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Abstract

Numerous disorders are characterised by fatigue as a highly disabling
symptom. Fatigue plays a particularly important clinical role in multiple
sclerosis (MS) where it exerts a profound impact on quality of life. Recent
concepts of fatigue grounded in computational theories of brain-body interac-
tions emphasise the role of interoception and metacognition in the pathogene-
sis of fatigue. So far, however, for MS, empirical data on interoception
and metacognition are scarce. This study examined interoception and (extero-
ceptive) metacognition in a sample of 71 persons with a diagnosis of
MS. Interoception was assessed by prespecified subscales of a standard ques-
tionnaire (Multidimensional Assessment of Interoceptive Awareness [MAIA]),
while metacognition was investigated with computational models of choice
and confidence data from a visual discrimination paradigm. Additionally,
autonomic function was examined by several physiological measurements.
Several hypotheses were tested based on a preregistered analysis plan. In brief,
we found the predicted association of interoceptive awareness with fatigue

Abbreviations: ASE, allostatic self-efficacy; DDM, drift-diffusion model; FSS, fatigue severity scale; GLM, general linear model; GSES, general self-
efficacy scale; HADS, hospital anxiety and depression scale; HRV, heart rate variability; MAIA, multidimensional assessment of interoceptive
awareness; MFIS, modified fatigue impact scale; MS, multiple sclerosis; MSSE, multiple sclerosis self-efficacy scale; PCA, principal component
analysis; PEs, prediction errors; PWMS, persons with multiple sclerosis; PSQI, Pittsburgh sleep quality index; SD, standard deviation; SSR,

sympathetic skin response.
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1 | INTRODUCTION

Fatigue is a central symptom of numerous disorders
across medical disciplines (Chaudhuri & Behan, 2004;
Krupp et al.,, 1989; Ondobaka et al., 2022; Penner &
Paul, 2017; Wessely, 2001). Fatigue is fundamentally dis-
abling for patients and profoundly affects their quality of
life (Fisk et al., 1994). In general practice, 20% of patients
report fatigue as a troubling symptom; this increases
significantly in diseases involving dysregulation of the
immune system, for example, autoimmune diseases,
cancer or chronic infections (Dantzer et al., 2014).
Finally, fatigue is a common feature of psychiatric disor-
ders. In particular, it constitutes one of the core diagnos-
tic criteria of depression in the Diagnostic and Statistical
Manual of Mental Disorders.

In multiple sclerosis (MS), fatigue is a very frequent
symptom, with an estimated prevalence of up to 83%
(Kluger et al., 2013; Stuke et al., 2009). Among all symp-
toms in MS, it exerts a particularly profound impact on
quality of life (Penner & Paul, 2017; Stuke et al., 2009)
and represents a critical challenge for clinical manage-
ment. The pathophysiological mechanisms leading to
fatigue in MS are likely diverse (Penner & Paul, 2017;
Stuke et al., 2009). Unfortunately, so far, we lack any
mechanistically interpretable clinical tests that could
guide individual treatment. As a consequence, the
therapy of fatigue necessarily rests on trial-and-error pro-
cedures (Manjaly et al., 2019).

Previous pathophysiological theories of fatigue in MS
have focused on a variety of immunological, inflamma-
tory and neurophysiological processes; for a review, see
Manjaly et al. (2019). More recently, a novel perspective
on fatigue has been proposed—the ‘allostatic self-effi-
cacy’ (ASE) theory (Petzschner et al., 2017; Stephan
et al., 2016)—that derives from computational theories of

(but not with exteroceptive metacognition) and an association of autonomic
function with exteroceptive metacognition (but not with fatigue). Further-
more, machine learning (elastic net regression) showed that individual fatigue
scores could be predicted out-of-sample from our measurements, with
questionnaire-based measures of interoceptive awareness and sleep quality as
key predictors. Our results support theoretical concepts of interoception as
an important factor for fatigue and demonstrate the general feasibility of pre-
dicting individual levels of fatigue from simple questionnaire-based measures

of interoception and sleep.

allostatic self-efficacy, computational psychiatry, confidence, fatigue, interoception,
metacognition, multiple sclerosis, perceptual decision-making

brain-body interactions and emphasises the role of two
cognitive factors: interoception and metacognition.
Interoception—the perception of bodily states—goes
beyond the mere registration of bodily sensations, involv-
ing an active process of inference based on prior expecta-
tions and a model of the body (Khalsa et al., 2018;
Petzschner et al., 2017; Pezzulo et al., 2015; Seth, 2013).
Metacognition is an umbrella term for ‘cognition about
cognition’ (Fleming et al., 2012), comprising evaluation
processes by which the brain monitors its own cognitive
operations, such as judging the accuracy of perceptual
decisions or monitoring the performance of regulatory
processes.

The ASE theory builds on a generic mathematical
model of brain-body interactions that describe how the
brain attempts to control bodily states by monitoring
interoceptive surprise (Stephan et al., 2016). Interoceptive
surprise is a mathematical quantity that serves as an
index of the degree of dyshomeostasis and is computed
from prediction errors (PEs), that is, deviations of actual
bodily inputs from the brain’s expectations (under its
homeostatic beliefs about the ranges physiological vari-
ables should inhabit). Neurophysiologically, interoceptive
PEs are reflected by activity in viscerosensory and viscer-
omotor regions (e.g. insula and periaqueductal grey)
(Harrison, Kochli, et al., 2021).

The ASE perspective proposes that the subjective
experience of fatigue arises when, in a situation of persis-
tent dyshomeostasis, the brain arrives at the metacogni-
tive diagnosis that its control over bodily states is failing
(Stephan et al., 2016). This metacognitive diagnosis is
easily operationalised because the brain only needs to
monitor a single quantity—that is, interoceptive surprise
or, equivalently, interoceptive PEs—to detect that dysho-
meostasis is not reduced despite regulatory actions
(Stephan et al., 2016). Fatigue is thus conceptualised as
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the experience of low ASE—an experiential state that
reflects the inability to minimise interoceptive PEs by
regulatory actions and serves as an imperative signal that
suspending any form of action (i.e. rest) is the only
remaining option to restore homeostasis.

Empirically, there is initial evidence (direct and indi-
rect) that interoceptive processes are altered in MS
(Faivre et al., 2012; Gonzalez Campo et al., 2020; Haider
et al., 2016; Rocca et al., 2012; Salamone et al., 2018) and
that changes in interoception are associated with fatigue
in general (Harrison et al., 2009) and in MS specifically
(Gonzalez Campo et al., 2020). By contrast, the proposed
role of metacognition has received little attention so far
(but see Covey et al., 2022). This is due a methodological
challenge: Although first methods to assess metacogni-
tion of interoception are being introduced (Harrison,
Garfinkel, et al., 2021; Nikolova et al., 2022), these are
very recent developments (and were not yet available
when the present study took place).

Of importance for the present study, recent findings
in a large sample from the general population suggest
that metacognition of externally directed perceptual
processes (exteroception) may also be related to fatigue.
According to the ASE theory, this can occur when persis-
tent states of dyshomeostasis (and thus elevated intero-
ceptive PEs) lead to a generalisation of low self-efficacy
beliefs beyond interoception, a process putatively associ-
ated with the onset of depression (Stephan et al., 2016).
Empirically, metacognitive bias (confidence level) during
a visual discrimination task was previously found to be
related to apathy (Rouault et al., 2018), a construct that
overlaps with fatigue. This empirically observed associa-
tion could reflect domain-independent metacognitive
mechanisms or a possible generalisation of lower confi-
dence to several domains (Seow et al., 2021). This previ-
ous finding implies that assessments of exteroceptive
metacognition may also become useful in studies of
fatigue.

