
Frontiers in Neuroinformatics 01 frontiersin.org

Web-based processing of
physiological noise in fMRI:
addition of the PhysIO toolbox to
CBRAIN
Darius Valevicius 1, Natacha Beck 1, Lars Kasper 2,3, Sergiy Boroday 1,
Johanna Bayer 4,5, Pierre Rioux 1, Bryan Caron 1, Reza Adalat 1,
Alan C. Evans 1 and Najmeh Khalili-Mahani 1,6*
1 McGill Centre for Integrative Neuroscience (MCIN), Ludmer Centre for Neuroinformatics and Mental
Health, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada, 2 BRAIN-TO Lab,
Krembil Brain Institute, University Health Network, Toronto, ON, Canada, 3 Translational Neuromodeling
Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland,
4 Center for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia, 5 Orygen
Youth Health, Orygen, Melbourne, VIC, Australia, 6 Department of Electrical and Computer Engineering,
Concordia University, Montreal, QC, Canada

Neuroimaging research requires sophisticated tools for analyzing complex data,
but efficiently leveraging these tools can be a major challenge, especially on
large datasets. CBRAIN is a web-based platform designed to simplify the use and
accessibility of neuroimaging research tools for large-scale, collaborative studies.
In this paper, we describe how CBRAIN’s unique features and infrastructure
were leveraged to integrate TAPAS PhysIO, an open-source MATLAB toolbox for
physiological noise modeling in fMRI data. This case study highlights three key
elements of CBRAIN’s infrastructure that enable streamlined, multimodal tool
integration: a user-friendly GUI, a Brain Imaging Data Structure (BIDS) data-entry
schema, and convenient in-browser visualization of results. By incorporating
PhysIO into CBRAIN, we achieved significant improvements in the speed, ease of
use, and scalability of physiological preprocessing. Researchers now have access
to a uniform and intuitive interface for analyzing data, which facilitates remote
and collaborative evaluation of results. With these improvements, CBRAIN aims
to become an essential open-science tool for integrative neuroimaging research,
supporting FAIR principles and enabling efficient workflows for complex analysis
pipelines.

KEYWORDS

neuroimaging, software, fMRI, brain imaging data structure (BIDS), physiological noise
correction, high performance computing (HPC)

1. Introduction

The preprocessing of fMRI data is often a complex and computationally intensive task. There
are several standardized and popular software libraries for typical fMRI analyses [such as SPM
(Ashburner et al., 2021), FSL (Jenkinson et al., 2012), AFNI (Cox, 2012), and fMRIPrep (Esteban
et al., 2019)], but model-based evaluation of physiological measurements, such as
electrocardiogram or breathing belt readings, are not frequently done. This is partly because of
the heterogeneity of data formats and lack of standardized methods for their analysis, which
creates barriers to prioritizing their treatment. This is despite the fact that the blood oxygen

OPEN ACCESS

EDITED BY

Seong Dae Yun,
Helmholtz Association of German Research
Centres (HZ), Germany

REVIEWED BY

Paola Galdi,
University of Edinburgh, United Kingdom
Huanjie Li,
Dalian University of Technology, China

*CORRESPONDENCE

Najmeh Khalili-Mahani
 najmeh.khalilimahani@mcgill.ca

RECEIVED 30 June 2023
ACCEPTED 05 September 2023
PUBLISHED 27 September 2023

CITATION

Valevicius D, Beck N, Kasper L, Boroday S,
Bayer J, Rioux P, Caron B, Adalat R,
Evans AC and Khalili-Mahani N (2023)
Web-based processing of physiological noise
in fMRI: addition of the PhysIO toolbox to
CBRAIN.
Front. Neuroinform. 17:1251023.
doi: 10.3389/fninf.2023.1251023

COPYRIGHT

© 2023 Valevicius, Beck, Kasper, Boroday,
Bayer, Rioux, Caron, Adalat, Evans and
Khalili-Mahani. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Technology and Code
PUBLISHED 27 September 2023
DOI 10.3389/fninf.2023.1251023

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1251023&domain=pdf&date_stamp=2023-09-27
https://www.frontiersin.org/articles/10.3389/fninf.2023.1251023/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1251023/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1251023/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1251023/full
mailto:najmeh.khalilimahani@mcgill.ca
https://doi.org/10.3389/fninf.2023.1251023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1251023

Valevicius et al. 10.3389/fninf.2023.1251023

Frontiers in Neuroinformatics 02 frontiersin.org

level-dependent signal (BOLD) is strongly influenced by patterns of
cardiac and respiratory activity (Birn et al., 2006, 2008; Chang and
Glover, 2009; Khalili-Mahani et al., 2013; Murphy et al., 2013).
Rhythmic activity of the heart and lungs can cause variations in blood
oxygenation, which can be misinterpreted as a marker of neural
activity. Respiration can also cause phasic movements of the head and
body, as well as pseudomotion caused by field interactions (Power
et al., 2019). Model-based physiological image correction has been
shown to substantially improve signal-to-noise ratio in task-based
fMRI studies (Hutton et al., 2011) and reduce spurious correlations in
resting-state networks (Birn, 2012). Khalili-Mahani et al. have also
shown that the choice of model in physiological noise reduction affects
the inferences that can be made at group-level analyses (Khalili-
Mahani et al., 2013).

