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The human brain efficiently extracts the temporal statistics of sensory environments and

automatically generates expectations about future events. An influential Hypothesis holds

that these expectations can find their implementation in neural oscillations, notably in the

delta band (.5e3 Hz). Rhythmic fluctuations of cortical excitement are thought to align and

match up in phase to the temporal structure of the sensory environment. This alignment is

thought to result in the more excitable phase range of neural oscillations to overlap with

the predicted onset of sensory events which in turn results in more efficient processing of

sensory input, especially so in audition. An unresolved issue concerns whether such

phase-aligned rhythmic brain activity is driven exclusively by the exogenous temporal

structure of the input, or whether it also reflects phase re-alignment due to endogenous

expectations based on stimulus probability and task relevance. In a seminal study, Ste-

fanics et al. (2010) presented stimuli in a rhythmic stream and observed that delta phase

consistency across trials was modulated by endogenous target onset expectations: delta

phase consistency was higher prior to more probable (strongly expected) compared to less

probable (weakly expected) target onsets. The present study replicates Experiment II of the

original study, most importantly the modulation of delta phase consistency by endogenous

expectations, and underlines a direct relationship between phase locking and behaviour.

Our additional analyses locate the sources of the delta phase-alignment to motor, pre-

motor, parietal, and temporal areas, and provide evidence for an ongoing delta oscilla-

tion, in line with the interpretation of oscillatory phase alignment rather than a transient

evoked response. Importantly, this work shows that the phase of delta oscillations can be

modulated by top-down control, and hence qualifies as a potential mechanism for the

neural implementation of (rhythmic) temporal predictions.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural sensory environments commonly feature rhythmic or

quasi-periodic temporal structures. In particular, auditory

inputs are constrained by rhythms at slow frequencies (Arnal

& Giraud, 2012; Ding et al., 2017; Giraud & Poeppel, 2012; Jones

& Boltz, 1989), which can facilitate the perceptual analysis of

complex dynamic inputs. A large body of research has shown

that rhythmic input structures improve the detectability and

processing speed of auditory stimuli (Henry & Obleser, 2012;

Herrmann et al., 2016; Lawrance et al., 2014; Rimmele et al.,

2010; Stefanics et al., 2010; Wright & Fitzgerald, 2004), as well

as perceptual sensitivity (Chang et al., 2019; Jones et al., 2002;

Morillon et al., 2016; Schmidt-Kassow et al., 2009; but see;

Bauer et al., 2015).

Endogenously rhythmic brain dynamics prominently

observed across species (Buzs�aki & Draguhn, 2004), have been

hypothesized to provide an internal temporal structure on

which external rhythms can be mapped (Herrmann & Henry,

2014; Jones, 1976; Jones et al., 2002; Large & Jones, 1999). An

influential proposal holds that slow neural oscillations,

notably in the delta frequency band (.5e3 Hz), coordinate

inter- and cross-modal attentional selection in time by

aligning in phase to an external rhythmic structure (Lakatos

et al., 2008; Schroeder & Lakatos, 2009), allowing to match

states of high excitability with the expected onsets of future

sensory events. Accordingly, a host of studies using electro-

physiological recordings of neural oscillations in humans

have revealed evidence for phase alignment to rhythmic in-

puts leading to modulation of behavior (Arnal et al., 2015;

Besle et al., 2011; Cravo et al., 2013; Henry et al., 2014; Henry &

Obleser, 2012; K€osem et al., 2014; Morillon & Baillet, 2017;

Stefanics et al., 2010; van den Brink et al., 2014). In the litera-

ture, a number of terms exist to describe the phenomenon of

synchronization between internal and external rhythms

(Lakatos et al., 2019; Obleser & Kayser, 2019), such as phase

locking, phase consistency, entrainment, and more. Here, we are

interested in the alignment of the phase of neural oscillations

to an external rhythm, which surfaces as phase consistency

across trials.

The overlap between external and internal rhythms raises

the question to which extent the observed phase consistency

across trials reflects entrainment of an endogenous oscillation

(Lakatos et al., 2019; Obleser & Kayser, 2019), versus a mech-

anistically driven representation of the exogenous periodicity.

An active role of entrainment in the attentional selection

process is suggested by its susceptibility to top-down in-

fluences such as the attended sensory modality (Keil et al.,

2016; Lakatos et al., 2008), task demands (Lakatos et al.,

2013), perceptual grouping (Barczak et al., 2018), and hierar-

chical rhythmic structure (Morillon & Baillet, 2017; Nozaradan

et al., 2011). A seminal study by Stefanics et al. (2010) showed

that phase consistency of delta oscillations in the presence of

an exogenous rhythm scales with the strength of the expec-

tation for a behaviorally relevant stimulus to occur in the next

cycle of a rhythmic stimulus stream. This result suggests that

oscillatory phase alignment can be modulated endogenously

to create a temporally transient state of expectation.
A different set of studies have tested whether delta oscil-

lations implement endogenous temporal predictions, inde-

pendently from periodic input structures. These studies used

foreperiod paradigms (Niemi & N€a€at€anen, 1981; Woodrow,

1914) in which temporal predictions are conveyed by single

time intervals and need to be initiated on each trial (Breska &

Deouell, 2017; Cravo et al., 2011; Herbst & Obleser, 2017, 2018;

Wilsch et al., 2015).

Only very few studies reported enhanced delta phase con-

sistency in a non-rhythmic context (Breska & Deouell, 2017,

Daume et al., 2021; but see Obleser et al., 2017) and for temporal

predictions evoked by the passage of time (Wilsch et al., 2015)

using auditory stimuli, and one study reported enhanced phase

consistency for temporally predicted visual stimuli in theta

band (4e7 Hz, Cravo et al., 2011). In three independent EEG

experiments (total N ¼ 70), using non-rhythmic foreperiod

manipulations, we did not observe phase consistency effects in

the delta band prior to an expected target onset (Herbst &

Obleser, 2017, 2018). However, we have been able to show

that listeners can flexibly form temporal predictions associated

to sensory features of temporal cues on a trial-by-trial basis

(Herbst & Obleser, 2019), and that these predictions enhance

auditory sensitivity. Furthermore, using encoding-models, we

could show that temporal predictions are represented in

human brain dynamicsmeasuredwith EEG (Herbst et al., 2018).

In Herbst and Obleser (2019) we report a relationship between

the phase of delta oscillations and auditory sensitivity in a

temporally predictive condition, which suggests a role of delta

oscillations for non-rhythmic temporal predictions.

Thus, to date, it remains an open question to which extent

the phase of cortical delta oscillations encodes endogenous

expectations derived from exogenous temporal structures. As

the basis for an extended research program aiming at a better

understanding of the conditions under which delta oscilla-

tions could implement endogenous expectations, we here set

out to replicate the study described under Experiment II by

Stefanics et al. (2010). This study consists in an important

basis for the research field outlined above, and at the time the

current study was planned, the paper was cited 297 times.

Human participants responded to pure tone stimuli,

embedded in a rhythmic stream in which pitch cues indicated

whether a target occurred in the following first or second cycle

with 20/80% versus 80/20% probability. The authors reported a

decrease in reaction times for targets occurring at the ex-

pected time points, and, crucially, relatively enhanced phase

consistency in the delta band (.5e3 Hz) at time points for

which strong (80%) versus weak (20%) expectations existed.

Importantly, a hallmark feature of to-be replicated study,

and an important part of our motivation to chose it for repli-

cation, was its careful avoidance of confounding stimulus-

evoked with pre-stimulus activity (Zoefel & Heil, 2013). By

showing a modulation of stimulus-related rhythmic brain

dynamics by expectation, the original study, and now the

replication, provide important evidence for an endogenous

implementation of expectations in oscillatory brain dynamics.

Here, we replicate the increase in delta phase consistency

with expectation, which also correlatedwith the reaction time

benefits across individuals. In addition, we also examined

whether the measured phase consistency qualifies as an

https://doi.org/10.1016/j.cortex.2022.02.001
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endogenous narrow-band oscillation that entrains to the

stimulus rhythm, versus reflects more broad-band neural

activity. To achieve this, we performed additional spectral

analyses on the data, and also assessed phase consistency

effects in the low delta (.25e1.5 Hz) and theta (4e7 Hz) band.

To date, it is an open question to what extent the above-

described oscillatory brain dynamics overlap with well-

known signatures of expectation observed in the time

domain (both pre- and post-stimulus), such as the contingent

negative variation (Brunia, 2003; Mento, 2013; Walter et al.,

1964), and the P300 (Ruchkin et al., 1980; Schr€oger et al.,

2015; Schürmann et al., 2001), for which the original study

reported a partial overlap between with delta phase consis-

tency. In our view, it is possible that these different potentials

result at least partially from a phase-reset of delta oscillatory

activity (Lakatos et al., 2008; Schürmann et al., 2001), and thus

provide separate observation windows onto the same neural

activity.

Here, we addressed the overlap between oscillatory and

time-domain measures, by performing a set of control ana-

lyses in the spectral and temporal domain. Yet, a complete

account of their respective nature will require a variety of

study designs (varying time windows, modalities, task re-

quirements) and recording techniques (invasive recordings,

enhanced spatial resolution such as in MEG).

