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Blocking D2/D3 dopamine receptors in male
participants increases volatility of beliefs
when learning to trust others

Nace Mikus 1,2 , Christoph Eisenegger1,3,10, Christoph Mathys2,4,5,
Luke Clark 6,7, Ulrich Müller3,8, Trevor W. Robbins 3, Claus Lamm 1,11 &
Michael Naef9

The ability to learn about other people is crucial for human social functioning.
Dopamine has been proposed to regulate the precision of beliefs, but direct
behavioural evidence of this is lacking. In this study, we investigate how a high
dose of the D2/D3 dopamine receptor antagonist sulpiride impacts learning
about other people’s prosocial attitudes in a repeated Trust game. Using a
Bayesian model of belief updating, we show that in a sample of 76 male par-
ticipants sulpiride increases the volatility of beliefs, which leads to higher
precision weights on prediction errors. This effect is driven by participants
with genetically conferred higher dopamine availability (Taq1a polymorphism)
and remains even after controlling for working memory performance. Higher
precision weights are reflected in higher reciprocal behaviour in the repeated
Trust game but not in single-round Trust games. Our data provide evidence
that the D2 receptors are pivotal in regulating prediction error-driven belief
updating in a social context.

Knowing whom to trust with our money, information, or health is
central to our personal well-being1. The ability to form beliefs about
other persons’ attitudes from their actions is therefore pivotal for
successfully navigating our social world. Inflexible beliefs, particularly
about intentions of others, can lead to thoughts of persecutionor even
paranoid delusions—a hallmark symptom of psychotic disorders2–4.
Understanding the neurocomputational substrates of social inference
is therefore essential for informing pharmacological treatments of
psychotic symptoms.

When learning whether to trust another person, we often do so by
observing their behaviour across repeated interactions. How beha-
viours of others affect our overall beliefs about their trustworthiness

largely depends on how certain we are about the attitudes that pre-
sumably drive others’ actions5. For instance, if we believe someone will
be hostile or friendly towards us with high certainty, any gesture from
them will not much change our belief about them. On the other hand,
that same gesture from someonewhose intentionswe are unsure of will
likely strongly shift what we think about them. This process of belief
updating under uncertainty has been formalised within the Bayesian
Inference framework, where beliefs are represented as probability dis-
tributions and the degree to which new information affects the updat-
ing of beliefs is modulated by the precision (the inverse of uncertainty)
of those beliefs6. As in similar computational frameworks7, the belief
update is proportional to thedeviationof theprediction from the actual
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outcome, termed a prediction error (PE), weighted by the precision of
prior beliefs. On top of this, new information also reduces uncertainty
about the outcome. When prior beliefs are highly uncertain, the weight
on the PE will be high and beliefs will be highly volatile. Conversely, if
beliefs are held with high precision, this leads to a down-regulation of
the influence of PE on learning and lowers belief volatility. Inflexibility in
forming beliefs about others proportionally to their actions can result
from high precision of prior beliefs about others’ attitudes. Yet, the
neurocomputational and neurochemical mechanisms regulating the
uncertainty of beliefs are poorly understood. In this study,we examined
the effects of the antipsychotic drug sulpiride, a D2/D3 dopamine
receptor antagonist, on the uncertainty of beliefs about another per-
son’s trustworthiness.

Seminal studies in animals have established that mesolimbic
dopaminergic circuits carry PE signals that drive belief updating in
various contexts8–10. However, dopaminergic midbrain neurons have
been shown to be involved in various probabilistic computations that
go well beyond phasic signalling of surprising rewarding events.
Dopamine responses scale with outcome variance11,12 and reflect tem-
poral and perceptual precision13–15. Several computational accounts of
brain function suggest that uncertainty or precision coding is themain
unifying feature of dopamine’s involvement in belief updating16–19.
Through encoding of uncertainty of beliefs about the world and what
action to perform, dopamine receptors are thought to adjust the
weights on PEs and control action selection20,21. But while there is
evidence for the involvement of dopamine receptors in processing
uncertainty in action selection22–25, evidence for their causal role in
regulating the uncertainty of social beliefs and adjusting weights on
PEs is lacking.

Dopamine receptors within the corticostriatal circuitry are ideally
positioned to regulate PE-related signal propagation and encode
precision26,27. One possible neurobiological substrate of precision is
proposed to be the post-synaptic gain of neuronal populations
reporting PEs, where synaptic gain refers to the amplification or
attenuation of the pre-synaptic signal on the post-synaptic cell20,28.
Post-synaptic D1 and D2 type dopamine receptors in the striatum have
complementary effects on synaptic gain26,29. D1-like receptors increase
the excitability of post-synaptic neurons, whereas D2-type attenuate
signal propagation anddecrease synaptic gain29. A prediction from this
is that dopamine binding to D1 receptors would promote PE propa-
gation and increase belief updating. In contrast, D2 receptor stimula-
tion would reduce post-synaptic responses and attenuate changes in
beliefs, leading to belief rigidity30,31. In line with this reasoning, when
learning about others, blocking D2 receptors should increase the
volatility (or rate of change) of beliefs.

Although some studies indeed showed that blocking D2-type
receptors enhanced learning from positive feedback32, led to pro-
nounced PE-related activity in the striatum33, and enhanced
performance34,35, there is also evidence for attenuated PE coding and
greater variability in choice selection25,36,37. The inconsistencies of
these findings raise several important considerations. First, when
alternative choices are available, it is often unclear whether increased
switching between available choice options arises fromdrug effects on
belief updating per se or from the effects on decision-making strate-
gies (see for instance38). Second, D2 dopamine receptors have a higher
affinity for dopamine39 and doses of D2 antagonists commonly used in
studies with healthy participants might not be sufficiently high to
block the D2 receptor driven regulation of the PE signal40. Third,
administration of compounds binding to dopamine receptors can
have different and even opposing effects on learning and decision-
making, depending on genetic variation in baseline dopamine
function23,41,42. Fourth, integrating novel information with prior
experiences also relies on workingmemory43, which is also affected by
drugs that target dopamine receptors44. And finally, beyond the
methodological limitations of previous work, most studies with

dopamine receptor antagonists have examined learning about
abstract stimulus-outcome associations using secondary rewards,
which makes the translation to more complex social interactions
questionable.

In light of these considerations, the present study administered a
relatively high dose of the selective D2/D3 receptor antagonist sul-
piride (800mg) or placebo in a randomised double-blind parallel
groupdesign to 78maleparticipants, preselected based on their Taq1a
polymorphism. The drug dose was chosen to maximise the blockade
of postsynaptic dopamine D2 receptors while still being safe45. Most
previous work used doses of 400mg which leads to an occupation of
~30% of D2 receptors46. Using 800mg leads to more than 60% occu-
pancy and increases the likelihood of sufficiently blocking the effect of
D2 receptors. Furthermore, as mentioned above, the effect of D2
antagonists often interacts with baseline variation on dopamine
function42,47. Taq1a polymorphism is one of the most widely investi-
gated genetic variations of the D2 receptor. Individuals with at least
one A1 minor allele have been shown to have higher presynaptic
dopamine availability48 and reduced D2 receptor density in some
subdivisions of the striatum49,50. Blocking D2 receptors might there-
fore have a stronger effect on belief updating in that genetic subgroup.

We investigated social learning by asking the participants to learn
about other players’ trustworthiness through a repeated Trust game
(Fig. 1a). In the Trust game the investor may choose to transfer any
portion of theirmonetary endowment to the trustee51. The transferred
points are thenmultiplied by the experimenter before being passed on
to the trustee. The trustee can then either reciprocate in a way that
equalises the payoff of the two players or betray and keep everything.
Participants in our study played 25 rounds of the Trust game as
investors against two other players that were preprogramed to mostly
equalise (“good trustee”) ormostly betray (“bad trustee”). Importantly,
we told the participants that the other players had given their answers
weeks before the study day. Therefore, their decision to equalise or
betray did not depend on the participant’s investment. With this pro-
cedure, we increased the likelihood that their investments reflected
the degree of uncertainty they had about the other player’s response
and were not confounded by strategic investment strategies, or
exploratory action policies. By asking the participants to learn about a
stable feature, we also ensure that participants’ behaviour did not
reflect differences in beliefs in the task volatility (the likelihood that the
other person changed their mind), which might have obscured more
basic processes related to forming beliefs about others.

The main goal of the study was to test the hypothesis that
blocking D2-type receptors increases belief updates by reducing the
precision of beliefs about others, whereby we also hypothesised that
this effect would be more pronounced in participants with genetically
conferred higher endogenous dopamine levels. The Results section of
the paper is structured as follows: we first looked at how sulpiride
affected investment updates and how this effectwasmoderated by the
Taq1a genotype. We then examined how the updates related to the
back-transfer of the trustee, by examining the effects of the drug and
genotype on reciprocal behaviour. We then turned to computational
modelling to determine how sulpiride affects the course of each par-
ticipant’s uncertainty around the other player’s trustworthiness. To
evaluate to what degree the effects of sulpiride were due to actions on
working memory we included data on spatial working memory per-
formance intoour parameter estimationprocess. Finally, to control for
effects of sulpiride on sensitivity to social feedback unrelated to
learning, we surveyed data from two single-round social interaction
tasks, targeting positive and negative reciprocal behaviour.

