece of
software but rather a collection of toolboxes, each of which
addresses a specific problem that arises in TN/CP approaches to
neuroimaging and/or behavioral data analysis (Figure 2). More
specifically, the development of each toolbox has been motivated
by the general goal of TN/CP: to develop end-to-end pipelines
that derive clinically actionable outputs from measured data, as
illustrated in Figure 2.

In brief, TAPAS contains: (i) tailored experimental
paradigms (tasks) that probe psychopathologically and/or
pathophysiologically relevant processes, (ii) tools for
optimization and monitoring of data quality in the specific
context of fMRI, (iii) model-based physiological noise correction
techniques for fMRI data, and (iv) generative models and
associated statistical techniques that enable inference on
latent (hidden) neurophysiological or cognitive quantities
from neuroimaging or behavioral data. The latter range
from network/circuit models that infer effective (directed)
connectivity from fMRI and EEG/MEG data to behavioral

models that extract computational quantities from observed
actions (e.g., decisions or eye movements). Importantly, TAPAS
is not meant to provide a comprehensive collection of all
tools that may potentially contribute to the development of
end-to-end pipelines for computational assays. Instead, TAPAS
represents a collection of toolboxes that are of particular strategic
and practical relevance for advancing TN/CP and for supporting
translational applications of computational approaches to
problems in psychiatry.

To facilitate usability of our software, TAPAS is complemented
with comprehensive documentation for each toolbox, as well as
an active forum where users can seek help (https://github.com/
translationalneuromodeling/tapas/issues).

Here, we provide a general overview of the different software
toolboxes included in TAPAS and highlight how these may
support the development of clinically useful computational
assays for psychiatry. The paper is not meant to provide a
comprehensive description of each toolbox, but instead offers a
high-level perspective on how the different tools relate to each
other in order to jointly advance TN/CP. For readers interested
in a more in-depth treatment of a particular toolbox, references
will be provided in the respective sections.

DESIGN

The development of carefully designed experimental
manipulations and the acquisition of high-quality data is
paramount for (clinical) modeling. This is because any
conclusion—whether a scientific or clinical one—fundamentally
rests on the underlying data. The goal of tailored experimental
paradigms and optimized data acquisition is to increase both
the sensitivity and specificity of clinical tests; this necessitates
optimizations at different stages of data collection.
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FIGURE 2 | TAPAS components in a proposed end-to-end pipeline of a clinically relevant computational assay. This end-to-end pipeline will need to incorporate all

steps from the raw imaging or behavioral data to a final clinical recommendation. Such a computational assays will capture at least the following crucial steps:

(i) Design, (ii) Conduct, (iii) Check and Correct, (iv) Preprocessing, (v) Inference, and (vi) Clinical application. Various components of TAPAS feature into one or several

of these steps and aim to address important questions and limitations that have so far hampered translational success.

(I) Prior to data collection: Tailored experimental paradigms
have to be designed that capture relevant processes of interest.
This may relate to physiological and cognitive aspects in health,
or to pathophysiological and psychopathological mechanisms
in disease. Furthermore, optimization of the data acquisition
process is vital to ensure high quality measurements. This
is particularly important in the context of fMRI data, where
it is common that project-specific MR sequences have to be
developed. These aspects will be covered in the current section.

(II) During data collection: Measures have to be taken that
allow maintaining a consistently high level of data quality across
acquisitions; for instance, across different patients, scanners or
sites. This is vital in order to ensure that comparable (clinical)
conclusions can be drawn from the data. Tools that address this

aspect of data quality control will be covered in section Conduct,
Check and Correct.

(III) After data collection: Post-hoc assessment of data quality
is important to identify datasets that need to be excluded or
extra analysis steps to deal with artifacts. Poor data quality
might be due to severe artifacts and/or high noise levels in
the data, induced by both the MR system and the participant
itself (motion, physiological noise). To identify such cases, tools
are required that allow for quantitative assessment of data
quality and that facilitate the decision process as to whether
satisfactory data quality can be restored or not. Finally, user-
friendly tools are needed that enable automatized corrections to
clean-up data as best as possible. We will address these aspects in
section Preprocessing.
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All these efforts ideally interact seamlessly with each
other in order to maximize the sensitivity and specificity of
diagnostic/prognostic tests that build on the acquired data.
Suboptimal data acquisition and quality control can result in
a high proportion of datasets that have to be excluded from
further analyses or lead to false conclusions, which is particularly
problematic in the context of clinical applications.

Harmonization of Experimental Design
For probing disease-relevant cognitive processes, a plethora of
experimental tasks have been proposed that frequently only
differ in small details. While some variations are valuable as
they address somewhat different aspects of a cognitive process,
this diversity complicates exact comparison of findings across
studies and often gives rise to “approximate replications” where
an initial finding is not replicated exactly but some (vaguely)
related finding is linked to the original observation (4, 40). A
prominent example of this in the context of clinical neuroimaging
is the frontal dysfunction hypothesis in schizophrenia. Since
the original report (41), several studies have re-examined this
question using somewhat different experimental approaches and
have reported a variety of different outcomes, ranging from
hyper- to hypoactivation, to no obvious alterations at all [cf.
(4, 42)]. While it is possible that these differences could be of
pathophysiological relevance, potentially referring to different
subgroups in the schizophrenic spectrum, inconsistencies in
the utilized experimental manipulations render any differences
difficult to interpret. Hence, until such variations are properly
explained or controlled for, approximate replications do not
provide a solid basis for clinical tests.

One way to address this challenge is by openly sharing
established experimental tasks. Notably, while the call for open
sharing of data has been very prominent in recent years (43–45),
this is less the case for sharing the experimental tasks themselves
(but see, for instance, the task protocols utilized by the Human
Connectome Project (46) which have been shared openly).

To this end, TAPAS comprises the module “TAPAS Tasks”
which represents a collection of experimental paradigms that
have been designed and thoroughly tested (Figure 3, top
left). TAPAS Tasks comprises several tasks that cover both
the exteroceptive and interoceptive2 domains (for a complete
list, see Table 1). For all paradigms, the stimulus code is
provided as well as detailed documentation. This includes a
comprehensive description of (i) the experimental task, (ii)
software requirements, (iii) experimental set-up (including a list
of necessary peripheral devices), and (iv) information on how to
run the task.

Here, as an example, we describe the Heartbeat Attention
(HbAttention) task in more detail (Figure 3, bottom left).
The task implements a novel paradigm to probe purely
attentional differences of the heartbeat evoked potential between
exteroceptive and interoceptive conditions (47). The paradigm
consists of alternating conditions where participants are

2Exteroception refers to perception of sensations originating from the external

world, whereas interoception refers to perception of sensations originating from

the own body or “internal world”.

asked to focus attention either on their heart or on a
simultaneously presented auditory stimulus (white noise).
Importantly, in both conditions the sensory stimulation is
identical. Using this paradigm, Petzschner et al. (47) found
an increased heartbeat evoked potential during interoceptive
compared with exteroceptive attention. A non-invasive readout
of the attentional modulation of interoceptive processes could
potentially be of high clinical relevance, since alterations in
interoceptive processing have been recognized as a major
component of various psychiatric conditions, including mood
and anxiety disorders, eating disorders, drug addiction, as well
as depression (48).

TAPAS Tasks represents work in progress and not all
experimental paradigms listed above are available yet (for more
details, see Table 1). Newly devised experimental paradigms will
be added in the future. We hope that by making these tasks
openly available to the community, TAPAS Tasks may contribute
to growing a collection of standardized experimental paradigms
in TN/CP.

Optimization of MRI Protocols
In the context of neuroimaging, data quality also depends heavily
on the MR scanner settings and acquisition sequence. Carefully
crafted sequences with optimized parameter choices can offer
considerable gains in functional sensitivity and specificity for
the targeted research question (49–51). However, due to the
large variety of available parameters and their interdependency,
optimization of MR protocols is challenging and suboptimal
acquisition choices might reduce data quality, e.g., low signal-to-
noise ratio or pronounced artifacts like ghosting, ringing, signal
dropouts and distortions due to magnetic field inhomogeneities
[for an overview, see (52–55)]. Hence, the development,
optimization and validation of robust and powerfulMR protocols
prior to data acquisition is critical and tools are needed that ease
this process.

To this end, TAPAS includes the unified neuroimaging quality
control (UniQC) toolbox (56), which provides a framework
for flexible, interactive and user-friendly computation and
visualization of various quality measures in neuroimaging
data (Figure 3, right). UniQC facilitates fast prototyping and
optimization of acquisition sequences by providing tools for
artifact detection and sensitivity analyses across the entire image
or tailored toward specific regions of interest.