Here, we report results from an observational study
that is motivated by the ASE theory (Stephan et al., 2016)
and builds on the findings by Rouault et al. (2018). Based
on the ASE theory of fatigue, we hypothesised that vari-
ability of fatigue levels across persons with MS (PwMS)
would be associated with individual differences in intero-
ception, metacognition and autonomic regulation. To
compensate for the current lack of experimental meta-
cognitive probes suitable for directly testing the ASE
theory, we resorted to two indirect approaches. First, we
used two subscales from an established questionnaire on
interoceptive awareness (Multidimensional Assessment
of Interoceptive Awareness [MAIA]) that incorporates
aspects of interoceptive awareness, specifically, the ten-
dency not to worry or experience emotional distress with

S s RV

sensations of pain or discomfort and the experience of
one’s body as safe and trustworthy—reflecting the feeling
of being in homeostasis and control. As detailed in our
prespecified analysis plan, we expected to find a negative
association between these measures and fatigue levels.
Second, we investigated whether fatigue might be associ-
ated with metacognitive indices that were obtained from
for exteroceptive tasks. Given the previously reported
association between apathy and metacognitive bias, we
hypothesised that metacognitive bias during our extero-
ceptive tasks would show a negative association with
fatigue scores.

Additionally, we conducted several exploratory ana-
lyses of links between fatigue and our multimodal data.
In particular, using machine learning, we investigated
whether individual fatigue scores could be predicted out-
of-sample from our measurements and if so, which vari-
ables were particularly informative.

2 | MATERIALS AND METHODS

2.1 | Study participants

We report results from a cross-sectional observational
study of adult persons with MS (PwMS) and varying
degrees of fatigue. This study was approved by the Ethics
Committee of the Canton of Zurich (BASEC number:
2019-00308).

The sample consisted of adult PwWMS with an estab-
lished clinical diagnosis of MS (any clinical subtype).
Since our research question concerned the association
between fatigue levels and interoceptive/metacognitive
factors, we recruited PwMS with different degrees of
fatigue, ranging from absent/low to high levels of fatigue.
Notably, our observational study did not include a con-
trol group of healthy participants without fatigue since
this was not necessary for our research question. More-
over, any comparison of groups would have been
confounded by the fact that such a control group would
have differed from patients in more than one factor, for
example, fatigue, medication and disease.

To be eligible for the study, PwMS had to fulfil the
following inclusion criteria: a diagnosis of MS (according
to the revised McDonald criteria; Thompson et al., 2018)
or Clinically Isolated Syndrome, age of >18 years and
ability to provide written informed consent and adhere to
the study protocol. The exclusion criteria were as follows:

» secondary forms of fatigue, for example, due to anae-
mia or hypothyroidism,

« use of stimulants (methylphenidate, modafinil) in
the last 4 weeks prior to the experiment,
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« performing at or below chance level on the session
of the Metacognition task 1 (see below for task
description); chance level is estimated at 55.26% cor-
rect (95th percentile of 10,000 simulated responses
under a binomial law with p = 0.5 and 114 trials),

« reporting the same confidence level on more than
90% of trials of either session of the metacognition
tasks (see below for task description), because in that
case there is not sufficient variability in confidence
ratings for reliably estimating our metacognitive
metrics.

Data collection started in June 2019 and was completed
in October 2020. A total of 14 participants were included
after the World Health Organisation declared the
SARS-CoV2 (severe acute respiratory syndrome corona-
virus 2) outbreak a global pandemic. In principle, it is
possible that pandemic-related stress or biological conse-
quences of SARS-CoV2 infections could act as con-
founders in that these variables might have influenced
both levels of experienced fatigue and interoception
and/or metacognition. Since we did not collect any data
about pandemic-related stress or infections in our
patients, we could not account for these potential con-
founders in our analyses.

2.2 | Sample size

It was difficult to specify a precise power analysis for our
study. This was for three main reasons: our observational
study tested several hypotheses and with different statisti-
cal tests (see below); heterogeneity of pathophysiological
mechanisms of fatigue in MS is likely, but its degree is
unknown (Manjaly et al., 2019); and prior to the begin-
ning of our study, there were no data on the relation of
interoception and metacognition to fatigue in MS on
which we could have based power calculations. As a gen-
eral indicator for the required sample size, we therefore
assumed a moderate effect size (|r| = 0.3) and a nominal
significance level of a = 0.05, resulting in a target sample
of 64 participants to achieve a statistical power of 80%
(G*Power Version 3.1) (Faul et al., 2007). For 11 of the
participants, we lost parts of the data from the metacog-
nitive task 1 due to a technical error. We therefore
remeasured those participants who were available and
recruited a few more participants, resulting in an overall
sample size of 71 participants. Note that due to missing
data for some of the measurements, each analysis was
performed on a subsample of these 71 participants; the
exact sample size is reported for each of the analyses and
in each of the figures (see Section 3).

2.3 | Study procedures

We tested several hypotheses about statistical relation-
ships between self-report measures of fatigue on the one
hand and questionnaire-based measures of interoceptive
awareness, measures of autonomic regulation and of
metacognition on the other hand while controlling for
age, sex and medication as potential confounds.

We provide a detailed account of the hypotheses
below. These hypotheses and the statistical procedures
to test them were defined prior to data analysis and are
described in a prespecified, time-stamped analysis
plan available online (https://gitlab.ethz.ch/tnu/analysis-
plans/rouault_imefa_analysis_plan). Section 3 below
indicates whenever procedures deviated from this prere-
gistered analysis plan (e.g. additional analyses).

The study consisted of two sessions on separate days.
Session 1 included a clinical interview, a standard
neurological and basic neuropsychological examination
and a first computerised behavioural task assessing
metacognition. Session 2 comprised the completion of
questionnaires (see below), physiological assessments of
autonomic function and a second computerised beha-
vioural task on metacognition. The order of the metacog-
nitive tasks was counterbalanced across participants.

2.4 | Measurements

Following an initial clinical examination, the experimen-
tal investigation included three types of measurements:
questionnaires, measures of autonomic system function
and cognitive tasks (Figure 1). In addition, several other
questionnaire and neuropsychological assessments were
conducted for separate research projects. Here, we
describe those measures that were of relevance for the
research question of the present study.

2.4.1 | Clinical examination

Clinical examination included a thorough assessment of
neurological status, the Expanded Disability Status Scale
and the Multiple Sclerosis Functional Composite (Rudick
et al., 2002).

24.2 | Questionnaires

Our analyses used data from the following questionnaires.
To assess individual fatigue levels, we used both the
Modified Fatigue Impact Scale (MFIS) (Larson, 2013) and
the Fatigue Severity Scale (FSS) (Krupp et al., 1989). This
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allowed us to verify whether our results were robust to the
specific construct of fatigue (sensitivity analysis). To mea-
sure the feeling of being in homeostasis and control, we
used two subscales (‘Not-Worrying” and ‘Trusting’) from
the MAIA questionnaire (Mehling et al., 2012). The Hospi-
tal Anxiety and Depression Scale (HADS) (Zigmond &
Snaith, 1983) was used to assess symptoms of depression.
In our context, this is a preferred screening tool for depres-
sion since, in contrast to other questionnaires of depressive
symptoms, it does not include questions relating to fatigue.
The Pittsburgh Sleep Quality Index (PSQI) (Buysse et al.,
1989) served to obtain an estimate of sleep. Measures of
self-efficacy were obtained by using the MS Self-Efficacy
Scale (MSSE) (Chiu & Motl, 2015) and the General Self-
Efficacy Scale (GSES) (Schwarzer et al., 1997).