With this we show that sulpiride has a profound effect on how
healthy males update their investment more from one trial to the next
this effect is driven by increased uncertainty around the other player’s
actions. Results from both behavioural analysis and computational
modelling support the claim that the drug effect on belief updating
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was more pronounced in participants with higher endogenous striatal
dopamine levels (indexed by the Taq1a polymorphism).

Results
D2/D3 receptor antagonism increases investment updates
We employed a Bayesian multi-level linear model predicting absolute
change in investment from the previous trial, including variables for
Treatment (sulpiride or placebo), Trial and their interaction as pre-
dictors (refer to supplementary material for outcomes of alternative
models). Figure 1b shows that, following sulpiride administration,
participants on average updated their investments more than partici-
pants in the placebo group (b =0.633, 95% Credibility Interval (CrI)
[0.117, 1.115], proportion of the posterior distribution of the regression
coefficient below 0 being P(b < 0) = 0.005), with an effect size
d = 0.239 (95%CrI [0.045, 0.42]). The difference in investment updates
wasmost apparent in the last trial of the task (b =0.863, 95%CrI [0.289,
1.411], P(b <0) = 0.002, d =0.325, 95% CrI [0.109, 0.531]) and we also
found a small effect size on the Trial*Treatment interaction (b =0.457,
95% CrI [−0.069, 0.99], P(b <0) = 0.047, d = 0.172, 95% CrI [−0.026,
0.373]). As participants learned about the trustees, changes of invest-
ments fromone to the next trial reduced, and this decrease across time
was less pronounced in the sulpiride group.

To examine whether the effects of the drug were moderated by
theTaq1a polymorphismwe ran anothermodel including a variable for
Taq1a-specific genotype and Trustee as predictors with the four-way
interaction between the two new variables, Treatment and Trial,
including a random intercept and slope for the Trustee (Supplemen-
tary Fig. 1a, Supplementary Table 4). Again, we found a main effect of
treatment (b = 0.595, 95% CrI [0.112, 1.098], P(b <0) = 0.008), and a
significant three-way interaction between Treatment, Genotype and
Trial number (b =0.053, 95% CrI [0.01, 0.098], P(b <0) = 0.007), but
found no credible evidence of a two-way interaction Treatment ×
Genotype (b = −0.284, 95% CrI [−1.266, 0.708], P(b > 0) = 0.287). These

analyses suggest that on average sulpiride affected investment
updates comparably across both genotype groups, but in contrast to
the A2 homozygotes, the effect in the A1+ group was time dependent.

D2/D3 receptor antagonism increases sensitivity to social feed-
back in the A1+ group in the repeated trust game
To further understand how investment updates related to back-
transfer from the trustee, we defined reciprocal trials as trials where
participants either increased investments (or repeated the maximal
investment of 10 points) following positive feedback and decreased
investments (or repeated an investment of 0 points) following a
betrayal (Fig. 1c, for exact definition see Supplementary Note 2). We
found that sulpiride led to a higher proportion of reciprocal trials
(blogodds =0.339, 95% CrI [0.048, 0.661], P(blogodds <0) = 0.012).This
effect was significant in the A1+ group (blogodds = 0.469, 95%CrI [0.052,
0.914], P(blogodds <0) = 0.015) but we found no credible evidence for
an effect in the A1- group (blogodds =0.209, 95% CrI [−0.212, 0.643],
P(blogodds < 0) = 0.162); however, we also found no credible evidence
that there was a difference of drug effects between the two genotype
groups (blogodds = −0.263, 95% CrI [−0.867, 0.329], P(blogodds >0) =
0.186). Furthermore, we found some support for a dose response
effect, whereby sulpiride serum levels in the blood correlated with
reciprocal trials in the A1+ group (b =0.185, 95% CrI [−0.04, 0.41],
P(r < 0) = 0.05), but found no credible evidence for a correlation in the
A1- group (Supplementary Table 1). Similar, albeit weaker, effects were
foundwhenweexamined towhat extent the signed investment update
was dependent on the back-transfer and how this differed across the
drug and genotype groups (Supplementary Fig. 1b).

No credible evidence of an effect of D2/D3 receptor antagonism
on average investment behaviour or overall performance
Next, we investigated whether this higher change of investments from
one trial to the next is reflected in average investment patterns (Fig. 2a,
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Fig. 1 | Effects of sulpiride on investment updates in the repeated Trust Game.
a The participants played 25 trials with two trustees. Each trial started with an
endowment of 10 points to both players. On each trial they could invest any integer
between 0 and 10. The trustee received a tripled amount of the investment and
could decide to either equalise payoff or betray the other player and keep all the
points for himself. The trusteeswerepre-programmed to be either “good” or “bad”.
bMean and 95%CrI of absolute change of investment from one trial to the next for
both treatment groups based on a Bayesian multilevel model, plotted over raw
means for each treatment group (4), obtained over n = 76 participants, n = 38 in

each drug group, and with 2 × 25 trials per participant. Corresponding effect sizes
with means, 50% and 95% CrI, for the main effect of sulpiride (S-P), for the effect of
sulpiride in the last trial and for the interaction of the drug with Trial variable.
c Mean and 95% CrI of reciprocal trials (defined as trials where investment was
increased following positive feedback, or decreased following negative feedback)
based on a Bayesian logistic multilevel model, plotted over raw proportion of
reciprocal trials with standard errors for each participant (sample sizes as in b).
Effect sizes in log-odds shown for themain effect of sulpiride as well as the effect of
sulpiride within each genotype group.
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for more detailed plots see Supplementary Fig. 2). Using an ordinal
logistic model predicting investments from Treatment, Genotype,
Trustee and Trial variables, with a random slope for Trustee and Trial
we found no credible evidence of a difference between sulpiride and
placebo on average investment behaviour either in the A1+ group
(bgood = −0.011, 95% CrI [−1.95, 1.796], P(bgood > 0) = 0.494,
bbad = 0.089, 95% CrI [−2.256, 2.47], P(bbad <0) = 0.47), nor in the A1-
group (bgood = −0.496, 95% CrI [−2.353, 1.367], P(bgood >0) = 0.297,
bbad = 0.821, 95% CrI [−1.508, 3.257], P(bbad <0) = 0.244). We also
found no credible evidence of a difference in initial investments across
the four drug and genotype groups (Supplementary Fig. 2). The overall
initial investmentwas estimated to be, on average, 6.33 (95%CrI [3.129,
9.687]), suggesting that most participants expected a positive back-
transfer initially. In line with this, the slope when playing against the
good trustee was positive (b =0.086, 95% CrI [−0.008, 0.187], P(b <
0) = 0.036), but not as pronounced as the slope when playing against
the bad trustee (b = −0.153, 95%CrI [−0.284, −0.027], P(b > 0) = 0.009).
While we found no credible evidence of a difference between slopes
across the drug groups in the A1+ participants (bgood = −0.058, 95% CrI
[−0.184, 0.065], P(bgood >0) = 0.179, bbad = 0.044, 95% CrI [−0.125,
0.21], P(bbad <0) = 0.297), we did observe an increase in the slope
following sulpiride administration in the A1- group when playing
against the bad trustee (bbad =0.159, 95% CrI [−0.007, 0.336],
P(bbad <0) = 0.03) but not when playing against the good trustee
(bgood =0.069, 95% CrI [−0.06, 0.19], P(bgood < 0) = 0.14). Similarly, we
found no credible evidence of a difference across drug and genotype
groups regarding how many points they earned when playing against
either trustee (Fig. 2b, Supplementary Table 13).

In summary, we found no credible effect of sulpiride on investing
behaviour on average, but we do find some evidence in support of
sulpiride increasing sensitivity to social feedback when learning about
others. To determinewhether and how this behavioural pattern relates
to the uncertainty of participants’ beliefs about the other persons’
trustworthiness, we explicitly modelled the participants’ trial-by-trial
evolution of beliefs with a Bayesian belief model.

Computational framework
The belief model uses a hierarchical Gaussian filter (HGF) to generate
trial-wise sequences of participants’ beliefs about the trustworthiness
of two trustees as well as the uncertainty (or precision) surrounding
those beliefs (Fig. 36,52). We estimated a participant-specific parameter

ω, called belief volatility, that describes how each participant’s preci-
sion of beliefs evolved over time and consequently determined the
relative rigidity (or malleability) of beliefs. More specifically, on each
trial, we approximate the latent belief about the trustworthiness of the
other player as a gaussian distribution with a specific mean and var-
iance. Higher belief volatility ω implies higher variance (or lower pre-
cision) of trial-by-trial belief estimates. Importantly, the dynamic
learning rate (ψt) on the PE is proportional to the expected variance or
inversely proportional to the precision of beliefs and is therefore
referred to as a “precision-weight”. Low precision of prior beliefs leads
to higher precision-weighted learning rates and stronger shifts in
beliefs throughout the task (see two example belief trajectories with
different ω values in Fig. 3b).