As sequence development constitutes an iterative process,
feedback on image quality has to be immediate and specific to
the protocol changes, so that the performed quality control (QC)
query informs the operator on how to adjust parameters for the
next scan (Figure 3, right). For example, if an unexpected bias
field occurs in the mean image, both excitation and receiver
channels could be compromised. In this case, fast display of
individual coil images is critical, which would be omitted if the
mean image were inconspicuous. Thus, QC during sequence
development resembles a decision tree, where the outcome of
one image quality metric (IQM) determines the selection of
the next one, with varying display options. This necessitates
an interactive, fast and flexible way to compute and visualize
IQMs. Typically, such a decision tree starts from basic artifact
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FIGURE 3 | TAPAS components that aim to enhance data quality for scientific and clinical applications. This includes (left, top) TAPAS Tasks, a collection of

experimental paradigms that have been devised and carefully tested, for instance, the Heartbeat Attention (HbAttention), stimulus-reward learning (SRL), and

breathing learning (BL) task. For a complete list of tasks that are already included in TAPAS Tasks or will be included in one of the upcoming releases, see Table 1.

(Left, bottom) Schematic overview of the experimental paradigm of the HbAttention task, as well as the placement of ECG electrodes and a typical ECG signal

associated with a heartbeat [reprinted with permission from Petzschner et al. (47)]. (Right) Furthermore, TAPAS comprises the unified neuroimaging quality control

(UniQC) toolbox which is designed to facilitate the development and optimization of MR acquisition sequences. UniQC can assess (compute and visualize) different

image quality metrics (IQMs) at different stages of an fMRI experiment (i.e., from raw data to statistical images). This facilitates the acquisition of high-quality data by

implementing an iterative optimization process, including basic artifact checks, temporal stability analysis, functional sensitivity analyses in the whole brain or in

particular regions of interest. UniQC enables this optimization in a highly flexible fashion, independent of the exact input data (e.g., sequence, dimensionality).

checks over temporal stability all the way to functional sensitivity
analyses in particular regions of interest, with the occasional
return to the scanner, if a QC step fails (Figure 3, right).

To achieve this functionality, UniQC exploits the object-
oriented programming capabilities in MATLAB. Importantly,
UniQC is not restricted to 4-dimensional neuroimaging data
(i.e., space and time) like most other software packages, but
generalizes operations to n-dimensional data. This generalization
to arbitrary numbers of dimensions comes in useful when
handling data from multiple receiver coils (57), as well as
multi-echo (58, 59) or combined magnitude/phase fMRI data
(60–62) in a single unified framework. Similarly, prominent
non-BOLD fMRI contrasts rely on an additional tag/control
dimension, for instance, Vascular Space Occupancy [VASO;

(63, 64)] or Arterial Spin Labeling [ASL; (65, 66)], with the
former being particularly relevant for depth-dependent fMRI.
Furthermore, UniQC allows seamless integration with SPM
and other MATLAB toolboxes in order to benefit from image
and fMRI processing algorithms that are already available in
those packages.

In summary, UniQC provides a flexible, interactive and user-
friendly toolbox for evaluating MR pulse sequence development
and quality control of n-dimensional neuroimaging data.
These efforts carry over from the design stage to the data
collection, in that UniQC allows utilizing the processing and
visualization pipeline established here directly as a quality
control protocol—enabling unique QC toward the aims of
each study.
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TABLE 1 | List of tasks (to be) included in TAPAS Tasks.

Task Description

Heartbeat attention (HbAttention) The HbAttention task probes differences in neural responses to heartbeats due to changes in attentional focus. The

paradigm consists of alternating conditions where participants focus attention either on their heart (interoceptive condition)

or on an external sound stimulus (exteroceptive condition), while keeping the sensory stimulation identical (47). The

HbAttention task requires the acquisition of an ECG and can be run in the context of an EEG experiment, measuring a

Heartbeat Evoked Potential (HEP), or an fMRI experiment. The task is programmed such that the stimulus timing can be

easily adjusted to the experimental modality.

Heartbeat feedback

(HbFeedback)

The HbFeedback task presents auditory-visual stimuli that are either locked to an individual’s online detected heartbeat

(veridical feedback about the heartbeat) or presented at a rate that is faster or slower than the individual’s heartrate. The

task assesses the effects of veridical vs. false feedback on physiological and neural signals related to heartbeats. It requires

the simultaneous recording of EEG and ECG signals.

Heartbeat mismatch (HbMMN) The HbMMN task consists of an auditory omission paradigm where a “standard” tone is presented shortly after each

heartbeat, but occasionally omitted (“deviant”). In different conditions, the delay between heartbeat and tone is varied. This

allows to measure changes in stimulus-evoked and heartbeat-evoked potentials between standards and omissions. In a

control condition, tone presentation times are unrelated to heartbeats. EEG and ECG signals are simultaneously recorded

during the task.

Filter detection (FD) The FD task is a perceptual threshold breathing task where participants have to indicate on each trial whether a very small

resistance (i.e., filter) or sham (i.e., empty filter) was applied to the breathing system (yes/no version) (213), or in which

interval resistance was applied (two-interval forced choice version). The task is tailored to assessing respiratory interoceptive

accuracy and metacognition in individual participants. Behavioral responses are recorded.

Breathing learning (BL) The BL task represents an associative learning task where participants learn the association between visual cues and the

subsequent presence/absence of an inspiratory resistive load. Respiratory load is applied using a novel MRI-compatible

breathing system that allows for remote administration and monitoring of resistive loads and whose construction plan has

been published (214). fMRI signals are recorded during the task.

Stimulus-reward learning (SRL) The SRL task requires participants to predict which of two simultaneously presented visual stimuli (i.e., fractals) would yield

a monetary reward. The association strengths between the visual cues and monetary outcomes change over the course of

the experiment, introducing volatility. fMRI or EEG data can be acquired during the task.

Auditory mismatch negativity

(aMMN)

The aMMN task is a variant of the auditory oddball paradigm in which the degree of volatility in the auditory stream varies

over time. While engaging in a visual distraction task, participants passively listen to repeated presentations of a high and a

low tone. During stable phases of the experiment, one stimulus reliably serves as the “standard” (more frequent) tone and

the other one as the “deviant” tone. During volatile phases, the roles of standard and deviant switch more rapidly. Deviance

processing can be compared between different levels of stability/volatility. Task versions are available for both EEG or fMRI

recordings.

Visual mismatch negativity

(vMMN)

The vMMN task implements the identical probabilistic stimulus sequence as the aMMN task. However, instead of auditory

stimuli, Gabor patches of different orientations are used to probe mismatch responses in the visual domain. Task versions

are available for both EEG and fMRI recordings.

Antisaccades (AS) The AS task asks participants to perform antisaccades which are a type of voluntarily controlled eye movements. In TAPAS,

code is available to run two different versions of the AS task (215, 216) using an EyeLink (SR Research, Ottawa, ON,

Canada) eye tracking system. The versions of the task differ in the timing (with or without a delay before the eye movement)

and position (at center or at peripheral target position) of the presentation of the task cue.

TAPAS Tasks will include a variety of different paradigms that probe exteroceptive and/or interoceptive processes. So far, the Filter detection (FD) and Breathing learning (BL) tasks are

included; the other tasks will follow as soon as the respective papers are published.

CONDUCT, CHECK AND CORRECT

Besides optimization steps prior to data acquisition, further
steps are necessary during and after the measurement to ensure
adequate data quality. Specifically, ongoing monitoring of data
quality during image acquisition is critical, because both the
MR system and the study participant constitute significant
potential noise sources. On the system side, data quality across
different time points and scanning sites may vary due to
potential malfunctions or alterations in the scanner hardware,
that must be detected in a timely manner. On the participant’s
side, even under ideal circumstances, with tailored experimental
designs, optimized acquisition sequences and thorough quality
control measures, fMRI data is still subject to artifacts outside

the experimenter’s control [e.g., motion, physiology; (67, 68)].
Adequately correcting for these artifacts is essential to avoid bias
in subsequent data analyses and to ensure that conclusions are
not confounded [e.g., (69–71)]. In what follows, we elaborate
on these points and describe tools in TAPAS that address
these challenges.

Quality Monitoring
fMRI analyses rely on the content of brain (or spinal cord)
images as information source. Thus, the visual inspection of raw
images by one or multiple experts is still often considered a gold
standard for quality control. However, visual assessment depends
on individual rater experience and visualization choices (e.g.,
slice orientation, windowing) which may reduce the apparent
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information content of an image to detect artifacts or improper
acquisition parameters (72) and generally aggravates inter-rater
reliability. Furthermore, limited time resources and fatigue make
the naïve visual inspection of every raw image quickly unfeasible,
as even a single fMRI dataset contains hundreds of volumes with
dozens of slices each. This challenge is exacerbated for large-scale
datasets, like the Human Connectome Project [HCP; (46)] or UK
Biobank (73), where thousands of participants are measured.