1.1. Hypotheses

In order to consider the replication successful, we assessed

two main hypotheses:

Hypothesis 1. We expected to find a facilitatory effect of

expectation on reaction times, that is, shorter reaction times

for targets that occur at the expected versus non-expected

point in time. This effect was supposed to be more pro-

nounced at the short compared to the long time interval

(confirmed).

Hypothesis 2. We expected to find that the strength of phase

consistency in the delta band scales with the expectation,

such that stronger phase consistency would be observed

when the expectation for a target to occur was high

(confirmed).

Additionally, we assessed several exploratory hypotheses:

Hypothesis 3. We expected to be able to isolate a peak in the

EEG power spectrum that corresponds to the stimulation fre-

quency, separable from the 1/f scale-free activity (confirmed).

Hypothesis 4a. We expected the amplitude of target-evoked,

broad-band responses to differ between expected and unex-

pected targets, with no prior hypothesis on the direction for

this difference (post-target difference not confirmed, but pre-

target difference observed).

Hypothesis 4b. We expected to see an omission response

shortly after the time point of the early target onset, but when

no target occurred, with a larger amplitude on trials on which

expectation was stronger (not confirmed).
Hypothesis 4c. Correlation analyses were expected to show

partial, but not full overlap between the time domain signa-

tures of expectation and delta phase consistency (confirmed).

Hypothesis 5. Following the confirmation of Hypothesis 2, we

reconstructed the sources of the differences in delta phase

consistency, expecting them to lie mainly in auditory and

possibly also motor areas (confirmed).

The preregistered Stage 1 report can be found under this

link: https://osf.io/w5eq4/.
2. Methods

The auditory stimulation protocol was kept exactly as in the

original study (Stefanics et al., 2010). A visual display, which

was not mentioned in the original study, was added to guide

the participant throughout the task (see below). Due to

methodological advances in EEG research since the date of the

original study, and the available facilities, our (preregistered:

https://osf.io/w5eq4/) analysis approach differed in some as-

pects from the to-be-replicated study. All deviations from the

original analysis approach are thought to reflect advances that

should in all likelihood help to uncover true effects and esti-

mate their size more accurately.

2.1. Participants

2.1.1. Ethical approval
Ethical approval was obtained from the ethics committee of

the University of Lübeck. All participants signed informed

consent and received either course credit or payment for their

participation (10 V per hour).

2.1.2. Final participant sample
The 26 participants considered for analysis had an average age

of 23.61 years (SD: 3.56), ten were male (ratio: 38.46%), and 21

were right-handed. Participants had no history of neurological

or hearing disorder. The original study tested 11 participants

(6 female, no mention of handedness).

Using the stopping rule described below, we tested 28

participants, one of which was excluded due to an abortion of

the recording program, resulting in only 700 trials (see exclu-

sion criteria below), and one due to too many trials rejected

during EEG preprocessing (566 trials left).

2.1.3. Stopping rule
Here, we applied an optional stopping approach using Bayes

Factors (Rouder, 2014), to assess the twomainHypotheses (the

exact statistical tests are described in the Analyses section:

Hypothesis 1. Reaction times are relatively shorter for strong

versus weak expectations.

Hypothesis 2. Delta phase consistency is relatively higher for

strong versus weak expectations.

Hypothesis 1 was confirmed, reaching a Bayes Factor of

3464.96. Concerning Hypothesis 2, we reached confirmatory

Bayes Factors of 7.40 (delta band), and 14.37 (low delta band).

https://doi.org/10.1016/j.cortex.2022.02.001
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We initially stopped data recording at a Bayes Factor of 17 in

favour of Hypothesis 2 (delta band), which turned out inflated

due to a coding error and now lies at 7.40. Since the results

converge well across the different analyses, with the cluster-

based permutation tests revealing robust levels of signifi-

cance, we decided to not take up testing again. The number of

26 participants included alreadymore than doubles that of the

original study (N ¼ 11).
2.1.4. Recruitment criteria
Initially, we invited 15 participants, and then continued until

reaching conclusive Bayes Factors for both Hypotheses 1 & 2:

either > 10 in favour of the respective Hypothesis, or <0:1 in

favour of the corresponding H0. Due to practical constraints

in recruiting and testing participants, we invited participants

in groups of five, and assessed the Bayes Factors after each

group until we reached the target Bayes Factor. The final

number of 28 participants tested (not a multiple of five)

resulted from cancellations by participants. Left- and right-

handed participants were recruited with a gender imbal-

ance no larger than 60:40. Participants were required to have

no history of neurological or hearing disorder. If upon testing

50 participants we would not have reached a conclusion on

both hypotheses, we would have stopped the data collection,

reported the results as inconclusive, and considered the

replication attempt as failed. Exclusion criteria are listed

below.

2.1.5. Recording abortion criteria
Participants were granted the right to stop the experiment at

any time without specifying a reason. Furthermore, the

experimenter could terminate the recording session in case of

technical problems that eithermade a recording impossible or

would have led to insufficient data quality.

2.1.6. Post-recording participant exclusion criteria
Participants whose average reaction time exceeded 500 msec

would have been excluded from the study (applied to zero

participants). This criterion was based on the data shown in

Fig. 1 in the original study, from which we calculated that the

mean reaction time for the slowest condition plus three times

its standard deviation resulted in 375 msec. Furthermore, we

excluded participants for whom we obtained less than 75% of

useable EEG trials per condition of interest (300 and 75 trials,

respectively), either due to early abortion of testing, or due to a

high number of trials rejected during the EEG data pre-

processing (applied to two participants).

2.1.7. Timeline
Following the acceptance of first-stage preregistration, we

immediately proceeded to testing participants. The data

collection and preregistered analyses were concluded within

one and a half years.

2.1.8. Data and code availability
Due to less stringent standards for data storage at the time

the original study was recorded, these data are no longer
available, which further motivated the replication attempt.

Anonymized behavioral, as well as the raw and preprocessed

EEG data are available on the Open Science Framework,

together with the analysis code written in Matlab and R:

https://osf.io/u24tn/.

2.2. Experimental paradigm

The experimental paradigm was implemented using the

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) under

Windows 7, using a Black Box Toolkit USB response pad for

response collection. Participants were instructed to use the

index finger of the right hand to respond. The EEG recordings

took place in an electrically shielded sound-attenuated EEG

booth at the Center of Brain, Behavior and Metabolism (CBBM)

at the University of Lübeck, Germany.

Participants were presented with cue-target pairs of pure

tone auditory stimuli, embedded in a rhythmic stream

(depicted in Fig. 1), and instructed to perform a speeded

response to the target. Cues and targets were separated by an

interval of 1350msec or 2700msec, with an inter-trial interval

of 1350 msec, such that stimulation was fully periodic at a

frequency of .74 Hz. Tones were presented via headphones at

70 dB SPL, the cue tones at 1046 and 1318 Hz, and the targets at

1975 Hz. Cue tones had a duration of 150 msec, and targets a

duration of 50 msec, both with 10 msec rise and fall times.

Crucially, the cue tone's frequency was probabilistically

associated with the temporal onset of the target tone, indi-

cating whether the target is more likely to occur at the first

(1350 msec), or second possible time point (2700 msec) with a

20% versus 80% or 80% versus 20% probability-ratio. Short and

long cue-target intervals (SOAs), and accordingly the cues

associated with them, were balanced with a 50/50% ratio, and

presented in random order.While the original studymentions

no reversal of the assignment between cue frequency and

target onset time over participants, we here switched the

assignment for every second participant. The relevance and

meaning of the cueswas fully disclosed to participants prior to

the experiment.

Throughout the whole experiment, participants were

asked to fixate a black fixation cross on a gray background.

Written instructions were presented on the screen, including

the information about the temporal contingencies between

cue and target tones. If a participant pressed the response-

button before the target, a red ‘x’ was presented for .2 sec.

Otherwise, directly after the response, the fixation cross

turned white for .2 sec to indicate that a response was regis-

tered. If no response was given, a black ‘x’ was displayed for

.2 sec.

After a short training on the task (50 trials, average trial

duration of 3375 msec), participants performed 1000 trials (500

per cue type) divided into 10 blocks. After each block, the

number of missed and early trials (response prior to target

onset) werewritten on the screen, and participants took a break

of minimally 60 sec and continued the experiment after a self-

determined time. For the EEG analyses, this resulted in 100/400

trials at which unexpectedly/expectedly no target occurred at

the early time point (minus outlier trials, see below).

https://osf.io/u24tn/
https://doi.org/10.1016/j.cortex.2022.02.001
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Fig. 1 e A. Study Design: Tone pairs were presented, forming a rhythmic stream. Each pair consisted of a cue (C, black

contours), and a target (T, colored). Cues could be of two frequencies (1046 and 1318 Hz, indicated in pink and green), which

were associated with the target's (1975 Hz) onset probability at the late (2700 msec, L) or early (1350 msec, E) time point

following the cue, that is a with a 20% versus 80% or 80% versus 20% probability-ratio for a short versus long SOA.