Accounting for these sources of noise requires iterative model
testing, which can take substantial researcher time, expertise, and
computational resources (potentially including the purchase and
maintenance of costly hardware). Excellent open-source tools exist for
efficiently computing these models, such as the MATLAB-based
PhysIO toolbox (Kasper et al., 2017), which has been developed to
generate various noise models. PhysIO, currently in version
8.0.1, is part of the TAPAS package (https://github.com/
translationalneuromodeling/tapas; Frässle et al., 2021), which leverages
the Statistical Parametric Mapping (SPM12) library (Friston, 2003;
Ashburner et al., 2021). The PhysIO matlab package is one of the most
standard and commonly used softwares for model-based physiological
noise reduction. It contains a variety of state-of-the-art and commonly
used models for model based noise correction in fMRI (Glover et al.,
2000; Birn et al., 2008; Chang et al., 2009). A unique feature of this
toolbox is that it accepts input from a variety of devices and vendors,
and provides an array of modeling options such as RETROICOR
(Glover et al., 2000), RVHRCOR (Chang and Glover, 2009), and RVH
(Birn et al., 2008); as well as estimated movement data. However, it
relies on local installations of MATLAB and SPM, which makes it
difficult to use on large or distributed datasets.

Increasingly, neuroimaging researchers rely on open-access
shared datasets, containing anywhere from dozens to thousands of
subjects (Poldrack and Gorgolewski, 2017; Madan, 2022), such as
the Human Connectome Project (Elam et al., 2021), the UK Biobank
(Collins, 2012), and the Adolescent Brain Cognitive Development
study (Casey et al., 2018). These large datasets, containing hundreds
of gigabytes of data, can be infeasible to process on local machines.
In addition, comparing the results of different models depends on
performing visual or mathematical comparison of pre- and post-
corrected datasets, which adds significant time to the workflow.
Ideally, a user would want a readily available method of examining
the topographical pattern of physiological modulation of the BOLD
signal to critically evaluate the significance of confounding effects.
To address these challenges, and to facilitate web-based
preprocessing for fMRI datasets, we have implemented PhysIO
on CBRAIN, an open-source, high performance scientific
computing platform.

CBRAIN has been created to address the challenges involved in
Big Data research, for example, developing secure and robust ways of
leveraging high-performance computing (HPC) clusters for
neuroimaging research (https://cbrain.ca/; Sherif et al., 2014). It
enables users to launch a large number of tasks, remotely and in
parallel, from a user-friendly interface, without the need to install

local software or rely on a specific operating system. It is accessed and
operated entirely from a web browser and can be used on any major
operating system. CBRAIN offers provenance tracking, data
management, data visualization, and data sharing features that
simplify and accelerate collaborative research. In this paper,
we describe the process of integrating PhysIO onto CBRAIN, and
illustrate the advantages of incorporating such tools in terms of
workflow efficiency and quality-of-life features. The following
features have been added to extend the capabilities of PhysIO:

 1. PhysIO tasks can run on high-performance servers via a simple
graphical user interface, thus alleviating the need of researchers
to maintain local servers.

 2. Quality-of-life features for researchers to reduce the burden of
developing scripts for batch processing, in addition to
automated image correction and in-browser visualization
of results.

 3. Comprehensive provenance tracking enables researchers to
track the reproducibility of physiological noise processing in
fMRI research.

In sum, this case study highlights the benefits of CBRAIN’s
features and infrastructure in supporting multimodal data analysis on
large datasets. Furthermore, it serves as a manual for how additional
tools may be integrated into CBRAIN’s growing library of image
processing software. As an open-source, open-science platform,
CBRAIN can be extended and replicated by varied users and research
labs, with additional tool integrations potentially coming from
members of the neuroimaging community.

2. Methods

The integration of PhysIO on CBRAIN is accomplished through
three main steps (illustrated in Figure 1):

 1. The creation of a wrapper program that converts the MATLAB-
based script into a command-line tool, and which extends
PhysIO with additional functions (e.g., automated image
correction, BIDS Subject read-in).

 2. Compilation and containerization of the MATLAB application
within a Singularity environment (Kurtzer et al., 2017).

 3. Creation of a standardized GUI via the Boutiques framework
(Glatard et al., 2018).

2.1. Wrapper script

To integrate tools into CBRAIN and execute them on high-
performance computing servers, the tool must be capable of being
invoked and configured entirely through the command-line. For
PhysIO, this requires us to write a wrapper script with a command-
line interface in MATLAB. This wrapper script also allowed us to add
additional functions for automated fMRI image correction, as well as
quality-control noise-variance maps based on comparison of corrected
and uncorrected images. These additions were programmed in
MATLAB 2021b.

https://doi.org/10.3389/fninf.2023.1251023
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://github.com/translationalneuromodeling/tapas
https://github.com/translationalneuromodeling/tapas
https://cbrain.ca/

Valevicius et al. 10.3389/fninf.2023.1251023

Frontiers in Neuroinformatics 03 frontiersin.org

2.1.1. Command line parameterization
A command-line interface for PhysIO, which is ordinarily

prepared through MATLAB configuration scripts, was written using
MATLAB’s inputParser class. The input parameters, numbering some
60–70 arguments, are parsed and loaded into the PhysIO options
structure. Ordinarily, these parameters would have to be set by
manually editing lines in a MATLAB script. In CBRAIN, the
description of this command-line interface using the Boutiques
framework (see Section 2.3) allows parameters to be set in a user-
friendly online graphical user interface.

2.1.2. Read-in of BIDS data
In recent years, there has been a push to standardize the

storage and naming convention of brain imaging data, in order to
improve the interoperability and readability of datasets from
various research groups and projects. This initiative, the Brain
Imaging Data Structure (BIDS) (Gorgolewski et al., 2016), has also
been applied to neuroimaging software as the BIDSapps
framework (Gorgolewski et al., 2017). The goal of this framework
is to leverage the standardized naming schemes and data types of
BIDS by configuring preprocessing and analysis scripts to read
and process entire subject folders or datasets automatically, rather
than having to separately provide the various input files. This
greatly increases the speed and ease of neuroimaging
analysis pipelines.

