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a b s t r a c t 

After a first episode of major depressive disorder (MDD), there is substantial risk for a long-term remitting- 

relapsing course. Prevention and early interventions are thus critically important. Various studies have examined 

the feasibility of detecting at-risk individuals based on out-of-sample predictions about the future occurrence of 

depression. However, functional magnetic resonance imaging (fMRI) has received very little attention for this 

purpose so far. 

Here, we explored the utility of generative models (i.e. different dynamic causal models, DCMs) as well as 

functional connectivity (FC) for predicting future episodes of depression in never-depressed adults, using a large 

dataset ( N = 906) of task-free ("resting state") fMRI data from the UK Biobank (UKB). Connectivity analyses were 

conducted using timeseries from pre-computed spatially independent components of different dimensionalities. 

Over a three-year period, 50% of selected participants showed indications of at least one depressive episode, 

while the other 50% did not. Using nested cross-validation for training and a held-out test set (80/20 split), 

we systematically examined the combination of 8 connectivity feature sets and 17 classifiers. We found that a 

generative embedding procedure based on combining regression DCM (rDCM) with a support vector machine 

(SVM) enabled the best predictions, both on the training set (0.63 accuracy, 0.66 area under the curve, AUC) 

and the test set (0.62 accuracy, 0.64 AUC; p < 0.001). However, on the test set, rDCM was only slightly superior 

to predictions based on FC (0.59 accuracy, 0.61 AUC). Interpreting model predictions based on SHAP (SHapley 

Additive exPlanations) values suggested that the most predictive connections were widely distributed and not 

confined to specific networks. Overall, our analyses suggest (i) ways of improving future fMRI-based genera- 

tive embedding approaches for the early detection of individuals at-risk for depression and that (ii) achieving 

accuracies of clinical utility may require combination of fMRI with other data modalities. 
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. Introduction 

Major depressive disorder (MDD) causes tremendous personal suffer-

ng and, amongst all medical conditions, has one of the highest burden of

isease globally ( GBD Mental Disorders Collaborators, 2022 ; Vos et al.,

020 ). It has a profoundly negative impact on social and occupational

unctions ( Adler et al., 2006 ; Kupferberg et al., 2016 ) and is associated

ith increased risk for other mental and somatic (e.g. cardiovascular)

isorders. After the onset of a first episode of MDD, there is a sub-

tantial risk for a long-term remitting-relapsing course ( Eaton et al.,

008 ), accompanied by prolonged trial-and-error treatment attempts

 Correll et al., 2017 ; Steffen et al., 2020 ). Prevention and early inter-

entions are thus crucial for reducing the burden of MDD, both at an
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ndividual and societal level ( Cuijpers et al., 2012 , 2021 ). The challenge

s to detect at-risk individuals early so that preventive measures and in-

erventions can be administered in a timely and targeted fashion. 

Detecting at-risk individuals requires prediction models that enable

ut-of-sample predictions about the future occurrence of (symptoms of)

epression with clinically adequate accuracy. In the recent past, there

ave been numerous attempts to establish such models both in adoles-

ents and adults, based on combinations of various data types, e.g. de-

ographic, socioeconomic, cognitive, and clinical variables as well as

otor activity ( Caldirola et al., 2022 ; Chikersal et al., 2021 ; Gu et al.,

020 ; King et al., 2008 ; Librenza-Garcia et al., 2021 ; Lin et al., 2022 ;

a et al., 2020 ; Rocha et al., 2021 ; Rosellini et al., 2020 ; Sampson et al.,

021 ; van Eeden et al., 2021 ; Voorhees et al., 2008 ; Xu et al., 2019 ). 
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Neuroimaging has played a minor role in this endeavour so far.

his may be partly due to difficulties of obtaining datasets that are

ongitudinal in nature and sufficiently large to allow for robust out-of-

ample predictions. Several longitudinal magnetic resonance imaging

MRI) studies of depressive symptoms do exist (e.g. Barch et al. 2019 ;

agliaccio et al. 2014 ; Papmeyer et al. 2016 ; Shapero et al. 2019 ), but

lmost all have small to moderate sample sizes and employ within-

ample association analyses. However, association is not prediction:

rediction requires out-of-sample analyses, i.e. " ... testing of the

odel on data separate from those used to estimate the model’s pa-

ameters" ( Poldrack et al., 2020 ). A recent exception is the study

y Toenders et al. (2022) which predicted depression onset out-of-

ample, based on structural MRI (and other) data from a large sam-

le of 544 adolescents. Concerning functional MRI (fMRI), however,

e are aware of only one previous fMRI study ( Hirshfeld-Becker et al.,

019 ) that has attempted out-of-sample predictions of future de-

ressive episodes in hitherto depression-free individuals, albeit with

 small sample (total N = 33). The predictive value of fMRI for

dentifying individuals at risk for future depression is thus not well

nown. 

One might wonder why fMRI should be considered at all for estab-

ishing predictor models of depressive episodes, given that fMRI data

re more difficult to obtain and more costly than many other types

f measurements. There are several reasons why fMRI – and partic-

larly generative models for estimating connectivity – may have par-

icular utility for clinical predictions. First, fMRI may afford high sen-

itivity since it assesses the functional status quo of neural circuits

 Stephan et al., 2015 ), the biological level that is closest to psychiatric

ymptoms ( Gordon, 2016 ). Second, clinical predictions are most valu-

ble if they afford a mechanistic interpretation ( Stephan et al., 2017 ); for

xample, this may guide the development of novel treatments. Analyses

f functional interactions based on fMRI can potentially give insights

nto circuit mechanisms that increase risk for depression. Ideally, this

equires generative models which offer an explanation how activity dis-

ributed throughout a circuit could have been generated ( Stephan et al.,

015 ) and provide estimates of effective (directed) connectivity. 

An approach that blends generative modeling with prediction is "gen-

rative embedding" (GE) ( Brodersen et al., 2011 , 2014 ; Frässle et al.,

020 ; Stephan et al., 2017 ). GE uses parameter estimates of a system

circuit) of interest, obtained by inverting a generative model, as fea-

ures for subsequent machine learning (ML). This often improves pre-

iction accuracy since the parameter estimates of a generative model

ffer a low-dimensional, de-noised representation of neural dynamics.

urthermore, provided the generative model is biologically plausible,

E may reveal which biological processes or properties (e.g. specific

onnections in a neural circuit) are most relevant for successful clinical

redictions. 

In this study, we used a large dataset ( N = 906) of task-free ("rest-

ng state") fMRI data from the UK Biobank ( Miller et al., 2016 ) to ex-

lore the utility of fMRI-based connectivity measures for predicting fu-

ure episodes of depression in never-depressed adults. Over a three-year

ollow-up period, half of the selected participants ( N = 453) exhibited at

east one indicator of a depressive episode, according to clinical records

nd/or self-report, while the other half remained free from depressive

pisodes. Both groups were carefully matched with regard to 7 poten-

ially confounding variables (age, sex, handedness, tobacco, alcohol, il-

icit drugs, cannabis). 

We emphasise that the goal of this work was not to test whether pre-

ictions based on fMRI data are better or worse than predictions based

n other data types, e.g. socioeconomic or clinical variables. Instead, be-

ause there are numerous options of utilising fMRI for predictive anal-

ses, this initial study focused on fMRI only and assessed the relative

erformance of different connectivity approaches – including genera-

ive embedding based on different variants of dynamic causal modeling

DCM; Friston et al. 2003 ) as well as functional connectivity (FC) – for

redicting future depressive episodes. Concretely, in our training set ( N
2 
 724), we systematically combined different connectivity approaches

ith different ML classifiers, using nested cross-validation, and tested

ow well they predicted the occurrence of at least one indicator of a

epressive episode over a follow-up period of three years. We then used

he best-performing combination to make the same prediction in a held-

ut test set ( N = 182) that was completely independent from the train-

ng data. Notably, predicting the occurrence of indicators of depressive

pisodes represents a more challenging scenario than predicting a full

linical diagnosis of MDD. Our study can thus be seen as a "stress test"

hether fMRI-based assessments of connectivity, and generative models

n particular, are likely to be useful at all for early detection of at-risk

ndividuals. 

. Materials and methods 

The following sections describe the dataset and methodology used

n this study. Briefly, the data consist of task-free fMRI measurements

i.e. unconstrained cognition or "resting state") and questionnaire data

rom the UK Biobank (www.ukbiobank.ac.uk). Based on entries in the

K Biobank, we selected participants that had good quality fMRI record-

ngs and consistent questionnaire information that allowed us to assign

hem to one of two groups: a group that initially had no signs of de-

ressive episodes but exhibited indicators of depressive episodes (e.g.

uestionnaire data, prescription of antidepressants) within three years

fter the fMRI session (D + group), or a control group that did not show

ny such indicators during the same period (D- group). 

We used different connectivity metrics (different variants of DCM

s well as functional connectivity, FC) in combination with dif-

erent ML classifiers for prediction of future indicators of depres-

ive episodes. DCM and FC analyses were applied to time series

f “resting-state ” fMRI networks (with 6, 21, or 55 nodes) de-

ned by independent components analysis (ICA) of the preprocessed

resting-state" fMRI (rs-fMRI) data provided by UK Biobank. Poste-

ior parameter estimates (DCM) and Pearson correlation coefficients

FC), respectively, served as input features to various discriminative

lassifiers. The classifiers were trained using nested cross-validation

o avoid overfitting and to provide the best possible estimate of

eneralisability. Finally, the best models were chosen, and a pre-

iction was made on held-out (and completely independent) test

ata. 

It is worth noting that our analysis was pre-specified in an

x ante analysis plan, prior to performing any of the analyses.

he analysis plan was time-stamped by uploading it to the Git

epository of the Translational Neuromodeling Unit (TNU); it is

vailable at https://gitlab.ethz.ch/tnu/analysis-plans/galioullineetal_

kbb_pred_depr . Furthermore, code reviews were performed by three

f the co-authors (SF, SH and JH) who were not involved in the data

nalysis, both before the beginning of the analysis of the training data,

nd once again before running models on the test data. 

.1. Dataset: groups with/without depressive episodes 

The process of data extraction from the UK Biobank is summarized by

ig. 1 . To avoid confusion, it is worth explaining that participants of the

euroimaging branch of UK Biobank (which started in 2014) underwent

wo fMRI scans, approx. three years apart, each of which involved both

ask fMRI and rs-fMRI data. In this study, we only used the rs-fMRI data

cquired during the first scan. 

Overall, selected individuals were required to have rs-fMRI data of

ood quality (as indicated by UK Biobank quality control) and no in-

ication of any previous or current depressive episodes at the time of

heir first fMRI scan. From the subset of participants that fulfilled these

riteria, we aimed to select two groups, one of which continued to in-

icate no signs of depressive episodes (D- group) three years after their

rst scan, and one that showed at least one indicator for at least one

epressive episode over this three-year period (D + group). 

https://gitlab.ethz.ch/tnu/analysis-plans/galioullineetal_ukbb_pred_depr
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Table 1 

Demographic data of participants. Values are provided as mean ± standard deviation, with the range in brackets. 

Alcohol-intake frequency ranges from 1 (daily or almost daily) to 6 (never). Tobacco smoking frequency ranges 

from 1 (smoked on most or all days) to 4 (never smoked). Historical cannabis consumption ranges from 0 (never) to 

4 (more than 100 times). Ongoing drug addiction to illicit drugs was not included because none of the participants 

answered yes to that question. Please note that the counts of sex and handedness are not perfectly identical between 

groups; this is because for 55 D + individuals a perfect D- match could not be found and one of the seven matching 

variables was allowed to deviate (see main text). 