Participants were instructed to respond to the target with a button press as fast as possible. The lower panel depicts an

example sequence with the time window of interest for the EEG analysis marked by blue squares. B. Hypothesized

facilitation of reaction times by expectation: targets occurring at the expected time led to shortened reaction times (darker

bars). The effect was hypothesized to be more pronounced at the early time point (depicted in pink). C. Results: As predicted,

reaction times to targets occurring at the short SOA were faster when the cue indicated an early target versus a late target.

At the long SOA, no statistically significant difference was found between valid and invalid cues.

1 We did not use an external electrode as originally pre-
registered, because it was not compatible with the recording
system.
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2.3. Behavioral analyses

Reaction times were screened for outliers on single trials,

defined as differing by more than three standard deviations

from the participant's mean, and removed. On average, we

removed 31.23 trials per participant (SD: 12.78).

To decide when to stop testing (referred to as Hypothesis

1) we performed a paired, one-sided Bayesian t-test on reac-

tion times for targets occurring at the early time point, using

the R-package BayesFactor (Morey & Rouder, 2018, decision

criterion: BF >10 or BF< .1).

After completion of data collection, we computed a linear

mixed effect model on single trial log-transformed reaction

times, using the lme4 package in R (Bates et al., 2015). We

modelled target occurrence (early/late) and whether this

matched the expectation (expected/unexpected) as fixed ef-

fect factors, plus their interaction. We specified random in-

tercepts and random slopes for both factors and the

interaction, allowing them to vary over participants. To

compute p-values, we used the Satterthwaite approximation

of degrees of freedom, implemented in the lmerTest package in
R (Kuznetsova et al., 2016). The a level for assuming statistical

significance is set to p < .02.

Hypothesis 1 was assessed by testing for a main effect of

expectation on reaction times (reduced reaction times at

expected time points). We also expected to find an interac-

tion of expectation and target occurrence, such that the

reduction of reaction times is more pronounced at the early

time window.

2.4. EEG recordings

EEG was recorded with 64 electrodes from an Acticap (Easy

Cap) system, with one of the electrodes attached to the nose 1,

connected to an ActiChamp (Brain Products) amplifier using

the software Brain Recorder (Brain Products). Impedance was

kept below 10 kU. To retain the realised electrode localisation

with good spatial specificity for posterity, we digitized each

https://doi.org/10.1016/j.cortex.2022.02.001
https://doi.org/10.1016/j.cortex.2022.02.001


3 Resampling was missing in the pre-registration, but neces-
sary to avoid too large data sets and computation times.

4 Added after pre-registration.
5 for one participant, the threshold was set to 150 mV, because

of high-amplitude alpha oscillations, that would otherwise have
resulted in rejecting many epochs.

6 We had pre-registered to apply the Hilbert transform on the

c o r t e x 1 4 9 ( 2 0 2 2 ) 2 2 6e2 4 5 231
participant's EEG electrode positions (using the Xensor sys-

tem, ANT Neuro).

EEG data were recorded at 1000 Hz sampling rate, without

an online high-pass filter (DC), and a low-pass filter of 300 Hz,

contrary to the original study in which the recordings were

performed with an .16e150 Hz analog high-pass filter.

After each recording, we recorded 3 min of EEG data with

the same parameters as above, while participants listened to

low-pass filtered white noise (5 kHz)2. To engage participants

in listening, 6 target tones (the same as in the main task) were

presented at random intervals during the 3 min. Participants

were instructed to count the tones. These data were pre-

processed as described below and used to test for sponta-

neous delta oscillations in auditory areas.

2.5. EEG preprocessing

For the preprocessing of the EEG data, we used the Fieldtrip

software package (version 20200327, Oostenveld et al., 2011)

for Matlab (version 2019a, MATLAB, 2019). The original study

used the nose as reference. In accordance with our previous

work, we re-referenced the data to linked mastoids using

electrodes TP9 an TP10 from the cap. Furthermore, we also

performed a comparison analysis with the data referenced to

the nose electrode, as done by the original study.

In the original publication, a narrow delta-band filter, and a

wide-band filter were applied to the data. Here, we produced

four parallel versions of the data, by filtering the continuous

data (before epoching) with different high- and low-pass fil-

ters. We chose not to apply a high-pass filter to the wide-band

data to avoid temporal smearing, resulting from the long fil-

ters needed to achieve low high-pass cut-offs. To test how

specific the phase coherence effect is in the frequency

domain, we performed parallel analyses on data filtered for

the low delta band (matching the stimulation frequency of

.74 Hz), and for the theta band to test for a more broad-band

effect that could also be influenced by evoked potentials.

1. Wide band, no high-pass filter: < 20 Hz

2. Delta band: .5e3 Hz

3. Low delta band: .25e1.5 Hz

4. Theta band: 4e7 Hz

All filters were causal (zero-phase) FIR filters, filtering in

the forward and backward directions, using the firfilt routine

implemented in Fieldtrip (Widmann et al., 2015). The analyses

of phase consistency was performed on the delta band (2), low

delta band (3), and theta band (4) version of the data. The

analyses of the evoked responses were performed on the

wide-band data (1) and the filtered versions (2e4).

Artifact rejection followed an established pipeline as used

in previous studies (Herbst & Obleser, 2019), performed on the

wide-band filtered data (<20 Hz), and applied to all other

versions of the data. First, data were visually inspected to

mark bad channels to be interpolated later. Then, the above

filters were applied on the continuous data, before the data
2 Originally, we had pre-registered to record 5 min, prior to the
task and present 5 tones. Due to practical constraints, the block
was shifted to the end of the session and shortened to 3 min.
were be epoched from�500msec before to 4050msec after the

cue stimuli. The epoched datawere downsampled to 100 Hz to

reduce computation time3. The wide-band filtered data were

detrended over the whole epoch.

For the ICA, we produced an additional version of the

continuous data, to which we applied a 1 Hz high-pass and a

20 Hz low-pass filter (same filter parameters as above)4. The

1Hz high pass filterwas added tomake the ICA solutionsmore

stable (Winkler et al., 2015), and to make the ICA blind to

fluctuations at the stimulation frequency, in order to avoid

having to make decisions about such components during the

manual selection procedure.

ICAwas then computed on epoched data, using the ‘runica’

algorithm. Components reflecting blinks, muscular artifacts,

and unspecific noise occurring temporarily in a channel or

trial were excluded, using the semi-automatic inspection of

ICA components provided by the SASICA toolbox for fieldtrip

(Chaumon et al., 2015) and removal of these, resulting in 2.19

(SD: .49) components removed on average per participant.

Furthermore, we removed trials with voltage exceeding 100 mV
5 (on average 35.12 trials per participant, SD: 47.90) and

inspected the remaining epochs visually to remove artefactual

trials not detected by the above described procedure (4.58

trials on average, SD: 3.72).

After preprocessing, we retained on average 829.58 trials

per participant (SD: 189.08).

2.6. EEG analyses

2.6.1. Analysis of delta phase consistency using cosine
similarity
To assess instantaneous delta phase angles, we applied the

Hilbert transform to the filtered and epoched data of the

different filter bands, and extracted phase angles as the

imaginary value of the complex Fourier spectrum 6. The main

analysis focuses on the delta band (.5e3 Hz), but all other

narrow-band filtered versions of the data (see above) were run

through the same procedure to assess the specificity of the

effects.

The analysis of phase consistency was performed at the

time of the expected delivery of the early target, 1350 msec

following the cue (indicated by blue squares in Fig. 1A). We

only included trials at which targets did not occur in this time

window but at the later one, to keep the time window of in-

terest free from target-evoked activity. In order to demon-

strate the presence of ongoing oscillatory activity in a specific

frequency range, we also display the phase-sorted single-trial

data as done in the original study (Fig. 2).
continuous data, before epoching, but realized that this would
make the epochs-based artefact rejection procedure obsolete.
Especially the resampling and rejection of ICA components led to
transformations of the original data values, that would make the
resulting phase angle time series difficult to interpret.
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Inter-trial phase consistency (ITC), as most commonly

computed, is not independent of the number of trials (Chou &

Hsu, 2018), and tends to be inflated by small trial numbers.

Given the design, comparing trials in which no target occurred

at the early time point when the participant expected a target

to occur then (20% of trials) versus at the second time point

(80% of trials) leads to an important difference in the number

of trials available per cue condition. Therefore, we computed

cosine similarity instead of conventional ITC measures,

separately per participant, condition, and electrode, which

gives an unbiased and consistent estimate of phase consis-

tency for finite sample size (Chou & Hsu, 2018).

The mean cosine angle of all given pairs of phase angles

(CS) per condition was computed per participant as follows

with n being the number of trials, and i, j ¼ iþ1, being the

indices of single trials compared against each other:

CS ¼ 2
nðn� 1Þ

Xn�1

i¼1

Xn

j¼iþ1

cosðqi � qjÞ (1)

To test for a statistically significant increase in phase

consistency, we compared the obtained cosine similarity

values per participant at electrode Cz (used in the original

study), using the paired Bayesian t-test from the R-package

BayesFactor (Morey & Rouder, 2018, one-sided decision crite-

rion: BF > 10 or BF < .01). This test was used to decide when to

stop testing (Hypothesis 2, p.5).