24.3 | Physiological assessments of
autonomic function

Concerning physiological tests of autonomic function,
the following measurements were obtained: heart rate
variability (HRV, determined by computing the root
mean square of successive differences [RMSSD] during
deep breathing), changes in blood pressure (ABP) and
heart rate (AHR) when standing up after resting in
supine position for 10 min, sudomotor activity (Sudoscan,
Impeto Medical, France), body temperature (via auricular
measurement in the right ear) and sympathetic skin
response (SSR). Due to concerns about the quality of SSR
measurements, we did not include these data in our
analyses.
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244 | Metacognitive measures

To obtain participant-specific characteristics of metacog-
nition of exteroception, we used two variants of an estab-
lished experimental paradigm (Rouault et al., 2018). In
brief, participants were exposed to a series of visual
stimuli—two boxes with different numbers of dots—and,
on each trial, were asked to judge which of the two boxes
contained more dots. Participants received no feedback
but were asked to rate after every decision how confident
they were that their decision was correct on a rating scale
(Figure 1). We used a 6-point scale for confidence. Partic-
ipants performed two variants of the task in two separate
sessions described below.

In ‘Metacognition task 1°, we varied the sensory evi-
dence level (i.e. the dot difference between the two boxes)
across trials to cover a large range of decision difficulty
levels and model different aspects of the decision forma-
tion process using drift-diffusion modelling (DDM). Spe-
cifically, two black boxes filled with differing numbers of
randomly positioned white dots were presented for
300 ms. One box was always half-filled (313 dots out of
625 positions), while the other box contained an incre-
ment of +1 to +70 dots compared with the standard. Par-
ticipants did 114 trials in 3 blocks of 38 trials. The DDM
models a decision via a process of evidence accumulation
over time, until a threshold is crossed and the response is
elicited. Using the DDM implementation by (Wiecki
et al., 2013), we estimated four parameters to characterise
this process for each participant: nondecision time (f),
decision threshold (a), baseline drift rate (vy) and the
effect of decision evidence on drift rate (vs). We allowed
the evidence level (6) on each decision to affect the drift
rate such that

V=Vy+Vs*0 (1)

To ensure that each participant’s parameter estimates
were independent, each participant’s data were fitted sep-
arately (Wiecki et al., 2013) using similar procedures as
previously reported (Rouault et al., 2018). We also calcu-
lated confidence level (also known as ‘metacognitive
bias’) as the average confidence rating provided during
the task.

In ‘Metacognition task 2’, we employed a calibration
procedure to maintain a constant level of performance
during the experiment and across participants (Garcia-
Pérez, 1998). Specifically, we implemented a two-down
one-up staircase procedure with equal step-sizes for steps
up and down. The staircase was initiated during the prac-
tice trials to minimise the burn-in period. Then, partici-
pants did 108 trials in 3 blocks of 36 trials. Using
hierarchical generative models of recorded responses and

confidence ratings based on signal detection theory
(Maniscalco & Lau, 2012) (Fleming, 2017), we computed
participant-specific indices of metacognitive bias and
metacognitive efficiency, two independent metrics of
metacognition. Metacognitive bias (or ‘confidence level’)
refers to one’s tendency to rate confidence higher or
lower. In contrast, metacognitive efficiency refers to one’s
ability to discriminate between correct and incorrect
responses, controlling for the influence of task perfor-
mance (d’). This index of metacognitive efficiency is
based on meta-d’ (Maniscalco & Lau, 2012), a metric
developed in a manner analogous to the classical d’ index
from signal detection theory but reflecting instead how
much information, in signal-to-noise units, is available
for metacognitive decisions. Specifically, we extracted
for each participant their first-order performance
(percent correct and perceptual sensitivity d’), metacogni-
tive efficiency (meta-d’/d’) and metacognitive bias
(i.e. confidence level), using the HMeta-d toolbox
(https://github.com/metacoglab/Hmeta-d)

(Fleming, 2017). This toolbox enables a hierarchical esti-
mation of meta-d’/d’ over the group (provided in
Figure 3). For regression analyses of the relation between
metacognition and other variables (see Analyses B and C
below), we employed single-subject Bayesian estimates
(Figures 6 and 7). As a sanity check, we reproduced these
regressions using maximum likelihood estimates of meta-
d’; the results were nearly identical to the Bayesian esti-
mates across all analyses.

2.5 | Statistical analysis plan
Our analyses were prespecified in a time-stamped analy-
sis plan available online (https://gitlab.ethz.ch/tnu/
analysis-plans/rouault_imefa_analysis_plan). During the
analysis, we recognised the need for some adjustments
and additional analyses. These deviations from our pre-
specified analysis plan are indicated in Section 3 below.
We tested statistical relations between self-report
measures of fatigue on the one hand and measures of
autonomic regulation, metacognition and questionnaire-
based measures of interoceptive awareness on the other
hand, while controlling for potential confounds (such as
age, sex and medication). We adopted two general analy-
sis approaches:

a. hypothesis-based approaches which tested a priori
hypotheses about the relation of fatigue to intero-
ception, autonomic regulation and metacognition
using general linear models (GLM), and

b. exploratory approaches, including principal compo-
nent analysis (PCA) and elastic net regression.
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In our analyses, we used the MFIS questionnaire as a
construct of subjectively perceived fatigue. As a sensitiv-
ity analysis, we repeated all analyses using the FSS ques-
tionnaire as an alternative construct of fatigue.

2.5.1 | Hypothesis-based approach

For testing a set of specific a priori hypotheses, we per-
formed null hypothesis testing using general linear
models (GLM), implemented in MATLAB (glmfit func-
tion). We chose a significance level of a = 0.05; where
necessary, we corrected for multiple comparisons using a
Benjamini-Hochberg (BH) procedure to control the false
discovery rate (FDR) at 5%. In all regression analyes,
regressors representing potential confounds included age,
sex, disease duration (date of data acquisition minus date
of initial diagnosis) and medication.

In our prespecified analysis plan, we had originally
envisaged to use dose and drug type as confound regres-
sors. However, the patients in our sample took so many
different types of medication that the original plan would
have led to a prohibitively large number of regressors in
relation to the number of data points. Instead, we thus
included two medication-related regressors in our statisti-
cal models: one regressor encoding the use of immuno-
modulatory medication and a second regressor specifying
use of drugs with sedating effects. One additional con-
found regressor that we had forgotten to specify in our
analysis plan was sleep quality (as measured by the
PSQI). Finally, in one participant, information about the
date of initial diagnosis had been entered incorrectly,
resulting in a negative disease duration; we replaced this
entry with zero.

For all GLMs, we first tested whether they signifi-
cantly explained variance in general (F-test). If positive,
we proceeded to testing several specific hypotheses. We
conducted three main analyses and investigated several a
priori hypotheses, as described below. All specific
hypotheses are formulated as alternative hypotheses
(H1) in the context of null hypothesis testing.

2.6 | Analysis A:Is fatigue related to
measures of interoception and autonomic
regulation?