In accordance with this framework, we added the capability to
read BIDS Subject directories for automatic processing of all the data

contained within. Thus, rather than having to separately select an
fMRI file and one or more physiological files for every fMRI run to
be processed by PhysIO, users on CBRAIN can simply supply a BIDS
Subject, which can contain anywhere from one to dozens of separate
acquisitions which are read and processed automatically.

To allow users to leverage this BIDS read-in capability, and to
facilitate the storage of data in BIDS format more broadly,
we developed a prototype utility on CBRAIN for converting datasets
from an arbitrary naming and storage convention to BIDS
conventions. This tool, “BIDS-Converter,” is written in Python and
takes as input wildcards for identifying subject numbers and key-value
pairs for identifying and naming files by their modality and other
relevant information (BIDS “entities”).

This tool is useful for renaming datasets that have been converted
to NIfTI but have not been named and organized in accordance with
BIDS conventions. For data that is available in source or DICOM
format, users are encouraged to use tools such as dcm2niix (Li et al.,
2016) or HeuDiConv (Halchenko et al., 2023) to convert their data
from DICOM to NIfTI, which can also automatically organize the
outputted files as a BIDS directory complete with all the metadata that
is available in the source file headers.

2.1.3. Automated fMRI noise reduction
The main outputs of PhysIO are time-series vectors which can

be derived from a variety of well-established models, including
RETROICOR (Glover et al., 2000), RVT (Birn et al., 2008), and HRV
(Chang et al., 2009). These can be used in a generalized linear model

FIGURE 1

Software pipeline of integration of the PhysIO toolbox into CBRAIN and high-performance computing clusters.

https://doi.org/10.3389/fninf.2023.1251023
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Valevicius et al. 10.3389/fninf.2023.1251023

Frontiers in Neuroinformatics 04 frontiersin.org

(GLM) to factor out the variance due to cardiac and respiratory
activity. In the default implementation of PhysIO, the user is
encouraged to do this as a separate step in the Statistical Parametric
Mapping (SPM) package in MATLAB (Friston, 2003; Ashburner et al.,
2021) and integrate the physiological noise model with any task-based
regressors in a unified GLM that includes pre-whitening and high-
pass filtering. This avoids over-correcting fluctuations that are
correlated with both task and physiology, as well as introducing
spurious high-frequency correlations (Bright et al., 2017; Chen et al.,
2017). However, it requires multiple user operations within the SPM12
graphical user interface, or custom MATLAB scripting using
SPM functions.

We have simplified this task by adding the image correction step
to the pipeline, adapted from Chang and Glover (2009), which uses an
analytic linear regression step to compute the beta weights of the
outputted PhysIO regressors relative to the fMRI data. To compute the
beta weights, we use the mldivide operator in MATLAB to solve the
system of linear equations X*B = Y, where X is the design matrix
(including an intercept, time vector, time squared vector, and PhysIO
outputs), Y is the fMRI BOLD data, and B is the beta matrix. The beta-
weighted regressors are then subtracted from the original image to
produce a noise-corrected fMRI image. Thus, the equation for the
correction step is

Y Y B Xcorrected uncorrected= ()∗−

In addition to the corrected image, a three-dimensional pct_var_
reduced image is computed where each voxel represents the
percentage of variance reduced by noise correction for that voxel’s
time series. This computation was also adapted from Chang and
Glover (2009). The formula for the variance reduced image is

σ σ σ2 2 2uncorrected corrected uncorrected−() /

for every voxel in the original image, where σ2 is the variance of
the voxel’s time series. Examples of these variance maps using different
noise modeling algorithms available in PhysIO are shown in Figure 2.
As it can be seen in this image, the topography of noise variance is
dependent on the model, underlining the importance of
comprehensive physiological noise modeling in fMRI analyses.

The corrected image produced by this regression modeling step
can be used to create visual or qualitative maps of model performance
(such as the percent variance reduced image), but the current
implementation lacks the prewhitening and high-pass filtering
preprocessing steps that would make the output image appropriate for
statistical analysis (Bright et al., 2017; Chen et al., 2017). A future
update to the PhysIO wrapper on CBRAIN would include these steps,
so that the corrected image is ready for hypothesis testing in further
task-related GLM modeling, or for assessing the fit of the noise model
with statistical tests.

2.2. Containerization

Container engines, similar to virtual machines, allow software to
be run in a virtual, self-contained computing environment under an

operating system which can differ from the host machine’s. This
ensures reproducibility and accessibility across multiple platforms
and addresses the problem of unstable and changing dependencies
in research software. It also allows software pipelines to be easily run
on remote high-performance computing servers, such as those
leveraged by CBRAIN. Containers are saved and shared as “images,”
which are templates that define how a given container will
be constructed.

We compiled the PhysIO Toolbox, along with the wrapper script
and additional functions, into a standalone application using the
MATLAB compiler toolkit. This allows the tool to be run as an
executable, without requiring a MATLAB license and installation.
Furthermore, the MATLAB compiler toolkit contains functionality
for procedurally building a Docker container image with correct
dependencies and an appropriate version of the MATLAB runtime
binaries. We used this tool to create a Docker image.