Automation of quality control is therefore required, and
can in principle target both aspects of the manual image
classification by raters. A first approach is to replace raters
by a machine learning algorithm working on derived IQMs
to reduce the high-dimensional feature space of image time
series. A second option is that the expertise of the rater can be
harnessed more efficiently by providing flexible tools for image
manipulation and visualization with intuitive interfaces to derive
and inspect relevant IQMs, thereby reducing operator fatigue
and inconsistency.

The first approach was explored early on for anatomical T1-
weighted images (74) and demonstrated good discriminability
of undistorted, noisy, and distorted images based on a subset
of 239 IQMs. Since then, various additional tools for automatic
quality control have been proposed, introducing additional IQMs
to assess image quality (75–77). These methods have been refined
and extended into scalable QC frameworks for large-scale fMRI
studies, most notably in the form of the MRI Quality Control
tool [MRIQC; (78)] and within the UK biobank study (79). Their
key advancement lies in the ability to classify images in a binary
fashion (“good” vs. “problematic”) or even categorizing multiple
artifact classes (79). Standardized quality reports then provide
guidance, as to whether data from a given participant should
be included in subsequent analyses or not. In order to ensure
accurate classification, these algorithms are typically trained on
large curated datasets that include both patients and healthy
controls [e.g., ABIDE (80) and DS030 (81) for MRIQC].

While such fully automatized approaches with minimal visual
output and manual assessment might be the only viable solution
in studies with thousands of participants, the required high
degree of standardization of the acquisition protocol as well as the
need for large, representative training datasets poses limitations
on its utility. In TN/CP, less well-studied clinical populations
and novel technologies can pose challenges when trying to
exploit established mappings between IQMs and image quality.
In particular, this can occur when employing advanced imaging
hardware or acquisition sequences to maximize sensitivity for
individual subject measurements, IQMs may fall outside the
standard range or become inapplicable. For example, higher
magnetic field strengths and customized high-density or surface
coils (82, 83) induce atypical image intensity variations (bias
fields). Similarly, Nyquist ghosts manifest differently for spiral
readouts than in conventional Cartesian echo-planar imaging.
Thus, fMRI data may require different IQMs or thresholds when
deviating from standard acquisition choices.

In these domains, the second option for QC automation is
preferable. This approach empowers the rater to determine which
IQMs to inspect, how to visualize them, and at which stage of the
analysis stream to assess them. While parts of this approach have

been implemented by providing standardized visual reports (e.g.,
MRIQC, fMRWhy) or interactive QC visualization tools (e.g.,
visualQC), a comprehensive framework that integrates all these
functionalities has been missing. To address this, we designed
the UniQC toolbox to meet these demands by offering flexible,
interactive and user-friendly assessment of fMRI data (Figure 4,
left). Importantly, the quality control pipeline derived during the
sequence design stage (section Design) can be readily deployed
to cover QC automation, and once quality issues are detected,
UniQC also provides a framework to “interrogate” the data
efficiently and identify potential causes of the problem.

In principle, this fast and precise identification can lead
to quality improvements in three ways (Figure 4, left). First,
the information can be used to isolate and repair hardware
malfunction (e.g., of certain coil elements) to swiftly restore
quality levels for the next scan or participant. Second, the quality
of the affected dataset can be increased by modeling the impact
of distinct noise sources, as identified by the QC decision tree
[e.g., electrostatic spike artifacts in the images or interactions
between subject motion and magnetic field; (84–86)]. Third,
selectively discarding the low-quality data only, as isolated by
the customized QC interrogation, salvages quality levels for the
remainder of the data (Figure 4, left).

Furthermore, unlike generic QC pipelines, the customization
afforded by UniQC facilitates testing whether any given dataset
shows a functional response relevant for the research question.
For example, due to the seamless integration with other
MATLAB toolboxes such as SPM, UniQC can analyze statistical
maps from study-specific GLMs, as well as provide region-
of-interest (ROI) statistics. With this functionality, task-fMRI
performance can be validated using robust expected activation
patterns as a sanity check, for example, sensory-motor activation
during a learning task, before proceeding to more complex
analyses. Thus, UniQC offers flexible, interactive and study-
specific quality control of the image acquisition system and
the imaged participant. Thanks to its modularity, UniQC
can be further integrated to monitor quality throughout the
preprocessing stage (section Preprocessing), independent of the
concrete pipeline.

Physiological Noise Modeling
One of the main confounds in fMRI is physiological noise
as it perturbs blood oxygen level dependent (BOLD) signals
(68, 87)—which can substantially hamper both classical fMRI
analysis as well as computational modeling of the data. The
two primary sources of physiological noise are the cardiac
and respiratory cycles (88). The respiratory cycle introduces
confounds by distortions of the magnetic field due to the
movement of the participant’s chest (89) as well as bulk
susceptibility variation in the lungs (90). Additionally, the
respiratory cycle alters the pressure of blood CO2 (which is a
vasodilator) over longer time periods, thereby inducing slow
signal fluctuations (91). The cardiac cycle, on the other hand,
modulates blood volume and vessel diameter during systole
and diastole, leading to small deformations of brain tissue
and brainstem displacement, causing periodic motion of the
cerebrospinal fluid (92). Furthermore, variability in heart rate
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FIGURE 4 | TAPAS components that aim to monitor data quality and correct for physiological confounds. (Left) In addition to supporting the development and

optimization of MR acquisition sequences (see Figure 3), UniQC also facilitates monitoring of data quality during data acquisition in order to quickly identify potential

problems in the acquisition processes which might relate to malfunctions or alterations in the scanner hardware, as well as to artifacts related to the participant (e.g.,

motion, physiology). (Right) PhysIO implements model-based physiological noise correction based on peripheral recordings of cardiac [e.g., electrocardiogram (ECG),

photoplethysmographic unit (PPU)] and respiratory (e.g., breathing belt) cycle. The toolbox uses RETROICOR as well as modeling of the impact of heart rate variability

(HRV) and respiratory volume per time (RVT) on the BOLD signal (e.g., using Hilbert-based respiratory volume) to derive physiological nuisance regressors that can be

utilized in subsequent statistical analyses to account for physiological confounds in fMRI signals.

induces alterations in the oxygen level in the blood (93),
and consequent low frequency signal fluctuations (94). Finally,
interactions between the cardiac and respiratory cycles, such
as in respiratory sinus arrhythmia (i.e., accelerated heartbeat
during inhalation), induce additional non-trivial physiological
fluctuations (95).

Various physiological noise correction methods for fMRI
exist, either based solely on the fMRI time series and prior
assumptions of spatiotemporal noise properties, or modeling
the noise from independent physiological recordings (e.g., using
electrocardiogram (ECG), photoplethysmographic unit (PPU),
and breathing belts) (88, 96). Arguably, for TN/CP applications
with clinical populations and pharmacological interventions,
methods based on independent recordings might be preferable:
In clinical populations, physiological processes that impact on the

BOLD signal may differ from priors that were defined based on
the general population.

Several freely available implementations for model-based
physiological noise correction are available, including AFNI
3DRETROICOR (67), FSL Physiological Noise Modeling (97),
and PhLEM (98); however, relatively few studies have capitalized
on these tools, in particular for task-based fMRI. One important
practical challenge—that is exacerbated in clinical populations
with less compliant subjects—is the variable data quality of
the peripheral recordings which these models are based on.
Reduced data quality may be due to subject motion or
(partial) detachment/saturation of the peripheral devices. In
most implementations, preprocessing of these recordings is
minimal, and identification of the physiological cycles typically
relies on peak detection provided by the MR scanner vendor
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(96). Alternatively, manual intervention to correct erroneous
detection is offered, hampering the development of automatized
pipelines and the translation of physiological noise modeling into
routine application.

The PhysIO toolbox (96) in TAPAS offers methods for
model-based physiological noise correction based on peripheral
recordings of the cardiac (e.g., ECG, PPU) and respiratory cycles
(e.g., breathing belt). PhysIO utilizes these peripheral measures
to model the periodic effects of pulsatile motion and field
fluctuations using RETROICOR (67). Furthermore, the toolbox
accounts for end-tidal CO2 changes and heart rate-dependent
blood oxygenation by convolving respiratory volume per time
(RVT) and heart rate variability (HRV) with a respiratory
and cardiac response function, respectively (91, 99, 218). For
these methods, emphasis is placed on robust preprocessing of
the input time series via reliable peak detection in low-SNR
regimes, as well as a novel method for RVT estimation using
the Hilbert transform (100). As a more data-driven alternative
for noise correction, PhysIO also allows the extraction of
signals from pre-defined regions of interest (“noise ROIs”) as
additional confound regressors—for instance, signal related to
white matter or cerebrospinal fluid (CSF). Finally, the toolbox
also incorporates various strategies for correcting motion-related
artifacts by implementing, for instance, the Volterra expansion
confound set (101) or censoring strategies based on the framewise
displacement (69). A schematic illustration of the modeling
process in PhysIO is provided in Figure 4, right. PhysIO provides
both command-line operation for de-noising multiple subjects
conveniently, as well as a user-friendly graphical interface
within the SPM Batch Editor. Thereby, physiological noise
correction can be integrated with complete fMRI preprocessing
pipelines, minimizing the need for manual interventions or
custom programming (96). Additionally, PhysIO ensures robust
preprocessing even for low-quality data and provides simple
diagnostic tools to assess the correction efficacy in individual
subjects. This renders PhysIO an accessible noise correction tool
for preprocessing pipelines both in basic neuroscience studies as
well as for clinical purposes.