In a first analysis, we modelled the vector of fatigue
scores across participants using a GLM with two regres-
sors of interest: the sum of the MAIA subscales 3 (Not-
Worrying) and 8 (Trusting) and the first principal compo-
nent of autonomic measures (HRV, ABP and AHR [lying
vs. standing], sudomotor activity). The reason for using
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the first principal component (as opposed to including all
individual measurements as regressors in our GLM) was
that we sought to avoid inflating the number of regres-
sors in relation to our sample size.

We tested the following specific hypotheses:

(i) Self-report measures of interoception that relate to
the feeling of being in homeostasis and control
(i.e. the sum of MAIA subscales 3 and 8) are nega-
tively associated with individual fatigue scores. This
hypothesis is a direct prediction from the ASE
model of fatigue and was tested using a one-tailed
one-sample t-test.

(ii) The first principal component of measures of auto-
nomic function is associated with individual fatigue
scores. This hypothesis is an indirect prediction from
the ASE model of fatigue (i.e. the model does not
directly predict changes in autonomic function, but
some of the causes for persistent interoceptive
surprise that the model proposes are connected to
autonomic function). In our analysis plan, we had
originally specified a negative relationship and thus
a directed (one-tailed) t-test but later realised that a
directed relation is difficult to motivate when deal-
ing with principal components of autonomic system
measures. We therefore changed this to a more con-
servative two-tailed one-sample ¢-test.

2.7 | Analysis B: Is fatigue related to
measures of exteroceptive metacognition?

In this analysis, we examined—separately for the two
metacognition tasks—whether fatigue is related to
exteroceptive metacognition. For both tasks, the depen-
dent variable was the individual fatigue score (MFIS or
FSS, respectively).

For Metacognition task 1, regressors of interest
included metacognitive bias (confidence level) as well as
estimates of the four DDM parameters characterising the
decision formation process during the visual discrimina-
tion task: nondecision time, decision threshold, baseline
drift rate and the effect of decision evidence on drift rate.
We tested the following hypothesis using a one-tailed
one-sample t-test:

(iii) Metacognitive bias (confidence level) is negatively
associated with fatigue. This hypothesis is based
on the previous result by Rouault et al. (2018)
who found that apathy, a construct related to
fatigue, was negatively associated with confidence
level in the same visual discrimination task as
used in this study.
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Metacognition task 1 allowed us to examine not only poten-
tial shifts in metacognition but also shifts in other cognitive
performance features (here, the decision formation process).
We also examined the associations between DDM parame-
ters and fatigue but had no specific directional hypotheses
(Rouault et al., 2018; Ulrichsen et al., 2020).

For Metacognition task 2, regressors of interest
included metacognitive bias (confidence level) and meta-
cognitive efficiency (meta-d'/d’). For metacognitive bias,
we also added accuracy as a regressor of no interest.
Although accuracy is matched across participants by
design, integrating it in the model allow us to fully isolate
effects of bias from any remaining effects of performance
fluctuations around the target value from the staircase. We
tested the following hypotheses using one-sample ¢-tests:

(iv) Metacognitive efficiency (meta-d'/d’) is associated
(unspecified direction) with fatigue.

(v) Metacognitive bias (confidence level) is negatively
associated with fatigue. This is the same as hypoth-
esis (iii), and we expected to find consistent rela-
tionships across both metacognition tasks.

2.8 | Analysis C. Are measures of
interoception and autonomic regulation
related to measures of metacognition?

We used two different GLMs with the same design matrix
as in analysis B but concerning different dependent
variables. The first GLM attempted to explain variance in
MAIA scores by metacognitive indices (confidence level
and metacognitive efficiency), whereas in the second
GLM, the dependent variable was the first principal com-
ponent obtained from the physiological measures of auto-
nomic regulation (HRV, ABP and AHR lying vs. standing,
sudomotor activity). We tested the following hypotheses:

(vi) Metacognitive indices are associated with individ-
ual levels of questionnaire-based interoceptive
awareness that relate to the feeling of being in
homeostasis and control (sum of MAIA subscales
3 [Not-Worrying] and 8 [Trusting]);

(vii) Metacognitive indices are associated with the first

principal component of measures of autonomic
function.

2.8.1 | Exploratory analyses

First, we examined an association between ‘global’ con-
fidence (i.e. self-efficacy) and ‘local’ confidence, that is,

the task-specific confidence level within the context of
the visual discrimination paradigms used here. This
exploration is relevant because metacognition can
operate across different levels of abstraction, from
‘local’ confidence in individual perceptual decisions to
global beliefs about general abilities such as self-efficacy
(Rouault et al, 2019). Given known associations
between feelings of self-efficacy and feelings of confi-
dence, we initially examined whether confidence level
from the Metacognitive task 2 correlated with either of
the two self-efficacy questionnaires in our study (MSSE
and GSES).

Second, we performed a multivariate linear regres-
sion analysis with nested cross-validation (CV) and elas-
tic net regularisation (Zou & Hastie, 2005). This analysis
included all autonomic, questionnaire-based interocep-
tive and task-based metacognitive measurements and
aimed at identifying the most meaningful predictor(s) of
fatigue scores without a priori hypotheses or preselec-
tion of regressors. Elastic net regularisation introduces
two penalty terms to the ordinary least squares objective
function that combine properties of lasso (L1 penalty)
and ridge regression (L2 penalty), allowing selection of a
solution with particular properties. In particular, for
problems with few data points compared with the
number of regressors, this avoids overfitting, thus
enhancing the accuracy of the predictors, through auto-
matic variable selection and shrinkage of large regres-
sion coefficients.

In our application of elastic net regression imple-
mented in scikit-learn, we z-scored the predictors
(regressors) and mean-centred the outcome variable
(fatigue scores). As in Rouault et al. (2018), we imple-
mented 10-fold CV, with nested CV for tuning the
hyperparameters. The data were randomly split into
10 sets (folds). A model was then generated based on
nine training fold and applied to the remaining indepen-
dent validation set. Each fold served as the validation
set once, resulting in 10 different models and predic-
tions. Nested CV involved subdividing the 9 training sets
(i.e. 90% of the sample) into a further 10 folds (‘inner’
folds). Within these 10 inner folds, 9 were utilised for
training a model over a range of 10 alpha (0.01-1) and
10 lambda (0.01-100) values, where alpha is the com-
plexity parameter and lambda is the regularisation coef-
ficient. This resulted in a model fit for the inner test set
for each possible combination of alpha and lambda. The
best fit over all 10 inner folds for each combination of
alpha and lambda was then used to determine the opti-
mal parameters for each outer fold. We tested the signif-
icance of regression coefficients using permutation tests
with 1000 permutations.
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3 | RESULTS

3.1 | Characteristics of participants
Overall, 71 participants were included in the study. Sixty-
eight participants had a relapsing-remitting form of MS,
one participant had a primary progressive MS and two
participants had a secondary progressive MS. We first
examined age, sex, medication status and disease dura-
tion in our sample (Figure 2). Mean age was 42.4 years
old (median = 43, min = 19, max = 67), and the gender
distribution was strongly skewed (61 female, 9 male,
1 missing data). Most participants (62 persons) were on
medication (17 fingolimod, 14 dimethyl fumarate, 8 ocre-
lizumab, 7 natalizumab, 5 interferon beta-1a, 3 glatiramer
acetate, 2 alemtuzumab, 2 teriflunomide, 1 rituximab
and 1 peginterferon beta-1a). Eleven participants
took supplementary medication (e.g. benzodiazepines)
with sedating side effects. The mean disease duration
was 7.6 years (median = 6.2, min =0, max = 31.2)
(Figure 2a).