While Docker is a widely-used container engine, Docker images
are not directly supported on the high-performance computing
servers leveraged by CBRAIN. This is because, until recently, Docker
Engine required root permissions, which would create security issues
on public servers. Singularity (Kurtzer et al., 2017), now called
Apptainer, is another open-source container engine specialized for
scientific computing. Singularity is natively rootless, i.e., it is
optimized for running containers with user privileges, which
mitigates security risks, and it provides improved reproducibility for
scientific computing (Mitra-Behura et al., 2022). It is interoperable
with Docker, as Docker images can be automatically converted
to Singularity.

Therefore, at runtime, Boutiques software (see Section 2.3) uses a
reference to the Docker image for the PhysIO CBRAIN tool, housed
on Docker Hub, and performs the conversion of the image to
Singularity. CBRAIN then builds and runs the container on HPC
clusters, and caches the Singularity image for future use.

2.3. Boutiques descriptor

CBRAIN uses the Boutiques framework (Glatard et al., 2018) to
describe and validate command-line inputs. The central component
of Boutiques is a JSON descriptor, which contains a dictionary of all
the arguments which can be passed to the application. The argument
objects include properties such as type, default value, value choices,
required or optional, and a text description. The descriptor can also
define argument groups, and contains information about the tool
version, online repositories, and other metadata.

CBRAIN possesses a streamlined system for tool integration
through Boutiques - for any developer to add a new tool to CBRAIN,
it is only required to create a container and descriptor for the tool, and
to provide the descriptor in a repository on GitHub. The CBRAIN
administrators can then integrate the tool (see below). CBRAIN
leverages Boutiques to validate task parameters and uses the
command-line schema, in combination with a container reference, to
launch the tool on high-performance computing clusters. In addition,
CBRAIN uses the Boutiques descriptor to populate the GUI for task
configuration, thus creating a uniform user interface across different
neuroimaging pipelines (Figure 3).

The Boutiques framework is flexible, and while it is leveraged by
CBRAIN, it can also be used to configure and run tool containers on

https://doi.org/10.3389/fninf.2023.1251023
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Valevicius et al. 10.3389/fninf.2023.1251023

Frontiers in Neuroinformatics 05 frontiersin.org

local machines. Information on how to integrate Boutiques in local
processing pipelines can be found in its online documentation.
Boutiques descriptors can furthermore be published on Zenodo
(https://zenodo.org/) for online documentation and sharing.

2.3.1. Descriptor integration in CBRAIN
Tool wrappers, executable containers, and Boutiques descriptors

are created by tool developers (pipeline contributors) and the
workflow and user experience can optionally be mock-tested via local
builds of CBRAIN. However, final integration in CBRAIN is
performed by designated CBRAIN administrators who will oversee
the integrity of the process. Researchers who are interested in getting
their tool integrated must contact the administrators either by email
or through the CBRAIN support forum. The process is handled on a
case by case manner, in order to ensure the compliance of tools with
the network’s cybersecurity measures, and to prevent potential
malware being installed on the network.

2.4. Workflow comparison

To compare the efficiency and functionality of PhysIO in its native
MATLAB implementation against the CBRAIN implementation,
we used a dataset of 62 fMRI datasets acquired on a Philips 3 Tesla
Achieva TX MRI scanner using a 32-channel SENSE head coil (Philips
Medical Systems, Best, The Netherlands). Whole-brain fMRI data sets
were acquired using T2*-weighted gradient-echo echo-planar imaging
with the following scan parameters: 190 volumes; 38 axial slices
scanned in ascending order; repetition time (TR) = 2.2 s; echo time
(TE) = 30 ms; flip angle = 80°; FOV = 220 × 220 mm; 2.75 mm isotropic
voxels with a 0.275 mm slice gap. For all datasets, respiration and
cardiac data were acquired with the MR machine’s respiration belt and
pulse oximeter, sampled at 500 Hz (Sitsen et al., 2022). We assessed
differences between running PhysIO on CBRAIN versus on a “typical
student computer” (MSI laptop computer running Windows 10 with
an Intel i7-8565U CPU @ 1.80GHz) in terms of user- and

FIGURE 2

Outputs of PhysIO on CBRAIN (Variance reduced map; pct_var_reduced.nii.gz) using various noise modeling algorithms available in PhysIO:
(A) RETROICOR (Glover et al., 2000) (B) RVT (Birn et al., 2008) along with HRV (Chang et al., 2009), (C) RVT alone (D) HRV alone. The variance maps
were visualized using CBRAIN’s browser-based visualization module. The data used to produce the images are available on OpenNeuro.org (Etzel and
Braver, 2020). As the voxels indicate percentage of total variance, the lower threshold in all images is zero; the upper thresholds are 86.6% (0.866) for
(A), 19.2% (0.192) for (B), 17.8% for (C), and 18.1% for (D). The images have a lower-bound cutoff of 0.1 for (A) and 0.01 for (B–D).

https://doi.org/10.3389/fninf.2023.1251023
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://zenodo.org/
http://OpenNeuro.org

Valevicius et al. 10.3389/fninf.2023.1251023

Frontiers in Neuroinformatics 06 frontiersin.org

computation-time required for each implementation, as well as the
functionality provided by each.

For the native MATLAB implementation, the amount of time
required to prepare one run for processing was recorded and
multiplied by the number of runs, as PhysIO natively requires one
configuration file to be created for each run. It can also leverage the
SPM batch GUI, but this also requires a separate configuration step
for each run. The same estimate calculation was done for computation
time. For the CBRAIN implementation, which is capable of batch
processing files using a single configuration (Figure 4), the setup time
was recorded as well as the total time from task execution to task
completion for computation time.

3. Results

We compared the functionality, user time, and computation time
involved in running a dataset of 62 subjects on CBRAIN and using the
native MATLAB implementation of PhysIO. These results are
summarized in Table 1.

