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Neuroimaging research requires sophisticated tools for analyzing complex data, 
but efficiently leveraging these tools can be  a major challenge, especially on 
large datasets. CBRAIN is a web-based platform designed to simplify the use and 
accessibility of neuroimaging research tools for large-scale, collaborative studies. 
In this paper, we  describe how CBRAIN’s unique features and infrastructure 
were leveraged to integrate TAPAS PhysIO, an open-source MATLAB toolbox for 
physiological noise modeling in fMRI data. This case study highlights three key 
elements of CBRAIN’s infrastructure that enable streamlined, multimodal tool 
integration: a user-friendly GUI, a Brain Imaging Data Structure (BIDS) data-entry 
schema, and convenient in-browser visualization of results. By incorporating 
PhysIO into CBRAIN, we achieved significant improvements in the speed, ease of 
use, and scalability of physiological preprocessing. Researchers now have access 
to a uniform and intuitive interface for analyzing data, which facilitates remote 
and collaborative evaluation of results. With these improvements, CBRAIN aims 
to become an essential open-science tool for integrative neuroimaging research, 
supporting FAIR principles and enabling efficient workflows for complex analysis 
pipelines.
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1. Introduction

The preprocessing of fMRI data is often a complex and computationally intensive task. There 
are several standardized and popular software libraries for typical fMRI analyses [such as SPM 
(Ashburner et al., 2021), FSL (Jenkinson et al., 2012), AFNI (Cox, 2012), and fMRIPrep (Esteban 
et  al., 2019)], but model-based evaluation of physiological measurements, such as 
electrocardiogram or breathing belt readings, are not frequently done. This is partly because of 
the heterogeneity of data formats and lack of standardized methods for their analysis, which 
creates barriers to prioritizing their treatment. This is despite the fact that the blood oxygen 
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level-dependent signal (BOLD) is strongly influenced by patterns of 
cardiac and respiratory activity (Birn et al., 2006, 2008; Chang and 
Glover, 2009; Khalili-Mahani et  al., 2013; Murphy et  al., 2013). 
Rhythmic activity of the heart and lungs can cause variations in blood 
oxygenation, which can be  misinterpreted as a marker of neural 
activity. Respiration can also cause phasic movements of the head and 
body, as well as pseudomotion caused by field interactions (Power 
et al., 2019). Model-based physiological image correction has been 
shown to substantially improve signal-to-noise ratio in task-based 
fMRI studies (Hutton et al., 2011) and reduce spurious correlations in 
resting-state networks (Birn, 2012). Khalili-Mahani et al. have also 
shown that the choice of model in physiological noise reduction affects 
the inferences that can be  made at group-level analyses (Khalili-
Mahani et al., 2013).

Accounting for these sources of noise requires iterative model 
testing, which can take substantial researcher time, expertise, and 
computational resources (potentially including the purchase and 
maintenance of costly hardware). Excellent open-source tools exist for 
efficiently computing these models, such as the MATLAB-based 
PhysIO toolbox (Kasper et al., 2017), which has been developed to 
generate various noise models. PhysIO, currently in version 
8.0.1, is part of the TAPAS package (https://github.com/
translationalneuromodeling/tapas; Frässle et al., 2021), which leverages 
the Statistical Parametric Mapping (SPM12) library (Friston, 2003; 
Ashburner et al., 2021). The PhysIO matlab package is one of the most 
standard and commonly used softwares for model-based physiological 
noise reduction. It contains a variety of state-of-the-art and commonly 
used models for model based noise correction in fMRI (Glover et al., 
2000; Birn et al., 2008; Chang et al., 2009). A unique feature of this 
toolbox is that it accepts input from a variety of devices and vendors, 
and provides an array of modeling options such as RETROICOR 
(Glover et al., 2000), RVHRCOR (Chang and Glover, 2009), and RVH 
(Birn et al., 2008); as well as estimated movement data. However, it 
relies on local installations of MATLAB and SPM, which makes it 
difficult to use on large or distributed datasets.