Demographic & biological variables D + D- 

Number of participants 453 453 

Age at scan 62.33 ± 7.32 (45-78) 62.75 ± 7.02 (48-78) 

Sex (male/female) 213 (47.12%) / 239 (52.88%) 215 (47.46%) / 238 (52.54%) 

Handedness (left/right) 40 (8.85%) / 404 (89.38%) 35 (7.73%) / 413 (91.17%) 

Weight (kg) 77.04 ± 13.84 74.36 ± 14.93 

BMI (kg ∙m 

− 2 ) 26.99 ± 4.49 25.99 ± 4.27 

Alcohol-intake frequency 2.95 ± 1.49 2.88 ± 1.45 

Tobacco smoking frequency 2.85 ± 1.25 2.88 ± 1.24 

Historical cannabis consumption 0.35 ± 0.87 0.31 ± 0.79 

Townsend deprivation index -2.09 ± 2.5 -2.33 ± 2.37 
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Concretely, we first identified participants who had both task (UKB

eld 20249-2.0) and "resting-state" (UKB field 20227-2.0) fMRI scans in

IFTI format, ensuring quality controlled images already preprocessed

y UK Biobank ( Alfaro-Almagro et al., 2018 ), resulting in 35,485 par-

icipants. In order to define the D- group, we chose the subset of partici-

ants who responded “no ” to the questionnaire item “Looking back over

our life, have you ever had a time when you were feeling depressed or

own for at least a whole week? ” (UKB field 4598-2.0) when they were

rst scanned (2014 + ). This resulted in 15,739 participants. We further

hrunk this set by selecting those individuals who continued to show

o evidence of depressive episodes in following years (2014 to 2019)

nd again replied, at the second fMRI session in 2019 + , “no" to the pre-

ious question (UKB field 4598-3.0). This resulted in 1,085 potential 

- participants who could be searched for matching criteria once the

 + group had been determined. 

Concerning the D + group, we also selected individuals from the set

f 15,739 participants who had preprocessed imaging data and who –

uring their first imaging questionnaire (2014 + ) – indicated never hav-

ng had a depressive episode. Since the UK Biobank does not include

nformation about the absence or presence of a clinical diagnosis of de-

ression for all participants, we used multiple sources of information to

dentify indicators of depressive episodes. Specifically, we searched se-

ected UK Biobank data fields which plausibly indicated the occurrence

f at least one depressive episode in the years after the first fMRI scan.

he following list summarizes the data fields in UKB and number of

its. 

• Medical records in UKB: 

- First Clinically Recorded Depressive Episode [UKB 130894] (5 hits)

- Clinical Depression-Related Encounter [UKB 41270] (31 hits) 

- Prescription of Antidepressants [UKB 20003] (6 hits) 

- Depression Diagnosis Report in UKB Assessment [UKB 20002] (12

hits) 

• Self-report data in UKB: 

- Depressed for at Least a Week Report [UKB 4598-3.0] (203 hits) 

- Depression Diagnosis Report in Mental Health Questionnaire [UKB

20544] (90 hits) 

- High Score ( Coleman et al., 2020 supplementary material) on CIDI

in Mental Health Questionnaire [UKB 20446] (165 hits) 

- High Score (sum > 4) on Patient Health Questionnaire 3-subset

[UKB 2050, 2060, 2080] (6 hits) 

Overall, this resulted in 518 potential D + participants. Since for any

iven participant a previous depressive episode could be reflected by
3 
ultiple hits, we took the union of the above 8 sets of hits. This resulted

n a total of 464 participants in the D + group. 

Having completed the initial definition of D + and D- groups, we

earched for data entries showing inconsistent or logically incompatible

esponses from participants (e.g. participants stating “never depressed

or at least a week ” but with a clinical report of depression). This process

ed to the removal of 9 participants in total, resulting in 455 participants

n the D + group and 1076 participants in the D- group. 

.2. Matching of participants and definition of training/test sets 

To minimize any effects of potentially confounding variables and fa-

ilitate interpretation of the classifiers’ predictions, we matched the two

roups with respect to multiple variables. We used matching instead of

ther strategies to address the influence of confounders, for two reasons.

irst, UK Biobank offered a large dataset of D- individuals to make pre-

ise matching possible with minimal loss of data; second, some of our

onnectivity analyses were computationally very expensive, rendering

ther strategies (such as a repeated random sampling) a nonviable op-

ion. Specifically, for each D + participant we tried to find a matching D-

articipant according to the following seven criteria (where a tolerance

ange was only allowed for age, as indicated): 

• Sex (UKB field 31) 
• Age ± 5 years (UKB field 34) 
• Handedness (UKB field 1707) 
• Tobacco smoking frequency (UKB field 1249) 
• Alcohol consumption frequency (UKB field 1558) 
• Ongoing addiction or dependence on illicit or recreational drugs

(UKB field 20457) 
• Historical cannabis consumption (UKB field 20453) 

All but 57 D + participants could be matched exactly. Out of these,

5 could be matched almost exactly, with at most one criterion devi-

ting. Two D + participants could not be matched and were excluded

rom further analyses. This provided us with a dataset of 906 partici-

ants in total: 453 D + participants and 453 matched D- participants.

emographics data on these participants can be seen in Table 1 . 

Finally, we performed an 80/20 split to partition the data into train-

ng and test sets. Both datasets were strictly separated from each other

uring data analysis to prevent any leakage of information that could

ffect the prediction results. We also addressed an unlikely, but theoret-

cally possible, information leakage stemming from UK Biobank itself:

he templates of major functional networks in the brain ( Miller et al.,

016 ) which are offered by UK Biobank and which our study used for

ata extraction had been created using rs-fMRI data from the first 4,181

ndividuals in UKB. We resolved this potential problem by ensuring that
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Fig. 1. CONSORT flow diagram describing the assignment of UK Biobank participants to D + and D- groups in this study. T1: a participant’s first neuroimaging session 

(2014 onwards). T2: a participant’s second neuroimaging session (2019 onwards) which included further questionnaires and self-report. N/A: indicates a participant 

who either did not know or preferred to not answer a question. Identifying unique cases: this was necessary because some participants showed more than one indicator 

of a depressive episode after T1. Here, we selected each participant once, to avoid double entries. Inconsistent cases: participants who could have been assigned 

to both the D + and D- groups, due to conflicting information. One-to-one matching: we matched each participant in D + with a participant in D- with regard to 7 

variables (see main text). "Depressed for a week" self-report: refers to UKB field 4598. "Depr. at T2" category: contains the set of participants who showed indication 

of having experienced at least one depressive episode at T2, based on self-report, antidepressant use, medical diagnosis, or PHQ (UKB fields 4598-3.0, 20002, 20003, 

2050-3.0, 2060-3.0, 2080-3.0). "MHQ CIDI" category: refers to a high score ( Coleman et al., 2020 ) on the Composite International Diagnostic Interview (CIDI) part 

of the online UKB Mental Health Questionnaire (MHQ). "MHQ Diag.": refers to self-report of a depression diagnosis in the MHQ (UKB field 20544). "Hospital": refers 

to ICD10 depression diagnoses from hospital in-patient data (UKB field 41270). "UKB Diag.": refers to a similar field derived by UKB indicating depressive episodes 

(UKB field 130894). 
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ll participants from this set that were also part of our extracted data

ere assigned to the training set. This resulted in patient/control train-

ng sets with 362 individuals each and test sets with 91 individuals

 Fig. 1 ). 

.3. FMRI data analysis 

Wherever possible we used data that is directly available on UK

iobank and did not require additional processing. The rs-fMRI data are

f 6 minute duration (490 images, TR = 0.735 s), with a spatial resolu-

ion of 2.4 mm isotropic, and were acquired with 8x multislice acceler-
4 
tion ( Alfaro-Almagro et al., 2018 ). We used the data after the standard

reprocessing pipeline executed by UK Biobank. The processing steps

erformed at UK Biobank included realignment, EPI distortion correc-

ion, and high-pass temporal filtering (with a 50s cut-off). For removing

oise (including head motion effects), rs-fMRI data were further pro-

essed with single-subject spatial ICA decomposition using FIX ( Salimi-

horshidi et al., 2014 ; Griffanti et al., 2014 ) in FSL ( Jenkinson et al.,

012 ). The resulting independent components (ICs) were classified as

ignal vs. noise, and a cleaned version of the data was provided by re-

oving the noise components. UK Biobank then used these data as input

o a dual regression procedure ( Nickerson et al., 2017 ) based on a group-
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evel template of "resting-state" networks (derived from spatial ICA ap-

lied to data of 4,181 subjects) at dimensionalities of either 25 or 100.

or subsequent analyses, 21/25 and 55/100 ICs were kept, as the other

omponents had been found in previous work to be “... clearly identifi-

ble as artefactual (i.e., not neuronally driven) ” ( Alfaro-Almagro et al.,

018 ). Given the importance of head motion effects for "resting state"

onnectivity analyses (e.g. Van Dijk et al. 2012 ), we double-checked

hether any such group differences existed in our dataset despite the

igorous preprocessing and quality control procedures of the UK Biobank

ipeline ( Alfaro-Almagro et al., 2018 ). Applying a Mann-Whitney U

est (scipy.stats.mannwhitneyu from SciPy) to subject-wise measures of

MRI head motion (UKB data field 25741), we failed to detect any sig-

ificant group differences ( p = 0.15; U = 3774.0). 

Importantly, the final timeseries resulting from this dual regression

pproach are based on spatial ICA and are therefore not temporally in-

ependent, which allows for subsequent application of functional and

ffective connectivity methods. Furthermore, an advantage of this dual

egression approach is that group-level information serves as a template

hich guides identification of resting state networks in individual sub-

ects and provides subject-specific timeseries and spatial components

 Nickerson et al., 2017 ). By contrast, relying on single-subject ICA for

ach participant would be potentially problematic because it would not

lways be possible to match the resulting components across subjects. 

ICs of resting-state data can be thought of as distinct functional

etworks ( Smith et al., 2009 ), and interactions between these networks

an be investigated by applying functional and effective connectivity

ethods to IC timeseries (for previous examples, see Goulden et al.,

014 ; Hyatt et al., 2015 ; Motlaghian et al., 2022 ). In this work, we

elected three sets of networks, which differed in the number of ICs

ncluded. Since we were interested in major functional networks

mplicated in depression ( Brakowski et al., 2017 ; Kaiser et al., 2015 ),

ur first IC selection targeted the default mode network (DMN),

entral executive network (CEN), salience network (SN), and the

orsal attention network (DAN). We selected the corresponding

omponents from the 21 components set provided by UK Biobank.

he DMN and DAN are mapped ( Miller et al., 2016 ) to IC indices

 and 3, respectively, while the left/right SN and left/right CEN

re mapped ( Gratton et al., 2018 ; Shen et al., 2018 ) to IC indices

, 5 and 13, 21, respectively. Furthermore, we considered full IC

ets of size 21 and 55 components (as provided by UK Biobank)

o explore the impact of increasing the number of networks/ICs on

rediction performance. The 55 components can be interrogated inter-

ctively via a web-based visualisation tool provided by UK Biobank:

ttps://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_ 

100_good_nodes.html . 

.4. Generative embedding 

Having completed the selection of timeseries, our analysis proceeded

o generative embedding (GE). GE requires two choices: (i) a generative

odel, and (ii) a ML method that uses posterior estimates from the gen-

rative model as features. 

Dynamic causal modelling (DCM) is a generative modelling ap-

roach for estimating effective (directed) connectivity in neuronal net-

orks from neuroimaging data ( Friston et al., 2003 ). It relies on specify-

ng a dynamical system that describes a network of neuronal populations

regions) and how they influence each other through synaptic connec-

ions. While the original formulation relies on external inputs to “drive ”

he system, more recent versions of DCM can be applied to resting state

ata. For example, stochastic DCM ( Li et al., 2011 ) uses stochastic differ-

ntial equations (SDEs) to allow for state noise at the neuronal level and

hus incorporates neuronal fluctuations. One major challenge stochas-

ic DCM faces is the computationally intensive inference of its hidden

tates. Spectral DCM ( Friston et al., 2014 ) circumvents this problem by

dopting a different approach which rests on a parameterized form for
5 
ndogenous fluctuations. This model assumes stationarity and generates

ross-spectral densities (the equivalent of the cross-covariance function

n the frequency domain). This corresponds to a deterministic system

hich can be solved more efficiently than the SDEs of spectral DCM.

aving said this, parameter inference for spectral DCM is still computa-

ionally relatively expensive, which makes it difficult to scale the model

o very large networks. Finally, regression DCM ( Frässle et al., 2017 ;

rässle et al., 2021 ) reformulates the neuronal state equation of a lin-

ar DCM as a Bayesian regression problem in the frequency domain.

his renders model inversion extremely fast and allows rDCM to scale

o large networks with hundreds of regions. 