3.1. User time

As a result of the addition of a batch processing feature, user time
was greatly reduced for the CBRAIN case compared to the native
MATLAB implementation. Setup time was estimated for the latter two
as taking 2–5 min to configure and execute an initial run, with
approximately 2 min required for every subsequent run, resulting in
an average estimate of 95 min for the dataset of 62 runs. In CBRAIN,
creation of the CBRAIN File List (CBCSV) increased setup time

slightly, but only one task configuration was required, reducing setup
time to 5–10 min.

An important feature of CBRAIN is provenance tracking of slight
modifications to the tool parametrization. It enables users to save,
and recall the parameter used for each command execution. As such,
it facilitates reproducing results, and provides an easy and GUI-based
interface to modify options, without risking deletion or overriding of
data processed with different options. All these logs, as well as reports
of task completion and failure are available to users on the interface
(see Figure 5 for examples of file browsing and output file viewing
in CBRAIN).

3.2. Computation time

On the locally installed softwares, using the RETROICOR
modeling algorithm and an fMRI run with dimensions 80 × 80 × 40
× 190, a PhysIO task took 45 s to complete. With 62 runs, this resulted
in an overall computation time of approximately 45 min.

On CBRAIN, computation time could be reduced by leveraging
the batch processing functionality native to CBRAIN. The 62 runs
could be processed in parallel across multiple HPC clusters. Thus,
despite queue times, all tasks were completed in approximately
25 min. Longer queue times, however, would result in longer time-
to-completion. The total time required to execute the task on a cluster
(walltime) was 57 s. Thus, the lower bound for processing a batch of
runs with PhysIO on CBRAIN (assuming no queue) would be about
1 min. It also includes the extra computation step of the automated
image correction module, described below, explaining why the
processing time was slightly longer than the local run, which did not
perform image correction.

FIGURE 3

(A) Boutiques descriptor JSON specifying information such as the tool version and container address, as well as properties of command-line inputs.
(B) CBRAIN graphical user interface for task configuration, which is procedurally generated from the Boutiques descriptor.

https://doi.org/10.3389/fninf.2023.1251023
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Valevicius et al. 10.3389/fninf.2023.1251023

Frontiers in Neuroinformatics 07 frontiersin.org

3.3. Functionality

The functionality of the PhysIO toolbox was expanded in three
main ways. First, an automated image correction module was added
via a MATLAB wrapper. This module uses the multiple regressors
outputted by PhysIO to model noise in an fMRI run. The model
residuals are then extracted and saved as a noise-corrected fMRI
image, which can be used to assess model performance. At present,
we have not modified the PhysIO’s original parameterization, and
therefore our improvements are only related to ease of data
management work-flow, provenance tracking, and visualization. A
future update to the PhysIO wrapper would also include the
preprocessing steps of prewhitening and high-pass filtering, which
avoid some pitfalls of physiological noise correction, and ensure
validity of statistical testing performed on the output image (Bright
et al., 2017; Chen et al., 2017).

Next, we adapted PhysIO to accept a BIDS-format dataset as
input. Most data on CBRAIN are stored according to the community
conventions known as the Brain Imaging Data Structure (BIDS). In
addition, tools such as a BIDS converter prototype are available to help
users to refactor data according to BIDS standards. With the option
to use a BIDS subject or dataset as input, the amount of files or
directories needing to be tracked is greatly reduced, as a BIDS subject
typically contains multiple runs collected across one or more
scanning sessions.

We also enabled an option for batch processing tasks in parallel.
On CBRAIN, one task configuration, which is created and saved in
the CBRAIN GUI, can execute a task on the full set of fMRI runs.
These runs are processed in parallel across multiple HPC clusters.
In the native MATLAB implementation, custom scripts would
be required for batch processing using a single configuration file, or
parallel processing across multiple CPU cores.

Finally, the CBRAIN provides multiple ease-of-use improvements,
including a user-friendly GUI for setting task parameters and an
online data visualizer. The task configuration interface provides
descriptions and information about each argument, and the
integration with the Boutiques framework for command-line
description allowed us to include constraints and interdependencies
between parameters. The NIfTI visualization tool is accessible directly
in-browser when viewing files on CBRAIN. Once a task is completed,
users can browse through its outputs and view any slice or frame of an
fMRI run or other MRI-based data with a .nii extension.

4. Conclusion

4.1. Summary

In this case study, we provide a methodology for integrating
complex, multimodal fMRI pipelines such as TAPAS PhysIO (Kasper
et al., 2017; Frässle et al., 2021) onto CBRAIN (Sherif et al., 2014).
The CBRAIN platform is a web-based, open-science infrastructure
for facilitating large-scale integrative neuroimaging research, and is
designed with FAIR principles in mind (Poline et al., 2022). Our
choice of the PhysIO toolbox for prototyping the implementation of
MATLAB-based fMRI tools was motivated by (a) the comprehensive
modeling options of PhysIO, which provides users a single tool to
integrate physiological data gathered during an fMRI scan,
irrespective of the manufacturer, (b) it being an open-source pipeline,
and (c) the importance to neuroimaging research of considering
physiological modulation of the BOLD signal, and the fact that the
topography of physiologically-correlated BOLD modulations is not
random and may contain important information (Khalili-Mahani
et al., 2013).