Increasingly, neuroimaging researchers rely on open-access 
shared datasets, containing anywhere from dozens to thousands of 
subjects (Poldrack and Gorgolewski, 2017; Madan, 2022), such as 
the Human Connectome Project (Elam et al., 2021), the UK Biobank 
(Collins, 2012), and the Adolescent Brain Cognitive Development 
study (Casey et al., 2018). These large datasets, containing hundreds 
of gigabytes of data, can be infeasible to process on local machines. 
In addition, comparing the results of different models depends on 
performing visual or mathematical comparison of pre- and post-
corrected datasets, which adds significant time to the workflow. 
Ideally, a user would want a readily available method of examining 
the topographical pattern of physiological modulation of the BOLD 
signal to critically evaluate the significance of confounding effects. 
To address these challenges, and to facilitate web-based 
preprocessing for fMRI datasets, we  have implemented PhysIO  
on CBRAIN, an open-source, high performance scientific 
computing platform.

CBRAIN has been created to address the challenges involved in 
Big Data research, for example, developing secure and robust ways of 
leveraging high-performance computing (HPC) clusters for 
neuroimaging research (https://cbrain.ca/; Sherif et  al., 2014). It 
enables users to launch a large number of tasks, remotely and in 
parallel, from a user-friendly interface, without the need to install 

local software or rely on a specific operating system. It is accessed and 
operated entirely from a web browser and can be used on any major 
operating system. CBRAIN offers provenance tracking, data 
management, data visualization, and data sharing features that 
simplify and accelerate collaborative research. In this paper, 
we describe the process of integrating PhysIO onto CBRAIN, and 
illustrate the advantages of incorporating such tools in terms of 
workflow efficiency and quality-of-life features. The following 
features have been added to extend the capabilities of PhysIO:

 1. PhysIO tasks can run on high-performance servers via a simple 
graphical user interface, thus alleviating the need of researchers 
to maintain local servers.

 2. Quality-of-life features for researchers to reduce the burden of 
developing scripts for batch processing, in addition to 
automated image correction and in-browser visualization 
of results.

 3. Comprehensive provenance tracking enables researchers to 
track the reproducibility of physiological noise processing in 
fMRI research.

In sum, this case study highlights the benefits of CBRAIN’s 
features and infrastructure in supporting multimodal data analysis on 
large datasets. Furthermore, it serves as a manual for how additional 
tools may be  integrated into CBRAIN’s growing library of image 
processing software. As an open-source, open-science platform, 
CBRAIN can be extended and replicated by varied users and research 
labs, with additional tool integrations potentially coming from 
members of the neuroimaging community.

2. Methods

The integration of PhysIO on CBRAIN is accomplished through 
three main steps (illustrated in Figure 1):

 1. The creation of a wrapper program that converts the MATLAB-
based script into a command-line tool, and which extends 
PhysIO with additional functions (e.g., automated image 
correction, BIDS Subject read-in).

 2. Compilation and containerization of the MATLAB application 
within a Singularity environment (Kurtzer et al., 2017).

 3. Creation of a standardized GUI via the Boutiques framework 
(Glatard et al., 2018).

2.1. Wrapper script

To integrate tools into CBRAIN and execute them on high-
performance computing servers, the tool must be capable of being 
invoked and configured entirely through the command-line. For 
PhysIO, this requires us to write a wrapper script with a command-
line interface in MATLAB. This wrapper script also allowed us to add 
additional functions for automated fMRI image correction, as well as 
quality-control noise-variance maps based on comparison of corrected 
and uncorrected images. These additions were programmed in 
MATLAB 2021b.
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2.1.1. Command line parameterization
A command-line interface for PhysIO, which is ordinarily 

prepared through MATLAB configuration scripts, was written using 
MATLAB’s inputParser class. The input parameters, numbering some 
60–70 arguments, are parsed and loaded into the PhysIO options 
structure. Ordinarily, these parameters would have to be  set by 
manually editing lines in a MATLAB script. In CBRAIN, the 
description of this command-line interface using the Boutiques 
framework (see Section 2.3) allows parameters to be set in a user-
friendly online graphical user interface.

2.1.2. Read-in of BIDS data
In recent years, there has been a push to standardize the 

storage and naming convention of brain imaging data, in order to 
improve the interoperability and readability of datasets from 
various research groups and projects. This initiative, the Brain 
Imaging Data Structure (BIDS) (Gorgolewski et al., 2016), has also 
been applied to neuroimaging software as the BIDSapps 
framework (Gorgolewski et al., 2017). The goal of this framework 
is to leverage the standardized naming schemes and data types of 
BIDS by configuring preprocessing and analysis scripts to read 
and process entire subject folders or datasets automatically, rather 
than having to separately provide the various input files. This 
greatly increases the speed and ease of neuroimaging 
analysis pipelines.