PREPROCESSING

Data preprocessing is closely intertwined with quality control
and artifact correction. Thorough preprocessing is particularly
important for complex data acquired using neuroimaging
techniques such as fMRI or EEG/MEG (102). To this purpose,
researchers typically create ad hoc preprocessing workflows for
each study individually (103), building upon a large inventory
of available tools. Broadly speaking, preprocessing steps can
be separated into two main categories: (i) preprocessed time
series are derived from the original data after application of
retrospective signal corrections, spatiotemporal filtering, and
resampling in a target space (e.g., MNI standard space), and (ii)
confound-related information in the data can be modeled or
taken into account through nuisance regressors (i.e., regressors
of no interest) in subsequent statistical analyses using the general
linear model (GLM). These confounds may include motion

parameters, framewise displacement, physiological (cardiac or
respiratory) signals, or global signals (88, 104).

These and additional procedures for preprocessing
neuroimaging data are available in various software packages
including, SPM (32), FSL (105), FreeSurfer (106), AFNI (34), or
Nilearn (107). The plethora of different preprocessing tools and
workflows manifests in the absence of a current gold standard
for preprocessing neuroimaging data, despite several attempts to
establish best-practice guidelines (102, 108–110).

In an attempt toward common preprocessing standards, large-
scale consortia like the HCP or the UK Biobank provide access
not only to the raw data, but also to already preprocessed versions
of the data. For instance, in the HCP database, researchers have
access to the version of the data which have been subjected
to a common minimal preprocessing pipeline (111). However,
these workflows are usually tailored toward the particular
dataset’s idiosyncrasies and do not readily translate to other
datasets. A first attempt toward such a universally applicable
preprocessing workflow is fMRIPrep (112), which represents a
pipeline that combines tools from several of the above-mentioned
software packages. fMRIPrep autonomously adapts the workflow
to the present data, rendering the approach robust to data
idiosyncrasies and potentially applicable to any dataset without
manual intervention.

While no toolbox dedicated to data preprocessing is currently
available in TAPAS, our tools from the previous step (i.e.,
“Conduct, Check and Correct”) integrate well with most of the
third-party software packages highlighted above. For instance,
PhysIO integrates seamlessly with the batch editor system of
SPM to facilitate the derivation of nuisance regressors related to
physiological confounds that can be utilized in GLM analyses.
Similarly, UniQC is designed to integrate with SPM and other
MATLAB toolboxes. Importantly, PhysIO and UniQC are also
designed to integrate well with other neuroimaging software
packages. For instance, PhysIO stores all physiological noise
regressors in a dedicated text file which can be inputted into the
first-level analyses in any software package (e.g., FSL, AFNI).

INFERENCE

Once neuroimaging and/or behavioral data have been
preprocessed and artifacts have been corrected, the question
arises how best to interrogate the data in order to gain insights
into the functioning of the human brain and alterations thereof
in disease. Concerning clinically oriented studies, it has been
pointed out (4, 25) that focusing on differences in descriptive
measures—such as BOLD activation, functional connectivity
patterns or task performance—between patients and healthy
controls is unlikely to result in improvements of clinical practice.
This is because these analyses do not provide an understanding
of the symptom-producing mechanisms and they do not easily
inform the development of biologically grounded clinical tests.
Consequently, these measures have not yet led to routine
applications in clinical practice (4, 113).

To address this shortcoming, mathematical models of
neuroimaging and behavioral data that capture putative
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physiological and cognitive disease mechanisms may represent a
promising avenue. This line of thinking is at the core of clinically-
oriented modeling disciplines like Computational Psychiatry
(15, 16, 22–24, 27), Computational Neurology (15, 114),
and Computational Psychosomatics (115). For example, in
Computational Psychiatry, a major goal is to move from the
current syndromatic nosology to disease classifications based on
computational assays that may improve differential diagnosis
and treatment prediction for individual patients (7, 116).

TAPAS contributes to this endeavor by providing a collection
of computational tools that can be applied to neuroimaging
(fMRI) or behavioral data (decisions, eye movements). All
of these approaches are so-called generative models (117).
Generative models specify the joint probability p

(

y, θ
∣

∣m
)

over
measured data y and model parameters θ , which—according
to probability theory—can be written as the product of the
likelihood function p

(

y
∣

∣θ ,m
)

, representing the probability of the
data given a set of model parameters, and the prior distribution
p (θ |m), encoding the a priori plausible range of parameter
values. Together, likelihood and prior yield a probabilistic
forward mapping from latent (hidden) states of a system (e.g.,
neuronal dynamics) to observable measurements (e.g., BOLD
signal). Model inversion enables inference on the parameters
and latent states of the system from measured data, and can be
accomplished using a variety of approximate Bayesian techniques
(e.g., variational Bayes, Markov chain Monte Carlo or Gaussian
process optimization). Their ability to reveal latent mechanisms
underneath the visible data and their natural connection to
hypothesis testing through model selection procedures (118)
have established generative modeling as a cornerstone of TN/CP
(13, 119).

In brief, the generative models included in TAPAS comprise:
(i) models of effective (directed) connectivity among neuronal
populations, (ii) models of perception in the light of an uncertain
and volatile environment, as well as (iii) models of inhibitory
control. In what follows, we briefly describe the different
generative models in TAPAS and highlight how each of them
might be useful for clinical (neuro)modeling.

Generative Models of Neuroimaging Data
Models of effective connectivity describe the mechanisms by
which neuronal populations interact and how these mechanisms
give rise tomeasured data (e.g., fMRI or EEG/MEG). By inverting
these generative models, it is possible, in principle, to infer on
the directed (synaptic) influences neuronal population exert on
one another (120, 121). This differs from measures of functional
connectivity (e.g., Pearson’s correlation) which are essentially
descriptive and undirected statistical indices. Models of effective
connectivity hold particular promise for TN/CP, since global
dysconnectivity has been proposed as a hallmark of various
mental disorders (10, 122), including schizophrenia (31, 123–125,
164), autism (126–128), and depression (129–131).

A frequently used generative modeling framework for
inferring effective connectivity from neuroimaging data is
dynamic causal modeling [DCM; (132)]. In brief, DCM
describes changes in neuronal activity as a function of
the directed interactions among neuronal populations and

experimental manipulations that can perturb the system. DCM
was initially introduced for fMRI (132) and later extended to
electrophysiological data (133). Comprehensive reviews on DCM
can be found elsewhere [e.g., (121, 134–136)]. DCM is freely
available as part of SPM and has found widespread application.
For example, with regard to clinical applications, DCM has
been used to study schizophrenia (137–141), autism (142, 143),
and depression (144, 145). Despite these promises, the classical
DCM approach is also subject to several limitations—which may
become particularly relevant in the context of TN/CP, where the
goal is to develop computational assays that inform prediction
of clinical trajectories and treatment responses in individual
patients. In what follows, we highlight some of these limitations
and outline how the methodological advances in DCM included
in TAPAS aim to address these challenges.

Global Optimization
When translating computational advances like DCM into
computational assays, the robustness of the inference procedure
and the reliability of the parameter estimates become paramount
(146). Standard model inversion in DCM rests on variational
Bayes under the Laplace approximation [VBL; (147)] which
is computationally efficient, yet subject to several limitations
(134): First, VBL rests on maximizing the negative free energy
(which serves as a lower bound approximation to the log model
evidence) using gradient ascent and is thus inherently susceptible
to local maxima if the objective function is multimodal. Second,
even when the global maximum is found, the distributional
assumptions (i.e., Laplace and mean-field approximations)
might not be justified, potentially rendering the approximate
posterior distribution a poor representation of the true posterior.
Third, when the distributional assumptions of the Laplace
approximation are violated, the negative free energy is no
longer guaranteed to represent a lower bound on the log model
evidence (148).