FIGURE 4

Summary of differences in data flow between CBRAIN and the native MATLAB implementation. (A) Data flow in CBRAIN; (B) Data flow using native
MATLAB implementation. Acronyms: SFTP, Secure File Transfer Protocol (e.g., FileZilla); CBCSV, CBRAIN File List (a comma-separated value file that can
be auto-generated).

https://doi.org/10.3389/fninf.2023.1251023
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Valevicius et al. 10.3389/fninf.2023.1251023

Frontiers in Neuroinformatics 08 frontiersin.org

FIGURE 5

Input and output data representation in CBRAIN. (A) CBRAIN File Browser interface with data stored in BIDS Subject folders. (B) CBRAIN File Viewer
window showing the contents of a PhysIO output folder.

In addition to making PhysIO available through CBRAIN,
we have added several quality-of-life features, such as a graphical user
interface, BIDS formatting tool, computation of noise-variance maps
that enable users to quickly compare the impact of various noise
modeling options on the data, a linear regression model that
performs voxel-wise correction of the fMRI data based on noise
parameter estimates, and importantly, the ability to visualize the
results online. These features significantly improve workflow in

collaborative studies by enabling researchers to test numerous
physiological correction models and perform quality assurance tests
without having to move large volumes of data to local computers
for visualization.

The integration of PhysIO was also intended to serve as a
template for future integrations of MATLAB-based neuroimaging
tools into CBRAIN. Using the integration pipeline described in this
paper, additional software tools can be packaged for use on CBRAIN

TABLE 1 Benchmarking and feature comparison for 62 fMRI runs processed by PhysIO on CBRAIN and with a local MATLAB installation.

Implementation MATLAB CBRAIN

Operating system Windows, MacOS, Linux Any

Required software MATLAB with SPM12 Web browser

Hard drive space ~10 GB None

MATLAB License required Yes No

Setup time Approximately 95 min (2–5 min for initial setup;

1–2 min per run). May be reduced using custom

scripts.

5–10 min. Requires generation of file list for batch processing.

Computation time Approximately 45 min (~45 s per run). Will depend on

CPU speed and image resolution. See caption for CPU

used.

E.g. 25 min, with 57 s of CPU time per run (executed in parallel). Includes

queue time, and may depend on server demand. Executed remotely,

therefore the user’s local machine is not being used for computation.

GUI In SPM Yes

Batch processing No Yes

Support for BIDS subject folders as

input

No Yes

Produces corrected image No (Outputs can be used as regressors in a GLM in

SPM)

Yes

Visualization of results In SPM Yes

Assumes an experienced user in all cases. The MATLAB version was run on an MSI computer running Windows 10 with an Intel i7-8565U CPU @ 1.80GHz.

https://doi.org/10.3389/fninf.2023.1251023
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Valevicius et al. 10.3389/fninf.2023.1251023

Frontiers in Neuroinformatics 09 frontiersin.org

on an ad-hoc basis. This can be done in collaboration between
CBRAIN development personnel and members of the neuroimaging
research community, thereby serving the needs of researchers as
they arise and widening the array of preprocessing and analysis
options available to CBRAIN users. This would save research
laboratories many hours of intensive work installing, scripting, and
debugging local MATLAB tools, as well as improving the
transparency and reproducibility of these processing steps. This
collaborative, open-science ecosystem has the potential to greatly
improve the accessibility, pace, and reproducibility of
neuroimaging research.

4.2. Limitations and future directions

Our benchmarking experiments are limited. On a small fMRI
dataset (N = 62) from a single manufacturer and a personal computer
(typically available to a student), we have shown a nine-fold
improvement in user setup time (10 min on CBRAIN versus 95 min
on local computer), as well as improvements in processing time
compared to the original MATLAB implementation. A more
comprehensive benchmarking experiment should compare the
efficiency of analyzing a larger dataset on the CBRAIN
implementation of PhysIO versus running it on a network installation
of MATLAB. The latter was not available to us. Finally, future studies
should leverage this platform to evaluate the impact of applying
different noise models on results of noise-sensitive RSfMRI metrics
such as regional homogeneity (REHO) or fractional amplitude of
low-frequence fluctuations (fALFF).

Further, while the BIDS converter provided by the CBRAIN
implementation of PhysIO allows for the read-in and renaming of files
and input data according to BIDS file naming convention, it does not
allow for the restructuring and conversion of the data provided in
non-BIDS format, such as .log files directly extracted from the scanner.
A BIDS converter tool that can write and output into BIDS format will
be part of a future PhysIO release.

Finally, an important future addition would be the capacity to
perform prewhitening and high-pass filtering in conjunction with
noise modeling when performing the physiological noise
correction step. These preprocessing steps are important if future
use of the corrected image for statistical analysis is desired,
including statistical tests of model fit, since they remove spurious
autocorrelations (Bright et al., 2017; Chen et al., 2017). In
addition, combining these models with task-related regressors in
a GLM would prevent task-related signal that correlates with
physiological models from being removed during the noise
correction step.

We have shown that the web-based implementation of PhysIO
can dramatically increase the speed and ease of physiological image
correction, decreasing the tool’s learning curve, as well as improving
the accessibility, reproducibility, and interoperability of this pipeline.
Broader CBRAIN-integration of state-of-the-art fMRI processing
and analysis tools has the potential to accelerate the pace and quality
of integrative brain imaging research. In future work, we will
demonstrate the advantage of leveraging CBRAIN to run fMRI
preprocessing through different analytical tools (such as FSL,
fMRIprep, and SPM).

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving humans
in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation and
the institutional requirements.

Author contributions

LK developed and provided open-access to PhysIO. DV and
NK-M designed and led the integration of PhysIO onto CBRAIN. DV,
NB, SB, and PR contributed to the implementation of PhysIO in the
CBRAIN platform. RA, BC, and NK-M coordinated different aspects
of the projects. NK-M and AE wrote the grant to support the projects.
DV, NK-M, and JB wrote the manuscript. All authors contributed to
the article and approved the submitted version.