Our analysis considered all of the DCM variants described above, i.e.

tochastic DCM ( Li et al., 2011 ), spectral DCM ( Friston et al., 2014 ), and

egression DCM ( Frässle et al., 2021 ). For all models and all IC sets, we

ssumed a fully connected network. As a reference, we also obtained

unctional connectivity estimates, based on Pearson correlation coeffi-

ients. 

To invert stochastic DCMs, we used the spm_dcm_estimate function

n SPM12, with a DCM struct as input which had its Y.y set to the 6

imeseries, a set to a 6 × 6 matrix of ones (fully connected network of

ndogenous connections), and Y.dt set to 0.735 (interscan interval). This

esulted in a 6 × 6 matrix of effective connectivity estimates, giving us 36

eatures for subsequent ML. Due to its high computational complexity,

t was not possible to run stochastic DCM with 21 and 55 IC timeseries.

For spectral DCM, we used the SPM12 function spm_dcm_fmri_csd

ith the same exact DCM struct as for stochastic DCM as input. The per-

ormance was notably faster than for stochastic DCM, but given that it

till took a few hours to run on the Euler high-performance computing

luster of ETH Zurich and that the scaling of the computational com-

lexity is supra-linear in the number of ICs (i.e., number of nodes in the

CM), we estimated that it would still take weeks or even months to

un the entire analysis (i.e., inversion of the DCMs for all subjects) for

1 or 55 IC timeseries. Hence, just like in the stochastic DCM case, we

estricted the spectral DCM analysis to 6 IC timeseries. 

Concerning rDCM, its high computational efficiency enabled us to

nalyse networks consisting of more components (6, 21, and 55 ICs),

esulting in 36, 441, and 3025 features, respectively. We used the rDCM

ode in TAPAS 4.0 ( Frässle et al., 2021 ), with Y.y set to the respective

ime series, and Y.dt set to 0.735. 

Finally, FC matrices were computed using the corrcoef function in

ATLAB. Since these matrices are symmetric along the diagonal, and

he diagonal is always 1, we took the upper triangle of these matrices

o be our features, resulting in 15, 210, and 1485 features for the re-

pective IC sets. It is important to note that FC does not capture any

nformation about the directionality of connections, as opposed to the

ffective connectivity measures from the DCM variants described above.

.5. Classification 

From the previous generative modeling, we had eight feature sets in

lace – functional connectivity for each IC set (6, 21, 55), stochastic and

pectral DCM for 6 ICs each, and three rDCM feature sets for 6, 21 and 55

Cs. These feature sets were subsequently used as input to discriminative

lassifiers. Initially, we restricted all analyses to the training set data,

nd only touched the test data once we had selected a feature set /

lassifier combination that performed best. Regardless of the specific

lassifier chosen, the steps taken to arrive at reported metrics are the

ame. 

Classifier training was performed using nested cross-validation (CV).

ested CV provides robustness against overfitting by optimizing hy-

erparameters in an inner CV loop while averaging the performance

gainst other partitions of the data in an outer CV loop ( Cawley and

albot, 2010 ; Stone, 1974 ). In our case, we used 10 folds in the outer

oop, and 5 folds in the inner loop. At the beginning of each iteration

f the outer loop (before training with hyperparameter optimization),

https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d100_good_nodes.html
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he confounds (sex, age, handedness, smoking, alcohol, illicit drugs,

annabis) were linearly regressed out using scikit-learn’s LinearRegres-

ion module. Then the data were normalized using the StandardScaler

odule and then the classifier was finally fit with the GridSearchCV

odule. This procedure yielded a set of performance measures for each

eature/classifier combination (see Results). 

After evaluation of the feature/classifier pairs on the training data,

here are several possibilities how models fitted on the training data

ould be applied to the test data. First, we evaluated whether the fea-

ure set/classifier combination that had performed best on the training

et generalized to the test set. Second, we performed a post hoc anal-

sis in which we examined each feature set together with the classi-

er that had been optimal for this specific feature set on the training

ata. 

In addition to evaluating classifiers based on their performance met-

ics, we also ran permutation tests to check for statistical significance

f the classification results. These tests were run both on our training

nd test set. To generate an empirical null distribution for a given fea-

ure/classifier pair, we randomly permuted the labels while considering

ubject pairs between the D- and D + groups, originating from the match-

ng of confounds. This is done by identifying a pair and flipping their la-

els with 0.5 probability. For the resulting permuted labels, the classifier

s trained again by re-running the entire nested CV procedure, yielding

erformance metrics under random conditions. This process is repeated

any times ( n = 2,000 in our case) to construct the empirical null dis-

ribution of performance metrics. We then compute the rank of the true

erformance metrics (obtained from the prediction without shuffling the

abels) by calculating how many instances of the null distribution per-

ormed better. Dividing the rank by the number of permutations yields

he p-value which we report. 

A separate question concerned the choice of hyperparameters for

he test set. While there are multiple options how hyperparameters for

rediction on the test set could be chosen, we decided to use all data

rom the training set for optimising hyperparameters: we ran a non-

ested 5-fold CV on the entire training set, picked the best-performing

yperparameters, and used those to predict on the test set. Other aspects

elevant for classification on the test set, such as permutation testing,

nd regression of confounds were identical to the training set. Please

ee Fig. 2 for a summary of the Materials and Methods described above.

Finally, we ran an interpretability analysis on our best-performing

eature set/classifier combination (rDCM estimates based on 55 ICs and

n SVM with a sigmoid kernel). This analysis is based on SHAP (SHap-

ey Additive exPlanations) ( Lundberg and Lee, 2017 ), a generalization

f Shapley values from game theory ( Shapley, 1953 ). For each feature,

HAP assigns an importance or attribution value that describes how

uch that feature contributes to the overall prediction. We used the

hap software (https://github.com/slundberg/shap) to create a Kernel-

xplainer that took as arguments: 

- a sigmoid SVM classifier trained on rDCM with 55 ICs. 

- a low-dimensional representation of the training data using

shap.kmeans with five clusters (for computational tractability; see

shap documentation). 

Then, we computed the SHAP values using the explainer’s shap_values

unction which takes the test data as an argument. This gives us a SHAP

alue for each feature for each subject, which we process (mean of SHAP

alue magnitude across subjects) to obtain the average impact of each

eature on model output magnitude. 

.6. Choice and implementation of classifiers 

A total of 17 classifiers were evaluated (please see Table 2 in the Re-

ults section), including six support vector machine (SVM) variants and

hree neural network (NN) variants. As described in the following, for

ost classifiers, we chose hyperparameters to optimize within the inner

ested CV loop. For two classifiers (Gaussian naive Bayes and quadratic
6 
iscriminant analysis) where hyperparameter tuning is less common, we

ept scikit-learn’s default parameters. 

A first classifier was logistic regression . Following the default parame-

ers of the scikit-learn version, we also used L2 regularization, used lbfgs

s our solver, and iterated at maximum 100 times. In the inner CV loop,

e optimized for the regularization parameter C (0.01, 0.1, 1, 10, 100),

hich is the inverse of regularization strength (smaller values enforce

tronger regularization). 

For the SVMs , we made use of Platt scaling ( Platt, 1999 ) to get prob-

bilistic outputs for use in an AUROC (area under the receiver-operating

haracteristic curve) metric. We attempted classification with all types

f kernels that scikit-learn has to offer, which include linear, radial basis

unction (RBF), sigmoid, and polynomial kernels with order 3, 4, and 5.

e again treated the regularization parameter C (0.01, 0.1, 1) as a hy-

erparameter and additionally tuned gamma (1, 0.1, 0.01, 0.001) —the

ernel coefficient for the RBF, sigmoid, and polynomial kernels. 

We included three neural network variants (1, 2, and 3 hidden layers)

hich treat their layer sizes as hyperparameters. All other parameters

re scikit-learn defaults (version 0.23.2), which means that – unlike lo-

istic regression – the activation function used is actually ReLU (Recti-

ed Linear Unit; Nair and Hinton 2010 ). 

Neural network hyperparameters 

• 1 hidden layer sizes: 100, 150, 300, 500. 
• 2 hidden layers sizes: (100, 50), (150, 20), (300, 100), (500, 250). 
• 3 hidden layers sizes: (100, 50, 5), (150, 20, 10), (500, 250, 50). 

Ensemble methods combine multiple base models to (hopefully) pro-

uce better results than each individual model would have on its own.

ne such algorithm we used is AdaBoost ( Freund and Schapire, 1997 ).

e employed the scikit-learn default base classifier (decision tree) treat-

ng the number of estimators (30, 50, 70) as a hyperparameter. For a

aseline comparison, we also attempted classification with a single deci-

ion tree with default scikit-learn parameters. Another ensemble method

sed in our classification is gradient boosting ( Friedman, 2001 ) with 50,

00, 150 estimators as hyperparameters. Finally, we also tried random

orest ( Breiman, 2001 ), with options to tune 100, 500, 1000 estimators.

or random forest, we additionally treated the maximum tree depth (10,

0, 60) as a hyperparameter. 

We also explored prediction with three supervised learning algo-

ithms that do not fall under the previous categories. Namely, Gaussian

aive Bayes ( Zhang, 2004 ), quadratic discriminant analysis ( Cover, 1965 )

both of which use scikit-learn default parameters – and k-nearest neigh-

ors ( Cover Hart, 1967 ) where we treated the number of neighbors (3,

, 7, 9) and leaf size (20, 30, 40) as hyperparameters. 

We used a variety of metrics to evaluate classifier performance in

rder to ensure a holistic view and to avoid potential pitfalls (such

s overemphasizing the importance of one metric). We report recall

sensitivity), precision (positive predictive value), F 1 score, accuracy,

nd AUROC (area under the receiver-operating characteristic curve). 

.7. Deviations from the original analysis plan 

Our analyses were pre-specified and are described in a

ime-stamped analysis plan (https://gitlab.ethz.ch/tnu/analysis-

lans/galioullineetal_ukbb_pred_depr). We subsequently extended this

nalysis plan in four ways: 

1. We extended the coverage of networks and, in addition to the 6 net-

works (represented by IC timeseries), also considered sets of net-

works consisting of 21 and 55 ICs, as provided by UK Biobank. 

2. We extended the connectivity methods by considering functional

connectivity (Pearson correlation coefficients) in addition to vari-

ants of DCM as generative models. 

3. In addition to SVMs, we decided to test a larger set of classifiers in

order to avoid that our results may depend on the particular choice

of classifier. 
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Fig. 2. Summary of the Materials and Methods, illustrating the process taken to create a predictive model of future depressive episode occurrence. 

Table 2 

Summary table of AUROC for each feature/classifier combination as determined by nested cross-validation on the training set. 

Bold represents the best result across classifiers for a given feature set, orange shading represents the best result across feature sets 

for a given classifier, and a star denotes a statistically significant result ( p ≤ 0.05). Some values are below 50%, but none of these is 

significantly different from chance. Ada: AdaBoost, DTC: Decision Tree Classifier, GBC: Gradient Boosting Classifier, GNB: Gaussian 

Naïve Bayes, kNN: k-Nearest Neighbors, SVM (lin): Support Vector Machine with linear kernel, LR: Logistic Regression, NN (n): 

Neural Network with n layers, SVM (n): Support Vector Machine with polynomial kernel order n, QDA: Quadratic Discriminant 

Analysis, SVM (rbf): Support Vector Machine with radial basis function kernel, RF: Random Forest, SVM (sig): Support Vector 

Machine with sigmoid kernel. 
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4. We included an analysis of feature importance on the test set using

SHAP values. 

The decision to extend the analyses in this manner took place

efore any prediction analyses of the training or test data were

onducted. 
7 
. Results 

We first present the performance of the cross-validated classifiers

or the training dataset and then proceed with the most promising fea-

ure/classifier combinations to the test dataset. Note: since our dataset

s balanced, accuracy as a metric implies balanced accuracy. 
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Table 3 

Summary of all metrics on the top five feature set/classifier combination as 

determined by nested cross-validation on the training set. Bold indicates the 

best model for the given metric. 