Hypothesis 2: In line with the original study, we expected

to find increased delta phase consistency at electrode Czwhen

a strong (80%) versus weak (20%) expectation existed towards

the early time point.

After completion of data collection, and confirmation of

increased delta phase consistency at electrode Cz, we

computed cosine similarity values for all electrodes and sub-

jected them to a cluster-based permutation test (Maris &

Oostenveld, 2007) at the group level. To assess differences in

phase consistency between the early- and late-cue conditions,

we computed a reference distribution of the difference be-

tween cue types using a permutation approach. To obtain the

permutation distribution of the difference, we shuffled the

cue types randomly over trials within each participant,

keeping the ratio between numbers of early and late cues

constant, and computed cosine similarity as above. This pro-

cedure was repeated 1,000 times 7. The 98% percentile of the

distribution of differences of phase concentration parameters

between conditions was used as criterion to decide whether

the difference in phase consistency between high and low

expectation trials is different (directional test). Furthermore,

the same analysis was computed on the low delta and theta

band filtered data to assess the specificity of the effect to the

delta range.

2.6.2. Analysis of delta phase consistency using resultant
vector length
To match the analyses in the original study, and assess phase

consistency of delta oscillations separately per condition, we
7 The originally preregistered 10,000 permutations turned out
too computationally intensive for the cosine similarity
computation.
computed phase concentration parameters as the resultant

vector length R for all trials fromone participant and condition

(Berens, 2009):

R ¼
abs

�PN
n¼1ðei,qÞ

�

N
(2)

where q denotes single trial phase angles in radian per con-

dition and participant, n the number of trials from 1:N. To

statistically test for phase alignment at electrodes Cz, Fz, Pz,

C3, and C4, reflected by a non-random distribution of phase

angles, we tested the distribution against a van Mises distri-

bution, applying Rayleigh's test for uniformity of circular data,

implemented in the CircStat package for Matlab (Berens, 2009;

Fisher, 1995), for both cue types separately.We expected to see

significant delta phase concentration (p < .02) in both cue

conditions. As described for cosine similarity above, we also

computed the resultant vector length R at all electrodes and

compared it against a reference distribution obtained from

permuting the cue conditions.

2.7. Additional analyses

2.7.1. Separating oscillatory from 1/f activity
The original study assessed the presence of entrained delta

oscillations by computing fast Fourier spectra (FFT) of the in-

terval �500:0 msec prior to target onset at electrode Cz. Here,

we additionally assessed whether the activity observed in the

delta band is truly oscillatory, rather than reflecting aperiodic

1/f activity. To this end, we applied the irregular resampling

technique (IRASA, Wen & Liu, 2016; see also Helfrich et al.,

2018; Henry et al., 2016; Herbst & Obleser, 2019) to the

epoched data 8, as well as to the 3-min continuous noise

recording (epoched into 5-sec segments to match the epoch

duration of the task data). The IRASA technique consists in

downsampling the data at pairwise non-integer values and

computing the geometricmean of the resulting power spectra.

The resampling leaves the 1/f activity intact but removes

narrow-band oscillatory activity. Power spectral density (PSD)

was computed on the epochs, padded to 5.4 sec, and in .19 sec

steps (parameters chosen to include the stimulation fre-

quency and multiples thereof in the resulting frequencies),

using a fast Fourier transform taperedwith a Hanningwindow

for a frequency range of .19e22.2 Hz, without detrending, and

the default resampling parameter for IRASA (1.1e1.9, .05

increment).

To assess the presence of oscillatory activity, we sub-

tracted the power spectrum of the re-sampled data from the

power spectrum of the original data, and computed a 98%

confidence interval of the difference over participants using

the t-statistic to test for residual oscillatory activity in the

delta frequency range (.5e3 Hz).

To assess whether delta oscillations were present

throughout the whole trial rather than resulting from peri-

odically elicited evoked responses, we masked the 300 msec

after each target onset, and computed the power spectrum

again (see supplementary Figure 1).
8 to be consistent with the delta phase analyses.
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Hypothesis 3: Given the rhythmic stimulation applied, we

assumed to see a significant and narrow peak in the power

spectrum computed during blocks, which was expected at the

stimulation frequency (.74 Hz), supposedly reflecting

entrained oscillations.

2.7.2. Evoked responses in the peri-stimulus time windows
Evoked responses, such as the contingent negative variation

(Walter et al., 1964) and P300 (Schürmann et al., 2001), have

been described in relation to expectation, by a literature

mainly separate from the one referring to neural oscillations.

It is to date an open question, whether these responses relate

to different or at least partially overlapping brain processes

(Lakatos et al., 2008; Makeig et al., 2002). Answering this

question from an empirical point of view likely requires an

extended research program, including invasive recordings of

local field potentials.

Nevertheless, we applied a set of additional analyses in the

frequency and time-domain to better understand the nature

of the observed effects. In the time domain, we assessed re-

sponses to cue and target tones, from the wide-band and

narrow-band filtered data. Specifically, we compared the cue-

evoked responses for cues predicting early versus late target

onsets, and the target-evoked responses for expected versus

unexpected targets at the early and late time point. Addi-

tionally, we compared the evoked responses in the time

window of the early target onset, when no target occurred

then, to assess omission responses and their modulation by

the strength of the expectation.

To test for statistically significant differences in the time-

domain data, we applied cluster permutation tests on two

levels. First, we contrasted evoked activity for each stimulus

and condition for each participant using independent samples

regression implemented in FieldTrip (ft_timelockstatistics).

The resulting regression coefficients (betas) for each time-

electrode data point for the evoked responses were sub-

jected to a group level analysis, using a dependent samples t-

test to contrast the betas from the subject-level analysis

against zero. A permutation test (5000 Monte Carlo random

iterations) was performed with cluster-based control of type I

error at a level of a ¼ .02.

As in the original study, we further performed a correlation

analysis, to assess the overlap between evoked responses and

delta phase consistency. To this end, we correlated the con-

dition differences (expected vs unexpected) measured in the

time domain (post-cue and post-target) with the potential

phase-consistency effects. We also assessed the partial cor-

relations of each of thesemeasures with the reaction times, to

disentangle their explanatory power. In addition to the Pear-

son correlation values and Bayes Factors, we report percent-

age bend correlation coefficients (beta ¼ .2), as a robust

measure of correlation (Pernet et al., 2013).

Hypothesis 4a: We expected to see a difference in early

sensory evoked potentials between predicted and non-

predicted targets. The existing literature is somewhat unde-

cided with respect to the expected directions of the ERP dif-

ferences (Lange, 2013), thus, we did not specify a direction

here. In a previous experiment (Herbst & Obleser, 2019), we

found a difference in target-evoked potentials, with a more

negative N1/P2 component after predicted targets.
Hypothesis 4b: We expect to see an omission response at

the time point of the early target onset, when no target

occurred, with a larger amplitude on trials on which expecta-

tion was stronger. The strength of this response was expected

to be partially correlated with pre-target delta phase

consistency.

Hypothesis 4c:Correlation analyseswere expected to show

partial, but not full overlap between the time domain signa-

tures of expectation and delta phase consistency.

2.7.3. Source reconstruction
Since we obtained a significant difference in delta phase

consistency in sensor space we visualized the source distri-

bution of delta phase consistency at the time point of the short

SOA for trials in which no target occurred then. Compared to

the pre-registered methods, the source reconstruction pipe-

line was subject to slight adjustments, validated on the

reconstruction of delta and theta band phase coherence

300 msec after the cue and early target onset, where we ex-

pected strongly phase-locked auditory activity. This valida-

tion is independent from the comparison of interest. As it

turns out, the cue evoked response is most strongly reflected

by theta band phase coherence (see also Fig. 6).

We used the individually digitized electrode positions,

combined with a standard MRI template, and a standard head

model (based on the boundary-elements method) as imple-

mented in FieldTrip (Oostenveld et al., 2003). The individual

electrode positions were coregistered to the MRI template by

first aligning the fiducials, and second, manually aligning the

electrodes to the head surface. The delta-band filtered datawas

re-referenced to the average of all channels before computing

each individual's lead field matrix using a 1-cm grid resolution.

We then applied dynamic imaging of coherent sources (DICS,

Gross et al., 2001) to construct the inverse model based on the

cross spectral density computed from the Fourier trans-

formations of the band-pass filtered data (�.5 to 4.5 sec), cen-

tred at the average frequency of the respective band. The

dominant orientation per voxel was obtained using singular

value decomposition. We then applied the precomputed filters

to the analytic representation of the single trial data (obtained

through the Hilbert transform) via matrix multiplication.

Cosine similarity was computed on single voxels, to visu-

alize the distribution of delta phase consistency per condition.

We computed a t-test between cues indicating early versus

late targets, using the Montecarlo permutation method

(ft_sourcestatistics). Since the source reconstruction was

performed to localize the findings at the sensor level and not

as an independent statistical test, we display the T-values

thresholded at, p < .02 (non-parametric permutation test)

without any further correction for multiple comparison

(Fig. 2D, H). Source labels are reported based on the AAL atlas

(Tzourio-Mazoyer et al., 2002).