In accordance with this framework, we added the capability to 
read BIDS Subject directories for automatic processing of all the data 

contained within. Thus, rather than having to separately select an 
fMRI file and one or more physiological files for every fMRI run to 
be processed by PhysIO, users on CBRAIN can simply supply a BIDS 
Subject, which can contain anywhere from one to dozens of separate 
acquisitions which are read and processed automatically.

To allow users to leverage this BIDS read-in capability, and to 
facilitate the storage of data in BIDS format more broadly, 
we developed a prototype utility on CBRAIN for converting datasets 
from an arbitrary naming and storage convention to BIDS 
conventions. This tool, “BIDS-Converter,” is written in Python and 
takes as input wildcards for identifying subject numbers and key-value 
pairs for identifying and naming files by their modality and other 
relevant information (BIDS “entities”).

This tool is useful for renaming datasets that have been converted 
to NIfTI but have not been named and organized in accordance with 
BIDS conventions. For data that is available in source or DICOM 
format, users are encouraged to use tools such as dcm2niix (Li et al., 
2016) or HeuDiConv (Halchenko et al., 2023) to convert their data 
from DICOM to NIfTI, which can also automatically organize the 
outputted files as a BIDS directory complete with all the metadata that 
is available in the source file headers.

2.1.3. Automated fMRI noise reduction
The main outputs of PhysIO are time-series vectors which can 

be  derived from a variety of well-established models, including 
RETROICOR (Glover et al., 2000), RVT (Birn et al., 2008), and HRV 
(Chang et al., 2009). These can be used in a generalized linear model 

FIGURE 1

Software pipeline of integration of the PhysIO toolbox into CBRAIN and high-performance computing clusters.
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(GLM) to factor out the variance due to cardiac and respiratory 
activity. In the default implementation of PhysIO, the user is 
encouraged to do this as a separate step in the Statistical Parametric 
Mapping (SPM) package in MATLAB (Friston, 2003; Ashburner et al., 
2021) and integrate the physiological noise model with any task-based 
regressors in a unified GLM that includes pre-whitening and high-
pass filtering. This avoids over-correcting fluctuations that are 
correlated with both task and physiology, as well as introducing 
spurious high-frequency correlations (Bright et al., 2017; Chen et al., 
2017). However, it requires multiple user operations within the SPM12 
graphical user interface, or custom MATLAB scripting using 
SPM functions.

We have simplified this task by adding the image correction step 
to the pipeline, adapted from Chang and Glover (2009), which uses an 
analytic linear regression step to compute the beta weights of the 
outputted PhysIO regressors relative to the fMRI data. To compute the 
beta weights, we use the mldivide operator in MATLAB to solve the 
system of linear equations X*B = Y, where X is the design matrix 
(including an intercept, time vector, time squared vector, and PhysIO 
outputs), Y is the fMRI BOLD data, and B is the beta matrix. The beta-
weighted regressors are then subtracted from the original image to 
produce a noise-corrected fMRI image. Thus, the equation for the 
correction step is

 
Y Y B Xcorrected uncorrected= ( )∗−

In addition to the corrected image, a three-dimensional pct_var_
reduced image is computed where each voxel represents the 
percentage of variance reduced by noise correction for that voxel’s 
time series. This computation was also adapted from Chang and 
Glover (2009). The formula for the variance reduced image is

 
σ σ σ2 2 2uncorrected corrected uncorrected−( ) /

for every voxel in the original image, where σ2 is the variance of 
the voxel’s time series. Examples of these variance maps using different 
noise modeling algorithms available in PhysIO are shown in Figure 2. 
As it can be seen in this image, the topography of noise variance is 
dependent on the model, underlining the importance of 
comprehensive physiological noise modeling in fMRI analyses.

The corrected image produced by this regression modeling step 
can be used to create visual or qualitative maps of model performance 
(such as the percent variance reduced image), but the current 
implementation lacks the prewhitening and high-pass filtering 
preprocessing steps that would make the output image appropriate for 
statistical analysis (Bright et al., 2017; Chen et al., 2017). A future 
update to the PhysIO wrapper on CBRAIN would include these steps, 
so that the corrected image is ready for hypothesis testing in further 
task-related GLM modeling, or for assessing the fit of the noise model 
with statistical tests.