The beliefs about trustworthiness aremappedon to probability of
positive or negative feedback with an inverse logistic function.
Because D2 receptor activity is linked to choice uncertainty and action
variability22,25, we also included another parameter called choice pre-
cision parameter γ that determined the non-linear mapping from
beliefs to the investments. Higher choice precision implies an invest-
ment distribution centred around extremes (i.e. investing 0 and 10),
and lower values imply a more dispersed investment distribution and
more uncertainty or stochasticity in action selection. It thus mirrors
the stochastic aspect of the inverse temperature parameter in the
softmax equation often used in non-ordinal (e.g. binary) choice tasks.
Finally, how beliefs about the probability of a positive back-transfer
affect investment behaviour is determined through an ordinal logistic
likelihood function. The degree to which inferred trustworthiness
correlateswith investments is determinedby another parameter called
the trustworthiness slope (η). Crucially, the computational parameters
of the model represent distinct behavioural patterns and can be
recovered reliably (Fig. 3c). To determine how noisy trials are repre-
sented in the model, we defined mistake trials as trials where partici-
pants either decreased their investment after a positive back-transfer
or increased their investment after a betrayal (for exact definition see
Supplementary Note 1). Importantly, we observed that belief volatility
ω correlates with reciprocity (r =0.277, t = 2.476, df = 74, p =0.016,
Fig. 3d) confirming that higher trial-by-trial uncertainty of beliefs lead
to a higher chance of reciprocal behaviour. The log-transformed
choice uncertainty parameter γ correlates negatively with the pro-
portion of mistake trials (r = −0.592, t = −6.3254, df = 74, p <0.001,
Fig. 3d) implying higher randomness in investment selection. We also
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predictions (means with 95% CrI as the shaded area), plotted over raw means for
each drug group (4), obtained for 2 × 25 trials per participant, n = 76 participants
(in A1+ group, n = 17 placebo, n = 21 sulpiride, and in A1- group n = 21 placebo and
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statistics, refer to the main text and Supplementary Fig. 2. b Overall points earned
in the task grouped for each trustee. Dots are average points earned for each
participant. Boxplots with centre lines as medians, box bounds as 25th and 75th
percentiles, and whiskers terminating at maxima/minima (a distance of 1.5 times
the IQR away from the 25th and 75th percentiles). Sample sizes as in (a).
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predicted data from the posterior distributions of parameters. We
confirmed that the model captures the crucial aspects of behaviour
(Fig. 3e, f) and plotted average beliefs about the other player’s trust-
worthiness, grouped for each trustee. (Fig. 3g).

We compared this model to an HGF model without the γ para-
meter and a Rescorla-Wagner (RW) model. The HGF model without γ
has been used previously when modelling both social53 and non-

social54 learning. In this model the non-linear mapping from beliefs to
probabilities ismodulated by a coupling parameter κ (seeMethods for
details). The RW model is a simple Q-learning model with separate
static learning rates for gains (positive outcomes) and for losses
(negative outcomes). All models used the same ordinal-logistic like-
lihood function and were compared based on their trial-by-trial pre-
dictive accuracy through leave-one-out cross-validation information
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criterion (LOOIC) and expected log predictive density (ELPD). We
found that the HGF model with the choice precision parameter γ
outperforms both models (Supplementary Fig. 3a). We also compared
the models across trials and across trustees with the LOOIC and by
looking at the correlations of predicted investments with actual
behaviour (Supplementary Fig. 3b, c). Interestingly, performance of
both models varies similarly across trials with the HGF performing
better across the whole task, particularly for investments against the
good trustee.

D2/D3 receptor antagonism increases belief volatility
For parameter estimation, we embedded the HGF derived equations in
a hierarchical Bayesian model which allowed us to estimate the drug
and genotype effects on all computational parameters in one infer-
ential step55,56. Through this analysis, we found a main effect of sul-
piride on volatility of beliefs (b = 0.831, 95% CrI [0.115, 1.533],

P(b < 0) = 0.01, d = 0.65, 95% CrI [0.088, 1.283], Fig. 4a), and an inter-
action effect of sulpiride with the genotype (b = −1.506, 95% CrI
[−2.649, −0.411], P(b > 0) = 0.004, d = −1.175, 95% CrI [−2.238, −0.306]).
In fact, the effect of sulpiride on belief volatility is driven by the A1+
allele carriers (b = 1.598, 95% CrI [0.727, 2.465], d = 1.25, 95% CrI [0.533,
2.119]) while we found no credible evidence of an effect in the A1-
group (b= 0.076, 95% CrI [−0.874, 0.985], d = 0.06, 95% CrI
[−0.683, 0.783]).

The key consequence of higher belief volatility is that it leads to
lower precision of prior beliefs and therefore of predictions, which has
a direct effect on the learning rates. Indeed, we founnd credible evi-
dence that participants under sulpiride have higher average precision-
weights (d = 0.452, 95% CrI [0.081, 0.704], P(d < 0) = 0.008, Fig. 4b),
particularly in the A1+ group (d= 1.042, 95% CrI [0.225, 1.424], P(d <
0) = 0.003), but little credible evidence for an effect in the A2 homo-
zygotes (d = −0.202, 95% CrI [−0.482, 0.103], P(d > 0) = 0.089) with a

Fig. 3 | Computationalmodelling. aWedefined a generativemodel that describes
the evolution of participants’ beliefs about the other person’s trustworthiness as a
Gaussian randomwalkwith the step size ofω. The hierarchicalGaussianfilter (HGF)
inverts thismodel and provides trial-level estimations of participants’ beliefs about
the trustworthiness of others as Gaussian variables with mean μ tð Þ and standard
deviation σ tð Þ. The evolution of σ tð Þ is determined by the belief volatility parameter
ω. The precision-weightsψðtÞ are proportional to σ tð Þ and serve as dynamic learning
rates when updating beliefs about the trustworthiness of the other player. We also
estimate initial trustworthiness belief per participant (μ0). The ordinal logistic link
function governs how beliefs about others’ trustworthiness map to investments
with two additional subject-level parameters: choice uncertainty (γ) and the slope
(η). The parameter estimation is done through hierarchical Bayesian inference,
where we estimate all individual and group-level parameters in one inferential step.
b Two example belief trajectories portray the different behaviours that the model
can capture, depicted as mean (μ tð Þ, line) and standard deviation of beliefs (σ tð Þ,

error band). The participants have different belief volatilities for the good (ωgood)
and the bad trustee (ωbad). Higher ω implies more uncertainty surrounding the
trustworthiness beliefs (σ tð Þ), which in turn leads to stronger belief shifts. c For each
participant, we randomly draw parameters from their individual posterior dis-
tribution, simulate data, and re-estimate them five times. Relative high correlations
indicate that themodel parameters arewell-defined.d The twomain parameters of
interest, belief volatility and choice uncertainty, correlate with distinct behavioural
features, obtained for all participants (n = 76). e,f Posterior predictive for (e)
absolute investment change from one trial to the next and (f) for the average
investment behaviour. Plotted over raw means per trial per group and with stan-
dard deviations of predictions in the shaded area. g Lines depict average beliefs
about the trustworthiness across participants for each trials, with error bands
depicting average uncertainty around the investment (σ). All plots in (e–g)
obtained with the following sample sizes: in A1+ group, n = 17 placebo,
n = 21 sulpiride, and in A1- group n = 21 placebo and n = 17 sulpiride.

Fig. 4 | Effects of sulpiride on belief volatility and precision weights. a Belief
volatility boxplots over individual means of posterior distributions. Boxplots with
centre lines as medians, box bounds as 25th and 75th percentiles, and whiskers
terminating at maxima/minima (a distance of 1.5 times the IQR away from the 25th
and 75th percentiles). Sample sizes in A1+ group, n = 17 placebo, n = 21 sulpiride,
and in A1- group n = 21 placebo and n = 17 sulpiride. Belief volatility is higher in the
sulpiride group, and this effect is drivenby theA1+ group (50%and95%CrI of effect
sizes below). b Precision-weights on PEs. Scattered points are meaned precision

weights across all trials for each participant (sample sizes as in a). Overlayed group
levelmedians with 50% and95%CrI. The effect sizes were calculated fromposterior
distributions of differences in means across four groups. c Precision weights cor-
relatewith log transformed serum levels in theblood, plotted for participants in the
A1+ group that received sulpiride (n = 21). The effect sizeswithmeans (and 50% and
95% CrI) depict correlations between serum levels and median precision weights
for the sulpiride group (n = 38), and then separately for the A1+ genotype group
(n = 21) and for the A1- genotype group (n = 17).
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significant interaction effect (d = 1.244, 95% CrI [0.335, 1.714], P(d < 0)
= 0.001). Importantly, in the A1+ group, this effect of sulpiride on
precision-weighting correlated with the degree of serum levels in the
blood (b =0.356, 95% CrI [0.045, 0.663], P(b < 0) = 0.013, Fig. 4c).