Funding

The authors declare that this study received funding from
CANARIE Canada (https://www.canarie.ca). The funder was not
involved in the study design, collection, analysis, interpretation of data,
the writing of this article, or the decision to submit it for publication.

Acknowledgments

The authors would like to thank the McGill Centre for Integrative
Neuroscience (MCIN), the Ludmer Centre, the Montreal Neurological
Institute (MNI), McGill University, and CANARIE.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

https://doi.org/10.3389/fninf.2023.1251023
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.canarie.ca

Valevicius et al. 10.3389/fninf.2023.1251023

Frontiers in Neuroinformatics 10 frontiersin.org

References
Ashburner, J., Barnes, G., Chen, C.-C., Daunizeau, J., Flandin, G., Friston, K., et al.

(2021). SPM12 Manual.

Birn, R. M. (2012). The role of physiological noise in resting-state functional
connectivity. NeuroImage 62, 864–870. doi: 10.1016/j.neuroimage.2012.01.016

Birn, R. M., Diamond, J. B., Smith, M. A., and Bandettini, P. A. (2006). Separating
respiratory-variation-related fluctuations from neuronal-activity-related
fluctuations in fMRI. NeuroImage 31, 1536–1548. doi: 10.1016/j.
neuroimage.2006.02.048

Birn, R. M., Smith, M. A., Jones, T. B., and Bandettini, P. A. (2008). The respiration
response function: the temporal dynamics of fMRI signal fluctuations related to changes
in respiration. NeuroImage 40, 644–654. doi: 10.1016/j.neuroimage.2007.11.059

Bright, M. G., Tench, C. R., and Murphy, K. (2017). Potential pitfalls when denoising
resting state fMRI data using nuisance regression. NeuroImage 154, 159–168. doi:
10.1016/j.neuroimage.2016.12.027

Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M.,
et al. (2018). The adolescent brain cognitive development (ABCD) study: imaging
acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54. doi: 10.1016/j.dcn.2018.03.001

Chang, C., Cunningham, J. P., and Glover, G. H. (2009). Influence of heart rate on the
BOLD signal: the cardiac response function. NeuroImage 44, 857–869. doi: 10.1016/j.
neuroimage.2008.09.029

Chang, C., and Glover, G. H. (2009). Effects of model-based physiological noise
correction on default mode network anti-correlations and correlations. NeuroImage 47,
1448–1459. doi: 10.1016/j.neuroimage.2009.05.012

Chen, J. E., Jahanian, H., and Glover, G. H. (2017). Nuisance regression of high-
frequency functional magnetic resonance imaging data: Denoising can be Noisy. Brain
Connect. 7, 13–24. doi: 10.1089/brain.2016.0441

Collins, R. (2012). What makes UK biobank special. Lancet Lond. Engl. 379,
1173–1174. doi: 10.1016/s0140-6736(12)60404-8

Cox, R. W. (2012). AFNI: what a long strange trip it’s been. NeuroImage 62, 743–747.
doi: 10.1016/j.neuroimage.2011.08.056

Elam, J. S., Glasser, M. F., Harms, M. P., Sotiropoulos, S. N., Andersson, J. L. R.,
Burgess, G. C., et al. (2021). The human connectome project: a retrospective. NeuroImage
244:118543. doi: 10.1016/j.neuroimage.2021.118543

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A.,
et al. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat.
Methods 16, 111–116. doi: 10.1038/s41592-018-0235-4

Etzel, J. A., and Braver, T. S. (2020). multibandCFtests. doi: 10.18112/OPENNEURO.
DS002737.V1.0.1,

Frässle, S., Aponte, E. A., Bollmann, S., Brodersen, K. H., do, C. T., Harrison, O. K.,
et al. (2021). TAPAS: an open-source software package for translational Neuromodeling
and computational psychiatry. Front. Psych. 12:680811. doi: 10.3389/fpsyt.2021.680811

Friston, K. J. (2003). “Statistical parametric mapping” in Neuroscience Databases: a
practical guide. ed. R. Kötter (Boston, MA: Springer US)

Glatard, T., Kiar, G., Aumentado-Armstrong, T., Beck, N., Bellec, P., Bernard, R., et al.
(2018). Boutiques: a flexible framework to integrate command-line applications in
computing platforms. GigaScience 7:giy016. doi: 10.1093/gigascience/giy016

Glover, G. H., Li, T. Q., and Ress, D. (2000). Image-based method for retrospective
correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med.
44, 162–167. doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E

Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec, P., Capotă, M.,
Chakravarty, M. M., et al. (2017). BIDS apps: improving ease of use, accessibility, and
reproducibility of neuroimaging data analysis methods. PLoS Comput. Biol. 13:e1005209.
doi: 10.1371/journal.pcbi.1005209

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., das, S., Duff, E. P., et al.
(2016). The brain imaging data structure, a format for organizing and describing outputs
of neuroimaging experiments. Sci. Data 3:160044. doi: 10.1038/sdata.2016.44

Halchenko, Y., Goncalves, M., Velasco, P., Di Oleggio Castello, M. V., Ghosh, S.,
Salo, T., et al. (2023). nipy/heudiconv: v0.13.0. doi: 10.5281/ZENODO.7908322,

Hutton, C., Josephs, O., Stadler, J., Featherstone, E., Reid, A., Speck, O., et al. (2011).
The impact of physiological noise correction on fMRI at 7T. NeuroImage 57, 101–112.
doi: 10.1016/j.neuroimage.2011.04.018