2.2. Containerization

Container engines, similar to virtual machines, allow software to 
be run in a virtual, self-contained computing environment under an 

operating system which can differ from the host machine’s. This 
ensures reproducibility and accessibility across multiple platforms 
and addresses the problem of unstable and changing dependencies 
in research software. It also allows software pipelines to be easily run 
on remote high-performance computing servers, such as those 
leveraged by CBRAIN. Containers are saved and shared as “images,” 
which are templates that define how a given container will 
be constructed.

We compiled the PhysIO Toolbox, along with the wrapper script 
and additional functions, into a standalone application using the 
MATLAB compiler toolkit. This allows the tool to be  run as an 
executable, without requiring a MATLAB license and installation. 
Furthermore, the MATLAB compiler toolkit contains functionality 
for procedurally building a Docker container image with correct 
dependencies and an appropriate version of the MATLAB runtime 
binaries. We used this tool to create a Docker image.

While Docker is a widely-used container engine, Docker images 
are not directly supported on the high-performance computing 
servers leveraged by CBRAIN. This is because, until recently, Docker 
Engine required root permissions, which would create security issues 
on public servers. Singularity (Kurtzer et  al., 2017), now called 
Apptainer, is another open-source container engine specialized for 
scientific computing. Singularity is natively rootless, i.e., it is 
optimized for running containers with user privileges, which 
mitigates security risks, and it provides improved reproducibility for 
scientific computing (Mitra-Behura et al., 2022). It is interoperable 
with Docker, as Docker images can be  automatically converted 
to Singularity.

Therefore, at runtime, Boutiques software (see Section 2.3) uses a 
reference to the Docker image for the PhysIO CBRAIN tool, housed 
on Docker Hub, and performs the conversion of the image to 
Singularity. CBRAIN then builds and runs the container on HPC 
clusters, and caches the Singularity image for future use.

2.3. Boutiques descriptor

CBRAIN uses the Boutiques framework (Glatard et al., 2018) to 
describe and validate command-line inputs. The central component 
of Boutiques is a JSON descriptor, which contains a dictionary of all 
the arguments which can be passed to the application. The argument 
objects include properties such as type, default value, value choices, 
required or optional, and a text description. The descriptor can also 
define argument groups, and contains information about the tool 
version, online repositories, and other metadata.

CBRAIN possesses a streamlined system for tool integration 
through Boutiques - for any developer to add a new tool to CBRAIN, 
it is only required to create a container and descriptor for the tool, and 
to provide the descriptor in a repository on GitHub. The CBRAIN 
administrators can then integrate the tool (see below). CBRAIN 
leverages Boutiques to validate task parameters and uses the 
command-line schema, in combination with a container reference, to 
launch the tool on high-performance computing clusters. In addition, 
CBRAIN uses the Boutiques descriptor to populate the GUI for task 
configuration, thus creating a uniform user interface across different 
neuroimaging pipelines (Figure 3).

The Boutiques framework is flexible, and while it is leveraged by 
CBRAIN, it can also be used to configure and run tool containers on 
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local machines. Information on how to integrate Boutiques in local 
processing pipelines can be  found in its online documentation. 
Boutiques descriptors can furthermore be  published on Zenodo 
(https://zenodo.org/) for online documentation and sharing.

2.3.1. Descriptor integration in CBRAIN
Tool wrappers, executable containers, and Boutiques descriptors 

are created by tool developers (pipeline contributors) and the 
workflow and user experience can optionally be mock-tested via local 
builds of CBRAIN. However, final integration in CBRAIN is 
performed by designated CBRAIN administrators who will oversee 
the integrity of the process. Researchers who are interested in getting 
their tool integrated must contact the administrators either by email 
or through the CBRAIN support forum. The process is handled on a 
case by case manner, in order to ensure the compliance of tools with 
the network’s cybersecurity measures, and to prevent potential 
malware being installed on the network.