While we have shown in previous work that auditory and

motor-like sources can be broadly distinguished by reconstruct-

ing source activity from EEG data (Herbst et al., 2018), the iden-

tification of the exact anatomical generators will require further

confirmation by follow-up studies, for instance using MEG.

Hypothesis 5:We expected to see the strongest delta phase

consistency in auditory and motor areas (Morillon et al., 2019;

Morillon & Baillet, 2017).
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Fig. 2 e A. Delta band (.5e3 Hz), phase-sorted amplitude time courses: This display was included for better comparison with

the original study (their Fig. 3E and F) and shows all trials of all participants, for the long SOA, with cues indicating an early

target in the left panel, and cues indicating a late target in the right panel. The band-pass filtered single trials were sorted by

phase angle at the early SOA. The range between the horizontal white lines, demarcating phase angles between ¡ p/2 and

p/2, is considered the less favourable phase. The proportion of trials in that phase range is smaller in the cue early condition

(40.6%), compared to the cue late condition (43.7%). B. Delta phase consistency, cosine similarity: Phase consistency was

higher in the cue early condition, indicated by most green dots lying beyond the diagonal line. Grey dots depict phase

consistency values computed after permuting trials randomly between conditions. The topography shows the significant

cluster when comparing phase consistency between the true conditions and the resampled version. The histogram above

the diagonal depicts the differences cue early ¡ cue late. C. Delta phase consistency, resultant vector length: As in B, but
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Fig. 3 e Power Spectra. A) Power spectra of the task data, all at electrode Cz. Left: Full power spectrum. Middle: Fractal power

spectrum, computed using the irregular resampling technique. Right: Oscillatory spectrum, computed as the difference

between the full and fractal spectra. Thick lines depict participant average, thin lines single participants' spectra. The blue

shade in the right panel depicts the 98% confidence interval. The green dotted vertical line indicates the stimulation

frequency (.74 Hz). The topographies show the scalp distribution of power at .74 Hz. B) Power spectra of the resting state.

Panels: as in A. While the power spectra computed on the task data showed a peak at the stimulation frequency, the resting

state data did not show a clear peak.

here phase consistencywasmeasured by resultant vector length. The departure of the grey dots from the diagonal indicates

a systematic overestimation of phase consistency by this measure for the condition with fewer trials. Nevertheless, the

comparison between true and permuted conditions showed a significant cluster. D. Source reconstruction. Average cosine

similarity values at the short SOA are shown overlaid on a template brain, for cue early and cue late conditions separately

(note the different color scales). The third panel shows the difference between cue early and cue late with the colors scale

indicating T-values thresholded at p < .02 (non-parametric permutation test) with no further correction for multiple

comparisons. In the delta band, the difference in phase-locking was strongest in temporal (auditory) areas, as well as pre-

motor andmotor areas. EeH: Low delta band (.25e1.5 Hz). Same as AeD, but for the low delta band. Phase consistency in the

low delta band was significantly higher after cues indicating an early versus late target, with a pattern very similar to the

results observed in the delta band. In source space, the difference was most pronounced in pre-motor and motor areas, but

also occurred in temporal and parietal areas.
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Table 1 e Statistical results of the reaction time analysis. A
linear mixed effect model revealed significant main effects
of cue validity and SOA, as well as a significant interaction.

F value p value

cue validity F (1, 24.97) ¼ 28.80 < .001

SOA F (1, 24.98) ¼ 14.64 < .001

cue validity � SOA F (1, 24.89) ¼ 20.92 < .001
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3. Results

3.1. Expectations speed up reaction times

In line with Hypothesis 1, reaction times were affected by the

predictions conveyed by the cues (see Fig. 1). At the short SOA,

responses to validly cued targets were faster than responses to

invalidly cued targets (valid: .229 sec, SD ¼ .048 sec, invalid:

.244sec,SD¼ .046sec; significantdifference: t (25)¼5.42,p < .001,

Bayes Factor (BF) ¼ 3464.96; one-sided tests performed on log-

transformed reaction times). Furthermore, we found the hy-

pothesized interaction, namely no significant difference in reac-

tion times at the long SOA (validly cued: .219 sec, SD ¼ .039 sec,

invalidlycued: .220sec,SD¼ .039sec; t (25)¼1.28,p¼ .11,BF¼ .76).

The linear mixed effect model computed on single trial log

transformed reaction times confirmed that both factors, SOA

and cue validity were significant, as well as their interaction

(see Table 1).

3.2. Delta phase consistency increases with expectation
for target occurrence

In confirmation of Hypothesis 2, we observed increased delta

phase coherence at electrode Cz at the time point of the early

SOA when the cue predicted an early versus a late target

(cosine similarity, cue early: .09, cue late, .04, T (25) ¼ 2.67,

p ¼ .006, BF ¼ 7.40). In the low delta band, the effect was even

stronger, as indicated by the larger absolute difference and

Bayes Factor (cosine similarity, cue early: .13, cue late, .05, T

(25) ¼ 2.30, p ¼ .003, BF ¼ 14.37).

The phase-sorted single trial amplitude time courses

depicted in Fig. 2A and E (displayed to match the original

study) show that across all participants 40.6% of cue early

trials had a delta phase angle of� p/2 and p/2 at the early SOA,

considered the less favourable phase, versus 43.7% in the cue

late condition (38.8% vs 43.0% for the low delta band).
Table 2 e Statistical results of the phase consistency analyses. T
reported for the twomeasures: cosine similarity and resultant ve
comparing the difference in phase consistency between cue ear
obtained from permuting trials between the two conditions rev
delta and delta band for both measures, but not in the theta ban

frequency mean (C

cue ear

low delta cosine similarity .13

resultant vector length .23

delta cosine similarity .09

resultant vector length .20

theta cosine similarity �.01

resultant vector length .08
Cluster permutation tests comparing the difference in

cosine similarity between cue early and cue late trials at all

electrodes against the difference obtained from permuting

trials between the two conditions revealed significantly

increased phase consistency in the delta and low delta bands,

but not in the theta band (see Fig. 2, statistics reported in Table

2). The analysis of resultant vector length found similar

results.

The cluster permutation analysis takes into account the

difference in the number of trials per condition (cue early:

20%, cue late: 80%), as the trial numbers were kept consistent

when computing the permuted differences. As can be seen in

Fig. 2 B, D (and panels F, G, for the low delta band), cosine

similarity was not inflated for the condition with fewer trials

(the grey dots indicating the permuted difference lie on the

unity line), while for resultant vector length there was an

inflation (grey dots lie beyond the unity line).

We performed a control analysis with the nose electrode as

the reference to match the original study, which yielded a

weaker increase in phase consistency for the cue early con-

dition (delta band: cosine similarity, cue early: .08, cue late,

.04, T (25) ¼ 2.02, p ¼ .027, BF ¼ 2.31; low delta band: cosine

similarity, cue early: .16, cue late, .06, T (25) ¼ 3.60, p ¼ .004,

BF ¼ 12.26). The decrease in effect size might be explained by

the fact that the recording from the nose electrode turned out

to be rather noisy in many participants.

Source reconstruction of delta and low delta phase con-

sistency (cosine similarity; Fig. 2 D, H) showed mainly pre-

motor and motor sources, extending into frontal areas, as

well as anterior temporal and auditory areas. In the delta

band, the difference between the cue-conditions was most

apparent in temporal areas (middle and inferior temporal

gyrus, predominantly in the left hemisphere), and somewhat

weaker in (pre-)motor areas (right supplementarymotor area).

In the low delta band, the strongest difference occurred in

(pre-)motor areas (supplementarymotor areas, stronger in the

right hemisphere), extending into frontal areas. Weaker dif-

ferences were observed in parietal and temporal areas.

In line with the original study, we also tested whether the

phase distributions in the delta band were randomly distrib-

uted or concentrated, as a signature of entrainment. Signifi-

cant delta phase concentration at the early SOA was observed

at electrode Cz in 13 out of 26 participants for the cue early

condition, and 18 participants in the cue late condition (p-

values < .02; Fz: 10/14, C3: 12/15, Pz: 10/12, C4: 12/14). For the

low delta band, 17 participants had a significant phase
he average phase consistency across participants is
ctor length, both for electrode Cz. Cluster permutation tests
ly and cue late trials at all electrodes against the difference
ealed significantly increased phase consistency in the low
d.

z) mean (Cz) cluster

ly cue late p-value

.05 p < .001

.15 p ¼ .003

.04 p ¼ .001

.13 p ¼ .005

.01 no positive cluster found

.05 no positive cluster found

https://doi.org/10.1016/j.cortex.2022.02.001
https://doi.org/10.1016/j.cortex.2022.02.001


c o r t e x 1 4 9 ( 2 0 2 2 ) 2 2 6e2 4 5 237
concentration at electrode Cz in the cue early and 20 in the cue

late condition (p-values < .02; Fz: 15/14, C3: 13/20, Pz: 15/21, C4:

18/16). These results suggest oscillatory entrainment in the

majority, but not in all participants.