Looking at potential asymmetries when dealing with uncertainty
around beliefs about trustworthy or untrustworthy partners, we find
that, on average, the volatility of beliefs about the bad trustee were
more volatile (d = 0.412, 95%CrI [0.031, 0.827], P(d < 0) = 0.018).When
examining the drug effects, we observed that in the A1+ group, the
difference inω between placebo in sulpiride is apparent in interactions
with both trustees (dbad = 1.62, 95% CrI [0.731, 2.644],
P(dbad < 0) < 0.001, dgood = 0.689, 95% CrI [−0.089, 1.575],
P(dgood < 0) = 0.042, but is higher for the bad trustee (dgood-
bad = −0.923, 95% CrI [−1.754, −0.121], P(dgood-bad > 0) = 0.01, Supple-
mentary Fig. 4b, c). Interestingly, this analysis also showed that in the
A1- group, there is a significant interaction of sulpiride and trustee
effects (dgood-bad = −1.453, 95% CrI [−2.529, −0.51], P(dgood-
bad > 0) = 0.001, Supplementary Fig. 4b, c), whereby we find little
credible evidence that the effects of sulpiride on belief volatility are
higher for the bad trustee (dbad = 0.711, 95% CrI [−0.21, 1.669],
P(dbad < 0) = 0.066), and even negative for the good trustee
(dgood = −0.742, 95% CrI [−1.74, 0.091], P(dgood > 0) = 0.042). At this
point, we also note that ourmodel suggests that participants expected
the trustee to reciprocate (d =0.717, 95% CrI [0.406, 1.023], P(d < 0)
= 0.001) with initial inferred probability of reciprocation being 0.67
(95% CrI [0.60, 0.73]). However, we found no credible evidence of a
difference between treatment groups in initial beliefs (μ0) about the
trustworthiness either overall (d = −0.166, 95% CrI [−0.697, 0.37],
P(b > 0) = 0.272, Supplementary Fig. 4), in the A1+ group (d =0.111, 95%
CrI [−0.585, 0.802], P(d < 0) = 0.383), or in the A1- group (d = −0.441,
95% CrI [−1.164, 0.287], P(d > 0) = 0.112).

We then compared the results from theHGFmodel to thoseof the
RW model (Supplementary Fig. 5). The evidence points in same
direction, with some evidence for sulpiride leading to higher learning
rates overall (d = 0.315, 95% CrI [−0.087, 0.729], P(d < 0) = 0.064,
Supplementary Fig. 5a), an effect that the A1+ participants drove
(d =0.593, 95% CrI [0.03, 1.16], P(d < 0) = 0.02), with no credible evi-
dence of an effect in the A1- participants (d = 0.037, 95% CrI [−0.524,

0.605], P(d < 0) = 0.453), and little credible evidence of a difference
between the effect (d = −0.553, 95% CrI [−1.343, 0.235], P(d > 0) =
0.079). Further, the effect of the drug in the A1+ group was observed
both when learning about positive outcomes (d =0.697, 95% CrI
[0.029, 1.369], P(d < 0) = 0.021, Supplementary Fig. 5b) as well as
negative outcomes (d =0.488, 95% CrI [−0.059, 1.044], P(d < 0) =
0.039, Supplementary Fig. 5c). However, the difference across the two
types of learning rates was not as pronounced as in the HGF model.

D2/D3 receptor antagonism increases choice uncertainty
In addition to the effect on belief volatility, sulpiride also increases
choice uncertainty by decreasing the choice precision parameter γ
(b = −1.049, 95%CrI [−1.6, −0.502], P(b < 0) < 0.001, d = −0.979, 95%CrI
[−1.535, −0.455], Fig. 5a), with smaller effects in the A1+ group
(b = −0.646, 95% CrI [−1.272, −0.033], P(x > 0) = 0.02, d = −0.608, 95%
CrI [−1.206, −0.031]) and more prominent effects in the A2 group
(b = −1.44, 95%CrI [−2.261, −0.639], P(b < 0) < 0.001, d = −1.351, 95%CrI
[−2.133, −0.601]). Since lower values of γ correlated with higher pro-
portion of mistake trials we examined how sulpiride affected the
proportion of mistake trials and found that it on average increased the
number of mistake trials (blogodds = 1.172, 95% CrI [0.443, 1.992],
P(blogodds < 0) < 0.001, Fig. 5b), an effect driven by the A1- group
(blogodds = 1.876, 95% CrI [0.781, 3.032], P(blogodds < 0) < 0.001) with no
credible evidence for an effect in the A1+ group (blogodds = 0.468, 95%
CrI [−0.535, 1.537], P(blogodds < 0) = 0.184), and some evidence for an
interaction effect (blogodds = 0.885, 95% CrI [−0.041, 1.857],
P(blogodds < 0) = 0.03). The effect of sulpiride on the proportion of
mistake trials in the A1- group was proportional to the blood serum
levels (blogodds = 0.607, 95% CrI [0.089, 1.142], P(blogodds < 0) = 0.011)
with no credible evidence of a correlation of the A1+ group
(blogodds = −0.328, 95% CrI [−0.818, 0.143], P(blogodds >0) = 0.085). This
parameter also determines the skew in the distribution of investments,
whereby higher values make extreme investments more likely (Fig. 5c,
d). From a perspective of an expected utility maximising agent,
extreme investments are most optimal (Supplementary Note 2). Indi-
viduals with higher γ therefore behave more as rational agents and
take the uncertainty of the outcome less into consideration when
choosing investments. Sulpiride also increased the η parameter
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times the IQR away from the 25th and 75th percentiles). Sample sizes in A1+ group,
n = 17 placebo, n = 21 sulpiride, and in A1- group n = 21 placebo and n = 17 sulpiride.

bMean proportion of mistake trials (with SEM), with samples sizes as in (a). Means
and 95% quantiles of posterior distributions across the four groups are plotted
based on a logistic regression model. Corresponding effect sizes below. c, d The
choice uncertainty parameter determines the probability weight (c) and therefore
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in particular) indicate more extreme investment choices and higher belief
inflexibility.
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(b = 1.459, 95% CrI [0.532, 2.42], P(b < 0) < 0.001, d = 0.941, 95% CrI
[0.331, 1.58]), further advocating for the assertion that sulpiride
increased thedegree towhichbeliefs about trustworthiness influenced
participants’ investments. In sum, the overall results from the com-
putational modelling suggest that sulpiride treatment led to higher
choice uncertainty (lower choice precision), which was related to
increased mistakes in the in the A1− group specifically. We found
strong support for sulpiride increasing belief volatility and precision-
weights on PEs, an effect that was driven by the A1+ group, whereaswe
found no credible evidence of an effect in the A1− group.

Effects of sulpiride on belief updating remain after accounting for
working memory performance In the repeated Trust game, partici-
pantsmust remember the trustees’ responses toprevious trials.Higher
choice stochasticity could therefore be due to poorer working mem-
ory. Furthermore, the inability to remember outcomes of past trials
might increase the reliance on the previous trial and thereby cause
increased learning rates and belief volatility. To determine to what
degree our findingswere influenced by the possible effects of sulpiride
on workingmemory, we included data from a spatial workingmemory
(WM) task performed in the same sample and previously published57.
In the spatial WM task, participants uncover ‘tokens’ from sets of
boxes, whereby they need to remember which boxes were previously
searched andwhat the outcomes of those searches were (seeMethods
for details). As Naef et al. report57, sulpiride had a detrimental effect on
workingmemoryperformance,wherebyparticipants in both genotype
groups performed more errors (opened boxes previously already
opened) in more challenging task trials (trials with 10 or 12 boxes).

In the present study, we first investigated whether the model
parameters are influenced by WM performance. To do so, we re-
estimated the hierarchical model that included only WM data at the

group level without the drug and genotype variables. As can be seen
from Fig. 6a, the belief volatility parameter ω was associated with a
higher number of errors in the WM task (d =0.658, 95% CrI [0.334,
1.01], P(d < 0) < 0.001), and the Choice precision parameter γ nega-
tively correlatedwith the number of errors (d = −0.811, 95%CrI [−1.087,
−0.541], P(d > 0) < 0.001). This implies that poorer working memory
performance is related to higher choice and belief uncertainty.
Importantly, however, when plotting the residuals of the model para-
meters (unexplained variance after accounting for WM effects), the
impact of sulpiride on belief volatility in the A1+ group can be seen still
to be present (Fig. 6b). To obtain posterior distributions of drug and
genotype effects after accounting for WM data, we re-estimated the
parameters of the model this time including WM data as well as drug
and genotype variables. We found that including WM information in
the hierarchical model only slightly changed the inference about the
effect of sulpiride on belief updating. Themain effect of sulpiride onω
wasnow somewhat less certainwith the 95%CrI including values below
0 (d =0.56, 95% CrI [−0.052, 1.211], P(d < 0) = 0.036), but the effect in
the A1+ group was still present (b = 0.852, 95% CrI [0.116, 1.61], P(b <
0) = 0.014, d = 0.694, 95% CrI [0.093, 1.369]). Similarly, posterior
intervals of sulpiride effects on γ after including WM data were com-
parable to those without WM data, with the main effect remaining
negative (d = −1.034, 95% CrI [−1.634, −0.461], P(d > 0) < 0.001), and
the evidence for the effect is substantialin the A1− group (d= −1.562,
95% CrI [−2.423, −0.722], P(d > 0) < 0.001) and less so in the A1+ group
(d = −0.512, 95% CrI [−1.168, 0.133], P(d > 0) = 0.056).