2.4. Workflow comparison

To compare the efficiency and functionality of PhysIO in its native 
MATLAB implementation against the CBRAIN implementation, 
we used a dataset of 62 fMRI datasets acquired on a Philips 3 Tesla 
Achieva TX MRI scanner using a 32-channel SENSE head coil (Philips 
Medical Systems, Best, The Netherlands). Whole-brain fMRI data sets 
were acquired using T2*-weighted gradient-echo echo-planar imaging 
with the following scan parameters: 190 volumes; 38 axial slices 
scanned in ascending order; repetition time (TR) = 2.2 s; echo time 
(TE) = 30 ms; flip angle = 80°; FOV = 220 × 220 mm; 2.75 mm isotropic 
voxels with a 0.275 mm slice gap. For all datasets, respiration and 
cardiac data were acquired with the MR machine’s respiration belt and 
pulse oximeter, sampled at 500 Hz (Sitsen et al., 2022). We assessed 
differences between running PhysIO on CBRAIN versus on a “typical 
student computer” (MSI laptop computer running Windows 10 with 
an Intel i7-8565U CPU @ 1.80GHz) in terms of user- and 

FIGURE 2

Outputs of PhysIO on CBRAIN (Variance reduced map; pct_var_reduced.nii.gz) using various noise modeling algorithms available in PhysIO: 
(A) RETROICOR (Glover et al., 2000) (B) RVT (Birn et al., 2008) along with HRV (Chang et al., 2009), (C) RVT alone (D) HRV alone. The variance maps 
were visualized using CBRAIN’s browser-based visualization module. The data used to produce the images are available on OpenNeuro.org (Etzel and 
Braver, 2020). As the voxels indicate percentage of total variance, the lower threshold in all images is zero; the upper thresholds are 86.6% (0.866) for 
(A), 19.2% (0.192) for (B), 17.8% for (C), and 18.1% for (D). The images have a lower-bound cutoff of 0.1 for (A) and 0.01 for (B–D).
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computation-time required for each implementation, as well as the 
functionality provided by each.

For the native MATLAB implementation, the amount of time 
required to prepare one run for processing was recorded and 
multiplied by the number of runs, as PhysIO natively requires one 
configuration file to be created for each run. It can also leverage the 
SPM batch GUI, but this also requires a separate configuration step 
for each run. The same estimate calculation was done for computation 
time. For the CBRAIN implementation, which is capable of batch 
processing files using a single configuration (Figure 4), the setup time 
was recorded as well as the total time from task execution to task 
completion for computation time.

3. Results

We compared the functionality, user time, and computation time 
involved in running a dataset of 62 subjects on CBRAIN and using the 
native MATLAB implementation of PhysIO. These results are 
summarized in Table 1.

3.1. User time

As a result of the addition of a batch processing feature, user time 
was greatly reduced for the CBRAIN case compared to the native 
MATLAB implementation. Setup time was estimated for the latter two 
as taking 2–5 min to configure and execute an initial run, with 
approximately 2 min required for every subsequent run, resulting in 
an average estimate of 95 min for the dataset of 62 runs. In CBRAIN, 
creation of the CBRAIN File List (CBCSV) increased setup time 

slightly, but only one task configuration was required, reducing setup 
time to 5–10 min.

An important feature of CBRAIN is provenance tracking of slight 
modifications to the tool parametrization. It enables users to save, 
and recall the parameter used for each command execution. As such, 
it facilitates reproducing results, and provides an easy and GUI-based 
interface to modify options, without risking deletion or overriding of 
data processed with different options. All these logs, as well as reports 
of task completion and failure are available to users on the interface 
(see Figure 5 for examples of file browsing and output file viewing 
in CBRAIN).

3.2. Computation time

On the locally installed softwares, using the RETROICOR 
modeling algorithm and an fMRI run with dimensions 80 × 80 × 40 
× 190, a PhysIO task took 45 s to complete. With 62 runs, this resulted 
in an overall computation time of approximately 45 min.

On CBRAIN, computation time could be reduced by leveraging 
the batch processing functionality native to CBRAIN. The 62 runs 
could be processed in parallel across multiple HPC clusters. Thus, 
despite queue times, all tasks were completed in approximately 
25 min. Longer queue times, however, would result in longer time-
to-completion. The total time required to execute the task on a cluster 
(walltime) was 57 s. Thus, the lower bound for processing a batch of 
runs with PhysIO on CBRAIN (assuming no queue) would be about 
1 min. It also includes the extra computation step of the automated 
image correction module, described below, explaining why the 
processing time was slightly longer than the local run, which did not 
perform image correction.