Features + Model Precision Recall F 1 Score Accuracy AUC 

rDCM(55) + SVM (sig) 0.64 0.60 0.62 0.63 0.66 

rDCM(55) + RF 0.63 0.58 0.60 0.62 0.66 

rDCM(55) + SVM (3) 0.63 0.59 0.61 0.62 0.65 

rDCM(55) + SVM (rbf) 0.64 0.58 0.61 0.62 0.65 

rDCM(21) + SVM (sig) 0.62 0.57 0.59 0.61 0.64 

Table 4 

Summary of all metrics on the top five feature/classifier combinations on the 

test set. 

Features + Model Precision Recall F 1 Score Accuracy AUC 

rDCM(55) + SVM (sig) 0.63 0.56 0.60 0.62 0.64 

FC(21) + GNB 0.59 0.60 0.59 0.59 0.58 

FC(6) + SVM (sig) 0.59 0.59 0.59 0.59 0.61 

rDCM(21) + SVM (sig) 0.60 0.51 0.55 0.58 0.59 

FC(6) + Log Res 0.57 0.52 0.54 0.57 0.61 
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Fig. 3. ROC curve for sigmoid SVM paired with rDCM(55) on the training set 

run with nested cross validation. 

t  

A  

m  

v  

I  

f

 

m  

t  

v

3

 

g  

t  

o  

c  

t  

l

.1. Training set 

Table 2 provides an overview of prediction performance on the train-

ng set in the nested cross-validation setting. Altogether, 17 different

lassifiers were evaluated (including four SVM variants and three neu-

al network variants). We report AUROC of all the features run with

ach classifier ( Table 2 ) and we also report all metrics for the five best

eature/classifier combinations ( Table 3 ). 

Having run all feature set/classifier pairs on the training data us-

ng nested cross-validation, we found that a sigmoid SVM paired with

n rDCM taking 55 ICs – referred to subsequently as rDCM(55) – as

nput performed best ( Tables 2 and 3 ). In terms of performance, ap-

lying a sigmoid SVM to rDCM connectivity estimates based on 55 ICs

esulted in an AUROC of 0.66 ( Table 3 ). The other performance metrics

or this combination were: precision = 0.64, recall = 0.60, F1 score = 0.62,

ccuracy = 0.63 ( Table 3 ). 

In general, connectivity estimates by rDCM enabled better predic-

ions, regardless of classifier (see Table 2 , orange shading): for 15 out of
Fig. 4. (A) ROC curve of rDCM (55 ICs) with sigmoid SVM run on test data. (B) 

8 
he 17 classifiers tested, one of the rDCM feature sets resulted in the best

UROC (in 11/15 cases, the best feature set was rDCM(55)). Further-

ore, SVMs tended to perform better than other classifiers, with SVM

ariants having highest accuracy for 6 out of 8 connectivity feature sets.

n particular, the sigmoid SVM was the best-performing classifier for 3

eature sets, more than any other classifier. 

Based on these results, we chose rDCM(55) with sigmoid SVM to

ove forward to the test set. The test data had not been touched until

his point to prevent any leakage of information and ensure a thorough

erification of the generalisability of our prediction model. 

.2. Test set 

The prediction of the best-performing approach on the training set

eneralized to the test data: the application of a sigmoid SVM to connec-

ivity estimates by rDCM (55 ICs) from the test set showed an AUROC

f 0.64 ( Fig. 4 A). This prediction performance was significantly above

hance: Fig. 4 B shows that the achieved accuracy of 62% is well outside

he null distribution generated by predictions on randomly permuted

abels ( p < 0.001). 
Permutation test ( n = 2,000) run on test data with accuracy as the metric. 
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Fig. 5. Top 100 Shapley values for sigmoid SVM paired with rDCM(55) on the test data. The bottom half shows outgoing (efferent) connections from each of the 55 

ICs, the top half the incoming (afferent) connections. We used the Circlize package in R to generate these figures ( Gu et al., 2014 ). 
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data. 
To get a better understanding of the generalization performance

e conducted a post-hoc analysis on other well-performing fea-

ure/classifier pairs ( Table 4 ) from the nested cross-validation and as-

essed their performance on the test data. We defined “well-performing ”

s the best classifier in general, but for feature sets where another clas-

ifier performed better, we selected the latter instead. From the 13 clas-

ifiers tested post-hoc, only three other pairs had above-chance perfor-
9 
ance on the test set, namely rDCM (21 ICs) with sigmoid SVM (58%

ccuracy, p = 0.019), functional connectivity (6 ICs) with sigmoid SVM

59% accuracy, p = 0.007), and functional connectivity (21 ICs) with

aussian Naïve Bayes (59% accuracy, p -value = 0.012). All of these per-

ormed worse with at least a 3% drop in accuracy, leaving the rDCM (55

Cs) with sigmoid SVM as the best-performing model overall on the test
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Fig. 6. This figure contains two rearranged plots of the results in Fig. 5 . As in Fig. 5 , the top 100 Shapley values for sigmoid SVM paired with rDCM(55) on the 

test data are shown, but now ordered according to the network parcellation by Yeo et al. (2011) . In panel A, the connections are coloured according to the ICs they 

originate from, whereas in panel B, the connections are coloured according to the ICs they target. Please note that there is no precise match between ICs from the UK 

Biobank and the networks from Yeo et al. (2011) , and the correspondence implied by the colouring in this figure is only approximate. For technical details, please 

see the main text. 

Fig. 7. Shapley value distribution for sigmoid SVM paired with rDCM(55) on the test data. Values to the right of the dashed red line are in the top 100. 

 

p  

T  

f  

t  

g  

t  

I  

f  

r  

I  

i  

w  

i  
Finally, we computed the SHAP values ( Fig. 5 ) for our best-

erforming model, the sigmoid SVM classifier paired with rDCM(55).

his assesses the contribution of each connection to the prediction per-

ormance. Since rDCM provides estimates of effective (directed) connec-

ivity, we have two SHAP value estimates for each IC, one for the out-

oing connection, and one for the incoming connection. We visualized

he top 100 SHAP values as a circular plot ( Gu et al., 2014 ), where each
10 
C is shown twice, and the bottom half represents the associated values

or the outgoing connections. The width of each displayed connection

eflects the magnitude of the SHAP value, and the width of the coloured

C label on the circle represents the cumulative SHAP value for outgo-

ng or incoming connections of that node. Fig. 5 shows that connections

ith the top 100 SHAP values were not confined to a few networks but

ncluded almost all ICs, with very few exceptions. Put simply, during



H. Galioulline, S. Frässle, S.J. Harrison et al. NeuroImage 273 (2023) 119986 

t  

t  

t  

w  

a  

c  

b  

Y  

c  

c  

0

 

w  

n  

a  

t  

3  

c

4

 

(  

2  

f  

a  

o  

m  

J  

B  

F

 

d  

i  

s  

e  

i  

o  

e  

i  

T  

i  

p

 

fi  

i  

c  

b  

e  

o  

e  

t

 

n  

m  

p  

T  

t  

s  

T  

s  

w  

i  

b  

o  

a  

c

 

k  

r  

i  

(  

o  

t  

s  

t  

S  

s

 

o  

–  

e  

o  

a  

t  

t

 

r  

G  

m  

e  

t  

d  

i  

a

 

p  

w  

b

(  

 

 

 

 

 

 

 

 

(  

 

 

 

 

 

(i  

 

 

(i  

 

 

 

 

 

 

 

 

Stephan (2022) ). 
he "resting" state of unconstrained cognition the participants were in,

he most predictive connections were found all over the brain. In order

o facilitate the interpretation of the results in Fig. 5 for readers familiar

ith the "resting state" literature, we followed a reviewer’s suggestion

nd re-plotted ( Fig. 6 ) the same results in reference to the network par-

ellation by Yeo et al. (2011) . Given the absence of a direct mapping

etween the ICs provided by UK Biobank and the networks from the

eo parcellation, we assigned each IC to that network from the Yeo par-

ellation with which it showed the greatest spatial overlap (computed as

orrelation over voxels). Those ICs where the correlation was less than

.1 were assigned to an "undefined" network (grey ICs in Fig. 6 ). 

Furthermore, we examined the entire distribution of SHAP values,

hich is shown as a histogram in Fig. 7 . This demonstrates that all con-

ections contribute to the model’s prediction, albeit most of them to

 small degree. The distribution shows considerable spread and a long

ail, where the contribution of the most important connection (from IC

4 to IC 24; compare Fig. 5 ) is two orders of magnitude larger than

onnections at the mode of the histogram. 

. Discussion 

MDD is a syndrome with heterogenous disease trajectories

 Merikangas et al., 1994 ) and variable treatment responses ( Rush et al.,

006 ). Given the importance for clinical management, predicting

uture clinical outcomes of individual MDD patients has become

n important topic in computational psychiatry. In particular, vari-

us fMRI studies have examined the feasibility of predicting treat-

ent response (e.g. Harris et al. 2022 ; Hopman et al. 2021 ;

u et al. 2020 ; Osuch et al. 2018 ; Queirazza et al. 2019 ), relapse (e.g.

erwian et al. 2020 ; Lawrence et al. 2022 ), or disease trajectories (e.g.

rässle et al. 2020 ; Schmaal et al. 2015 ) in individuals with MDD. 

By contrast, there have been hardly any attempts to use fMRI to ad-

ress another challenge of similar importance: the early detection of

ndividuals who are at risk of experiencing a future episode of depres-

ion. Given the high frequency of a prolonged remitting-relapsing dis-

ase course after a first episode of MDD ( Eaton et al., 2008 ), identify-

ng at-risk individuals is crucial for enabling the targeted deployment

f preventive measures and early interventions. So far, to our knowl-

dge, there has only been a single study that used fMRI for detecting

ndividuals at-risk for future depression ( Hirshfeld-Becker et al., 2019 ).

his previous study used rs-fMRI and functional connectivity measures

n a small sample of individuals with familial risk for MDD (N = 33) for

rediction. 

The study presented in this paper is novel in several ways. It is the

rst study using generative models of fMRI data as a basis for predict-

ng future depressive episodes, using three different variants of DCM, in

omparison to simpler functional connectivity measures. It uses a large

alanced sample size ( N = 906), carefully matches groups with pres-

nce and absence of depressive symptoms, examines the combination

f 8 connectivity feature sets with 17 classifiers in a training set, and

valuates the generalisability of the best predictions using a held-out

est set. 

The results from the training set ( Table 2 ) indicated that the combi-

ation of the rDCM(55) feature set (i.e. rDCM-based connectivity esti-

ates between 55 networks or ICs) and a SVM (with a sigmoid kernel)

erformed best, showing an AUROC of 0.66 and an accuracy of 63%.

his result was significantly above chance, as indicated by permutation

esting ( p = 0.001, Fig. 3 ). Moreover, across classifiers, rDCM demon-

trated higher predictive value than other connectivity methods (see

able 2 ): for 15 out of the 17 classifiers tested, one of the rDCM feature

ets resulted in the best AUROC; in 11/15 cases, the best feature set

as rDCM(55). Examining the results along the other dimension of our

nvestigation, i.e. across all connectivity feature sets, SVMs performed

etter than other classifiers: for 6 out of 8 connectivity feature sets, one

f the SVM variants had the highest accuracy. In particular, a SVM with
11 
 sigmoid kernel performed best for 3 feature sets, surpassing any other

lassifier. 

Evaluating the best combination (i.e. rDCM(55) + SVM with sigmoid

ernel) on the test set confirmed the generalisability of the predictions,

esulting in an AUROC of 0.64 and an accuracy of 62%. This was signif-

cantly above chance ( p < 0.001), as confirmed by permutation testing

 Fig. 4 B). In a post-hoc analysis, we also evaluated the predictive value

f all other connectivity feature sets on the test set; notably, for each fea-

ure set, we used the classifier that had performed best on the training

et. These analyses showed that three other combinations of connec-

ivity features/classifiers (rDCM(21) + sigmoid SVM, FC(6) + sigmoid

VM, and FC(21) + Gaussian Naïve Bayes) also achieved significant re-

ults, although with slightly lower accuracy (58-59%). 