Additionally (not part of the pre-registration), we visu-

alized phase locking values over time for the two SOAs and

two cue conditions, for the delta, low delta, and theta band

(see Fig. 6). Interestingly, delta and low delta phase consis-

tency showed a transient increase after targets, but much

less after cues, while evoked responses at the cue and target

led to a prominent increase in theta phase consistency. A

prolonged difference at the early SOA between cues indi-

cating early versus late targets (green lines) occurred in the

delta and low delta band, as already apparent in the previ-

ous results.

3.3. Power spectra show peaks at the stimulation
frequency

Weassessed the power spectra of the data recorded during the

task and the subsequent block in which participants listened

to white noise (Fig. 3). After removal of the 1/f slope, the

oscillatory spectrum contained a peak at the stimulation fre-

quency (.74 Hz) at fronto-central electrodes in the task data

Fig. 3A), but not in the resting state data Fig. 3B). The peak

indicates an oscillation evoked by the rhythmic stimulation,

and confirmsHypothesis 3. Note that the seemingly larger rise

at around .3e.4 Hz reflects the cut-off in the power spectrum

caused by the epoch duration (5 sec), preventing us from

computing power at the lowest frequencies.

After removing the target-evoked responses (0e300 msec

after each target), power spectra still showed a peak at the

stimulation frequency, albeit with slightly reduced power

(shown in Supplementary Figure 1).

3.4. Evoked responses show stronger pre-target
deflections towards predicted early targets, and post-target
differences in the delta band

We observed clear auditory evoked responses to cue and

target tones, as well as a negative deflection following the cue

(see Fig. 4). In the long SOA trials, a delta-like wave form was

observed at central electrodes.

Contrary to Hypothesis 4a, we observed no statistically

significant differences in the evoked responses to expected

and unexpected targets in the wide-band data (0e20 Hz,

Fig. 4A, see also Table 3). In the delta-band filtered data

(.5e3 Hz, Fig. 4B), we observed a stronger response to expected

early targets (cue early) compared to unexpected early targets

(cue late; 1.48e1.84 sec, p < .01). No significant effects were

found for the late target trials (p < .14).

As specified in Hypothesis 4b, we expected to see an

omission response in trials for which the cue predicted an

early target but none appeared, defined as an evoked-like

potential in the post-target window (Dercksen et al., 2020;

SanMiguel et al., 2013). No such response was observed,

neither in the wide-band nor the delta-band data.

However, the cue-evoked responses were indicative of the

prediction conveyed by the cue: in the wide band data, we

observed a more negative-going slow wave towards the early
SOA when the cue predicted an early target (early target trials:

1.20e1.37 sec, p < .01; marginal for the late target trials:

1.16e1.29 sec, p ¼ .03). In the delta-band data, the post-cue

difference was not significant (early target trials: 1.19e1.4 sec,

p ¼ .079).

Evoked responses in the low delta band and theta band

data showed no significant differences (low delta p > .06; theta

p > .03).
3.5. Reaction time facilitation by valid cues correlates
with delta phase consistency

We tested for correlations of the reaction time facilitation by

valid cues and the difference in delta phase consistency (and

evoked responses, respectively) across participants (see Table

4 and Fig. 5).

The difference in log-transformed reaction times at the

short SOA correlated significantly (albeit only marginally for

the robust correlations) with the difference in delta phase

consistency (cosine similarity) measured at the short SOA

(taken from the long SOA trials as in the previous analyses,

electrode Cz; r ¼ � .56, robust correlation � .29). In the low

delta band, the correlation was significant, too (r ¼ � .56,

robust correlation � .56), see Fig. 5A). The negative correlation

indicates that participants who showed greater reaction time

benefits from valid cues at the early SOA also had stronger

delta phase consistency around the early SOA when the cue

predicted an early versus late target.

The reaction time facilitation did not significantly corre-

late with the observed differences in the slow negative po-

tentials following the cue (wide-band data, 1.20e1.37 sec

post-cue, r ¼ .27, Fig. 5B, left). However, we observed a cor-

relation between the difference in reaction times and the

difference in the delta band evoked response at the early

target (1.48e1.84 post-cue, r ¼ � .63, robust correlation � .71,

Fig. 5B, right), indicating that participants who responded

faster to validly compared to invalidly cued targets also

showed larger differences in the evoked response to those

targets.

No significant correlations were observed between the

differences in delta phase consistency and evoked responses

(Fig. 5C).

We also computed partial correlations between the dif-

ferences in reaction times, the differences in delta phase

consistency, and differences in the evoked response (slow

negativity observed in the wide-band data). When controlling

for the evoked response, the correlation between phase con-

sistency and reaction times dropped to r ¼ � .39 (p ¼ .05).

When controlling for phase consistency, the correlation be-

tween the evoked response and reaction times dropped to

r ¼ .23 (p ¼ .28). It is important to mention here that the re-

action times and evoked responses were both taken from

short SOA trials, while the cosine similarity measures were

computed from long SOA trials.

The original study reported correlations between the phase

of the delta oscillation at target onset with reaction times, as

well as the latency and peak amplitude of the P300 component

of the evoked response, taken from single trials in Experiment

1 (slightly different experimental design). All measures were

https://doi.org/10.1016/j.cortex.2022.02.001
https://doi.org/10.1016/j.cortex.2022.02.001


Fig. 4 e A. Evoked responses, wide band: Average evoked responses, time-locked to the cue at electrode Cz. Top, left: short

SOA (1.35 sec). Activity evoked by cues predicting early targets (valid, dark pink) versus cues predicting late targets (invalid,

light pink). Top, right: long SOA (2.7 sec). Activity evoked by cues predicting early targets (invalid, light green) versus cues

predicting late targets (valid, dark green). The topographies show activity in the N1 time window, 100e200 msec after the
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Table 3 e Statistical results of the evoked response analysis. Findings are reported per filter band and SOA at which the
target was presented. The latencies indicate the duration of the significant clusters time-locked to the cue. As for the
direction, ‘neg’ means that the evoked activity was smaller (or more negative) following cues which predicted an early
compared to late target. For ‘pos’ the direction is reversed.

filter SOA latencies direction cluster p-value

wide band 1.35 sec 1.20e1.37 sec neg p < .01

2.7 sec 1.16e1.29 sec neg p ¼ .03

delta band 1.35 sec 1.48e1.84 sec pos p < .01

2.7 sec 1.19e1.4 sec neg p ¼ .08

low delta

band

1.35 sec 1.02e1.39 sec neg p ¼ .06

theta band 1.35 sec .99e1.04 sec pos p ¼ .09

Table 4 e Statistical results of the correlation analyses. All tests are one-sided. The r and p-values in brackets indicate
percentage bend correlation coefficients, a robust correlation estimate.

variables r T value p-value Bayes Factor

RT/ �.56(�.29) T (24) ¼ � 3.32 .001 (.08) 32.65

cosine similarity (delta)

RT/ �.56(�.56) T (24) ¼ � 3.35 .001 (.001) 34.81

cosine similarity (low delta)

RT/ .28 (.11) T (24) ¼ 1.43 .08 (.30) 1.68

evoked response (post-cue, wide band)

RT/ �.63(�.71) T (24) ¼ � 4.00 < .001 (< .001) 117.01

evoked response (post-target, delta band)

cosine similarity (delta)/ �.244(�.14) T (24) ¼ � 1.23 .11 (.25) 1.33

evoked response (post-cue, wide band)

cosine similarity (low delta)/ �.37(�.16) T (24) ¼ � 1.98 .03 (.22) 3.53

evoked response (post-cue, wide band

cosine similarity (delta)/ .18 (.09) T (24) ¼ .87 .20 (.33) .90

evoked response (post-target, delta band)
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taken at the same SOA and from single trials. Here, we

computed correlations between the differences in the

respective measures and at different SOA, which might

explain why we did not find consistent correlations between

phase consistency and evoked responses.
4. Discussion

In this study, we set out to replicate the seminal findings re-

ported by Stefanics et al. (2010, Experiment II), namely an in-

crease in phase consistency of the delta oscillation with the

expectation for a target onset in the upcoming cycle of an

ongoing rhythm. All major findings of the original study were

replicated. We found a consistent reduction of reaction times

following validly cued versus invalidly cued early targets by

about 15 msec, confirming Hypothesis 1 (see also Fig. 1). A

robust effect of increased delta phase consistency with

expectation was observed, confirming Hypothesis 2 (see also

Fig. 2). Additional analyses suggest that the increase in phase
target onset (indicated by the vertical dashed lines). Bottom row

and late SOA trials (right). In the early-SOA trials, a significantl

predicting an early target. The pink shade indicates the time wi

the two conditions, accompanied by the topography of the stat

the long SOA trials, but the difference was not statistically signi

does not confirm the original Hypothesis 4a, which predicted p

responses, delta band: Same as in A, but for the delta-band filt

expected versus unexpected early targets (left column). No diffe
consistency results from oscillatory entrainment rather than

reflecting an evoked response.