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith, S. M.
(2012). FSL. NeuroImage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Kasper, L., Bollmann, S., Diaconescu, A. O., Hutton, C., Heinzle, J., Iglesias, S., et al.
(2017). The PhysIO toolbox for modeling physiological noise in fMRI data. J. Neurosci.
Methods 276, 56–72. doi: 10.1016/j.jneumeth.2016.10.019

Khalili-Mahani, N., Chang, C., van Osch, M. J., Veer, I. M., van Buchem, M. A.,
Dahan, A., et al. (2013). The impact of “physiological correction” on functional
connectivity analysis of pharmacological resting state fMRI. NeuroImage 65, 499–510.
doi: 10.1016/j.neuroimage.2012.09.044

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: scientific containers
for mobility of compute. PLoS One 12:e0177459. doi: 10.1371/journal.pone.0177459

Li, X., Morgan, P. S., Ashburner, J., Smith, J., and Rorden, C. (2016). The first step for
neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264,
47–56. doi: 10.1016/j.jneumeth.2016.03.001

Madan, C. R. (2022). Scan once, analyse many: using large open-access neuroimaging
datasets to understand the brain. Neuroinformatics 20, 109–137. doi: 10.1007/
s12021-021-09519-6

Mitra-Behura, S., Fiolka, R. P., and Daetwyler, S. (2022). Singularity containers
improve reproducibility and ease of use in computational image analysis workflows.
Front. Bioinforma. 1. doi: 10.3389/fbinf.2021.757291

Murphy, K., Birn, R. M., and Bandettini, P. A. (2013). Resting-state fMRI confounds
and cleanup. NeuroImage 80, 349–359. doi: 10.1016/j.neuroimage.2013.04.001

Poldrack, R. A., and Gorgolewski, K. J. (2017). OpenfMRI: open sharing of task fMRI
data. NeuroImage 144, 259–261. doi: 10.1016/j.neuroimage.2015.05.073

Poline, J.-B., Kennedy, D. N., Sommer, F. T., Ascoli, G. A., van Essen, D. C., Ferguson, A. R.,
et al. (2022). Is neuroscience FAIR? A call for collaborative standardisation of neuroscience
data. Neuroinformatics 20, 507–512. doi: 10.1007/s12021-021-09557-0

Power, J. D., Lynch, C. J., Silver, B. M., Dubin, M. J., Martin, A., and Jones, R. M.
(2019). Distinctions among real and apparent respiratory motions in human fMRI data.
NeuroImage 201:116041. doi: 10.1016/j.neuroimage.2019.116041

Sherif, T., Rioux, P., Rousseau, M.-E., Kassis, N., Beck, N., Adalat, R., et al. (2014).
CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging
research. Front. Neuroinform. 8. doi: 10.3389/fninf.2014.00054

Sitsen, E., Khalili-Mahani, N., de Rover, M., Dahan, A., and Niesters, M. (2022). Effect
of spinal anesthesia-induced deafferentation on pain processing in healthy male
volunteers: a task-related fMRI study. Front. Pain Res. Lausanne Switz. 3:1001148. doi:
10.3389/fpain.2022.1001148

https://doi.org/10.3389/fninf.2023.1251023
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.1016/j.neuroimage.2012.01.016
https://doi.org/10.1016/j.neuroimage.2006.02.048
https://doi.org/10.1016/j.neuroimage.2006.02.048
https://doi.org/10.1016/j.neuroimage.2007.11.059
https://doi.org/10.1016/j.neuroimage.2016.12.027
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.1016/j.neuroimage.2008.09.029
https://doi.org/10.1016/j.neuroimage.2008.09.029
https://doi.org/10.1016/j.neuroimage.2009.05.012
https://doi.org/10.1089/brain.2016.0441
https://doi.org/10.1016/s0140-6736(12)60404-8
https://doi.org/10.1016/j.neuroimage.2011.08.056
https://doi.org/10.1016/j.neuroimage.2021.118543
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.18112/OPENNEURO.DS002737.V1.0.1
https://doi.org/10.18112/OPENNEURO.DS002737.V1.0.1
https://doi.org/10.3389/fpsyt.2021.680811
https://doi.org/10.1093/gigascience/giy016
https://doi.org/10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
https://doi.org/10.1371/journal.pcbi.1005209
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.5281/ZENODO.7908322
https://doi.org/10.1016/j.neuroimage.2011.04.018
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.jneumeth.2016.10.019
https://doi.org/10.1016/j.neuroimage.2012.09.044
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1007/s12021-021-09519-6
https://doi.org/10.1007/s12021-021-09519-6
https://doi.org/10.3389/fbinf.2021.757291
https://doi.org/10.1016/j.neuroimage.2013.04.001
https://doi.org/10.1016/j.neuroimage.2015.05.073
https://doi.org/10.1007/s12021-021-09557-0
https://doi.org/10.1016/j.neuroimage.2019.116041
https://doi.org/10.3389/fninf.2014.00054
https://doi.org/10.3389/fpain.2022.1001148

	Web-based processing of physiological noise in fMRI: addition of the PhysIO toolbox to CBRAIN
	1. Introduction
	2. Methods
	2.1. Wrapper script
	2.1.1. Command line parameterization
	2.1.2. Read-in of BIDS data
	2.1.3. Automated fMRI noise reduction
	2.2. Containerization
	2.3. Boutiques descriptor
	2.3.1. Descriptor integration in CBRAIN
	2.4. Workflow comparison

	3. Results
	3.1. User time
	3.2. Computation time
	3.3. Functionality

	4. Conclusion
	4.1. Summary
	4.2. Limitations and future directions

	Data availability statement
	Ethics statement
	Author contributions

	References