Our inclusion criteria did not impose any constraints
with regard to levels of fatigue and depressive symptoms.
Concerning fatigue levels in our sample, according to the
MFIS, participants exhibited significant levels of fatigue
with an average score of 33.1 (SD = 18.3). Likewise,
participants had an average score on the FSS of 36.6
(SD = 14.8) (Figure 2b). Despite the visually different
shapes of their distributions, scores on these two fatigue
scales were strongly correlated, as expected (Spearman
p=0.87,p=56x10%).
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FIGURE 2 Characteristics of the g 101
sample of persons with multiple sclerosis o
(MS). (a) Demographic metrics of g
participants: age, sex and disease g 51
duration histograms. (b) Left panel: 2
distribution of the depression subscale of 0-
the Hospital Anxiety and Depression 0 Age 50

Scale (HADS) scores in our sample
(N = 68 available measures). HADS
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Impact Scale (MFIS) (N = 61 available
measures) and by the Fatigue Severity 0 10
Scale (FSS) (N = 71 available measures).

HADS depression subscale score
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According to the HADS (N = 68 available measures),
study participants showed a fairly moderate degree of
depressive symptoms (average score on the depression
subscale of the HADS: 4.2, SD = 3.3) (Figure 2b). Five
participants reached a score indicative of probable
depression according to established thresholds (Zigmond
& Snaith, 1983).

3.2 | Estimating indices of
(exteroceptive) metacognition

As a probe of exteroceptive metacognition, we used a
well-validated metacognition task in the domain of visual
discrimination (Rouault et al., 2018), in order to extract
key metacognitive metrics using drift-diffusion and signal
detection theoretic models (see Section 2). In Metacogni-
tion task 1, participants (IN = 68 available measures)
achieved a mean performance above chance level of 69%
correct (min =46%, max =86%) (Figure 3a). As
expected, increased perceptual difficulty (i.e. smaller dif-
ference in the number of dots between left and right
boxes) was associated with lower performance and longer
response times (RTs) (difference between first and last
difficulty bin: t;; = —15.4, p = 1.2 x 10" >* (accuracy),
tey = 4.8, p = 1.0 x 107> [RTs]) (Figure 3b). Participants
stated higher confidence for correct than incorrect deci-
sions (ts; = 9.3, p = 1.056 x 10~ ), indicating a signifi-
cant degree of metacognitive sensitivity (Figure 3a). In
Metacognition task 2 (N = 67 available measures), partic-
ipants achieved a mean performance above chance level
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(a) Metacognition task 1

FIGURE 3
on the metacognitive tasks.

Participants’ behaviour

(a) Participants’ performance, response
times and confidence level in
Metacognition task 1. Bars and error
bars indicate mean and standard error of
the mean (SEM); dots indicate
individual data points (N = 68 available

measures). (b) Left panel: participants’

'++++++

confidence for correct and incorrect
decisions. ***p<0.001. Right panel: mean
perceptual performance (left panel) and
mean response time (right panel) in
each of the six difficulty bins,
determined by the difference in number
of dots between left and right boxes.
Error bars indicate SEM (N = 68).
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of 75% correct (min = 68%, max = 81%), close to the level
of 71% correct targeted by the staircase procedure
(Figure 3c). Again, participants indicated higher confi-
dence for correct than incorrect decisions (ts; = 9.5,
p =478 x 10714 (Figure 3d), and we found a group-
level metacognitive efficiency of 0.79 (mean H-Mratio
from hierarchical fit with satisfactory convergence of
R™=1.0005).

3.3 | Dimensionality reduction of
physiological measures

In order to keep our regression models as parsimonious
as possible, we aimed to obtain a low-dimensional sum-
mary of the physiological measures. To this end, we used
principal components analysis (PCA) and computed the
first principal component of physiological measurements,
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(a) Correlation matrix between physiological measures
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FIGURE 4 Physiological measures of homeostatic regulation. (a) Correlation matrix of participants’ heart rate variability (HRV,
computed as root mean square of successive differences (RMSSD) during deep breathing), systolic and diastolic ABP and AHR (standing up

after resting in supine position for 10 min) and sudomotor activity (averaged over hands and feet). (b) Eigenvalues obtained for each of the

inputs from a principal component analysis (PCA).

as prespecified in our analysis plan (see Section 2). We
also examined the pairwise correlations of our measure-
ments to better understand the covariance structure
(Figure 4a). As expected, sudomotor activity was corre-
lated between hands and feet (p = 0.62, p = 4.38 x 10*8),
and ABP was correlated between systolic and diastolic
measurements (p = 0.35, p = 0.0048). The other physio-
logical measurements of interest (HRV, AHR and sudo-
motor activity) were reasonably uncorrelated (Figure 4a).
Applying PCA to all physiological measurements
(Figure 4b), we found that the first principal component
(PC1) explained 42.2% of the variance in measurements
of autonomic function.

With all of our metrics established, we next turned to
the hypotheses prespecified in our analysis plan.

3.4 | Analysis A: Is fatigue related to
measures of interoception and autonomic
regulation?

Starting with Analysis A (see Section 2), we examined
whether fatigue scores were associated with self-report,
questionnaire-based measures of interoceptive aware-
ness that relate to the feeling of being in homeostasis
and control and with the first principal component
(PC1) of physiological measurements of autonomic func-
tion. Controlling for a number of potential confounds
(see Section 2), overall, the regression model explained a
significant amount of variance in fatigue (MFIS) scores
(F-test: p =0.0372; N = 53 available measures). We

found a significant negative relation of self-report
measures of interoception (MAIA subscales 3 and 8)
with fatigue scores (ts; = —2.79, one-tailed p = 0.0078
uncorrected, p = 0.025 FDR-corrected) but failed to find
a significant association with PC1 (¢5, = 0.41, p = 0.68)
(Figure 5). The pattern of findings was similar when
using the FSS questionnaire for fatigue instead of MFIS.
Again, the regression model overall explained a signifi-
cant amount of variance in FSS scores (F-test:
p=79 x 10~* N =63 available measures). Further-
more, there was again a significant negative association
of fatigue levels with MAIA scores (fs, = —3.04, one-
tailed p = 0.0036 uncorrected, p = 0.05 FDR-corrected)
but not with PC1 (t;, = —0.03, p = 0.97) with fatigue
(FSS) scores.

Given the surprising absence of an association
between fatigue and physiological measurements of auto-
nomic function, we conducted several control analyses,
examining in particular whether using the first principal
component as a summary of the various autonomic mea-
surements may have been an inadequate choice. These
control analyses, which are reported in the supporting
information, confirmed that in our particular sample, a
significant association between autonomic function
measures and fatigue is not found.

Altogether, these findings indicate that self-report
(questionnaire-based) measures of interoception that
reflect the feeling of being in homeostasis and control
were significantly related to fatigue, whereas this was not
the case for physiological measures of autonomic
function.
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FIGURE 5 Association of fatigue levels to measures of
interoception and autonomic regulation (Analysis A). Regression
analysis of Modified Fatigue Impact Scale (MFIS) values, with
Multidimensional Assessment of Interoceptive Awareness (MAIA)
subscales relating to the feeling of being in homeostasis and control
(‘MAIA;¢’) and autonomic function measures reflecting the
integrity of homeostatic regulation (‘homeo’) (see Section 2).
Regressors of no interest include age, sex, immunomodulatory
medication, medication with sedative effects, disease duration and
sleep quality as measured by the Pittsburgh Sleep Quality Index
(PSQI) questionnaire. Error bars are the standard errors of
regression coefficient estimates (N = 53 available measures).