Concerning the more exploratory hypotheses spelled out

in the pre-registration, we observed a spectral peak at the

stimulation frequency (Hypothesis 3, Fig. 3), and sources for

the phase consistency difference predominantly in pre-

motor, motor, and in temporal areas (Fig. 2). The findings

for the evoked responses did not adhere fully to the spelled

out hypotheses: no post-target differences were observed in

the wide-band data with respect to expectancy (Hypothesis

4a), but a stronger response to expected targets was observed

in the narrow-band delta evoked response (Fig. 4). Further-

more, we observed, in the time window following the cue, a

stronger negative CNV-like deflection when the cue pre-

dicted an early target (Mento, 2013; Praamstra et al., 2006).

However, no omission response was observed in the time

window following unexpected omissions of the early target

(Hypothesis 4 b). Brain-behavior correlations were observed

between reaction times and delta phase consistency, as well

as responses evoked by early targets (Hypothesis 5).
: Differences between early and late cues for the early (left)

y more negative potential was observed following cues

ndow in which a significant difference was found between

istically significant cluster. A similar pattern was found for

ficant. Strictly speaking, the observed pre-target difference

ost-target differences in the broad band data. B. Evoked

ered data. A larger target-evoked response occurred after

rences were found in the pre-target window.
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Fig. 5 e Brain-behaviour correlations. A) Correlation between reaction times and phase consistency for the delta band (left)

and low delta band (right). Participants who had a larger difference in reaction times after expected versus unexpected early

targets also had a larger difference in cosine similarity at the early SOA following early versus late cues. B) Correlation

between reaction times and evoked responses. No significant correlation was observed between reaction times and the

difference in the post-cue negativity observed in the wide band data (1.20e1.37 sec post-cue, right panel). Participants who

had a larger distance in reaction times also had a larger difference in the delta-band evoked responses to expected versus

unexpected early targets (1.48e1.84 post-cue, left panel). C) Correlation between evoked responses and phase consistency
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4.1. Oscillatory phase locking as a mechanism for
prediction

Importantly, the replication, in line with the original study,

shows that delta oscillatory phase is under endogenous or

top-down control, allowing for an increase in phase consis-

tency with an expectation set by the preceding cue (80%

versus 20% probability for target occurrence, see also Fig. 2).

The correlations observed between reaction times and phase

consistency further underline the behavioral relevance of the

phase locking (Fig. 5A). Together, these findings strengthen

the cognitive role of phase entrainment as a means to align

slow neural oscillations to external temporal regularities to

enhance the processing of task-relevant inputs (Arnal &

Giraud, 2012; Jones, 2018; Schroeder & Lakatos, 2009).

With the increasing popularity of the theory of entrain-

ment, criticisms have also emerged. In particular, a crucial

premise for entrainment in the narrow sense is the existence

of an endogenous oscillation that is entrained by exogenous

inputs (Lakatos et al., 2019; Obleser & Kayser, 2019). Opposing

views suggest that the observed phase consistency, at least in

some studies, could be conflated with stimulus evoked re-

sponses occurring after the sensory event (van Diepen &

Mazaheri, 2018; Zoefel & Heil, 2013), rather than oscillatory

phase locking in anticipation of the stimulus. Especially for

low frequent oscillations, this distinction is difficult to make

due to signal processing constraints (for successful examples

see the review by Zoefel et al., 2018).

Here, we conducted several additional analyses, which in

our view support the interpretation of the effects as oscilla-

tory phase locking, rather than an evoked response. First,

delta phase consistency at the expected target onset

increased in a narrow frequency band, most strongly in the

low delta band which captured the ongoing rhythmic stim-

ulation (.74 Hz), as well as the delta band, but not in the theta

band. The frequency-specificity strengthens the proposed

role of delta phase for endogenous predictions (see also Saleh

et al., 2010). The phase-locking time courses for the three

bands (depicted in Fig. 6) further emphasize this point: delta

and low delta phase consistency was consistently increased

throughout the trial in line with an oscillation and increased

transiently only after targets, while theta phase consistency

increased transiently after all auditory events, likely

capturing the evoked response.

Second,we observed a peak at the stimulation frequency in

the power spectrum after removing the 1/f activity (Fig. 3),

further supporting an oscillatory response. Interestingly, the

oscillatory power spectra during rest also show a rather broad

peak around 1e1.5 Hz, which could be indicative of sponta-

neous oscillations in the delta band serving as the basis for

entrainment (Morillon et al., 2019). Further research will be

needed to assess whether those peaks reflect spontaneous

oscillations versus artefactual activity such as the heart beat.

Third, as to the overlap between evoked responses and

delta phase consistency, the picture remains somewhat un-

clear. We did observe a pre-target difference in the wide-band
for the delta band. No significant correlation was observed, neit

data and delta phase coherence (left panel), nor between the po

coherence. The colors of the axis labels indicate whether the me
data, interpretable as a stronger contingent negative variation

(CNV) towards early and expected targets (Fig. 4A). However,

we did not observe a significant correlation between this dif-

ference and the reaction times or the delta phase consistency

effect (correlations remain inconclusive as indicated by the

Bayes Factors; see also Fig. 5B and C, left panels). We also did

not observe any significant omission responses at the time

point of an expected early target (Dercksen et al., 2020;

SanMiguel et al., 2013), ruling out that the increased phase

consistency observed at this moment reflects a transient

evoked response.

The post-target difference in the delta band evoked

response did correlate with reaction times (Figs. 4B and 5B, C,

right panels), but not with the delta band consistency effect

(both measures came from different sets of trials, namely

short and long SOAs, respectively). Overall, the difference in

neural dynamics with respect to expectation seems best

captured by the phase of a narrow-band oscillation matching

the frequency of the stimulation.

Admittedly, the present design cannot fully disentangle

whether the delta oscillation whose phase locks to the

stimulation is an a-priori existing endogenous oscillation, or

an oscillation that emerges in response to the rhythmic

stimulation. We observed an oscillatory peak during the

rhythmic stimulation, but not during a block in which par-

ticipants listened to white noise without rhythmic stimula-

tion (Fig. 3), suggesting that the oscillation emerged in

response to the rhythmic stimulation. Even though the pro-

pensity of neuronal assemblies to spontaneously oscillate in

the delta frequency range has been shown with intra-cranial

recordings (Buzs�aki & Draguhn, 2004; Halgren et al., 2018;

Lakatos et al., 2005; Neymotin et al., 2021), this proof is

difficult to achieve with non-invasive M/EEG recordings. In

order to test whether the implementation of predictions

through phase locking occurs specifically in the delta band or

could occur in a wide range of frequencies, future studies

could vary the stimulation frequency (see Zalta et al., 2020,

for a behavioral paradigm), or include longer periods of

stimulus omissions to test for the continuity of an endoge-

nous oscillation (Saberi & Hickok, 2021; Zoefel et al., 2018).

The increase in delta phase consistency with an endoge-

nous expectation is an important argument for an active role of

neural oscillations in tracking and anticipating rhythmic sen-

sory inputs. By entraining in period and phase to an external

input, neural oscillations can implement temporal predictions,

allowing to align brain states beneficial for the processing of the

respective inputs with the predicted onsets (Arnal & Giraud,

2012; Jones, 2018; Schroeder & Lakatos, 2009). Given the

strictly periodic stimulus sequence used here, there are two

possible interpretations for the nature of the expectation: it

could either be temporal, directed to the most likely time point

of target occurrence, or probabilistic, directed to the first or

second cycle of an externally driven oscillator whose period

mechanistically defines the cycle duration. To further examine

whether neural oscillations implement temporal predictions,

variations of the period of the stimulation are necessary.
her between the slow negative difference in the wide-band

st-target difference in the delta band data and delta phase

asure was taken from short (pink) or long SOA (green) trials.
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Fig. 6 e Phase consistency time courses per SOA and cue condition. Top: delta band, middle: low delta band, bottom: theta

band. Targets led to transient post-stimulus increases in phase consistency in the delta, low delta, and theta bands, but

only the theta band shows a substantial increase in phase consistency following the cue. Only the delta and low delta band

show a prolonged increase in phase consistency in line with an oscillatory response, and a difference at the early SOA

between cues indicating early versus late targets (green lines). The time points of possible target onsets (short and long SOA)

are indicated by the vertical dashed lines.
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Another open question is how much divergence from iso-

chrony an oscillatory implementation of temporal prediction

can afford (see also Obleser et al., 2017).While slight variations

in the period have shown to be accounted for (Cannon, 2021;

Doelling& Assaneo, 2021; Herrmann et al., 2016; Lakatos et al.,

2013), recent research suggests that temporal predictions

based on single intervals might rely on at least partially

diverging mechanisms (Bouwer et al., 2020; Herbst & Obleser,

2017, 2019; Lange, 2013).

4.2. Novel aspects of the current study

We reconstructed the sources of the delta phase consistency

effects, found to be predominantly in (pre-)motor areas, but

also in parietal and temporal (anterior temporal and auditory)

areas (Fig. 2), which is in line with Hypothesis 5. Interestingly,

the difference in the delta band was stronger in the temporal

and somewhat in parietal areas, while the difference in the

low delta band (most specific to the stimulation frequency)

was strongest in pre-motor and motor areas, extending into

frontal and parietal areas.