In short, our results thus demonstrate that a GE procedure – based

n applying rDCM to rs-fMRI timeseries from a large number of ICs (55)

enabled the best predictions about the occurrence of future depressive

pisodes within a 3-year period. Having said this, the superiority of GE

ver a simpler prediction procedure based on FC estimates was not large,

mounting to 3% higher accuracy and 0.03 higher AUROC compared to

he combination of FC(6) + sigmoid SVM. A binomial test indicated that

his difference in accuracy was not significant ( p = 0.315). 

The lack of a decisive advantage of generative embedding in this

s-fMRI study contrasts with previous task-based fMRI studies in which

E based on DCM was clearly superior to predictions based on FC esti-

ates (e.g. Brodersen et al. 2011 , 2014 ; Frässle et al., 2018 , 2020 ). For

xample, DCM estimates of effective connectivity during a face percep-

ion task allowed for substantially more accurate predictions of MDD

isease trajectories than FC estimates: balanced accuracies for predict-

ng a chronic course vs. remission were 79% for DCM and 50% for FC,

 difference that was highly significant ( Frässle et al., 2020 ). 

In order to understand the limited advantage of GE over FC-based

rediction in this study, it is useful to first consider the general reasons

hy one would, in general, expect GE to show superior performance. In

rief: 

i) GE exploits the fact that a generative model partitions data into

signal and noise. Using model parameter estimates (as a low-

dimensional representation of signal) as features for subsequent ML

ensures that only meaningful information underpins training of clas-

sifiers. This makes it less likely that predictions are informed by noise

and do not generalize. By contrast, measures of functional connec-

tivity, such as correlation coefficients, reflect both signal and noise.

As highlighted by Friston (2011) , functional connectivity estimates

based on correlations are highly susceptible to changes in the signal-

to-noise ratio of data. 

ii) A generative model like DCM distinguishes different mechanisms

how measured signal in a system of interest is caused, e.g. connec-

tions between system nodes or external inputs. This allows predic-

tions to be differentially informed by distinct system mechanisms.

By contrast, FC cannot distinguish whether co-varying signal in two

brain regions is caused by shared input or by connections between

the regions. 

ii) DCM provides directed connectivity estimates, allowing one to ob-

tain separate weights for reciprocal connections between regions.

By contrast, FC can only provide undirected estimates of connection

strengths. 

v) From a classical test theory perspective, test-retest reliability of con-

nection strength estimates would be considered an important prereq-

uisite for predictive validity. Concerning rs-FC, test-retest reliability

has been examined in numerous studies; a recent meta-analysis re-

ported that, on average, individual connection estimates have lim-

ited test-retest reliability ( Noble et al., 2019 ). A direct comparison

between FC and rDCM-based estimates of connectivity on identi-

cal data (rs-fMRI and multiple tasks) demonstrated that rDCM per-

formed more favourably in this regard (see Fig. 3 in Frässle and
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Considering these general factors, one possibility why we only found

 limited advantage of GE over FC-based predictions in this study re-

ates to (i) above: in the present study, connectivity was estimated

rom timeseries that resulted from ICA decomposition and subsequent

manual) removal of components that were identified as noise ( Alfaro-

lmagro et al., 2018 ). This approach may have diminished the differ-

nce between GE and FC-based prediction with regard to denoising. For

omparison, in previous comparisons of GE and FC-based predictions

e.g. Brodersen et al. 2011 , 2014 ; Frässle et al., 2018 , 2020 ), timeseries

ere obtained by computing the first principal component from regional

OLD measurements, which does not involve a specific distinction be-

ween signal and noise. Another possible explanation derives from (ii):

pplication of rDCM to rs-fMRI data essentially means that the model

switches off" external inputs ( Frässle et al., 2021 ). This reduces the su-

eriority in representational richness of GE. 

In summary, this suggests that, in the current setting of IC-based rs-

MRI timeseries, only factors (iii) and (iv) – but not factors (i) and (ii)

could potentially contribute to higher performance of GE. In order to

btain an impression of the potential impact of factor (iii) – the ability

f DCM to obtain separate weights for reciprocal connections between

etwork nodes – we visually explored the asymmetries of node-level

HAP values for incoming versus outgoing connections. For each of the

5 network nodes (ICs), Fig. 8 plots SHAP values summed across all in-

oming (afferent) and outgoing (efferent) connections, respectively. Vi-

ually, it is apparent that for many of the network nodes, the explanatory

ontributions of incoming versus outgoing connections differ consider-

bly (up to 59%). A more fine-grained plot of connection-specific SHAP

alues is provided by Fig. 9 . 

These plots also illustrate a disadvantage of the analysis approach

e have chosen in the current study. Specifically, using ICs as network

odes diminish the advantage GE usually enjoys in terms of rendering

redictions neurophysiologically interpretable. For example, as shown

y Figs. 5 and 8 , the connection with the largest SHAP value is the con-

ection from IC 34 to IC 24. Both of these components include a set of

ronto-parietal areas: IC 34 includes bilateral frontal regions that appear

o match the location of the frontal eye fields as well as more anterior

arts of the superior parietal cortex. By contrast, IC 24 contains more

osterior bilateral parietal areas, including large parts of bilateral intra-

arietal sulcus, as well as parts of right middle frontal gyrus and right

iddle/inferior temporal gyrus. Given this complex anatomical config-

ration, the biological interpretation of a (directed) functional coupling

etween IC 34 and IC 24 is not as straightforward as a functional cou-

ling between specific frontal and/or parietal areas. While the FC be-

ween these components does not enable any easier interpretations, this

xample illustrates that the usual interpretive advantage of GE tends to

e lost when using IC components as nodes of networks. 

Four further aspects of the results deserve discussion. First, it may

nitially seem surprising that SVM turned out to be the most successful

lassifier in our comparison, surpassing potentially more powerful meth-

ds like neural networks. However, this result is compatible with several

ecent reports that, for neuroimaging data, kernel-based methods like

VMs (and, in some cases, even simpler linear models) perform equiv-

lently to neural networks for sample sizes up to 10,000 ( Cole et al.,

017 ; He et al., 2020 ; Schulz et al., 2020 ). 

Second, in our post-hoc analysis of connectivity features/classifier

ombinations on the test set, three of four significant predictions used

he same classifier, an SVM with a sigmoid kernel. Strikingly, FC

chieved a significant 59% predictive accuracy using only 6 ICs, whereas

he more accurate prediction by rDCM (62%) used 55 ICs, respectively.

he resulting difference in the number of features is substantial (15 for

C versus 3025 for rDCM), and it is not immediately clear why predic-

ions based on functional vs. effective connectivity differed greatly in

he preferred dimensionality of the feature set. One speculative expla-

ation – which would be consistent with the findings in Figs. 7 and 8 – is

hat differences in the strengths of reciprocal between-network connec-

ions provide subtle but meaningful information that is distributed over
12 
any connections (compare factor (iii) above). This type of information

ould only be reflected by rDCM, but not by FC-based, connectivity

stimates. More generally, it is not clear why FC(6) performed so well

n the test data at all. The nested CV on the training data did not in-

icate that this feature set might be particularly predictive (maximum

ccuracy of FC-based predictions with any classifier was 54%, none of

hem significant). The finding of a higher accuracy (59%) on the test

et in our post-hoc analysis was surprising. It might be a chance result

ue to the variance inherent in CV procedures ( Varoquaux, 2018 ) but

therwise lacks a compelling explanation. 

Third, contrary to our expectations, predictions based on stochastic

nd spectral DCM did not generalise to the test set. One possible reason

or the lack of successful generalisation is that the higher complexity of

he model formulation (e.g. the flexible hemodynamic component and

he more sophisticated noise model) could make parameter estimation

ess reliable, e.g. due to greater abundance of local extrema in the objec-

ive function, which would be expected to harm generalisability. This

ossibility is supported by a recent investigation of parameter recovery

f spectral DCM and rDCM which found more accurate parameter recov-

ry for the latter (Frässle et al., 2021) . Perhaps even more importantly,

owever, we could only run spectral and stochastic DCM for 6 ICs on our

luster; for larger feature sets, their compute time (within the context of

ur entire analysis pipeline) became prohibitively long. However, con-

idering the success of rDCM based on 55 ICs, it is plausible that spectral

nd stochastic DCM may have performed better if we had been able to

un them with larger IC sets (21 and 55). 

Fourth, one of the reviewers asked whether the classifier may have

xploited health-related group differences at the time when the fMRI

can was obtained (T1; see Fig. 1 ). This question is of particular interest

ith regard to anxiety and cardiovascular disorders, given that these

linical conditions are associated with greater risk for depression. We

nvestigated this possibility by statistically comparing the number of

 + and D- individuals showing indications of anxiety and cardiovascu-

ar disorders, respectively, at T1. Concerning anxiety, since we did not

nd detailed questionnaire data on anxiety at T1 in the UK Biobank, we

sed the UKB data field 1980 as a proxy. This data field contains the

esponses to a question ("Are you a worrier?") which serves to identify

nxious feelings in participants and was asked at T1. With regard to

ardiovascular disorders, we extracted information from the UKB data

eld 20002, counting the number of participants with angina, heart at-

ack/myocardial infarction, and heart failure/pulmonary odema. Using
2 tests, we found a significant difference between D + and D- groups

or anxiety (214 "worriers" in D + and 174 in D-; p = 0.0088) but not for

ardiovascular disorders (42 patients in D + and 32 in D-; p = 0.27).

his finding suggests that future extensions of our current approach

hould take into account anxiety as a potential confound, ideally ob-

aining more precise measures of (trait) anxiety than was possible for us

n this study. 

How does the prediction performance achieved in this study com-

are to previous results in the literature? The only previous fMRI study

n predicting future depression ( Hirshfeld-Becker et al., 2019 ) used FC

stimates based on rs-fMRI data from six regions, achieving 92% ac-

uracy. However, this study recruited never-depressed children with

amilial risk for MDD, as opposed to never-depressed participants from

he general population as in our study. Additionally, given the more

pecific focus of the previous study, only 33 participants were available

or classification (25 at-risk children, eight controls); this small sample

ize did not allow for verification in a held-out dataset. Another useful

although not fMRI-based) comparison study utilized structural MRI to-

ether with clinical data, questionnaires, and environmental variables

 Toenders et al., 2022 ). The study used a large training set (N = 407 ado-

escents) and an independent test set (N = 137), achieving an AUROC

etween 0.68 and 0.72. 

It is also instructive to consider the results from non-imaging studies

hat used demographic, socioeconomic, and clinical variables for pre-

icting the future onset of depression. When considering those studies
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Fig. 8. SHAP values summed across the incoming (afferent) and outgoing (efferent) connections of each IC. Blue numbers indicate the % difference in SHAP values 

for afferent and efferent connections. The plot concerns predictions based on rDCM(55) estimates and SVM with a sigmoid kernel. 
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hat had large sample sizes (i.e. N > 500) and tested for generalisability

n an independent test set, the reported AUROC values in the literature

ange between 0.71 and 0.87 ( Caldirola et al., 2022 ; King et al., 2008 ;

ibrenza-Garcia et al., 2021 ; Na et al., 2020 ; Xu et al., 2019 ). It is note-

orthy, however, that these studies mostly used imbalanced datasets

here the number of negative cases (no future depressive episode) far

utnumber the positive cases. For example, in the two studies with

he highest prediction performance – i.e., AUROC of 0.87 ( Na et al.,

020 ) and 0.85 ( Caldirola et al., 2022 ) – individuals with future depres-

ive episodes amounted to approx. only 8% and 7% of the respective

amples. Even when techniques such as oversampling are used (as in

a et al. 2020 ; but not always the case in other studies), such imbal-

nce can lead to overly optimistic estimates of prediction performance.