FIGURE 3

(A) Boutiques descriptor JSON specifying information such as the tool version and container address, as well as properties of command-line inputs. 
(B) CBRAIN graphical user interface for task configuration, which is procedurally generated from the Boutiques descriptor.
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3.3. Functionality

The functionality of the PhysIO toolbox was expanded in three 
main ways. First, an automated image correction module was added 
via a MATLAB wrapper. This module uses the multiple regressors 
outputted by PhysIO to model noise in an fMRI run. The model 
residuals are then extracted and saved as a noise-corrected fMRI 
image, which can be used to assess model performance. At present, 
we have not modified the PhysIO’s original parameterization, and 
therefore our improvements are only related to ease of data 
management work-flow, provenance tracking, and visualization. A 
future update to the PhysIO wrapper would also include the 
preprocessing steps of prewhitening and high-pass filtering, which 
avoid some pitfalls of physiological noise correction, and ensure 
validity of statistical testing performed on the output image (Bright 
et al., 2017; Chen et al., 2017).

Next, we  adapted PhysIO to accept a BIDS-format dataset as 
input. Most data on CBRAIN are stored according to the community 
conventions known as the Brain Imaging Data Structure (BIDS). In 
addition, tools such as a BIDS converter prototype are available to help 
users to refactor data according to BIDS standards. With the option 
to use a BIDS subject or dataset as input, the amount of files or 
directories needing to be tracked is greatly reduced, as a BIDS subject 
typically contains multiple runs collected across one or more 
scanning sessions.

We also enabled an option for batch processing tasks in parallel. 
On CBRAIN, one task configuration, which is created and saved in 
the CBRAIN GUI, can execute a task on the full set of fMRI runs. 
These runs are processed in parallel across multiple HPC clusters.  
In the native MATLAB implementation, custom scripts would 
be required for batch processing using a single configuration file, or 
parallel processing across multiple CPU cores.

Finally, the CBRAIN provides multiple ease-of-use improvements, 
including a user-friendly GUI for setting task parameters and an 
online data visualizer. The task configuration interface provides 
descriptions and information about each argument, and the 
integration with the Boutiques framework for command-line 
description allowed us to include constraints and interdependencies 
between parameters. The NIfTI visualization tool is accessible directly 
in-browser when viewing files on CBRAIN. Once a task is completed, 
users can browse through its outputs and view any slice or frame of an 
fMRI run or other MRI-based data with a .nii extension.

4. Conclusion

4.1. Summary

In this case study, we  provide a methodology for integrating 
complex, multimodal fMRI pipelines such as TAPAS PhysIO (Kasper 
et al., 2017; Frässle et al., 2021) onto CBRAIN (Sherif et al., 2014). 
The CBRAIN platform is a web-based, open-science infrastructure 
for facilitating large-scale integrative neuroimaging research, and is 
designed with FAIR principles in mind (Poline et al., 2022). Our 
choice of the PhysIO toolbox for prototyping the implementation of 
MATLAB-based fMRI tools was motivated by (a) the comprehensive 
modeling options of PhysIO, which provides users a single tool to 
integrate physiological data gathered during an fMRI scan, 
irrespective of the manufacturer, (b) it being an open-source pipeline, 
and (c) the importance to neuroimaging research of considering 
physiological modulation of the BOLD signal, and the fact that the 
topography of physiologically-correlated BOLD modulations is not 
random and may contain important information (Khalili-Mahani 
et al., 2013).

FIGURE 4

Summary of differences in data flow between CBRAIN and the native MATLAB implementation. (A) Data flow in CBRAIN; (B) Data flow using native 
MATLAB implementation. Acronyms: SFTP, Secure File Transfer Protocol (e.g., FileZilla); CBCSV, CBRAIN File List (a comma-separated value file that can 
be auto-generated).
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FIGURE 5

Input and output data representation in CBRAIN. (A) CBRAIN File Browser interface with data stored in BIDS Subject folders. (B) CBRAIN File Viewer 
window showing the contents of a PhysIO output folder.

In addition to making PhysIO available through CBRAIN, 
we have added several quality-of-life features, such as a graphical user 
interface, BIDS formatting tool, computation of noise-variance maps 
that enable users to quickly compare the impact of various noise 
modeling options on the data, a linear regression model that 
performs voxel-wise correction of the fMRI data based on noise 
parameter estimates, and importantly, the ability to visualize the 
results online. These features significantly improve workflow in 

collaborative studies by enabling researchers to test numerous 
physiological correction models and perform quality assurance tests 
without having to move large volumes of data to local computers 
for visualization.