**p < 0.01 uncorrected, p = 0.025 false discovery rate (FDR)-
corrected; p-values from one-sample t-tests against zero on
regression coefficient. Note that fatigue scores based on the Fatigue
Severity Scale (FSS) questionnaire provided very similar results (see
main text).

A

3.5 | Analysis B: Is fatigue related to
measures of exteroceptive metacognition?

The second part of our prespecified analyses focused on
the relationship between fatigue and (exteroceptive) meta-
cognition. Here, the most important question—which we
tested twice, using data from both metacognition tasks—
was whether fatigue would show a negative association
with metacognitive bias (confidence level). This hypothe-
sis was based on previous findings by Rouault et al.
(2018) who found this association for a fatigue-related
construct (i.e. apathy) in the Metacognition task 2.

First, using Metacognition task 1 and parameter
estimates from a drift-diffusion model of the decision-
making process (see Section 2), we found that our regres-
sion model did not significantly explain variance in
fatigue (MFIS) scores (F-test: p =0.1380, N =52
available measures). Contrary to our expectation, we
failed to find a significant association between metacog-
nitive bias and fatigue (one-tailed t-test, ts, = 0.03,
p = 0.97). Among the hierarchical drift diffusion model
(HDDM) parameters, we found that neither the baseline
drift rate (vo) (ts,=—1.90, p=0.0646) nor the effect of
decision evidence on drift rate (vs) (ts4=-—1.42,
p=0.163) was significantly associated with fatigue. For
the other two parameters, decision threshold and nonde-
cision time, we again failed to find a significant relation
with fatigue (both t5,> —1.17, both p > 0.25) (Figure 6a).

Going beyond our prespecified analyses, we reasoned
that unpacking the decision process into the four
HDDM parameter estimates might have led to an
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FIGURE 6 Association of fatigue levels to measures of metacognition (Analysis B). Analyses of the relationship between metacognition

and fatigue scores (Modified Fatigue Impact Scale [MFIS] questionnaire). (a) From Metacognition task 1, we included as regressors

metacognitive bias (‘m.bias’) alongside four drift-diffusion model parameter estimates characterising the perceptual decision-making
process: decision threshold (‘a’), nondecision time (‘t’), drift rate (vo and vs) (see Section 2) (N = 52 available measures). (b) From
Metacognition task 2, we included as regressors metacognitive bias (‘m.bias’) and metacognitive efficiency (meta-d’'/d’) (‘m.effi’). (N =56

available measures). In all models, regressors of no interest included age, sex, immunomodulatory medication, medication with sedative
effects, disease duration and sleep quality (Pittsburgh Sleep Quality Index [PSQI] questionnaire). Error bars are the standard errors of

regression coefficient estimates.
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overparameterised regression model and that replacing
them by general decision accuracy (which the drift diffu-
sion model seeks to characterise) could result in a more
parsimonious model. Therefore, we ran an alternative
model replacing the four HDDM parameters with accu-
racy instead (F-test: p = 0.0271). We found that lower
accuracy was related to fatigue (ts, = —2.45, p = 0.0176
uncorrected, p = 0.025 FDR-corrected), again in the
absence of a significant association between metacogni-
tive bias (confidence level) and fatigue (one-tailed #-test,
tsy = 0.679, p = 0.50).

Second, using Metacognition task 2 and a Bayesian
model based on signal detection theory (Fleming, 2017),
we extracted metacognitive bias (confidence level) and
metacognitive efficiency (meta-d’/d") and examined their
link with fatigue using multivariate regression (see
Section 2). The regression model overall did not explain a
significant amount of variance (F-test, p = 0.2122); we
found that neither metacognitive bias (one-tailed t-test,
tss = 0.91, p = 0.185) nor metacognitive efficiency (two-
tailed t-test, tss = —1.18, p =0.24) was significantly
associated with fatigue (Figure 6b). Deviating from our
specified analysis plan, we did not include accuracy in
the model because it is already partly taken into account
in the calculation of metacognitive efficiency (via d').
However, we also implemented the same model by add-
ing the average evidence level for each individual from
the staircase procedure, a proxy for individual perceptual
difficulty, which provided consistent results. This model
was significant (F-test: p = 0.0417), with neither meta-
cognitive bias (one-tailed t-test, tss = 0.75, p = 0.23) nor
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metacognitive efficiency (two-tailed t-test, tss = —1.22,
p = 0.23) being significantly associated with fatigue, in
contrast to significant effects of average evidence level
(tss = 2.60, p = 0.0123) on fatigue.

3.6 | Analysis C. Are measures of
interoception and autonomic regulation
related to measures of metacognition?

Finally, we examined our third prespecified set of
hypotheses regarding associations of interoception and
autonomic measures, respectively, with metacognition
(Analysis C). First, using multivariate regression, we
examined whether self-report, questionnaire-based mea-
sures of interoceptive awareness (sum of MAIA subscales
3 and 8) were related to metacognitive indices (see
Section 2). We found that the model did not significantly
explain more variance than a null model (F-test: p = 0.60)
and that none of the metacognitive regressors significantly
explained MAIA subscale scores (all abs(ts) < 0.69, all
p > 0.49; N = 66 available measures; Figure 7a).

Second, we examined, using multivariate regression
with the first principal component of physiological mea-
sures of autonomic function (PC1) as dependent variable,
whether PC1 was related to metacognitive indices.
Although the overall model did not explain significantly
more variance than a null model (F-test: p = 0.1213), we
did find a significant association between metacognitive
bias (confidence level) and PC1 (t5 = 2.32, p = 0.0243)
(Figure 7b).
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FIGURE 7 Association between measures of interoception and autonomic regulation and measures of metacognition (Analysis C).

(a) Regression analysis of the contribution of metacognitive bias and metacognitive efficiency to explaining a self-report measure of

interoception (Multidimensional Assessment of Interoceptive Awareness [MAIA] subscales; see Section 2) (N = 66 available measures).

(b) Regression analysis of the contribution of metacognitive bias and metacognitive efficiency to explaining a physiological measure of

autonomic function (PC1; see Section 2). (N = 61 available measures). In both models, regressors of no interest include age, sex,

immunomodulatory medication, medication with sedative effects, disease duration and sleep quality as measured by the Pittsburgh Sleep

Quality Index (PSQI) questionnaire. *p < 0.05, uncorrected p-values from one-sample t-test against zero on regression coefficient. Error bars

are the standard errors of regression coefficient estimates.
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Altogether, these results suggest that exteroceptive meta-
cognitive bias is associated with physiological measures
of autonomic function, but not with aspects of interocep-
tive awareness related to the feeling of being in homeo-
stasis and control (summed MAIA subscales 3 and 8).

3.7 | Elastic net regression: Predicting
fatigue from all available measurements

The analyses described above used classical within-
sample multiple regression with carefully preselected
regressors, including the use of dimensionality reduction
(PCA), in order to examine relationships between
fatigue, metacognition and interoceptive markers in a
hypothesis-driven manner. In a subsequent and more
exploratory step (but part of our prespecified analysis
plan), we performed a regression analysis where we
sought to predict fatigue from all of the available intero-
ceptive, physiological and metacognitive measurements
as well as additional variables (e.g. sleep; see Section 2).
This analysis was only possible for those participants
where measures of all 15 variables were available
(N = 52 participants for MFIS, N = 62 for FSS).