This dominant localization of delta phase locking to (pre-)

motor areas is in line with the assumption that rhythmic ac-

tivity emerging frommotor areas entrains auditory cortices to

rhythmic inputs (based on Morillon & Baillet, 2017; Rimmele

et al., 2018). However, we would like to mention that the

strongly time-locked activity in bilateral auditory areas might
pose a challenge for source reconstruction notably when

using beamformers (Hincapi�e et al., 2017; Popov et al., 2018). In

combination with the limited spatial resolution of EEG, this

might have led to an under-representation of the auditory

sources here. Follow-up studies using MEG could provide

additional insights on the precise location of the anatomical

generators.

In the low delta band, weak effects were observed in pa-

rietal regions, suggested to play a role in attentional pro-

cessing more generally, and temporal prediction in

particular (Besle et al., 2011; Coull et al., 2013). The difference

to previous studies here probably results from the rhythmic

paradigm (Coull et al.: interval-based predictions), and the

reduced spatial resolution of EEG compared to functional

magnetic resonance imaging (fMRI) and electrocorticography

(ECoG in Besle et al., 2011).

An important methodological aspect of the study is that

by design, conditions with 20% versus 80% of trials are

compared, as a consequence of the manipulation of cue

validity. This imbalance is particularly important when

comparing phase consistency between conditions, as the

commonly used measures for phase locking across trials

(Bruns, 2004; Lachaux et al., 1999; Tallon-Baudry et al., 1996)

have shown to be inflated for small number of trials (Cohen,

2014; Edwards et al., 2009). In this replication, we computed

cosine similarity (Chou & Hsu, 2018), confirming its inter-

pretation as an unbiased alternative to measure phase

https://doi.org/10.1016/j.cortex.2022.02.001
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locking. This is particularly apparent in the bias observed in

themeasure of resultant vector length towards the condition

with fewer trials after permutation (indicated by the grey

dots in 2C, G), which we did not see in cosine similarity

(Fig. 2B, F).
5. Conclusions

In sum, we successfully replicated the original study, most

importantly the modulation of delta phase consistency by

endogenous expectations. Our additional analyses support

the interpretation as an oscillatory effect, rather than a tran-

sient evoked response. Importantly, this work shows that the

phase of delta oscillations is under endogenous control, and

hence qualifies as a possible mechanism for the neural

implementation of (rhythmic) temporal predictions.
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Schürmann, M., Bas‚ar-Eroglu, C., Kolev, V., & Bas‚ar, E. (2001).
Delta responses and cognitive processing: Single-trial
evaluations of human visual p300. International Journal of
Psychophysiology, 39(2e3), 229e239.

Stefanics, G., Hangya, B., Hern�adi, I., Winkler, I., Lakatos, P., &
Ulbert, I. (2010). Phase entrainment of human delta
oscillations can mediate the effects of expectation on reaction
speed. The Journal of neuroscience, 30(41), 13578e13585.

Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996).
Stimulus specificity of phase-locked and non-phase-locked 40
hz visual responses in human. Journal of Neuroscience, 16(13),
4240e4249.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F.,
Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002).
Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-
subject brain. Neuroimage, 15(1), 273e289.

Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., &
Winter, A. L. (1964). Contingent negative variation : An electric
sign of sensori-motor association and expectancy in the
human brain. Nature, 203, 380e384.

Wen, H., & Liu, Z. (2016). Separating fractal and oscillatory
components in the power spectrum of neurophysiological
signal. Brain topography, 29(1), 13e26.

Widmann, A., Schr€oger, E., & Maess, B. (2015). Digital filter design
for electrophysiological data e a practical approach. Journal of
Neuroscience Methods, 250, 34e46.

Wilsch, A., Henry, M. J., Herrmann, B., Maess, B., & Obleser, J.
(2015). Slow-delta phase concentration marks improved
temporal expectations based on the passage of time.
Psychophysiology, 52(7), 910e918.

Winkler, I., Debener, S., Müller, K.-R., & Tangermann, M. (2015).
On the influence of high-pass filtering on ica-based artifact
reduction in eeg-erp. In 2015 37th annual international conference
of the IEEE engineering in medicine and Biology society (EMBC) (pp.
4101e4105). IEEE.

Woodrow, H. (1914). The measurement of attention (1914),
volume the psychological monographs. Google-Books-ID:
Jr5nRQAACAAJ, 17(5).

Wright, B. A., & Fitzgerald, M. B. (2004). The time course of
attention in a simple auditory detection task. Perception &
Psychophysics, 66(3), 508e516.

Zalta, A., Petkoski, S., & Morillon, B. (2020). Natural rhythms of
periodic temporal attention. Nature communications, 11(1),
1e12.

Zoefel, B., & Heil, P. (2013). Detection of near-threshold sounds is
independent of eeg phase in common frequency bands.
Frontiers in psychology, 4, 262.

Zoefel, B., ten Oever, S., & Sack, A. T. (2018). The involvement of
endogenous neural oscillations in the processing of rhythmic
input: More than a regular repetition of evoked neural
responses. Frontiers in Neuroscience, 12.

http://refhub.elsevier.com/S0010-9452(22)00038-7/sref63
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref63
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref63
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref64
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref64
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref64
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref64
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref64
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref65
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref65
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref65
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref65
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref66
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref66
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref66
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref66
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref66
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref67
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref67
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref67
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref67
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref67
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref68
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref68
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref68
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref68
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref68
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref69
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref69
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref69
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref69
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref70
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref70
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref70
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref71
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref71
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref71
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref71
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref72
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref72
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref72
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref72
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref73
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref73
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref73
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref73
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref73
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref74
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref74
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref74
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref74
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref75
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref75
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref75
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref75
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref76
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref76
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref76
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref76
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref77
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref77
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref77
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref77
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref77
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref78
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref78
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref78
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref78
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref79
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref79
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref80
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref80
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref80
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref80
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref81
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref81
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref81
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref81
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref81
https://doi.org/10.1101/2021.07.06.451373
https://doi.org/10.1101/2021.07.06.451373
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref83
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref83
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref83
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref83
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref83
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref84
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref84
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref84
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref84
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref84
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref85
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref85
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref85
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref85
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref86
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref86
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref86
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref86
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref87
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref87
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref87
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref87
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref87
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref87
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref87
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref88
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref88
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref88
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref88
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref88
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref88
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref88
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref88
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref89
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref89
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref89
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref89
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref89
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref89
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref90
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref90
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref90
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref90
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref90
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref91
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref91
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref91
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref91
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref91
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref91
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref92
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref92
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref92
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref92
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref92
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref93
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref93
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref93
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref93
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref94
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref94
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref94
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref94
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref94
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref94
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref95
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref95
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref95
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref95
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref95
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref96
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref96
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref96
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref96
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref96
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref96
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref97
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref97
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref97
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref98
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref98
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref98
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref98
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref99
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref99
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref99
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref99
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref100
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref100
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref100
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref101
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref101
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref101
http://refhub.elsevier.com/S0010-9452(22)00038-7/sref101
https://doi.org/10.1016/j.cortex.2022.02.001
https://doi.org/10.1016/j.cortex.2022.02.001

	Endogenous modulation of delta phase by expectation–A replication of Stefanics et al., 2010
	1. Introduction
	1.1. Hypotheses

	2. Methods
	2.1. Participants
	2.1.1. Ethical approval
	2.1.2. Final participant sample
	2.1.3. Stopping rule
	2.1.4. Recruitment criteria
	2.1.5. Recording abortion criteria
	2.1.6. Post-recording participant exclusion criteria
	2.1.7. Timeline
	2.1.8. Data and code availability

	2.2. Experimental paradigm
	2.3. Behavioral analyses
	2.4. EEG recordings
	2.5. EEG preprocessing
	2.6. EEG analyses
	2.6.1. Analysis of delta phase consistency using cosine similarity
	2.6.2. Analysis of delta phase consistency using resultant vector length

	2.7. Additional analyses
	2.7.1. Separating oscillatory from 1/f activity
	2.7.2. Evoked responses in the peri-stimulus time windows
	2.7.3. Source reconstruction


	3. Results
	3.1. Expectations speed up reaction times
	3.2. Delta phase consistency increases with expectation for target occurrence
	3.3. Power spectra show peaks at the stimulation frequency
	3.4. Evoked responses show stronger pre-target deflections towards predicted early targets, and post-target differences in the d ...
	3.5. Reaction time facilitation by valid cues correlates with delta phase consistency

	4. Discussion
	4.1. Oscillatory phase locking as a mechanism for prediction
	4.2. Novel aspects of the current study

	5. Conclusions
	CRediT authors statement
	Open practices
	Acknowledgements
	Appendix A. Supplementary data
	References