The integration of PhysIO was also intended to serve as a 
template for future integrations of MATLAB-based neuroimaging 
tools into CBRAIN. Using the integration pipeline described in this 
paper, additional software tools can be packaged for use on CBRAIN 

TABLE 1 Benchmarking and feature comparison for 62 fMRI runs processed by PhysIO on CBRAIN and with a local MATLAB installation.

Implementation MATLAB CBRAIN

Operating system Windows, MacOS, Linux Any

Required software MATLAB with SPM12 Web browser

Hard drive space ~10 GB None

MATLAB License required Yes No

Setup time Approximately 95 min (2–5 min for initial setup; 

1–2 min per run). May be reduced using custom 

scripts.

5–10 min. Requires generation of file list for batch processing.

Computation time Approximately 45 min (~45 s per run). Will depend on 

CPU speed and image resolution. See caption for CPU 

used.

E.g. 25 min, with 57 s of CPU time per run (executed in parallel). Includes 

queue time, and may depend on server demand. Executed remotely, 

therefore the user’s local machine is not being used for computation.

GUI In SPM Yes

Batch processing No Yes

Support for BIDS subject folders as 

input

No Yes

Produces corrected image No (Outputs can be used as regressors in a GLM in 

SPM)

Yes

Visualization of results In SPM Yes

Assumes an experienced user in all cases. The MATLAB version was run on an MSI computer running Windows 10 with an Intel i7-8565U CPU @ 1.80GHz.
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on an ad-hoc basis. This can be  done in collaboration between 
CBRAIN development personnel and members of the neuroimaging 
research community, thereby serving the needs of researchers as 
they arise and widening the array of preprocessing and analysis 
options available to CBRAIN users. This would save research 
laboratories many hours of intensive work installing, scripting, and 
debugging local MATLAB tools, as well as improving the 
transparency and reproducibility of these processing steps. This 
collaborative, open-science ecosystem has the potential to greatly 
improve the accessibility, pace, and reproducibility of 
neuroimaging research.

4.2. Limitations and future directions

Our benchmarking experiments are limited. On a small fMRI 
dataset (N = 62) from a single manufacturer and a personal computer 
(typically available to a student), we  have shown a nine-fold 
improvement in user setup time (10 min on CBRAIN versus 95 min 
on local computer), as well as improvements in processing time 
compared to the original MATLAB implementation. A more 
comprehensive benchmarking experiment should compare the 
efficiency of analyzing a larger dataset on the CBRAIN 
implementation of PhysIO versus running it on a network installation 
of MATLAB. The latter was not available to us. Finally, future studies 
should leverage this platform to evaluate the impact of applying 
different noise models on results of noise-sensitive RSfMRI metrics 
such as regional homogeneity (REHO) or fractional amplitude of 
low-frequence fluctuations (fALFF).

Further, while the BIDS converter provided by the CBRAIN 
implementation of PhysIO allows for the read-in and renaming of files 
and input data according to BIDS file naming convention, it does not 
allow for the restructuring and conversion of the data provided in 
non-BIDS format, such as .log files directly extracted from the scanner. 
A BIDS converter tool that can write and output into BIDS format will 
be part of a future PhysIO release.

Finally, an important future addition would be the capacity to 
perform prewhitening and high-pass filtering in conjunction with 
noise modeling when performing the physiological noise 
correction step. These preprocessing steps are important if future 
use of the corrected image for statistical analysis is desired, 
including statistical tests of model fit, since they remove spurious 
autocorrelations (Bright et  al., 2017; Chen et  al., 2017). In 
addition, combining these models with task-related regressors in 
a GLM would prevent task-related signal that correlates with 
physiological models from being removed during the noise 
correction step.

We have shown that the web-based implementation of PhysIO 
can dramatically increase the speed and ease of physiological image 
correction, decreasing the tool’s learning curve, as well as improving 
the accessibility, reproducibility, and interoperability of this pipeline. 
Broader CBRAIN-integration of state-of-the-art fMRI processing 
and analysis tools has the potential to accelerate the pace and quality 
of integrative brain imaging research. In future work, we  will 
demonstrate the advantage of leveraging CBRAIN to run fMRI 
preprocessing through different analytical tools (such as FSL, 
fMRIprep, and SPM).
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