An important final step was to exclude the possibility that this
increase in updating was due to increased sensitivity to social feed-
back in general, or due to decreased desire to maximise outcomes.
For this, we turned to data from single-round social interaction

Fig. 6 | Working memory performance and computational parameters. a We
reran the parameter estimation with amultilevelmodel that only includedworking
memory data (number of errors) at the group level effect (and was agnostic about
drug and genotype groups). Poorer performance in the spatial working memory
task correlated positively with belief volatility ω and negatively with choice preci-
sion γ and did not affect noise or initial trustworthiness (obtained from sample size
n = 75). Effect sizes depicted with means, 50% and 95% CrIs. b Residual variances
after accounting for working memory data from the model that is agnostic about
drug and genotype data, for parameters ω and γ. Boxplots with centre lines as

medians, box bounds as 25th and 75th percentiles, and whiskers terminating at
maxima/minima (a distance of 1.5 times the IQR away from the 25th and 75th
percentiles), with the following samples: in A1+ group, n = 16 placebo,
n = 21 sulpiride, and in A1− group n = 21 placebo and n = 17 sulpiride. In the second
step, the parameters were estimated with working memory data and drug and
genotype variables at the group level. The results of this analysis are shown below
as effect sizes with means, 50% and 95% CrIs. The analysis is compared to that with
the model that does not include working memory data.
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games that measure learning-independent positive and negative
reciprocity.

Nocredible evidence for an effect ofD2/D3 receptor antagonism
on single-round reciprocal behaviour
In the single-round interaction games the participants played a slightly
modified versions of the Trust game. In the positive reciprocity game,
they played the trustee and could reward the investor for their deci-
sion (Fig. 7a). In the negative reciprocity game, they played as investor
and could punish the trustee (Fig. 7b). We found no credible evidence
of a difference between sulpiride andplacebo, neither in the amountof
reward (Back-transfer) in the positive reciprocity game (b = −0.023,
95% CrI [−6.605, 6.263], d = 0.000, 95% CrI [−0.032, 0.03], Fig. 7c) nor
in punishing behaviour in the negative reciprocity game (b = 1.552, 95%
CrI [−0.903, 3.98], P(x < 0) = 0.106, d =0.2, 95% CrI [−0.114, 0.513],
Fig. 7d). This implies that the drug effect on reciprocal behaviour in the
Repeated Trust Game was not due to higher sensitivity to social-
feedback, or to less rational behaviour.

Discussion
Inferring attitudes of others is fundamental to our social functioning,
but the neurocomputational mechanisms of the updating of beliefs
about others are not well understood. We show that blocking D2/D3
dopamine receptors by sulpiride has a profound effect on how healthy
participants process uncertainty in a social context. When playing as
investors in the Repeated Trust Game, participants given a high dose

this D2/3 receptor antagonist changed their investment more from
one trial to the next. Using a hierarchical Gaussian filter to explicitly
model the evolution of participants’ beliefs about the trustworthiness
of the trustees, we show that sulpiride increased belief volatility. This
implies that for the participants under sulpiride, the beliefs about the
trustworthiness of others were heldwith less precision (i.e. with higher
uncertainty), which in turn caused increased precision weights on PEs.
This effect was more pronounced in participants with at least one
minor A1 allele of the Taq1a polymorphism, associated with higher
endogenous striatal dopamine levels. The increase in precision
weights on PEs in that genetic subgroup scaled with the sulpiride
serum levels in the blood. As a consequence, sulpiride led to higher
reciprocal behaviour (increased investment after positive back-
transfer and decreased investment after negative back-transfer), but
only in the repeated Trust game, whereas we found no credible evi-
dence for an effect in single-round interactions. The effect on the
repeated Trust game was present even after controlling for working
memory performance. Moreover, sulpiride decreased the value of the
parameter of the model that codes for deterministic action selection
policies (γ), implying higher uncertainty about investment selection.
The effect was present in both genotype groups.

On the neurophysiological level, it has been proposed that pre-
cision is encoded through the post-synaptic gain (i.e. amplification or
blunting of presynaptic neuronal input) of neurons that propagate PE
signals28. Our results are in accordance with the idea that dopamine
binding to D1 receptors of the medium spiny neurons in the striatum

Fig. 7 | Single-round reciprocity games. a In the positive reciprocity task, parti-
cipants played as trustees were paired with 7 other players. The investor in this
version of the game received 800 points and could either keep everything or give
everything to the trustee, who could then decide how to split the points. The
investors were pre-programmed so that 5 out of 7 transferred everything to the
trustee.b In the single-roundnegative reciprocity game, theparticipants played the
investor. In the beginning of the round both players were given 10 points. The
investor could then decide to transfer everything or nothing. The transferred

investment got multiplied by a factor of four and the trustee could them decide to
either equalise or betray. Crucially, after the choice of the trustee, both players
received another 20 points and the investor could use his points to punish the
trustee, with a factor of three. c, d Mean and 95% CrI of Back-transfer (c) and
punishment (d) across the four groups, plotted over raw means (±SEM) per parti-
cipant. Means, 50%, and 95% CrIs of effect sizes shown below, with the following
sample sizes: in A1+ group, n = 17 placebo, n = 21 sulpiride, and in A1− group n = 21
placebo and n = 17 sulpiride.
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increases the gain on PE signals, while binding to D2 receptors
decreases gain through disinhibition of the so called indirect
pathway26,29. Within this framework increased precision-weights fol-
lowing D2 antagonism can be explained by more dopamine being
available to bind to D1-like receptors, a claim that is further sub-
stantiated by the observation that the effect of sulpiride was stronger
in participants with genetically conferred higher presynaptic dopa-
mine availability and lower D2 receptor density. These findings extend
previous studies highlighting the role of dopamine receptors in coding
precision or uncertainty in various contexts, such as perceptual and
risk-based decision making24,31,58. In particular, previous work has
shown that sulpiride decreased the perceived precision of temporal
expectations59. In a task where participants were explicitly told about
the variance of outcomes, they adapted their behaviour accordingly,
which led to more optimal choice performance60. This behavioural
pattern was accompanied by adaptive PE signals in the midbrain and
the ventral striatum. Under 600mg of sulpiride, both the PE scaling as
well as the adaptive PE coding in the midbrain and partially in the
striatum were reduced61. This suggests that D2 receptors likely play a
general role in uncertainty coding across various task modalities and
contexts.

Our findings that blocking D2/D3 receptors increases learning
rates may seem to be at odds with previous work showing that D2/D3
antagonists reduced performance in other learning tasks and atte-
nuated prediction error signals in the striatum36,37 as well as with stu-
dies showing no effect of D2/D3 antagonismon learning rates34,37, even
when using similar computational frameworks33,62. It is thus important
to note that the A1 is a minor allele of the Taq1a polymorphism,
meaning that in most other studies participants were likely pre-
dominantly A2 homozygotes. We observed a more general effect of
D2/D3 receptor antagonism on choice uncertainty that was more
prominent in A2 homozygotes and was related to a higher number of
mistake trials in that subgroup of participants, although the number of
mistakes was not high enough to reduce investment on average. Fur-
thermore, participants could invest on an ordinal 11-point scale, which
allowed us to capture smaller belief shifts that might either be missed
in learning tasks with categorical choice options or be attributed to a
different choice selection policy. For example, the participants in our
study also performed a standard probabilistic two-bandit task after-
wards, where participants in the A1+ group under sulpiride compared
to placebo continued to switch between choice options, which was
explained by increased choice stochasticity, parametrised through the
soft-max decision temperature25. Further, it is also plausible that the
processing of uncertainty in a social context is different than in a non-
social context. People might be inherently more motivated to reduce
uncertainty about others, so that they can (for instance) classify them
more definitely as being a friend or foe5. For example, in one study,
stress increased the choice to gamble in a non-social context but
decreased the likelihood to invest in one shot-Trust games63. Fur-
thermore, patients with basolateral amygdala damage show markedly
impaired belief updating in a repeated Trust game, but seem to have
no trouble learning about non-social rewards through a task matched
in difficulty and reward size64. It is therefore plausible that the results
we found are specific to the social context and might not translate to
learning about non-social cues.