Our study has strengths and limitations. Its strengths include

n ex ante analysis plan (https://gitlab.ethz.ch/tnu/analysis-

lans/galioullineetal_ukbb_pred_depr) and a large (N > 900) balanced

ample in which groups were carefully matched for 7 potentially

onfounding variables (age, sex, handedness, tobacco smoking fre-

uency, alcohol consumption frequency, ongoing addictions to illicit

rugs, and historical cannabis consumption). This degree of matching

s unusually comprehensive (for comparison, in clinical trials and

bservational studies, it is rarely possible to match for more than two

ariables) and only made possible by the large resource of the UK

iobank. Furthermore, we conducted a comprehensive comparison

f 8 different connectivity measures and 17 classifiers, ensuring that

raining and test data were strictly separated throughout all anal-

ses. This strict separation of training and test data, with no leak

f information, provided robust protection against overfitting and

nsured that the classification accuracies found in the test set were not

nflated. 

Concerning weaknesses, our study has a retrospective design which

llows for less robust conclusions than from a prospective study. Fur-

hermore, one potential weakness of the variants of DCM used in this

tudy is that they all rely on variational Bayesian techniques, rendering

odel inversion susceptible to local extrema in the objective function

 Daunizeau et al., 2011 ). In theory, this could have been addressed by

 multi-start procedure, as in previous work with DCM ( Schöbi et al.,

021 ; van Wijk et al., 2018 ). In practice, however, we were unable to im-
13 
lement this approach given that it would have led to an explosion of the

lready very substantial compute time. Finally, the greatest limitation

f our study is the definition of depressive episodes. Given the hetero-

eneity of clinical data in the UK Biobank and the lack of systematic in-

ormation about absence/presence of a clinical diagnosis of depression,

e combined multiple sources of information within UK Biobank – i.e.,

linical records, questionnaires (PHQ, MHQ) and self-report specifically

n issues of depression – to identify indicators of at least one depres-

ive episode within three years after the fMRI scan. Clearly, this par-

ial reliance on self-report is not ideal; additionally, the resulting group

f participants with a putative depressive episode (D + group) is likely

eterogeneous and might include people with very different severities

f depression. The definition of a depressive episode in the D + group

anged from a full clinical diagnosis to answering “yes ” to the question

hether they ever had a time when they were feeling depressed or down

or at least a whole week. While the latter indicator is broad, relies on

elf-report and likely leads to inclusion of mild cases, it is noteworthy

hat a depression phenotype based on the above question plus additional

onditions ( Smith et al., 2013 ) was found to be useful in a genome wide

ssociation study (GWAS), with results that closely correlated to those

f an ICD-based MDD phenotype ( Howard et al., 2018 ). 

Following a reviewer’s suggestion, we explored the impact of het-

rogeneity in the D + group by examining the classification accuracy

f D + individuals based on the indicator category of their depressive

pisode. In brief, in the test set, we found an accuracy of 92% for indi-

iduals who had been assigned to the D + group due to their responses

n the online Mental Health Questionnaire fields focused on depression

iagnosis. Conversely, the classification accuracy for the category “ever

ad a time when they were feeling depressed or down for at least a

hole week ” was only 36%. This suggests that MHQ-related fields are a

tronger indicator of depressive episodes compared to self-reported “de-

ressed for a week ” and hence enable the classifier to distinguish D +
nd D- individuals more easily. 

Furthermore, there is rarely information on when exactly within the

-year period a depressive episode occurred; the likely interindividual

ariability in the latency of symptom onset after the fMRI scan would

urther add to the heterogeneity of the D + group. Having said this,

ur approach is similar to previous analyses of depression in the UK
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Fig. 9. Matrix of connections between all ICs, showing the connections’ colour-coded SHAP values (test data) for predictions based on rDCM(55) estimates and 

sigmoid SVM. ICs are ordered according to summed SHAP values. 
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iobank that also relied on self-report and questionnaires like the MHQ

 Howard et al., 2020 ). More generally, a pragmatic approach to iden-

ifying individuals with likely clinical characteristics is often unavoid-

ble when working with large heterogeneous databases (for an example

sing self-reported depression in genetics, see Wray et al., 2018 ). The

hallenge how to optimally extract data from the UK Biobank for stud-

es of MDD is being addressed by ongoing methodological developments

 Dutt et al., 2021 ) which will help to improve and standardise future
tudies. t  

14 
Overall, our results have four implications. First, given the challeng-

ng nature of the prediction problem tackled in the study (i.e. occurrence

f indicators of depressive episodes, as opposed to full clinical diagnoses,

ver a three-year period), it is encouraging that significant predictions

n held-out data can be obtained at all. Second, despite this success

nd the potential for further optimisation, our study suggests that fMRI

n its own may not be sufficient for clinically useful predictions. Fu-

ure studies of predicting depression should utilise fMRI-based connec-

ivity estimates in conjunction with additional data (e.g. demographic,
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ocioeconomic, clinical). Third, while GE results based on rDCM were

onsistently successful across all classifiers and enjoyed a numerical ad-

antage over FC for clinical predictions, performance differences were

odest and nonsignificant. The magnitude of performance differences

etween GE and FC in this study and previous work suggests that adding

ask-based fMRI may enhance the difference in predictive accuracy. Fi-

ally, using IC components as network nodes diminishes the usual ad-

antage of GE with regard to biological interpretability of predictions. In

rder to maintain the interpretability of GE based predictions, it would

eem advantageous to compute effective connectivity between disjoint

reas from parcellations based on combined anatomical-functional cri-

eria (e.g. Fan et al. 2016 ; Glasser et al. 2016 ). We hope that these con-

lusions will be useful for future work on predicting the occurrence of

epressive episodes. 

ata and code availability 

Our study primarily relies on the dataset provided by the UK

iobank, which is made available to all qualified researchers via

heir website https://www.ukbiobank.ac.uk/. We provide our code

or dataset extraction and model training at https://gitlab.ethz.ch/

nu/code/galioullineetal_ukbb_pred_depr. Our computation and analy-

is was conducted using the computational cluster of the Swiss Federal

nstitute of Technology (ETHZ). 

eclaration of Competing Interest 

None. 

redit authorship contribution statement 

Herman Galioulline: Investigation, Software, Formal analysis,

riting – original draft, Visualization. Stefan Frässle: Investigation, Su-

ervision, Validation, Software, Methodology, Writing – review & edit-

ng. Samuel J. Harrison: Investigation, Supervision, Validation, Soft-

are, Methodology, Writing – review & editing. Inês Pereira: Investi-

ation, Validation, Writing – review & editing. Jakob Heinzle: Inves-

igation, Supervision, Validation, Software, Methodology, Writing – re-

iew & editing. Klaas Enno Stephan: Investigation, Conceptualization,

upervision, Methodology, Project administration, Funding acquisition,

riting – review & editing. 

cknowledgments 

This work was supported by the René and Susanne Braginsky

oundation (KES), the ETH Foundation (KES), and project grant

20030_179377 by the Swiss National Science Foundation (KES). This

esearch has been conducted using the UK Biobank Resource under Ap-

lication Number 60679. 

eferences 

dler, D.A., et al., 2006. Job performance deficits due to depression. Am. J. Psychiatry

163 (9), 1569–1576. doi: 10.1176/ajp.2006.163.9.1569 . 

lfaro-Almagro, F., et al., 2018. Image processing and quality control for the first

10,000 brain imaging datasets from UK biobank. NeuroImage 166, 400–424.

doi: 10.1016/j.neuroimage.2017.10.034 . 

arch, D.M., et al., 2019. Early childhood depression, emotion regulation, episodic

memory and hippocampal development. J. Abnorm. Psychol. 128 (1), 81–95.

doi: 10.1037/abn0000392 . 

erwian, I.M., et al., 2020. The relationship between resting-state functional connectiv-

ity, antidepressant discontinuation and depression relapse. Sci. Rep. 10 (1), 22346.

doi: 10.1038/s41598-020-79170-9 . 

rakowski, J., et al., 2017. Resting state brain network function in major depression -

depression symptomatology, antidepressant treatment effects, future research. J. Psy-

chiatric Res. 92, 147–159. doi: 10.1016/j.jpsychires.2017.04.007 . 

reiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.

doi: 10.1023/A:1010933404324 . 

rodersen, K.H., et al., 2011. Generative embedding for model-based classification of fMRI

data. PLOS Comput. Biol. 7 (6), e1002079. doi: 10.1371/journal.pcbi.1002079 . 
15 
rodersen, K.H., et al., 2014. Dissecting psychiatric spectrum disorders by generative em-

bedding. NeuroImage Clin. 4, 98–111. doi: 10.1016/j.nicl.2013.11.002 . 

aldirola, D., et al., 2022. First-onset major depression during the COVID-19 pan-

demic: a predictive machine learning model. J. Affect. Disord. 310, 75–86.

doi: 10.1016/j.jad.2022.04.145 . 

awley, G.C., Talbot, N.L.C., 2010. On over-fitting in model selection and subsequent

selection bias in performance evaluation. J. Mach. Learn. Res. 11 (70), 2079–2107 . 

hikersal, P., et al., 2021. Detecting depression and predicting its onset using longitudinal

symptoms captured by passive sensing: a machine learning approach with robust fea-

ture selection. ACM Trans. Comput. Hum. Interact. 28 (1), 3. doi: 10.1145/3422821 ,

1-3:41 . 

ole, J.H., et al., 2017. Predicting brain age with deep learning from raw imag-

ing data results in a reliable and heritable biomarker. NeuroImage 163, 115–124.

doi: 10.1016/j.neuroimage.2017.07.059 . 

oleman, J.R.I., et al., 2020. Genome-wide gene-environment analyses of major depressive

disorder and reported lifetime traumatic experiences in UK Biobank. Mol. Psychiatry

25 (7), 1430–1446. doi: 10.1038/s41380-019-0546-6 . 

orrell, C.U., et al., 2017. Prevalence, incidence and mortality from cardiovascular disease

in patients with pooled and specific severe mental illness: a large-scale meta-analysis

of 3,211,768 patients and 113,383,368 controls. World Psychiatry 16 (2), 163–180.

doi: 10.1002/wps.20420 . 

over, 1965. Geometrical and statistical properties of systems of linear inequalities with

applications in pattern recognition. IEEE Trans. Electron. Comput. EC-14 (3), 326–

334. doi: 10.1109/PGEC.1965.264137 . 

over Hart, P., 1967. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13

(1), 21–27. doi: 10.1109/TIT.1967.1053964 . 

uijpers, P., et al., 2021. Psychological interventions to prevent the onset of depressive

disorders: a meta-analysis of randomized controlled trials. Clin. Psychol. Rev. 83,

101955. doi: 10.1016/j.cpr.2020.101955 . 

uijpers, P., Beekman, A.T.F., Reynolds, C.F., 2012. Preventing depression: a global pri-

ority. JAMA 307 (10), 1033–1034. doi: 10.1001/jama.2012.271 . 

aunizeau, J., David, O., Stephan, K.E., 2011. Dynamic causal modelling: A critical re-

view of the biophysical and statistical foundations. NeuroImage 58 (2), 312–322.

doi: 10.1016/j.neuroimage.2009.11.062 . 

utt, R.K., et al. 2021. Mental health in the UK Biobank: A roadmap to self-report measures

and neuroimaging correlates. hbm, doi: 10.1002/hbm.25690 . 

aton, W.W., et al., 2008. Population-based study of first onset and chronicity in ma-

jor depressive disorder. Arch. Gen. Psychiatry 65 (5), 513–520. doi: 10.1001/arch-

psyc.65.5.513 . 

an Eeden, W.A., et al., 2021. Predicting the 9-year course of mood and anxiety disor-

ders with automated machine learning: a comparison between auto-sklearn, naïve

Bayes classifier, and traditional logistic regression. Psychiatry Res. 299, 113823.

doi: 10.1016/j.psychres.2021.113823 . 

an, L., et al., 2016. The human brainnetome atlas: a new brain atlas based on connectional

architecture. Cereb. Cortex 26 (8), 3508–3526. doi: 10.1093/cercor/bhw157 . 

rässle, S., et al., 2017. Regression DCM for fMRI. NeuroImage 155, 406–421.

doi: 10.1016/j.neuroimage.2017.02.090 . 