In order to avoid overfitting and obtain out-of-sample
predictions, we used elastic net regularisation (Zou &
Hastie, 2005) together with 10-fold nested CV. We used
permutation tests to examine whether model predictions
as well as the contribution of specific regressors were sig-
nificantly above chance. Specifically, we derived null dis-
tributions based on the mean squared error (MSE) for
model predictions and based on the regression coeffi-
cients for individual regressors. In either case, 1000 per-
mutations were used to create the null distribution.

The regression model was able to predict individual
MFIS scores well above chance (p = 0.003; Figure S2).
Out of the 15 regressors, two showed large regression
weights, and both were significant predictors of MFIS
scores: self-report measures of interoceptive awareness,
that is, summed scores of MAIA subscales 3 and 8 (regres-
sion weight = —5.49, p =0.002), and sleep quality
(regression weight = 4.83, p = 0.001). While these results
confirm the relation between fatigue and interoceptive
measures, it is noteworthy that they were now obtained
in the presence of all other variables. Moreover, the use
of CV moves the analysis from explaining fatigue scores
(i.e. within-sample associations) towards predicting them
out-of-sample. Specifically, the model in the current
analysis can predict MFIS scores of ‘unseen’ individuals
with a median absolute error of 13.59 (for comparison,
MEFTIS scores are on a scale from 0 to 84).

Turning to FSS as an alternative fatigue score, again,
the model’s predictions were significantly above chance

(p = 0.003; Figure S3). The same regressors as for MFIS
were significant predictors of fatigue: self-report mea-
sures of interoceptive awareness (MAIA subscales 3 and
8) (regression weight = —3.47, p = 0.001) and sleep qual-
ity (regression weight = 5.05, p = 0.001). The overall
model could predict individual FSS scores out-of-sample
with a median absolute error of 10.19 (for comparison,
FSS scores are on a scale from 9 to 63).

Finally, it is worth mentioning that, for MFIS scores,
two of the physiological variables (AHR and HRV)
were also significant predictors (AHR: p = 0.019; HRV:
p = 0.031). However, this finding did not generalise across
questionnaires: for FSS scores, neither variable was a sig-
nificant predictor (AHR: p = 0.763; HRV: p = 0.749).

In conclusion, as for the separate regression analyses
above, the choice of fatigue questionnaire did not impact
our results. Both MFIS and FSS fatigue scores could be
predicted with highly significant accuracy, and the same
variables (self-report on interoception and sleep quality)
were important for this prediction.

3.8 | Relationship between local and
global confidence

Finally, as prespecified in our analysis plan, we examined
possible associations between ‘global’ confidence (here
measured as self-efficacy) and ‘local’ confidence, the
task-based confidence level, by examining the correlation
between metacognitive bias (confidence level) from
Metacognition task 2 and either of the two self-efficacy
questionnaires that participants had completed (GSES
and MSES). For GSES, the Pearson correlation coefficient
was p =011 (p=0.37) and for MSES p= 0.067
(p=0.59) (N =66 available measures in both cases).
The correlations are visualised in Figure 8. These findings
indicate that, in our particular sample and for the task
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FIGURE 8 Associations between ‘local’ and ‘global’ aspects
of metacognition. Correlations between task-based measure of
metacognitive bias (‘local’ confidence level) and global measures of
confidence as indexed by the general self-efficacy scale (GSES, left
panel) and the MS self-efficacy scale (right panel).
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we used, task-based metacognitive confidence and gen-
eral self-efficacy beliefs were not significantly related.

4 | DISCUSSION

This study examined questionnaire-based interoceptive
awareness, autonomic function and (exteroceptive) task-
based metacognition in a sample of 71 PwMS. We tested
a number of concrete hypotheses jointly inspired by the
theory of ASE (Stephan et al., 2016) and by recent
findings on links between exteroceptive metacognition
and apathy in a general population sample (Rouault
et al., 2018). In brief, our study found the expected associ-
ation of interoceptive awareness with fatigue (but not
with exteroceptive metacognition) and an association of
autonomic function with exteroceptive metacognition
(but not with fatigue). Furthermore, a machine learning
analysis (based on elastic net regression) showed that
individual fatigue scores could be predicted out-of-sample
from our measurements, with questionnaire-based mea-
sures of interoceptive awareness and sleep quality having
a particular relevance for prediction.

To the best of our knowledge, our study is novel in at
least three ways. It is the first to explore the utility of
(exteroceptive) measures of metacognition for investigat-
ing fatigue. Second, it achieves successful out-of-sample
prediction of individual fatigue scores in MS from simple
questionnaire-based measurements. Third, when examin-
ing links between questionnaire-based interoception and
fatigue, it is the first study that assesses interoceptive
awareness in MS using a validated questionnaire (MAIA)
focusing on those aspects of interoceptive awareness that
relate to the feeling of being in control and homeostasis.

How do our results relate to previous findings in the
literature? Several previous studies have provided indi-
rect evidence for an association between altered intero-
ception and fatigue in MS. This rested on showing that
PwMS exhibit structural/functional changes in interocep-
tive brain regions, such as the insula and anterior
cingulate cortex (ACC) (e.g. Faivre et al., 2012; Haider
et al., 2016; Rocca et al., 2012; Salamone et al., 2018), and
demonstrating associations of such changes with fatigue
(Andreasen et al., 2010; Pardini et al., 2015). This form of
evidence for an association between altered interoception
and fatigue is highly valuable but only of an indirect
nature because areas like the ACC and the insula are also
involved in other cognitive functions. Direct assessments
of interoception in MS are rare so far. The only exception
we are aware of is a recent study which showed that, in
comparison with healthy controls, PWMS with fatigue
(but not PwMS without fatigue) exhibited significant
differences on a heartbeat detection task (in addition to

e Wiy

changes in grey matter volume and functional connectiv-
ity of the insula) (Gonzalez Campo et al., 2020). Our
study used specific subscales of the MAIA questionnaire
(prespecified in our analysis plan) to assess aspects of
interoceptive awareness that are of particular relevance
for the ASE theory. We are not aware of any previous
study that used the MAIA or another validated interocep-
tion questionnaire in MS.

Concerning the relation between autonomic nervous
system function and fatigue in MS, most previous studies
have investigated cardiac measures of autonomic dys-
function, for example, with regard to HRV (Flachenecker
et al., 2003). As summarised in a recent systematic review
of cardiac autonomic function in MS, most of these stud-
ies have reported a relation between cardiac autonomic
dysfunction and fatigue, although the degree and the
nature (i.e. which measurement) of this relation varied
considerably across studies (Findling et al., 2020). In our
analyses, we did not find any association between mea-
sures of autonomic function and fatigue when applying
dimensionality reduction (PCA) prior to regression analy-
sis. When using all physiological measures as regressors
in a regularised regression model (elastic net), we found
that two physiological variables (AHR and HRV) did pre-
dict MFIS scores; however, this finding could not be rep-
licated for FSS scores and should therefore be treated
with caution. We conducted a number of control analyses
(see supporting information) which, however, failed to
reveal an obvious reason for the absence of the expected
association. One remaining possibility is that although
our sample size was relatively large (N = 71 participants),
this may still not have been large enough to detect associ-
ations of small effect size.