One fundamental distinction that separates risky decision-making
under a social compared to social conditions is an aversion to
betrayal65. People are less risk-taking in social interactions and might
be particularly sensitive to indications of untrustworthy interaction
partners66. Using a similarmodel to ours, previouswork has shown that
belief volatility was higher when assessing (morally) bad agents53, an
effect that was present in our data as well, with participants having
higher belief volatility when playing against the bad trustee. Although
the drug effects on belief volatility were present across both trustees,
the effects were stronger for the bad trustee. One reason for this could

be that because participants initially expected higher trustworthiness
and higher rates of positive back transfers, there was more to learn
when playing against the bad trustee and, therefore, more variance
across investmentbehaviour.This asymmetric increase in sensitivity to
negative outcomeswould also be in linewith the notion that D1 andD2
receptors in the striatum contribute to positive and negative outcome
processing via the “Go” and “No-Go” pathways, respectively32,67.
According to this circuit model, D2 antagonism mimics the dopami-
nergic ‘dip’ that occurs following negative reinforcement and there-
fore enhances learning to avoid action with a negative outcome.
However, contrary to what we observed, this model also predicts that
blocking post-synaptic D2 receptors should decrease positive predic-
tion error propagation.

When interpretingourfindingswithin theGo/No-Go framework, it
should be noted that in the repeated Trust game in this study, parti-
cipants have no agency over the valence of the outcome (positive or
negative back-transfer), and investments are possible only on an
ordinal scale. Similarly, the RWmodel weused in our study should also
be interpreted with this in mind. Mirroring the effects in the HGF
model, sulpiride increased learning rates in the RW model for both
positive and negative outcomes. In multi-arm bandit tasks or Go/No-
Go tasks where the reinforcement learning framework is often used to
explain choice selection, the learning rate reflects the “Law of Effect”
whereby actions that lead to positive (negative) outcomes are more
(less) likely to get repeated68. A positive outcome following a specific
investment choice in the repeated Trust game will lead to higher
investment (if possible). A higher learning rate simply reflects the
change in the expected response of the trustee. It is therefore related
to the degree to which beliefs about trustworthiness change (on
average across trials). Generally, the crucial distinction between RW
andBayesianmodels is that the latter assumes that agents consider the
uncertainty of outcomes when updating beliefs. With this, Bayesian
models such as the HGF or the Kalman filter can account for phe-
nomena where non-Bayesian reinforcement learning models fail, such
as latent inhibition and sensory preconditioning18,69. Given the relative
increase in the overall and trial-by-trial predictive performance of the
HGF model that includes choice uncertainty over the RW, our data
support the notion that uncertainty about the outcomes and which
actions to take affects choice behaviour in the repeated Trust game.

One important factor that could confound increased belief vola-
tility and learning rates following sulpiride administration is working
memory. Previous work has shown that individual differences in
working memory capacity contribute to behavioural variability in
reinforcement learning tasks43,70 whereby decreased memory capacity
might lead to a higher salience ofmore recent outcomes and therefore
higher learning rates71. We also find support for this notion in our data,
whereby poorer WM performance was strongly linked to higher belief
volatility and higher choice uncertainty. However, despite sulpiride
decreasingWMcapacity in our cohort, includingWMdata in themodel
did not affect inference about sulpiride’s effect on belief volatility, nor
on choice stochasticity. This increase in choice uncertainty or sto-
chasticity under sulpiride is therefore likely not due to failures in
working memory capacity. Instead it could have been due to partici-
pants being less motivated to maximise outcomes, and therefore less
likely to behave as a rational “homo economicus”72. Were that the case
in our study, one would expect a different behavioural pattern in the
single shot-Trust games. Participants under sulpiride should behave
less as rational agents and therefore would be less likely to punish
betrayals and reward trusting behaviour73. Note that D2 receptors
generally do play a role in motivation. For example, optogenetic
excitation and inhibition of D2 receptors in the ventral striatum of rats
is reported to respectively increase and decrease motivation74. It is
possible that the increased action variability resulted from reduced
motivation, or increased noise in belief updating and not in choice
selection per se75. What speaks against this interpretation is that the
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overall performance in the task was not reduced following sulpiride
administration for either of the genetic subgroups, suggesting that the
investment selection under sulpiride was not random and instead
reflected uncertainty about which investment to choose when inter-
acting with the other player.

Indeed, variability in investment selection following sulpiride
administration is well in line with what we know about the role of
dopamine receptors in action selection. Stimulation of D2 receptors
through endogenous dopamine leads to inhibition of the indirect (No-
Go) pathway and increases the probability of repeating the same
action. Accordingly, blockade of postsynaptic D2 receptors increases
the probability of performing competing actions and therefore pro-
motes randomness in action selection76. For example, in macaques,
microinfusion of D2 (but not D1) receptor antagonists into the dorsal
striatum led to increased choice stochasticity77 and a similar pattern
was observed in D2 receptor knockout mice78. In humans, a recent
positron emission tomographic imaging study showed that D2
receptor availability in the striatum correlated with deterministic
decision-making strategies represented either through decision tem-
perature within reinforcement learning as well as with policy precision
within active inference22.

The key idea of active inference models is to extend the Bayesian
generative models of beliefs about the states of the world, to include
beliefs about preferred states, therefore casting both action and per-
ception as an inference problem79,80. An active inference agent thus
prefers actions thatminimise the statistical distance (relative entropy)
between the distributions of desired and predicted future states. The
expected precision of a policy, in the context of our task, controls the
confidencewithwhich the participants selected a certain action, which
can explain the more variable investment we observed in the sulpiride
group. Within this framework, we can interpret the effects of sulpiride
in our study as reflecting amore general role of D2 receptors in coding
precision of both beliefs and action policies, thus extending previous
theoretical and experimental work on the involvement of dopamine in
modulating precision in predictive coding schemes24,28,81.

Our findings might be particularly relevant for understanding the
effects of antipsychotic medication in patients with psychosis, a dis-
order characterised by rigid beliefs of persecution, underlined by a
profound lack of trust in others82,83. Previous studies with repeated
Trust games showed that patients with psychosis have lower initial
trust and find it hard to change their beliefs3,84. Neurocomputational
accounts of delusions suggest that hyperactivity of D2 receptors in
patients leads to increased precision beliefs that result in rigid con-
victions held with high confidence20,85 and a recent paper shows that
higher belief instability in patients with schizophrenia predicts
responses to psychotherapeutic treatment86. This suggests that
decreasing belief rigidity through D2 antagonism could be an essential
contributor to the success of adjunct psychosocial treatment. How-
ever, there are profound differences between the effects of repeated
use of antipsychotics in patients and acute D2 antagonism in healthy
participants. For example, rodent studies show that although in heal-
thy animals D2 receptor antagonism increases the activity of midbrain
dopaminergic cells, this pattern is reversed in an established animal
model of schizophrenia87. Furthermore, despite rapid receptor block-
ade of D2 receptor antagonists, the inhibition of excessive dopami-
nergic signalling proposed to underly the therapeutic effects develops
only after weeks of treatment88,89. Our data also suggest that the
therapeutic effect could be larger in patients that are A1 allele carriers
of the Taq1a polymorphism. Yet, there is no evidence for this90, despite
higher dopamine synthesis being the most likely biomarker of psy-
chotic symptoms91,92 and a predictor of response to antipsychotic
treatment93. Translating our findings to clinical practice will require
more work with targeted patient populations.

Several important limitations should be kept in mind when con-
sidering the generalisability of the findings in this study. First, the

sample was limited to male participants. This restriction was initially
motivated by the notion that including female participants would
require more than doubling the sample size due to increased variance
of dopamine availability across the ovarian cycle. However, recent
work shows no support for this94. Given that there are important sex
differences in responses to antipsychotics, both in terms of efficacy
and side-effect profiles95, future work should prioritise studies in
females. Second, despite our hypothesis-driven approach, the sample
size of the genetic subgroupswas small. The drug-gene interactionswe
report should be interpreted with this in mind. We note however that
we did find a main effect of sulpiride on increased investment change
and on belief volatility in a sample size comparable to other pharma-
cological studies with a between-subject design96.

In conclusion, we show that blocking D2 dopamine receptors
increases the flexibility of beliefs when learning about others. This
finding importantly contributes to our understanding of how the brain
infers the attitudes of other people. By mapping out the connection
between alterations in the dopaminergic system with specific com-
putational substrates this study not only contributes to the advance-
ment of our knowledge of how the brain performs inference, but also
to our understanding of when it fails to appropriately do so.