rässle, S., et al., 2020. Predicting individual clinical trajectories of depression with gen-

erative embedding. NeuroImage Clin. 26, 102213. doi: 10.1016/j.nicl.2020.102213 . 

rässle, S., Aponte, E.A., Bollmann, S., Brodersen, K.H., Do, C.T., Harrison, O.K., Har-

rison, S.J., Heinzle, J., Iglesias, S., Kasper, L., Lomakina, E.I., Mathys, C., Müller-

Schrader, M., Pereira, I., Petzschner, F.H., Raman, S., Schöbi, D., Toussaint, B., We-

ber, L.A., Yao, Y., Stephan, K.E., 2021. TAPAS: An Open-Source Software Package

for Translational Neuromodeling and Computational Psychiatry. Front Psychiatry 12,

680811. https://doi.org/10.3389/fpsyt.2021.680811 . 

rässle, S., Harrison, S.J., Heinzle, J., Clementz, B.A., Tamminga, C.A., Sweeney, J.A.,

Gershon, E.S., Keshavan, M.S., Pearlson, G.D., Powers, A., Stephan, K.E., 2021. Re-

gression dynamic causal modeling for resting-state fMRI. Human Brain Mapping 42,

2159–2180. https://doi.org/10.1002/hbm.2535 . 

rässle, S., Lomakina, E.I., Kasper, L., Manjaly, Z.M., Leff, A., Pruess-

mann, K.P., Buhmann, J.M., Stephan, K.E., 2018. A generative model

of whole-brain effective connectivity. Neuroimage 179, 505–529.

https://doi.org/10.1016/j.neuroimage.2018.05.058 . 

rässle, S., Stephan, K.E., 2022. Test-retest reliability of regression dynamic causal mod-

eling. Netw. Neurosci. 6 (1), 135–160. doi: 10.1162/netn_a_00215 . 

rässle, S., Yao, Y., Schöbi, D., Aponte, E.A., Heinzle, J., Stephan, K.E., 2018. Generative

models for clinical applications in computational psychiatry. WIREs Cognitive Science

9, e1460. https://doi.org/10.1002/wcs.1460 . 

reund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line learn-

ing and an application to boosting. J. Comput. Syst. Sci. 55 (1), 119–139.

doi: 10.1006/jcss.1997.1504 . 

riedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann.

Stat. 29 (5), 1189–1232. doi: 10.1214/aos/1013203451 . 

riston, K.J., 2011. Functional and Effective Connectivity: A Review. Mary Ann Liebert,

Inc., New Rochelle, NY doi: 10.1089/brain.2011.0008 . 

riston, K.J., et al., 2014. A DCM for resting state fMRI. NeuroImage 94, 396–407.

doi: 10.1016/j.neuroimage.2013.12.009 . 

riston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. NeuroImage 19

(4), 1273–1302. doi: 10.1016/S1053-8119(03)00202-7 . 

BD Mental Disorders Collaborators, 2022. Global, regional, and national burden of 12

mental disorders in 204 countries and territories, 1990–2019: a systematic analy-

sis for the global burden of disease study 2019. Lancet Psychiatry 9 (2), 137–150.

doi: 10.1016/S2215-0366(21)00395-3 . 

lasser, M.F., et al., 2016. A multi-modal parcellation of human cerebral cortex. Nature

536 (7615), 171–178. doi: 10.1038/nature18933 . 

https://doi.org/10.1176/ajp.2006.163.9.1569
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1037/abn0000392
https://doi.org/10.1038/s41598-020-79170-9
https://doi.org/10.1016/j.jpsychires.2017.04.007
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1371/journal.pcbi.1002079
https://doi.org/10.1016/j.nicl.2013.11.002
https://doi.org/10.1016/j.jad.2022.04.145
http://refhub.elsevier.com/S1053-8119(23)00132-5/sbref0010
https://doi.org/10.1145/3422821
https://doi.org/10.1016/j.neuroimage.2017.07.059
https://doi.org/10.1038/s41380-019-0546-6
https://doi.org/10.1002/wps.20420
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1016/j.cpr.2020.101955
https://doi.org/10.1001/jama.2012.271
https://doi.org/10.1016/j.neuroimage.2009.11.062
https://doi.org/10.1002/hbm.25690
https://doi.org/10.1001/archpsyc.65.5.513
https://doi.org/10.1016/j.psychres.2021.113823
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1016/j.neuroimage.2017.02.090
https://doi.org/10.1016/j.nicl.2020.102213
https://doi.org/10.3389/fpsyt.2021.680811
https://doi.org/10.1002/hbm.2535
https://doi.org/10.1016/j.neuroimage.2018.05.058
https://doi.org/10.1162/netn_a_00215
https://doi.org/10.1002/wcs.1460
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1016/j.neuroimage.2013.12.009
https://doi.org/10.1016/S1053-8119(03)00202-7
https://doi.org/10.1016/S2215-0366(21)00395-3
https://doi.org/10.1038/nature18933


H. Galioulline, S. Frässle, S.J. Harrison et al. NeuroImage 273 (2023) 119986 

G  

G  

 

G  

G  

 

G  

 

G  

H  

 

H  

 

H  

 

H  

 

 

H  

 

H  

H  

 

J  

J  

 

K  

K  

 

 

K  

L  

 

L  

L  

 

 

L  

 

L  

 

M  

 

M  

 

M  

N  

 

N  

 

N  

 

 

N  

 

O  

 

P  

 

P  

 

 

P  

 

P  

 

Q  

 

R  

 

R  

 

R  

 

S  

 

S  

 

S  

 

S  

 

S  

 

 

S  

 

S  

 

S  

 

 

S  

 

S  

S  

 

S  

S  

S  

T  

 

 

V  

 

v  

 

V  

V  

 

V  

 

W  
ordon, J.A., 2016. On being a circuit psychiatrist. Nat. Neurosci. 19 (11), 1385–1386.

doi: 10.1038/nn.4419 . 

oulden, N. et al. (2014) ‘The salience network is responsible for switching between the

default mode network and the central executive network: Replication from DCM’,

NeuroImage , 99, pp. 180–190. https://doi.org/10.1016/j.neuroimage.2014.05.052 . 

ratton, C., Sun, H., Petersen, S.E., 2018. Control networks and hubs. Psychophysiology

55 (3). doi: 10.1111/psyp.13032 . 

riffanti, L., et al., 2014. ICA-based artefact removal and accelerated fMRI acqui-

sition for improved resting state network imaging. NeuroImage 95, 232–247.

doi: 10.1016/j.neuroimage.2014.03.034 . 

u, S.C., et al., 2020. Personalized prediction of depression in patients with newly diag-

nosed Parkinson’s disease: a prospective cohort study. J. Affect. Disord. 268, 118–126.

doi: 10.1016/j.jad.2020.02.046 . 

u, Z., et al., 2014. circlize implements and enhances circular visualization in R. Bioinfor-

matics 30 (19), 2811–2812. doi: 10.1093/bioinformatics/btu393 . 

arris, J.K., et al., 2022. Predicting escitalopram treatment response from pre-treatment

and early response resting state fMRI in a multi-site sample: a CAN-BIND-1 report.

NeuroImage Clin. 35, 103120. doi: 10.1016/j.nicl.2022.103120 . 

e, T., et al., 2020. Deep neural networks and kernel regression achieve comparable ac-

curacies for functional connectivity prediction of behavior and demographics. Neu-

roImage 206, 116276. doi: 10.1016/j.neuroimage.2019.116276 . 

irshfeld-Becker, D.R., et al., 2019. Intrinsic functional brain connectivity predicts onset

of major depression disorder in adolescence: a pilot study. Brain Connectivity 9 (5),

388–398. doi: 10.1089/brain.2018.0646 . 

opman, H.J., et al., 2021. Personalized prediction of transcranial magnetic

stimulation clinical response in patients with treatment-refractory depression using

neuroimaging biomarkers and machine learning. J. Affect. Disord. 290, 261–271.

doi: 10.1016/j.jad.2021.04.081 . 

oward, D.M., et al., 2018. Genome-wide association study of depression phenotypes in

UK Biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 9 (1),

1470. doi: 10.1038/s41467-018-03819-3 . 

oward, D.M., et al., 2020. Genetic stratification of depression in UK Biobank. Transla-

tional Psychiatry 10, 163. doi: 10.1038/s41398-020-0848-0 . 

yatt, C.J. et al. (2015) ‘Specific default mode subnetworks support mentalizing as re-

vealed through opposing network recruitment by social and semantic FMRI tasks’,

Human Brain Mapping , 36(8), pp. 3047–3063. https://doi.org/10.1002/hbm.22827 . 

enkinson, M., et al., 2012. FSL. NeuroImage 62 (2), 782–790.

doi: 10.1016/j.neuroimage.2011.09.015 . 

u, Y., et al., 2020. Connectome-based models can predict early symptom im-

provement in major depressive disorder. J. Affect. Disord. 273, 442–452.

doi: 10.1016/j.jad.2020.04.028 . 

aiser, R.H., et al., 2015. Large-scale network dysfunction in major depressive disorder: a

meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72 (6), 603–

611. doi: 10.1001/jamapsychiatry.2015.0071 . 

ing, M., et al., 2008. Development and validation of an international risk prediction

algorithm for episodes of major depression in general practice attendees: the PredictD

study. Arch. Gen. Psychiatry 65 (12), 1368–1376. doi: 10.1001/archpsyc.65.12.1368 .

upferberg, A., Bicks, L., Hasler, G., 2016. Social functioning in major depressive disorder.

Neurosci. Biobehav. Rev. 69, 313–332. doi: 10.1016/j.neubiorev.2016.07.002 . 

awrence, A.J., et al., 2022. Neurocognitive measures of self-blame and risk prediction

models of recurrence in major depressive disorder. Biol. Psychiatry Cogn. Neurosci.

Neuroimaging 7 (3), 256–264. doi: 10.1016/j.bpsc.2021.06.010 . 

i, B., et al., 2011. Generalised filtering and stochastic DCM for fMRI. NeuroImage 58 (2),

442–457. doi: 10.1016/j.neuroimage.2011.01.085 . 

ibrenza-Garcia, D., et al., 2021. Prediction of depression cases, incidence, and

chronicity in a large occupational cohort using machine learning techniques:

an analysis of the ELSA-Brasil study. Psychol. Med. 51 (16), 2895–2903.

doi: 10.1017/S0033291720001579 . 

in, S., et al., 2022. Prediction of depressive symptoms onset and long-term trajectories

in home-based older adults using machine learning techniques. Aging Ment. Health 0

(0), 1–10. doi: 10.1080/13607863.2022.2031868 . 

undberg, S.M., Lee, S.I., Guyon, I., et al., 2017. A unified approach to interpreting model

predictions. Advances in Neural Information Processing Systems. Curran Associates,

Inc . 

erikangas, K.R., Wicki, W. and Angst, J. (1994) ‘Heterogeneity of Depression: Classifica-

tion of Depressive Subtypes by Longitudinal Course’, The British Journal of Psychiatry ,

164(3), pp. 342–348. https://doi.org/10.1192/bjp.164.3.342 . 

iller, K.L., et al., 2016. Multimodal population brain imaging in the UK Biobank prospec-

tive epidemiological study. Nat. Neurosci. 19 (11), 1523–1536. doi: 10.1038/nn.4393 .

otlaghian, S.M. et al. (2022) ‘Nonlinear functional network connectivity in resting func-

tional magnetic resonance imaging data’, Human Brain Mapping , 43(15), pp. 4556–

4566. https://doi.org/10.1002/hbm.25972 . 

a, K.S., et al., 2020. Predicting future onset of depression among community dwelling

adults in the Republic of Korea using a machine learning algorithm. Neurosci. Lett.

721, 134804. doi: 10.1016/j.neulet.2020.134804 . 

air, V., Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann machines.