Sampling-based model inversion schemes, typically based
on Markov chain Monte Carlo (MCMC) methods, do not
require any distributional assumptions about the posterior and
are guaranteed to be asymptotically exact (i.e., converge to
the global extremum in the limit of infinite samples). This
renders sampling-based methods an appealing alternative to
VBL. However, they come at the cost of other challenges: First,
sampling-based routines are computationally expensive. Second,
convergence is only guaranteed in the limit of infinite samples;
detecting convergence in practice thus rests on heuristics. Third,
unlike VBL, sampling-based methods do not readily provide
an estimate of the (log) model evidence, but require additional
strategies, which further aggravate the computational burden.
For instance, the current gold standard for sampling-based
estimates of the model evidence, thermodynamic integration [TI;
(149–151)], requires running multiple MCMC chains at different
“temperatures” (i.e., at different positions along a path from prior
to posterior). Until recently, these reasons have been prohibitive
for the use of sampling-based model inversion for DCMs.

The massively parallel dynamic causal modeling (mpdcm)
toolbox (152) implemented in TAPAS renders sampling-
based model inversion in the context of DCM for fMRI
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FIGURE 5 | TAPAS components that implement generative models of neuroimaging data (I). (Top) Massively parallel dynamic causal modeling (mpdcm) renders

sampling-based model inversion computationally feasible by exploiting graphics processing units (GPUs). This allows one to obtain more faithful results in the

presence of a multimodal optimization landscape. (Bottom) Hierarchical unsupervised generative embedding (HUGE) combines the inversion of single-subject DCMs

and the clustering of participants into mechanistically homogenous subgroups within a single generative model.

computationally feasible (Figure 5, top). This is achieved by
exploiting the power of graphics processing units (GPUs) for
the evaluation of the likelihood function, which represents
the computationally most expensive operation, as it requires
integration of differential equations in the neuronal and
hemodynamic models. Importantly, mpdcm even makes the
evaluation of the model evidence via thermodynamic integration
computationally feasible. In a recent preprint, Aponte et al.
(217) demonstrated that TI provides more accurate and robust
estimates of the model evidence than VBL, while computational
demands are kept at a moderate level.

Beyond the mpdcm toolbox, which is designed to support
DCM for fMRI, other gradient-free and gradient-based MCMC
sampling schemes have also been introduced to DCM for
electrophysiological data (153, 229). However, these tools have
not yet been made publicly available.

Empirical Bayes for DCM
Another challenge concerns the specification of prior
distributions in DCM, which have been found to profoundly

impact the posterior estimates and their reliability (154).
Notably, in the context of hierarchical Bayesian models, there is a
principled way of estimating priors by exploiting measurements
frommultiple subjects: empirical Bayes [EB; (155–157)]. In brief,
in EB, the posterior density at any given level is constrained by
the level above. For instance, in a two-level hierarchical model,
observed data y =

{

y1, y2, . . . , yn
}

are assumed to be generated
from a set of latent (hidden) parameters θ = {θ1, θ2, . . . , θn}

according to the likelihood p
(

y
∣

∣θ ,m
)

. In turn, the parameters θ

are considered to represent samples from a population density
p (θ |η,m), where η refers to the hyperparameters (117, 158).
Consequently, under the hierarchical structure of a multi-subject
or mixed-effects model, inference on the single-subject level is
constrained by the group-level information. These constraints
are then referred to as empirical priors since they are informed
by the empirical data (of the entire group). A special case of
EB is referred to as parametric empirical Bayes (PEB), where
the hyperparameters η are approximated using the maximum
likelihood estimate or a moment expansion, which allows one to
express the hyperparameters in terms of the empirical mean and
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variance (159). One particular variant of PEB is the Gaussian-
Gaussian model, where single-subject data are assumed to be
generated by adding Gaussian noise to the group mean (160).

The hierarchical unsupervised generative embedding (HUGE)
toolbox contained in TAPAS implements EB in the context
of DCM for fMRI (161, 162). HUGE combines the inversion
of single-subject DCMs and the clustering of subjects into
mechanistically homogenous subgroups into a single generative
model (Figure 5, bottom). This is achieved by combining the
non-linear DCMs at the individual level with a mixture-of-
Gaussians clustering model at the hierarchically higher level
(117, 158). In other words, HUGE assumes that each individual
from a population of N subjects belongs to one of at most K
subgroups or clusters. The DCM parameters θ for all subjects
from one cluster k are then assumed to be normally distributed
with distinct mean µk and covariance matrix 6k. This cluster-
specific normal distribution effectively means that different
prior distributions apply over subjects, depending on which
subgroup they belong to, and that these priors are learned
from the data (i.e., subgroup-specific EB). Hence, in principle,
the framework is capable of stratifying heterogeneous spectrum
disorders, as defined by DSM/ICD, into subgroups that share
common pathophysiological mechanisms (for more details, see
below). Importantly, HUGE also implements “pure” EB by
fixing the number of clusters to one and merely exploiting the
hierarchical dependencies in the data. This effectively switches
off the clustering model. The utility of this mode of operation has
been demonstrated in simulations by Yao et al. (162), highlighting
the expected shrinkage effect (reduced variability) of the posterior
parameter estimates toward the population mean observed in
EB (117). Parameter estimation in HUGE can be performed by
employing either a sampling-based MCMC inversion scheme
(161, 163), which is asymptotically exact yet (relatively) slow,
or a VB implementation (162), which is computationally more
efficient yet might be vulnerable to local extrema. Notably, at the
moment, only the VB implementation of HUGE is available in
TAPAS. The sampling-based variant will be published as part of
an upcoming release of the toolbox.

Whole-Brain Effective Connectivity Analysis
Apart from the computational and statistical challenges
mentioned above, a conceptual concern is that DCMs are
typically restricted to relatively small networks in order to
keep model inversion computationally feasible. While this may
be advantageous in some cases by enforcing a theory-driven
analysis of high-dimensional and noisy fMRI data, it can
also represent a limiting factor. Specifically, many cognitive
processes, as well as the “resting state” (i.e., unconstrained
cognition in the absence of experimental manipulations), engage
a widespread network that cannot be captured faithfully by a
handful of nodes. Furthermore, in the context of Computational
Psychiatry, putative pathophysiological processes underlying
various mental disorders have been linked to global (large-scale)
alterations of functional integration in brain networks [e.g.,
(31, 123, 125–127, 129, 130, 164)]. This calls for the development

of computational models that are capable of inferring effective
(directed) connectivity in whole-brain networks (122).

Regression dynamic causal modeling [rDCM; (165, 166)]
represents a recent variant of DCM that renders model
inversion extremely efficient. This is achieved by converting
the numerically costly estimation of coupling parameters in
differential equations of a linear DCM in the time domain
into a Bayesian linear regression model in the frequency
domain (Figure 6, top). Under a suitably chosen mean-field
approximation, analytically solvable VB update equations can
be derived for this model. The ensuing computational efficiency
allows rDCM to scale gracefully to large-scale networks that
comprise hundreds of regions. Furthermore, rDCM has recently
been augmented with sparsity constraints to automatically
prune fully connected networks to an optimal (in terms of
maximal model evidence) degree of sparsity (165). This is
achieved by introducing binary indicator variables into the
likelihood function, which essentially serve as feature selectors.
For this generative model, comprehensive simulation studies
demonstrated the face validity of rDCM with regard to model
parameter and model architecture recovery. Furthermore, we
have provided initial demonstrations of the construct validity
of the approach in applications to empirical data. For instance,
using ultra-high field (7T) fMRI data from a simple hand
movement paradigm with the known relevant connections, we
demonstrated that rDCM inferred plausible effective connectivity
patterns in whole-brain networks with more than 200 regions
(167). Furthermore, we have recently demonstrated that rDCM
can not only be applied to task-based, but also to resting-state
fMRI data (168). Notably, inversion of whole-brain models with
rDCM is computationally highly efficient on standard hardware:
even for whole-brain networks with more than 200 regions, it
takes only a couple of minutes for fixed network architectures,
and a few hours when pruning fully connected networks.

Future Developments
Besides the toolboxes mentioned above, which are already part
of TAPAS, additional variants of DCM for fMRI will be released
soon. Specifically, this includes: (i) layered dynamic causal
modeling [layered DCM; (169)], and (ii) pDCM, a Python-
based DCM implementation focused on amortized inference
of stochastic DCMs using novel probabilistic-programming
techniques. Here, we briefly outline these two advances.

First, layered DCM addresses challenges in effective
connectivity analyses that become relevant when moving toward
high-resolution fMRI measurements at the sub-millimeter
scale (Figure 6, bottom left). This allows differentiating BOLD
signals from different cortical layers, an important aspect for
testing desiderata of modern theories of brain structure and
function. Specifically, prominent “Bayesian brain” theories like
predictive coding (170, 171) postulate that supragranular and
infragranular cortical layers convey different signals via their
efferent cortico-cortical connections. Testing these theories
might not only further our understanding of the functioning of
the human brain in health, but also has important implications
for delineating pathophysiological processes in disease.
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FIGURE 6 | TAPAS components that implement generative models of neuroimaging data (II). (Top) Regression dynamic causal modeling (rDCM) is a novel variant of

DCM for fMRI that scales gracefully with the number of nodes and thus makes whole-brain effective connectivity analyses feasible. (Bottom) Layered DCM (l-DCM)

and pDCM as future developments of DCM, representing tools that will be included in TAPAS in one of the next upcoming releases. Parts of figure reproduced with

permission from Heinzle et al. (169), Copyright 2016 Elsevier, and (167), Copyright 2020 Elsevier.