Methods
Participants
The study was performed in accordance with the Declaration of Hel-
sinki and approved by the National Research Ethics Committee of
Hertfordshire (11/EE/0111). Data were collected from 78 male partici-
pants, aged between 19 and 44 years (mean= 32.1), recruited from a
large panel of participants, that were genotyped and screened for
mental and physical health (Cambridge BioResource). Only partici-
pants with no history of neurological or psychiatric disorder were
included in the study. Participants were stratified based on the Taq1A
genotype into two groups: participants carrying at least one A1 allele
(A1+), and A2 allele homozygotes (A1−).

Procedure
After arrival participants underwent another psychiatric screening and
an alcohol test to exclude alcohol consummation on the study day.
After an assessment of general intelligence (National Adult Reading
Test) participants signed an informed consent before they were admi-
nistered a single oral dose of either 800mg of sulpiride or placebo in a
randomised, double-blind fashion. We used the parallel group design,
because complex behavioural tasks (like the Trust game) have practice
(repetition) effects that can confound the results of within group
pharmacological experiments. Sulpiridemaximal plasma concentration
is expected to peak after 3 h, with a plasma half-life of about 12 h97,98.
Before behavioural testing participants waited for 3 h in a quiet room,
where theywere allowed to read a newspaper. Tomonitor the effects of
the pharmacological manipulation, blood pressure and heart rate and
mood and drug effects were assessed prior to drug administration and
after the 3 h waiting period. Similarly, blood samples to determine the
serum levels were taken at both time points. After the blood draws (at
around 3 h 20’) the behavioural testing started with the social interac-
tion tasks presented here, which included a repeated Trust game, and
positive and negative reciprocity tasks, and were followed by a working
memory task and an instrumental learning task, both published
elsewhere25,57. Two participants were excluded from the analysis: one
felt uncomfortable in the room, and one did not sufficiently understand
the instructions of the social interaction tasks. This led to the following
group distributions: 17 A1 allele carriers received placebo, and 21
received sulpiride, and 21 A2 homozygotes received placebo, and 17
received sulpiride. Participants were matched across the four groups
for age, body mass index, general and verbal intelligence (Table 1, all
p >0.30). Participants received a monetary compensation of £50 plus
the extra money earned in the behavioural tasks.
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Sulpiride serum concentration measurements
The level of serum sulpiride was determined by high-performance
liquid chromatography. This method utilises fluorescence endpoint
detection with prior solvent extraction. The excitation and emission
wavelengths were 300 and 360nm, respectively. Both intra- and inter-
assay coefficients of variation (CVs)were 10% and the limit of detection
was 5–10 ng/ml.

Prolactin level assessment
The prolactin level was measured using a commercial immunoradio-
metric assay (MP Biomedicals, Santa Ana, CA, USA), 3 h after capsule
ingestion. Prolactin levels were expected to increase with blocking
postsynaptic D2 receptors97. The intra- and inter-assay coefficients of
variation were 4.2% and 8.2%, respectively, and the limit of detection
was 0.5 ngml−125. We found that sulpiride administration significantly
increased blood plasma prolactin levels (Δ = 33.1mg/ml, p < 0.001),
and this increase was significantly higher (p <0.001) than the changes
in the placebo group (Δ = −0.91mg/ml, Mann Whitney test for differ-
ences p <0.001). Data for three participants were excluded due to
blood contamination.

Side-effects and mood assessments
Side effects were assessed with a neurovegetative list99, 3 h after drug
intake. Mood was assessed with a visual analogue scale at baseline and
3 h after drug intake. Items in the visual analogue scales (VAS) were
alert/drowsy, calm/excited, strong/feeble, muzzy/clear-headed, well
coordinated/clumsy, lethargic/energetic, contented–discontented,
troubled–tranquil, mentally slow/quick-witted, tense/relaxed, atten-
tive/dreamy, incompetent/proficient, happy/sad, antagonistic/amic-
able, interested/bored and withdrawn/gregarious. The factors
“alertness”, “contentedness”, and “calmness” were calculated from
these items100. Data from one participant were excluded due to tech-
nical issues. We found no credible evidence of drug effects on mood,
heart rate, blood pressure or self-reported side-effects (for details see
Supplementary Material).

Repeated trust game
In the Trust game51 an investor (Player A) decides on howmuchmoney
they want to transfer to the other player, called the trustee (Player B).
The trustee receives the investment that is however tripled by the
experimenter and decides on how to split the acquired sum.We used a
multi-round version of the task101, where the interchange between the
investor and the trustee repeated across 25 trials. In the beginning of
each trial both players were endowed with 10 points, to avoid invest-
ments motivated by inequality aversion. Each point converted to two
pence at the end of the experiment. The participants could invest
points on a scale from0 to 10 and the trustee could respond in a binary
fashion, by either equalising the payoff, or defecting by keeping all the
points in the trial for themselves. Participants played as investors
against twopre-programmed trustees: one defected in7 out of 25 trials
(the good agent) and the other defected in 18 out of 25 trials (the bad
agent). The feedback was pseudorandomized separately for each
participant and was interleaved whereby only two consecutive trials
with the same trusteewere allowed. To increase ecological validity, the

participants were led to believe that they play against two actual
people that have already given their answers in advance several weeks
before the testing, and that their decision will impact the payoff of
these participants. All paradigms were programmed in Visual Basic.

Positive and negative reciprocity games
In the positive reciprocity game, the two players need to distribute
800 points. First, player A is offered a distribution whereby they get
800 points and player B gets 0 points. They can decide to either keep
all the points or delegate the decision on how to divide the points to
player B. If the decision was to delegate, to player B can decide on any
point distribution between the two players. Participants in our study
played as player B sequentially against 7 different people playing as
player A. The negative reciprocity game is like a Trust game in which
defecting behaviour of the trustee can be punished by the investor.
Both players are first endowed with 10 points. Player A then decides to
either transfer his endowment (all the 10 points) all transfer nothing.
The transfer of player A is quadrupled by the experimenter. Player B
can then decide to either keep everything to themselves or to equalise
the payoff. Following the decision of player B, both players get
endowed with another 20 points and player A can spend each of these
20 points to penalise player B’s outcome, whereby each penalty point
of player A spent this way deducts three times as many points from
player B’s outcome. Participants in our study played as player A against
7 different people playing as player B. The actions of people playing
player B were pre-programmed so that 5 out of 7 defected.

In both games the participants were told that the players have
given their answers already days before the testing. Each point con-
verts to 0.2 pence for the positive reciprocity game and4pence for the
negative reciprocity game.

Spatial working memory task
In the Spatial working memory task the participants were required to
search through a spatial array of coloured squared boxes for a hidden
‘token’57 using a tablet. Participants have to touch the box to open it in
order to reveal whether the token is in the box or not. When a token is
found, the search starts again, whereby no tokenwill be hidden in a box
twice in the same trial. The performance measure is the number of
search errors defined as errors committed when participants choose a
box that has already had a token in that trial. There are 3, 4, 6, 8, 10 or 12
boxes in each trial, making the task progressively harder. The three
boxes searchwere used as practice trials and a successful completion of
them was a requirement for progressing onto the main test. The other
difficulties each appeared three times. One subjects did not complete
the working memory task and was removed from the analysis.

Behavioural analysis
Behavioural analysis was done with Bayesian multilevel (generalised)
linear regression55, fitted with the brms package in R102 through RStu-
dio. All models were run with 4 chains, 3000 iterations each with 800
warm-up. The quality of chain convergence was inspected visually
based on trace plots of main fixed effects, and a threshold on Gelman-
Rubin R̂ Statistic for each parameter was set to 1.01103. Throughout the
behavioural analysis we z-scored the dependent variables (across the

Table 1 | Demographic information

Genotype Treatment N IQ sd Verbal IQ sd BMI sd

A1+ Placebo 17 120.2 5.333 120.335 5.913 26.098 3.125

A1+ Sulpiride 21 120.21 7.334 120.355 8.133 26.595 5.74

A1− Placebo 21 120.05 6.089 120.17 6.76 24.604 4.415

A1− Sulpiride 17 117.659 7.494 117.518 8.318 25.064 5.393

sd standard deviation.
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whole group), coded the Treatment variable as 0 (placebo) and 1
(sulpiride), Back-transfer as 1 (equalise) and −1 (betray), Genotype as 0
(A1−) and 1 (A1 + ) and centred the trustee variable (0.5 for good, and
−0.5 for bad trustee). All random effects were modelled as a multi-
variate normal distribution, thereby evaluating the correlation
between the effects as well as pooling information across the effects.
Priors used are depicted in Table 2. The effect sizes where calculated
by dividing the regression coefficients with the square root of summed
variances of the residuals and of all random effects104. All models were
redone also in the lme4 package105 or nlme package106, and the results
of those models are reported in the supplementary material.

Analysing investment behaviour
All model summary tables are in the supplementary material. The
effect of sulpiride on absolute change from one trial to the next was
evaluated with a model predicting effects on absolute change of sul-
piride and trials with random intercepts for each participant. We also
rerun the model including a participant-level slope for the trial and
found that it does not affect inference about the main effect, but does
increase the uncertainty around the interaction term. Next, the Gen-
otype and Trustee as group level predictors were included as well as a
random slope for the Trustee for each participant. Since the depen-
dent variable is bounded at 0, the same analysis was done again with
the dependent variable shifted by 1 and log transformed. This did not
affect the conclusion of the model.