In: Proceedings of the 27th International Conference on International Conference on

Machine Learning, Madison, WI, USA. Omnipress (ICML’10), pp. 807–814 . 

ickerson, L.D., et al., 2017. Using dual regression to investigate network shape

and amplitude in functional connectivity analyses. Front. Neurosci. 11.

https://www.frontiersin.org/articles/10.3389/fnins.2017.00115 . Accessed: 25

September 2022 . 

oble, S., Scheinost, D., Constable, R.T., 2019. A decade of test-retest reliability of func-

tional connectivity: a systematic review and meta-analysis. NeuroImage 203, 116157.

doi: 10.1016/j.neuroimage.2019.116157 . 

such, E., et al., 2018. Complexity in mood disorder diagnosis: fMRI connectivity networks
16 
predicted medication-class of response in complex patients. Acta Psychiatr. Scand. 138

(5), 472–482. doi: 10.1111/acps.12945 . 

agliaccio, D., et al., 2014. Brain–behavior relationships in the experience and regulation

of negative emotion in healthy children: implications for risk for childhood depres-

sion. Dev. Psychopathol. 26 (4pt2), 1289–1303. doi: 10.1017/S0954579414001035 . 

apmeyer, M., et al., 2016. Prospective longitudinal study of subcortical brain vol-

umes in individuals at high familial risk of mood disorders with or without

subsequent onset of depression. Psychiatry Res. Neuroimaging 248, 119–125.

doi: 10.1016/j.pscychresns.2015.12.009 . 

latt, J.C., 1999. Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods. In: Advances in Large Margin Classifiers. MIT Press,

pp. 61–74 . 

oldrack, R.A., Huckins, G., Varoquaux, G., 2020. Establishment of best prac-

tices for evidence for prediction: a review. JAMA Psychiatry 77 (5), 534–540.

doi: 10.1001/jamapsychiatry.2019.3671 . 

ueirazza, F., et al., 2019. Neural correlates of weighted reward prediction error during

reinforcement learning classify response to cognitive behavioral therapy in depres-

sion. Sci. Adv. 5 (7), eaav4962. doi: 10.1126/sciadv.aav4962 . 

ocha, T.B.M., et al., 2021. Identifying adolescents at risk for depression: a prediction

score performance in cohorts based in 3 different continents. J. Am. Acad. Child Ado-

lesc. Psychiatry 60 (2), 262–273. doi: 10.1016/j.jaac.2019.12.004 . 

osellini, A.J., et al., 2020. Developing algorithms to predict adult onset internaliz-

ing disorders: an ensemble learning approach. J. Psychiatr. Res. 121, 189–196.

doi: 10.1016/j.jpsychires.2019.12.006 . 

ush, A.J., et al., 2006. Acute and longer-term outcomes in depressed outpatients requir-

ing one or several treatment steps: a STAR ∗ D report. Am. J. Psychiatry 163 (11),

1905–1917. doi: 10.1176/ajp.2006.163.11.1905 . 

alimi-Khorshidi, G., et al., 2014. Automatic denoising of functional MRI data: combining

independent component analysis and hierarchical fusion of classifiers. NeuroImage

90, 449–468. doi: 10.1016/j.neuroimage.2013.11.046 . 

ampson, L., et al., 2021. A machine learning approach to predicting new-onset de-

pression in a military population. Psychiatr. Res. Clin. Pract. 3 (3), 115–122.

doi: 10.1176/appi.prcp.20200031 . 

chmaal, L., et al., 2015. Predicting the naturalistic course of major depressive disorder us-

ing clinical and multimodal neuroimaging information: a multivariate pattern recog-

nition study. Biol. Psychiatry 78 (4), 278–286. doi: 10.1016/j.biopsych.2014.11.018 . 

chulz, M.A., et al., 2020. Different scaling of linear models and deep learning in UK-

Biobank brain images versus machine-learning datasets. Nat. Commun. 11 (1), 4238.

doi: 10.1038/s41467-020-18037-z . 

chöbi, D., Do, C.-T., Frässle, S., Tittgemeyer, M., Heinzle, J., Stephan, K.E.,

2021. Technical note: A fast and robust integrator of delay differential

equations in DCM for electrophysiological data. NeuroImage 244, 118567.

doi: 10.1016/j.neuroimage.2021.118567 . 

hapero, B.G., et al., 2019. Neural markers of depression risk predict

the onset of depression. Psychiatry Res. Neuroimaging 285, 31–39.

doi: 10.1016/j.pscychresns.2019.01.006 . 

hapley, L.S. (1953) ‘17. A value for n-person games’, in 17. A Value for

n-Person Games. Princeton University Press, pp. 307–318. Available at:

doi: 10.1515/9781400881970-018 . 

hen, X., et al., 2018. Resting-state connectivity and its association with cogni-

tive performance, educational attainment, and household income in the UK

biobank. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3 (10), 878–886.

doi: 10.1016/j.bpsc.2018.06.007 . 

mith, D.J., et al., 2013. Prevalence and characteristics of probable major depression and

bipolar disorder within UK biobank: cross-sectional study of 172,751 participants.

PLoS One 8 (11), e75362. doi: 10.1371/journal.pone.0075362 . 

mith, S.M., 2009. Correspondence of the brain’s functional architecture during activation

and rest. pnas 106 (31), 13040–13045. doi: 10.1073/pnas.0905267106 . 

teffen, A., et al., 2020. Mental and somatic comorbidity of depression: a comprehensive

cross-sectional analysis of 202 diagnosis groups using German nationwide ambulatory

claims data. BMC Psychiatry 20 (1), 142. doi: 10.1186/s12888-020-02546-8 . 

tephan, K.E., et al., 2015. Translational perspectives for computational neuroimaging.

Neuron 87 (4), 716–732. doi: 10.1016/j.neuron.2015.07.008 . 

tephan, K.E., et al., 2017. Computational neuroimaging strategies for single patient pre-

dictions. NeuroImage 145, 180–199. doi: 10.1016/j.neuroimage.2016.06.038 . 

tone, M., 1974. Cross-validatory choice and assessment of statistical predictions. J. R.

Stat. Soc. Ser. B 36 (2), 111–147 (Methodological) . 

oenders, Y.J. et al. (2022) ‘Predicting Depression Onset in Young People Based

on Clinical, Cognitive, Environmental, and Neurobiological Data’, Biologi-

cal Psychiatry: Cognitive Neuroscience and Neuroimaging , 7(4), pp. 376–384.

https://doi.org/10.1016/j.bpsc.2021.03.005 . 

an Dijk, K.R.A., Sabuncu, M.R., Buckner, R.L., 2012. The influence of head mo-

tion on intrinsic functional connectivity MRI. NeuroImage 59 (1), 431–438.

doi: 10.1016/j.neuroimage.2011.07.044 . 

an Wijk, B.C.M., Cagnan, H., Litvak, V., Kühn, A.A., Friston, K.J., 2018. Generic dynamic

causal modelling: An illustrative application to Parkinson’s disease. NeuroImage 181,

818–830. doi: 10.1016/j.neuroimage.2018.08.039 . 

aroquaux, G., 2018. Cross-validation failure: Small sample sizes lead to large error bars.

NeuroImage 180, 68–77. doi: 10.1016/j.neuroimage.2017.06.061 . 

oorhees, B.W.V., et al., 2008. Predicting future risk of depressive episode in adolescents:

the chicago adolescent depression risk assessment (CADRA). Ann. Fam. Med. 6 (6),

503–511. doi: 10.1370/afm.887 . 

os, T., et al., 2020. Global burden of 369 diseases and injuries in 204 countries and

territories, 1990–2019: a systematic analysis for the global burden of disease study

2019. Lancet 396 (10258), 1204–1222. doi: 10.1016/S0140-6736(20)30925-9 . 

ray, N.R., et al., 2018. Genome-wide association analyses identify 44 risk variants and

https://doi.org/10.1038/nn.4419
https://doi.org/10.1016/j.neuroimage.2014.05.052
https://doi.org/10.1111/psyp.13032
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1016/j.jad.2020.02.046
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1016/j.nicl.2022.103120
https://doi.org/10.1016/j.neuroimage.2019.116276
https://doi.org/10.1089/brain.2018.0646
https://doi.org/10.1016/j.jad.2021.04.081
https://doi.org/10.1038/s41467-018-03819-3
https://doi.org/10.1038/s41398-020-0848-0
https://doi.org/10.1002/hbm.22827
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.jad.2020.04.028
https://doi.org/10.1001/jamapsychiatry.2015.0071
https://doi.org/10.1001/archpsyc.65.12.1368
https://doi.org/10.1016/j.neubiorev.2016.07.002
https://doi.org/10.1016/j.bpsc.2021.06.010
https://doi.org/10.1016/j.neuroimage.2011.01.085
https://doi.org/10.1017/S0033291720001579
https://doi.org/10.1080/13607863.2022.2031868
http://refhub.elsevier.com/S1053-8119(23)00132-5/sbref0054
https://doi.org/10.1192/bjp.164.3.342
https://doi.org/10.1038/nn.4393
https://doi.org/10.1002/hbm.25972
https://doi.org/10.1016/j.neulet.2020.134804
http://refhub.elsevier.com/S1053-8119(23)00132-5/sbref0057
https://www.frontiersin.org/articles/10.3389/fnins.2017.00115
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1111/acps.12945
https://doi.org/10.1017/S0954579414001035
https://doi.org/10.1016/j.pscychresns.2015.12.009
http://refhub.elsevier.com/S1053-8119(23)00132-5/sbref0063
https://doi.org/10.1001/jamapsychiatry.2019.3671
https://doi.org/10.1126/sciadv.aav4962
https://doi.org/10.1016/j.jaac.2019.12.004
https://doi.org/10.1016/j.jpsychires.2019.12.006
https://doi.org/10.1176/ajp.2006.163.11.1905
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1176/appi.prcp.20200031
https://doi.org/10.1016/j.biopsych.2014.11.018
https://doi.org/10.1038/s41467-020-18037-z
https://doi.org/10.1016/j.neuroimage.2021.118567
https://doi.org/10.1016/j.pscychresns.2019.01.006
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1016/j.bpsc.2018.06.007
https://doi.org/10.1371/journal.pone.0075362
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1186/s12888-020-02546-8
https://doi.org/10.1016/j.neuron.2015.07.008
https://doi.org/10.1016/j.neuroimage.2016.06.038
http://refhub.elsevier.com/S1053-8119(23)00132-5/sbref0081
https://doi.org/10.1016/j.bpsc.2021.03.005
https://doi.org/10.1016/j.neuroimage.2011.07.044
https://doi.org/10.1016/j.neuroimage.2018.08.039
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1370/afm.887
https://doi.org/10.1016/S0140-6736(20)30925-9


H. Galioulline, S. Frässle, S.J. Harrison et al. NeuroImage 273 (2023) 119986 

 

X  

 

Y  

 

Z  
refine the genetic architecture of major depression. Nature Genetics 50, 668–681.

doi: 10.1038/s41588-018-0090-3 . 

u, Z., et al., 2019. Individualized prediction of depressive disorder in the el-

derly: a multitask deep learning approach. Int. J. Med. Inform. 132, 103973.

doi: 10.1016/j.ijmedinf.2019.103973 . 
17 
eo, B.T.T., et al., 2011. The organization of the human cerebral cortex esti-

mated by intrinsic functional connectivity. J. Neurophysiol. 106 (3), 1125–1165.

doi: 10.1152/jn.00338.2011 . 

hang, H., 2004. The optimality of naive bayes. In: Proceedings of the 7th International

Florida Artificial Intelligence Research Society Conference, FLAIRS 2004 . 

https://doi.org/10.1038/s41588-018-0090-3
https://doi.org/10.1016/j.ijmedinf.2019.103973
https://doi.org/10.1152/jn.00338.2011
http://refhub.elsevier.com/S1053-8119(23)00132-5/sbref0089

	Predicting future depressive episodes from resting-state fMRI with generative embedding
	1 Introduction
	2 Materials and methods
	2.1 Dataset: groups with/without depressive episodes
	2.2 Matching of participants and definition of training/test sets
	2.3 FMRI data analysis
	2.4 Generative embedding
	2.5 Classification
	2.6 Choice and implementation of classifiers
	2.7 Deviations from the original analysis plan

	3 Results
	3.1 Training set
	3.2 Test set

	4 Discussion
	Data and code availability
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgments
	References