As specified in our analysis plan, we also conducted
an exploratory analysis, applying a machine learning
approach (elastic net regression with 10-fold nested CV)
to all our measurements. It showed that fatigue scores of
individual participants can be predicted from question-
naire, physiological and behavioural measurements, with
a median absolute error of 13.59 for MFIS and 10.19 for
FSS. Furthermore, questionnaire-based measures of
interoceptive awareness and sleep quality played a partic-
ularly important role for this prediction. This finding is
important in two ways. First, this machine learning
approach goes beyond classical within-sample statistical
analyses: by combining regularisation with CV, it doubly
protects against overfitting and enables us to include all
measurements within a single regression model. This
allows our analysis to account for several potential
confounders, thus decreasing the probability that the
observed predictive relationship may have been driven by
a third variable. The finding that sleep quality by itself is
negatively related to fatigue is not surprising and has
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been demonstrated before (e.g. Nociti et al., 2017); how-
ever, our analysis provides new evidence for the strength
of this relationship by examining it in the simultaneous
presence of many other explanatory variables and in an
out-of-sample prediction context. Second, patients are
often frustrated by the lack of objective tests that provide
objective confirmation of their subjective experience of
fatigue. An important clinical goal is therefore to predict
the presence and degree of fatigue from other measure-
ments. Clearly, our current study does not present a solu-
tion to this long-standing problem because the predictive
variables it identifies (questionnaire-based interoceptive
awareness and sleep quality) are based on self-reports
themselves and because the sample size is too small for
establishing a precise prediction tool. Nevertheless, to
our knowledge, it represents the first demonstration that
predicting individual fatigue levels out-of-sample is possi-
ble at all for MS.

While numerous studies exist which, in a variety of
contexts and disorders, used machine learning to predict
individual fatigue levels from behavioural or physiologi-
cal data (Bafna et al., 2021; Baykaner et al., 2015; Jiang
et al, 2021; Luo et al, 2020; Mun & Geng, 2019;
Pinto-Bernal et al., 2021; Yao et al, 2021; Zeng
et al., 2021), only two of these studies have concerned MS
(Ibrahim et al., 2020, 2022). Additionally, like the vast
majority of studies, these two MS-specific studies did not
actually predict fatigue (the subjective experience) but
predict fatiguability (the observable decrease in perfor-
mance during physiologically or cognitively demanding
tasks) (Kluger et al., 2013) (sometimes, fatigue and fatigu-
ability are also referred to as ‘trait fatigue’ and ‘state
fatigue’, respectively; Cehelyk et al., 2019). Generally, to
our knowledge, only two previous studies—concerning
fatigue during cancer treatment and in HIV, respectively;
(Kober et al., 2021; Zuiiiga et al., 2020)—have attempted
to predict fatigue; all other studies have reported predic-
tions of fatiguability. While fatiguability is also a clini-
cally very important topic, it is important to distinguish
these two concepts, not least because different types of
pathophysiological explanations exist for fatigue and fati-
guability (Manjaly et al., 2019).

Our study has a number of notable strengths and lim-
itations. Beginning with its strengths, our results derive
from a prespecified analysis plan in which all hypotheses
and analysis procedures were specified before the data
were touched. Any deviations from this analysis plan
were described in the Sections 2 and 3 above. Second, we
examine (exteroceptive) metacognition using an estab-
lished behavioural paradigm and a hierarchical Bayesian
model (Fleming, 2017; Harrison, Garfinkel, et al., 2021).
Third, a sensitivity analysis—that is, comparing our
results across two separate fatigue questionnaires (MFIS

and FSS)—demonstrated that our findings did not
depend on a specific construct of fatigue. It could be
interesting in future work to examine relationships
between different dimensions of fatigue (e.g. physical
vs. cognitive) and measures of interoception/metacogni-
tion. However, in this study, we did not conduct separate
analyses for different dimensions of fatigue because the
ASE theory (which guided our analyses) does not make
any predictions in this regard so far. Finally, as men-
tioned above, using machine learning, we could take into
account many potential confounders, despite a limited
sample size, and demonstrate that individual fatigue
levels can be predicted, out-of-sample and with signifi-
cant accuracy, from simple measures (questionnaire-
based interoceptive awareness and sleep quality).
Turning to the weaknesses of our study, our recruit-
ment procedure was unconstrained; that is, we did not
preselect PWMS on the basis of any criteria. On the one
hand, this is a strength as we avoided recruiting a specific
subgroup that could have led to a biased perspective. On
the other hand, there are probably multiple pathophysio-
logical mechanisms that lead to fatigue in MS (Manjaly
et al., 2019), and given this likely heterogeneity and the
absence of data on interoception and metacognition in
MS prior to the start of our study, it was not possible to
determine an adequate sample size. Second, novel
methods for assessing metacognition of interoception
have been introduced only very recently (Harrison,
Garfinkel, et al., 2021; Legrand et al.,, 2022; Nikolova
et al., 2022) and were not available when our study
started. However, we acknowledge that such a task-based
measure of interoceptive accuracy could provide relevant
data regarding the correspondence between objective
interoception and participants’ beliefs about their
reported interoception (instead, we relied on a well-
validated questionnaire of interoceptive awareness). It is
worth mentioning that even these task-based procedures
do not yet allow for assessing the particular metacogni-
tive construct of interoception that the ASE theory
focuses on, that is, self-monitoring of the brain’s capacity
to control bodily states. We therefore had to resort to an
indirect approach, using a task that probes metacognition
about exteroception (specifically, confidence about per-
ceptual decisions in the visual domain). This was moti-
vated by a recent study (Rouault et al., 2018) showing
that metacognitive bias (confidence level) during this spe-
cific task was associated with apathy. However, apathy is
not a fully identical construct and shares both similarities
and differences with fatigue (Daumas et al., 2022).
Indeed, in our sample, we could not detect an association
between metacognitive bias and fatigue. One potential
reason could be statistical power: The sample of PwMS in
this study was much smaller than the general population
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sample from Rouault et al. (2018). Additionally, accord-
ing to the ASE theory, a link between fatigue and extero-
ceptive metacognition is only to be expected once a
generalisation of low self-efficacy beliefs has taken
place—a process that, according to the theory, should be
reflected by the onset of depression.

This directly leads us to the third, and most impor-
tant, limitation of the current study: Our particular sam-
ple of PwMS did not exhibit a particularly high degree of
depressive symptoms, which is not congruent with a key
assumption inherent to the ASE theory. This observation
represents an important caveat for all analyses of extero-
ceptive metacognition presented in this study. More
specifically, according to the ASE theory, alterations of
exteroceptive metacognition are only expected to occur
once a generalisation of low self-efficacy beliefs, mani-
festing as depression, has taken place (Stephan
et al., 2016). The fact that only a small subgroup of our
participants was found to exhibit notable depressive
symptoms casts doubt on whether our particular sample
is well suited to test for significant metacognitive changes
in the exteroceptive domain. This doubt is strengthened
further by the observation that, in our sample, there is no
association between local (task-based) confidence level
and global confidence (self-efficacy). By contrast, the
questionnaire-based and physiological assessments are
not affected by this potential problem since they provide
measures unrelated to the exteroceptive domain and do
not rely on the assumption that generalisation of low
self-efficacy beliefs having taken place.

Notwithstanding these weaknesses, our study makes
several important contributions to a better understand-
ing of fatigue in MS. In particular, our results support
the notion that interoception is an important factor for
fatigue and demonstrate the feasibility of predicting
individual levels of fatigue from simple questionnaire-
based measures not directly related to fatigue. In future
work, we will aim to replicate these findings in larger
samples and address the important challenge of devel-
oping experimental procedures that allow for assessing
metacognition of interoceptive processes. We hope that
this work will eventually lead to clinically useful proce-
dures of differential diagnosis that help identify patients
who would benefit from cognitive interventions
targeting interoception and metacognition (Manjaly
et al., 2019).
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