However, for layered fMRI data, the spatial layout of cortical
blood supply—in particular, the venous blood draining back
from lower layers to the cortical surface—confounds responses
in different layers and thus renders interpretations non-trivial.
Accounting for such draining effects is thus important, yet
not readily possible within contemporary hemodynamic models,
such as the Balloon model currently implemented in DCM
(172–174) or more recent hemodynamic models that strive for
increased biological plausibility (175). Layered DCM addresses
this limitation by extending the classical Balloon model with
a phenomenological description of blood draining effects. This
rests on including a delayed coupling of the relative blood
volume and deoxyhemoglobin concentration across layers. For
this framework, Heinzle et al. (169) demonstrated the face
validity using simulation studies, as well as the practical utility
in an application to empirical fMRI data from a simple visual
paradigm. While a detailed dynamic model of layered blood
flow effects was published recently (176), this model requires
more parameters and full model inversion was not explored in
this paper.

Second, a novel inversion scheme for stochastic DCMs will be
included in TAPAS, leveraging recent breakthroughs in black-
box variational inference. In brief, the approach makes use of
optimization algorithms from deep learning software packages
to allow inference of general probabilistic models (Figure 6,
bottom right). For inference, one directly infers the neuronal and
hemodynamic parameters, but temporal convolutional neuronal
networks are used to amortize the inference of the neuronal states
themselves. This allows inferring the hidden (neuronal) states for
any length of input data while keeping the number of parameters
fixed (instead of growing linearly with the number of time
points). The advantage of using black-box variational inference
algorithms is that the framework is highly flexible, allowing for
easy modifications and extensions of the underlying generative
model without any changes to the inference machinery. This
renders the model very promising for clinical applications where
generative models might need to be tailored toward specific
diseases. A publication on pDCM is currently in preparation
and the toolbox will be released in TAPAS was the paper
is published.
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Generative Models of Behavioral Data
Neuroimaging provides functional readouts from disease-
relevant neural circuits and thus delivers data for models of
pathophysiology. However, these data and models are usually
not suitable for drawing direct conclusions about cognition and
its disturbances. By contrast, behavioral data can be used for
inference on an agent’s internal processes at the algorithmic
(information processing) level [for a review of guidelines for
the computational modeling of behavioral data, please refer to
(177)]. Importantly, acquisition of behavioral data is often easier,
cheaper and more patient-friendly than neuroimaging data, and
computational models of behavior thus hold great promise for
establishing clinically useful computational assays—on their own
or in combination with neuroimaging data (16, 29). At present,
TAPAS contains two different generative models of behavioral
data which will be discussed next: (i) the Hierarchical Gaussian
Filter [HGF; (178)], and (ii) the Stochastic Early Reaction,
Inhibition and late Action model [SERIA; (179)].

Hierarchical Gaussian Filter (HGF)
The Hierarchical Gaussian Filter [HGF; (178)] is a hierarchical
Bayesian framework for individual learning under the various
kinds of uncertainty which arise in realistic non-linear dynamic
systems (e.g., perceptual uncertainty, environmental volatility).
Importantly, the hierarchy implemented in the HGF is not
to be confused with the hierarchy that was discussed in the
context of empirical Bayes and, more specifically, HUGE. While
in empirical Bayes, the hierarchy (typically) refers to a multi-
subject or mixed-effects structure where the levels represent
single-subject and group-level information, the HGF implements
a hierarchy in which the levels represent the temporal evolution
of latent states. More specifically, it consists of two parts: a
generative model, the HGF-GM, which describes the stochastic
evolution of the non-linearly coupled hidden states of a dynamic
system; and the HGF proper, a set of deterministic update
equations resulting from the variational inversion of the HGF-
GM. The HGF proper contains the Kalman filter as a special
case, but is also suited for filtering inputs generated by non-linear
environments. Combined with an observation model, the HGF
proper represents a particular implementation of the “observing
the observer” framework developed by Daunizeau et al. (220,
221). This framework is based on the separation of two model
components: (i) a perceptual model which describes an agent’s
inference on the environment (in this case the HGF proper), and
(ii) a response model which describes how inferred latent states
of the agent translate into the agent’s observed actions, such as,
decisions or responses (180).

In the HGF, the perceptual model takes the form of a
hierarchical Bayesian model where the temporal evolution of
states at any level (except the first) are represented as Gaussian
random walks or first-order autoregressive processes (Figure 7,
top). Importantly, the step size of each walk (i.e., the variance of
the Gaussian distribution) depends on the state at the next higher
level. This coupling between levels is controlled by subject-
specific parameters that shape the influence of uncertainty on
learning. Under a VB approximation, one can derive efficient
trial-by-trial update equations for this model that describe the

agent’s belief updating. Importantly, these update equations rest
on precision-weighted prediction errors (PE) at different levels
of the hierarchy. In other words, the HGF tracks an agent’s
expression of (approximate) Bayesian learning in the presence
of uncertainty under the assumption that the brain continuously
updates a hierarchical generative model of sensory inputs, with
PEs serving as the teaching signal. This perceptual model is then
combined with a response model (e.g., unit-square sigmoid or
softmax function; although a wide range of different response
models is available) that links the agent’s current estimates
of the latent states to observed actions, such as motor or
physiological responses (180). In combination with priors on
the model parameters, this specifies a full generative model of
observed responses that is inverted using maximum-a-posteriori
(MAP) estimation. In summary, the HGF provides a generic
approximation to subject-specific instantiations of hierarchical
Bayesian learning. This generic form renders the HGF applicable
to a wide range of scenarios, including discrete and continuous
latent states, deterministic and probabilistic relations between
environmental events and latent states, as well as learning under
multiple forms of uncertainty such as perceptual uncertainty and
environmental volatility (178).

Depending on the specific scientific question, the HGF can (or
must) be compared to other models of learning. For example,
the HGF toolbox already implements various other models of
learning, including the Rescorla-Wagner model (181), Sutton
model (182), and a Hidden Markov model (183). These models
differ from the HGF in their proposed style of learning. For
instance, while the updating in Rescorla-Wagner (RW) learning
is structurally not dissimilar to that in the HGF (i.e., weighted
prediction errors), the RWmodel differs fundamentally from the
HGF in that prediction errors are weighted by a constant learning
rate instead of time-dependent precision weights (178). These
(and any other learning models of interest outside the toolbox)
can be compared using Bayesian model selection [BMS; (117,
158)]. This is achieved by harvesting (an approximation to) the
log model evidence from the different models and entering the
estimates into existing tools for fixed-effects or random-effects
BMS, e.g., SPM (184) or the VBA toolbox (35).

For applications in TN/CP, parameter estimates of the HGF
(or any other learning model in the toolbox) can be used to
characterize perceptual inference and decision-making in specific
disorders [e.g., (18, 19)]; alternatively, and perhaps even more
frequently, the estimated trajectories of precision-weighted PEs
are used in trial-by-trial analyses of fMRI and EEG data [e.g.,
(20, 185, 186)]. The HGF can also be applied to other time series
than behavioral ones. In an example from TN/CP, Brazil et al.
(219) applied an HGF directly to BOLD signal time series from
an fMRI experiment.

Stochastic Early Reaction, Inhibition and late Action

(SERIA) model
Eye movements represent a potentially very interesting
functional readout for TN/CP. In addition to the experimental
ease with which many data points can be measured, eye
movements are disturbed in numerous psychiatric conditions
(187–189). An experimental paradigm that has been used
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FIGURE 7 | TAPAS components that implement generative models of behavioral data. (Top) The Hierarchical Gaussian Filter (HGF) is a hierarchical Bayesian model

for individual learning under different forms of uncertainty (e.g., perceptual uncertainty, environmental volatility). (Bottom) The Stochastic Early Reaction, Inhibition, and

late Action (SERIA) model represents a computational model of an agent’s behavior during the antisaccade task by modeling early reflexive and late intentional eye

movement via two interacting race-to-threshold processes.

frequently in this context is the antisaccade task (190) where
participants are asked to suppress a reactive eye movement
toward a visual cue and concurrently perform a saccade in
the opposite direction (antisaccade). This task is of relevance
for clinical applications since it has been widely used to
study psychiatric and neurological diseases (188). Most
prominently, the antisaccade task is hampered in schizophrenia
(191, 192) where an elevated error rate has been proposed
as an intermediate phenotype or endophenotype of the
disease (193).