To analyse relative changes in investment the z-scored relative
change from one trial to the next was predicted from the variable for
Back-transfer (coded as −1 and 1), Treatment, Genotype, Trustee as
well as their interactions,with a participant-level random intercept and
slope for the Trustee.

The reciprocal and mistake trials were analysed with a multilevel
logistic regression model including predictors Treatment, Genotype,
Trustee, and their interaction, againwith a random intercept and slope
for the effects of the Trustee for each participant.

To analyse average investments, we used a multilevel ordinal-
logistic regression model, with Treatment, Genotype, Trustee, Trial
and their interaction, with a random intercept and slope for the effects
of the Trustee for each participant.

Models analysing the single-round reciprocity tasks predicted
Punishment (negative reciprocity) and Back transfer (positive reci-
procity) from Treatment, Genotype and their interaction, including a
random intercept per participant.

Computational modelling
We first defined a generative model of the evolution of beliefs about
the other players’ trustworthiness as a Gaussian random walk. The
belief volatility parameter ω describes the degree to which these
beliefs can change from one trial to the next. We then used the Hier-
archical Gaussian Filter (HGF) to invert this model6.

Generative model
The generative model describes the evolution of beliefs about the
other person’s trustworthiness as a Gaussian random walk with a step
size of exp ωð Þ. In particular, at trial t the belief on the other player’s
trustworthiness is defined as

xðtÞ ∼N x t�1ð Þ, eω
� � ð1Þ

where ω is a participant level parameter. The mapping from the
trustworthiness beliefs to the probability of a positive Back transfer
(BT) occurs through a sigmoid transform sð:Þ. So, at trial t we define:

BT tð Þ =Bernoulliðs x tð Þ� � ð2Þ

xð Þ= 1=ð1 + exÞ ð3Þ

Model inversion and update equations
To define the inferred participant level belief trajectories the gen-
erative model is inverted using Hierarchical Gaussian Filtering6,52. The
HGF approximates full Bayesian inference using variational Bayes to
derive at trial level update equations that resemble those of a Kalman
filter69,107. In particular, the weights (learning rates) on the PEs are
determined by the precision of prior beliefs as well as the uncertainty
about the outcome. The HGF provides inferred posterior distributions
of participants’ belief trajectories as Gaussians through the mean μðtÞ

and variance σ tð Þ2 or its inverse, the precision π tð Þ in the update equa-
tions for both time series:

PE =BT ðtÞ � s κμðtÞ� �
, ð4Þ

μ t + 1ð Þ =μ tð Þ +ψtPE, ð5Þ

π t + 1ð Þ = 1=
1

πðtÞ + e
ω

� �
, ð6Þ

π̂ðtÞ =πðt + 1Þ + s μðtÞ� �
1� s μðtÞ� �� ��

, ð7Þ

ψt = 1=π̂
t + 1ð Þ, ð8Þ

where PE is the prediction error, ψt is the precision weight (learning
rate) that is determined by the expected precision of prediction (π̂ tð Þ),
and ω and κ are free parameters in the model. This is a so-called
recognition or perceptual model and describes our beliefs about the
belief of the participants. Tomap the beliefs about the trustworthiness
of the other person (μ tð Þ)on to the probability of feedbackwe used two
versions of non-linear mapping from beliefs to probabilities:

μ tð Þ
p =pwðs κμ tð Þ� �

,γÞ, ð9Þ

pw x, γð Þ= xγ

xγ + ð1� xÞγ , ð10Þ

where pwð:Þ is a probability weighting function on the unit interval,
with another free parameter γ that determines the skew of the func-
tion. We estimated either γ or κ and fixed the other parameter.

We then mapped the probability of feedback to behaviour of the
participant with a response model is defined through a likelihood
function. Because investments occur on an ordinal scale we used the
ordered logistic link function108:

P I tð Þ = k
� �

∼Ordered� Logitðημ tð Þ
p CÞ, ð11Þ

Where C is a vector of intercepts and η is the noise parameter that
(similarly to the inverse temperature in the softmax equation) deter-
mines to what degree belief about the other person’s trustworthiness
determines investment behaviour. The ordered-logit estimates 10
intercepts, that determine the mapping from the linear term to the
ordinal investments. In an ideal case, we would estimate all 10
intercepts for each subject, which was not feasible with our data. We

Table 2 | Prior distributions for the analysis of investment
changes

Standard Deviations σ ∼HalfCauchy 0,2ð Þ
Regression Coefficients β∼Nð0,3Þ
Prior for the correlation matrix R∼ LKJcorrð2Þ
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therefore estimate the 10 intercepts for all subjects, add one subject-
level intercept in the linear termand assist themodel in accounting for
the various investment distributionswith the non-linearmapping from
beliefs to probabilities enabled either by κ or γ: In the winning HGF
model, κ was fixed to 1 and γ was estimated. In the secondHGFmodel,
γ was fixed to 1 and κ was estimated as a free parameter.

We also compared both HGFmodels to a simple Rescorla-Wagner
model109 with separate learning rates for positive and negative feed-
back. Given a learning rate α, and an action valueQ of a chosen action
on trial t, we defined the updating equation as:

Q t + 1ð Þ =Q tð Þ +αPE, ð12Þ

PE =BT ðtÞ �Q tð Þ, ð13Þ

while using the same likelihood function as for the HGF models.
We estimated a different α for positive and negative outcomes.

Parameter estimation
The model parameters were estimated in one hierarchical Bayesian
model. This approach reduces overfitting55, pools information across
different levels (drug groups, and participants) and allows us to esti-
mate both participant and group level parameters in one inferential
step. Meaning, we estimate the effects of our drugmanipulation on all
relevant computational parameters in one model, while at the same
time, leading to more stable parameter estimates110. Models were
implemented in Stan111 using R as the programming language and
RStudio as the integrated development environment for R. Each can-
didate model with four independent chains and 3000 iterations (800
warm-up). Convergence of sampling chains was estimated through the
Gelman-Rubin R̂ statistic103, whereby we considered R̂ values smaller
than or equal to 1:01 as acceptable.

The intercepts from the response model, ck , k = 1, . . . ,10, were
estimated on the group level. This determined a generalmapping from
the probability to Investment. The participant level parameters (ω,Δω,
γ, η and μ0) were modelled as a multivariate Gaussian distribution:

ω

Δω

γ0

η

μ0

0
BBBBBB@

1
CCCCCCA

∼MVNormal μ, Sð Þ, ð14Þ

Where S is the covariancematrix and μ is the vector of means. The Δω
parameterdenotes themodelleddifference inωbetween the goodand
the bad Trustee. Thematrix S was factored into a diagonalmatrix with
standard deviations and the correlation matrix R55,102. The prime
denotes the parameters in estimation space, whereby γ was estimated
in log space, due to it being lower boundby0. The vectorμ included all
group level regression coefficients for the drug, genotype, and their
interaction. The priors for group-level means for non-transformed
parameters were weakly informative, for γ, estimated in log-space, the
prior was Nð0,0:5Þ, the prior for group-level standard deviations were
more regularising, with σ ∼Half Normal 0,0:2ð Þ, and the prior for the
correlation matrix was R∼ LKJcorrð2Þ. The prior for group level η was
set to something above 0, because chains that sampled from areas too
close to 0 usually got stuck in that area. An overview of priors of
parameters across the three models can be seen in Table 3.

To control to what degree working memory affects inference
about the effects of drug and genotype we additionally estimated
anothermodel that included the number of search errors (z-scored) as
a covariate on the group-level effect. To calculate the subject-level

residuals after accounting for spatial working memory data, we ran
anothermodel that did not include drug data,meaning the only group
level parameter affecting the group level means was the regression
coefficient for te spatial working memory.

Model validation and comparison
For parameter recovery 5 parameter sets were drawn from each par-
ticipant’s mean and standard deviation and used to simulate data.
Simulated data were then estimated with the same model and the re-
estimated parameters were correlated with the simulated ones. Fur-
ther, posterior distributions of parameters were used to simulate data
and check whether the crucial aspects of behaviour are captured by
themodel. A trial based Leave-One-Out Information Criterion (LOOIC)
was used to compare the three models112 using the loo package in R.
The LOOIC approximate out-of-sample predictive accuracy of each
trial, with lower LOOIC scores indicating better prediction accuracy
out of sample. In addition, the performance of the models was com-
pared with the with the “loo_compare” which return the difference
(and the standard error) of each model to the best performing model
in terms of expected predictive accuracy on a log scale (ELPD).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data of the experiment is available online (https://doi.org/10.5281/
zenodo.7779029).

Code availability
The analysis scripts are available online (https://github.com/
nacemikus/belief-volatility-da-trustgame.git).
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