TAPAS comprises a computational model of an agent’s
behavior during the antisaccade task—the Stochastic Early
Reaction, Inhibition and late Action (SERIA) model (179).
Specifically, in order to model error rates and reaction
times during the task, SERIA postulates two interacting
processes (Figure 7, bottom): (i) a fast GO/NO-GO race
between a prepotent response (prosaccade) toward the
visual cue and a signal to cancel this erroneous action,
and (ii) a slow GO/GO race between two units encoding
the cue-action mapping, accounting for slow voluntary
saccades. The parameters of this model, which are estimated

using a sampling-based hierarchical Bayesian scheme, are
sensitive to dopaminergic and cholinergic manipulations and
were found to allow for out-of-sample predictions about
the drug administered to an individual with 70% accuracy
(194).

Future Developments
As for the generative models of neuroimaging data, extensions to
the behavioral models will also be released as part of TAPAS in the
future. In particular, an extension of the HGF is currently under
development which aims to embed the classical HGF within an
empirical Bayesian (EB) scheme. This hierarchical (in the sense
of an EB scheme) version of the HGF combines HGFs at the
individual level with a layer that represents group effects. Similar
to HUGE, this formulation affords a principled way of estimating
(empirical) priors from the data, effectively constraining single-
subject estimates by group-level information. Inference in the
H2GF rests on sampling-based MCMC methods that provide
not only an estimate of individual model parameters, but also
an approximation to the model evidence via thermodynamic
integration (or other suitable techniques).
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CLINICAL APPLICATION

Computational assays are developed with the goal to solve
concrete clinical problems. Here, we briefly consider
3 fundamental problems in psychiatry: (i) differential
diagnosis (i.e., differentiation between several plausible
conditions/mechanisms underlying a patient’s symptoms),
(ii) stratification of heterogeneous disorders into subgroups, and
(iii) prediction of clinical trajectories or treatment responses
(25). Different computational strategies are available to address
each of these challenges.

First, differential diagnosis can be formalized as hypothesis
testing, which—in a Bayesian framework—is equivalent
to Bayesian model selection [BMS; (117, 158)] where
different hypotheses (models) are compared in the light of
observed neuroimaging and/or behavioral data. Specifically,
by formalizing competing pathophysiological and/or
psychopathological theories in terms of distinct models,
we can assess the relative plausibility of these hypotheses
by model comparison (119). This rests on comparing the
model evidence, an index of model goodness that trades off
accuracy and complexity. One early example of how model
comparison can be used to support differential diagnosis
was provided by a study on NMDA receptor antibody
encephalitis (195). This disorder was only discovered relatively
recently (196) and is poorly understood at the level of cortical
circuit dysfunction. To disambiguate alternative circuit-level
mechanisms how seizure activity may unfold during NMDA
receptor antibody encephalitis, Cooray et al. (195) compared
different implementations of a cortical microcircuit model
(DCM). These alternatives differed in the type of synaptic
connections that were allowed to change between seizure
and non-seizure periods. Using artifact-free seizure data from
two patients, the authors demonstrated that concomitant
changes in excitatory and inhibitory connections, as well as
the gain of inhibitory neurons, best explained the symptoms
(seizure recordings).

Second, prediction of clinical trajectories and treatment
outcome as well as stratification of spectrum disorders can be
achieved by means of supervised and unsupervised generative
embedding [GE; (197)], respectively. In brief, the key idea of
GE is to perform (un)supervised learning in a feature space
that is spanned by the posterior estimates obtained from a
generative model fitted to the data. In the simplest way, this
can be achieved by following a two-step procedure: First,
a generative model of (neuroimaging or behavioral) data is
used to infer the posterior densities over model parameters
(e.g., neuronal connectivity, learning rate). Second, summary
statistics of these posterior densities (e.g., maximum-a-posteriori
estimates) enter a supervised (classification, regression) or
unsupervised (clustering) machine learning technique. In
doing so, the generative model serves as a theory-driven
dimensionality reduction device which projects the high-
dimensional and noisy data onto neurobiologically meaningful
parameters that span a low-dimensional and interpretable space
for (un)supervised learning. GE frequently yields more accurate
results than conventional ML (30, 139, 198), likely because

the generative model separates signal (reflecting the process
of interest) from (measurement) noise. For instance, in a
recent study, Frässle et al. (198) utilized GE (combining DCM
for fMRI and linear support vector machines) to predict the
2-year clinical trajectories of patients with major depressive
disorder (MDD) from the NEtherlands Study of Depression
and Anxiety (NESDA). Specifically, using GE, the authors
could distinguish chronic patients from fast-remitting patients
with 79% balanced accuracy. Similarly, gradually improving
patients could be distinguished from fast-remitting patients
with 61% balanced accuracy. This significantly outperformed
classification based on conventional (descriptive) features,
such as local activation or functional connectivity estimates,
which were obtained from the same data. These results (in
line with other studies) illustrate the potential of GE for
clinical decision making. In what follows, we outline toolboxes
included in TAPAS that can be used for supervised and
unsupervised GE.

Classification and Prediction
As outlined above, GE is typically implemented in terms
of a two-step procedure: (i) generative models of measured
data are inverted for each subject individually, and (ii) the
summary statistics of the posterior estimates (e.g., the maximum-
a-posteriori estimates) are used for supervised (classification,
regression) or unsupervised (e.g., clustering) learning.

Here, we first focus on supervised GE as a formal way of
performing differential diagnosis (via classification) or outcome
prediction. To this end, TAPAS comprises the Generative
Embedding (GE) toolbox, Python-based software that facilitates
the generative embedding framework and allows for exploration
and visualization of classification performance. The toolbox is
a wrapper around scikit-learn (199), with the goal of providing
a set of convenient functions and sensible defaults that form a
suitable starting point for generative embedding analyses. The
GE toolbox can use posterior parameter estimates from any of
the generative models mentioned above as input features, and
performs binary or multi-class classification. The toolbox utilizes
logistic regression as its default classifier because it represents
a simple linear model that protects against overfitting, is
(relatively) simple to interpret, and the ensuing class probabilities
are useful for interpreting classifier outputs. Furthermore, the
toolbox implements a repeated k-fold cross-validation as the
default procedure for both model selection (i.e., hyperparameter
tuning) and model validation (i.e., estimating out-of-sample
performance), including the possibility for within-fold confound
correction (200). This choice is motivated by the fact that,
in comparison to leave-one-out cross-validation, k-fold cross-
validation has a lower variance and is therefore less prone to
overfitting (201). Finally, significance testing of classification
performance is done by default using permutation tests as
they provide an unbiased estimate of error variance. This is in
contrast to parametric tests (e.g., binomial confidence intervals,
McNemar’s test) which typically underestimate variance and are
therefore overconfident (202).
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Stratification of Heterogeneous Psychiatric
Disorders
The goal of stratifying heterogeneous disorders is to
identify subgroups that share common pathophysiological
or psychopathological mechanisms. The increased homogeneity
in terms of underlying disease mechanisms increases the power
of clinical trials and enhances predictions of clinically relevant
outcomes (25). One way to achieve this goal is by using posterior
parameters from a generative model for unsupervised learning
(e.g., clustering). This approach has been utilized by Brodersen
et al. (139) to identify distinct subgroups in a heterogeneous
cohort of 41 patients with schizophrenia based on effective
connectivity patterns during a working memory task (138).
The authors showed that these purely physiologically informed
and connectivity-based subgroups also differed clinically, as
illustrated by significant differences in their negative symptom
severity scores on the Positive and Negative Syndrome Scale
(PANSS). An alternative to this two-step GE procedure is
implemented in HUGE, a toolbox we already discussed in the
context of generative models of neuroimaging data (161, 162).
Specifically, HUGE casts unsupervised GE as a single hierarchical
generative model that simultaneously describes individual data
generation and assigns participants to clusters (Figure 5,
bottom). Unifying these two steps has a couple of conceptual
advantages: (i) the hierarchical nature of the model allows
learning prior distributions from the data (i.e., empirical Bayes),
(ii) model inversion at the single-subject level is regularized
by (cluster-specific) group results, and (iii) clustering takes the
uncertainty about individual connectivity parameter estimates
into account.

TAPAS IN ACTION

Finally, we briefly discuss a few selected examples from
previous work that made use of different toolboxes from
TAPAS. In particular, here we focus on studies that investigate
pathophysiological/pathocomputational mechanisms and/or
explore the role of neuromodulatory transmitter systems
in these processes. The latter are a particularly prominent
topic for clinical applications of generative models because
the majority of available pharmacotherapeutic approaches
in psychiatry targets synthesis, metabolism or receptors of
neuromodulatory transmitters.

In order to non-invasively infer upon the status of
neuromodulatory systems (e.g., dopamine, acetylcholine,
serotonin, noradrenaline), various studies have combined
experimental manipulations of different neuromodulatory
systems with generative modeling of neuroimaging or behavioral
data. In a first step, Iglesias et al. (185) have provided evidence
for hierarchical belief updating during a sensory associative
learning task under volatility and without rewards. Hierarchical
belief updating via PEs plays a central role in “Bayesian brain”
theories, such as predictive coding (170, 203). Iglesias et al.
(185) utilized the HGF to infer upon subject-specific trajectories
of precision-weighted PEs at different levels of the hierarchy
which were then used in a GLM of fMRI data. They found that

low-level PEs, encoding the mismatch between prediction and
actual visual stimulus outcome, were reflected by widespread
BOLD activity in visual and supramodal areas, but also in the
midbrain. Conversely, high-level PEs, encoding the mismatch
between prediction and actual stimulus probabilities, were
reflected by BOLD activity in the basal forebrain. Midbrain and
basal forebrain contain dopaminergic and cholinergic neurons,
respectively, suggesting that (i) dopaminergic midbrain neurons
might signal PEs unrelated to reward and (ii) cholinergic
neuron activity in the basal forebrain might reflect PEs about
probabilities and may thus relate to “expected uncertainty”
(204). Although a subsequent pharmacological study in human
volunteers using the same paradigm did not support this notion
(205), the finding that midbrain activity may reflect reward-
unrelated prediction errors has since been replicated in several
animal (206, 207) and human studies (208).

Importantly, neural correlates of computational quantities can
not only be detected in fMRI data, but can also be found in
EEG signals, where the superior temporal resolution allows for
characterizing their precise temporal dynamics. For instance,
Weber et al. (186) related HGF estimates to single-trial EEG
data from participants who received ketamine in a placebo-
controlled, double-blind, within-subject fashion. The authors
demonstrated that PE-related activity was found in a temporal
order consistent with hierarchical Bayesian theory. Additionally,
they observed a significant impact of ketamine on the high-
level PE about transition probabilities. Focusing on behavior
only, further evidence has been provided for associations between
computational quantities and the status of neuromodulatory
systems. For instance, Vossel et al. (230) perturbed the
cholinergic system using pharmacological interventions, and
utilized the HGF to demonstrate that this led to an increase
in the rate of belief updating about cue validity during a
modified Posner’s task. Similarly, Marshall et al. (225) utilized
pharmacological interventions in combination with the HGF
to characterize the influence of noradrenergic, cholinergic and
dopaminergic antagonists on individual estimates of uncertainty
during a probabilistic serial reaction time task. The authors
identified different roles for the different neuromodulatory
systems, linking noradrenaline to unexpected uncertainty,
acetylcholine to environmental uncertainty, and dopamine
to uncertainty representations for fast, adaptive responses.
Finally, Aponte et al. (194) demonstrated that computational
quantities sensitive to neuromodulatory processes can also be
derived from generative models of reflexive eye movements.
Specifically, the authors conducted a double-blind placebo-
controlled pharmacological study and found that computational
quantities derived from an antisaccade task using the SERIA
model can distinguish between dopaminergic and cholinergic
effects on action selection and inhibitory control, allowing for
out-of-sample predictions about the drug administered with
70% accuracy. In summary, both the HGF and SERIA comprise
computational quantities that are sensitive to the functional
status of different neuromodulatory systems.

Beyond questions of pathophysiology and pharmacology,
tools from TAPAS have also been used to characterize clinical
populations. For instance, Powers et al. (19) studied conditioned
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auditory hallucinations in four groups of people who differed
both in their voice-hearing and treatment-seeking statuses.
Utilizing the HGF to infer upon the participants’ individual
beliefs, the authors demonstrated that the weighting of prior
beliefs was significantly larger in people with hallucinations
than their non-hallucinating counterparts. This is consistent
with the hypothesis that, in the context of a Bayesian brain,
hallucinations may be explained by overly strong priors (209).
Focusing on patients with autism spectrum disorder (ASD),
Lawson et al. (18) utilized the HGF to provide evidence
that ASD patients tend to overestimate volatility in the face
of environmental changes. This leads to reduced learning
about unexpected (surprising) events, which might serve as
an explanation for the typical insistence on sameness and
intolerance of change in ASD patients (210). Finally, Cole et al.
(20) applied HGF estimates from an associative learning task
to characterize brain responses to precision-weighted PEs in
individuals at clinical high risk (CHR) for psychosis. Compared
to a healthy control group, CHR individuals showed enhanced PE
responses in several (particularly prefrontal) regions, consistent
with the prediction from the dysconnection hypothesis of
schizophrenia (125, 164) that (proneness to) psychosis is
characterized by abnormal precision-weighted PE signaling in
cortex. Furthermore, prefrontal PE activity was correlated with
clinical status.

TAPAS tools that implement generative models of
neuroimaging data have also been applied to clinical
populations—although this is still rare. For instance, Yao et
al. (162) applied HUGE to an fMRI dataset comprising aphasic
patients (with a lesion in the left frontal and/or temporal cortex)
and healthy controls (211) for an initial demonstration of the
potential clinical utility of the model for patient stratification.
In brief, the authors demonstrated that HUGE correctly
identifies two clusters in the dataset, which mapped almost
perfectly onto aphasic patients and healthy controls, yielding a
balanced purity of 95.5%. While it is important to emphasize
that diagnosing patients with aphasia does not yet represent a
truly meaningful clinical problem, it demonstrates the practical
utility of HUGE for stratification in a scenario where ground
truth is known. Furthermore, regression DCM has been used to
study alterations in whole-brain effective (directed) connectivity
between psychotic patients, their first-degree relatives, as well
as matched healthy controls. The authors demonstrate that
patients showed distinctly different whole-brain connectivity
patterns from healthy controls and first-degree relatives, and that
the connectivity patterns allow for significant discrimination
at the individual level. A publication on this work is currently
in preparation.

Overall, the above studies illustrate the potential of
generative models of behavioral and neuroimaging data
for clinical applications. However, these studies do not yet
implement the kind of end-to-end analysis pipeline that we
outlined, at the beginning of the article, as a basis for future
computational assays. Instead, the above studies simply used
selected components from TAPAS at a time. Having said this,
recent work by Harrison et al. comes close to the kind of
end-to-end pipeline highlighted above, combining multiple

components from TAPAS (212). In brief, the authors aimed
to investigate interoception and how anxiety relates to the
perception of internal bodily states. To this end, Harrison
et al. employed two paradigms available in TAPAS Tasks,
namely the Filter Detection (FD) and Breathing Learning
(BL) task. The FD task revealed differences in sensitivity to
breathing perception and altered interoceptive metacognitive
bias between low-anxiety and moderate-anxiety healthy controls.
Furthermore, for the BL task, the authors acquired fMRI data
using a high-field 7T MR scanner. PhysIO was employed
for physiological noise correction based on measurements
of cardiac and respiratory cycles. fMRI then underwent
thorough preprocessing and artifact removal by combining
tools from various software packages, including FSL and
SPM. Brain activity coupled with dynamic changes in bodily
states was then modeled using subject-specific trajectories of
predictions and PE which have been inferred utilizing the
HGF toolbox. This revealed the anterior insula to be associated
with both interoceptive predictions and PEs, where the former
was also differentially expressed in the low and moderate
anxiety groups.

While this moves toward the kind of end-to-end analysis
pipeline that we outline, it is important to note that the
two groups tested by Harrison et al. do not represent
clinical groups (but were recruited from the healthy
population) and the study thus lacks the final module of
the aforementioned pipeline (i.e., Clinical Application; see
Figure 2). Furthermore, it is important to keep in mind that
none of the studies mentioned above is yet of any direct
clinical utility, in the sense that they do not address a practical
clinical question, such as differential diagnosis or predicting
outcomes/clinical trajectories. The latter in particular requires
data from prospective studies that include information about
future clinical outcomes—a critical condition for validating
computational assays (16). Unfortunately, so far, these datasets
are rare.

CONCLUSION

In this article, we have described the Translational Algorithms
for Psychiatry-Advancing Science (TAPAS) software package,
an open-source collection of toolboxes (primarily written in
MATLAB; with some components in C and Python) that aim
to facilitate the acquisition and (computational) analysis of
neuroimaging and behavioral data. Specifically, we reviewed the
different toolboxes in TAPAS and highlighted how these might
support the construction of end-to-end analysis pipelines—from
raw data to clinical applications.

SOFTWARE NOTE

The Translational Algorithms for Psychiatry-Advancing Science
(TAPAS) software package, comprising all toolboxes described in
this paper, is freely available as open-source code (https://www.
translationalneuromodeling.org/tapas).
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