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Diminished pain sensitivity mediates the
relationship between psychopathic traits
and reduced learning from pain

Check for updates

Dimana V. Atanassova 1 , Christoph Mathys 2,3,4, Andreea O. Diaconescu 5,6,7,8,
Victor I. Madariaga 9, Joukje M. Oosterman1,11 & Inti A. Brazil 1,10,11

Individualswith elevatedpsychopathic traits exhibit decision-making deficits linked to a failure to learn
from negative outcomes. We investigated how reduced pain sensitivity affects reinforcement-based
decision-making in individuals with varying levels of psychopathic traits, as measured by the Self-
Report Psychopathy Scale-Short Form. Using computational modelling, we estimated the latent
cognitive processes in a community non-offender sample (n = 111) that completed a taskwith choices
leading topainful andnon-painful outcomes.Higher psychopathic traitswereassociatedwith reduced
pain sensitivity and disturbances in reinforcement learning from painful outcomes. In a Structural
Equation Model, a superordinate psychopathy factor was associated with a faster return to original
stimulus-outcome associations as pain tolerance increased. This provides evidence directly linking
reduced pain sensitivity and learning from painful outcomes with elevated psychopathic traits. Our
results offer insights into the computational mechanisms of maladaptive decision-making in
psychopathy and antisocial behavior.

Healthy functioning in daily life requires us to constantlymake decisions. In
general, we tend tomake choices that lead to favorable outcomes and cause a
minimum amount of distress to ourselves and others. However, individuals
with elevated psychopathic traits routinely make decisions that harm them
and/or those around them, seemingly unable to learn sufficiently from past
mistakes and adapt behavior accordingly1–3. Psychopathy is a personality
construct typified by disturbances in the interpersonal (pathological lying
and manipulativeness) and affective domains (shallow affect, lack of guilt),
combined with antisociality (poor behavioral control, criminal versatility)
and a tendency to lead an erratic lifestyle (impulsivity)4. These four domains
are believed to reflect 4 facets embedded into a superordinate factor that
captures the general construct of psychopathy5,6. While the prevalence and
severity of psychopathic personality traits are highest among offender
populations7,8, research shows that psychopathy is a dimensional construct
that can be assessed reliably in the general community9–11.

Given the increased predisposition of thosewith elevated psychopathic
traits to engage in aggressive, violent behavior12,13, there has been great

interest in understanding why they make such poor choices and how these
tendencies are acquired.Reinforcement learning (RL)provides a framework
that explains how people learn from reinforcers—such as rewards and
punishments—and adapt their behavior to acquire as many rewards as
possible while concurrently avoiding punishments14. This is essentially an
optimization problem that relies on the ability to predict future outcomes.
An effective reinforcement learner can maintain representations of
stimulus–outcome (S–O) and action–outcome (A–O) associations, or
contingencies, keeping track of which prior actions led to reward andwhich
resulted in punishment. Deficits in the RL mechanisms would explain why
individuals with elevated psychopathic traits cannot learn from their past
mistakes (i.e., putting them at higher risk of offending and reoffending15).

In recent years, experimental research has focused on exploring which
RL mechanisms may be impaired with higher psychopathic traits and how
they might lead to poor decision-making16–19. In general, individuals with
psychopathic traits show diminished value updating when learning from
negative outcomes20, and youths with disruptive behavior disorders
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demonstrate reduced use of expected value information within prefrontal
regions during value-based learning21. Reduced sensitivity to
punishment22–24 could result in individuals experiencing negative outcomes
as less aversive, and thus learning less from them16,25,26. At the same time,
hypersensitivity to rewardmight contribute toan inability to inhibit reward-
seeking behavior19,27,28. Such findings indicate that, at the behavioral level,
both punishment hyposensitivity and reward hypersensitivity could explain
the ‘response perseveration’ deficit found in psychopathy—the tendency to
stick with a specific behavior even as it leads to increasingly more negative
consequences19,29,30. However, incorporating such insights into neurobio-
logical models that capture themechanism behind altered RL and decision-
making in relation to psychopathy has been a challenge.

Perhaps the most versatile of such models, the integrated emotion
system (IES) model31, proposes that the maladaptive reinforcement-based
decision-making in psychopathy can be attributed to a failure to monitor
changes in associations between events and outcomes. From a computa-
tional perspective, this is often referred to as volatility tracking 32–34. Suc-
cessful RL in volatile environments depends on how sensitive an individual
is to reversals of contingencies (i.e., when a certain stimulus is no longer
associated with a reward). The RL deficits in psychopathy are observed in
the context of reversal learning17,18, suggesting individuals with elevated
psychopathic traits might be less sensitive to volatility. From a computa-
tional perspective, when a reversal occurs we experience greater uncertainty
about the learned contingencies (i.e., our beliefs about the S–O association
become less precise). Bayesian accounts of RL propose that the current level
of uncertainty impacts the learning rate32, and that reducing uncertainty is
essential for successful learning. Consequently, research demonstrates that
individuals with elevated psychopathic traits struggle with reducing their
uncertainty when estimating the likelihood of changes occurring and the
rate at which such changes occur16,35. Information about the volatility of the
environment also needs to be incorporated relatively quickly so the agent
can update their predictions about the new contingencies33,34. Failure to do
so or slower updating would result in an individual sticking to their original
beliefs. In the context of psychopathy, this represent a cognitive process
driving the well-documented response perseveration deficit19.

Increased uncertainty in predictions about reward contingencies,
diminished reversal sensitivity, and response perseveration represent mala-
daptive processes that could explain why those with higher psychopathic
traits struggle to learneffectively fromreinforcers. Ingeneral, as one role ofRL
is to maximize reward while minimizing punishment, more salient reinfor-
cers should have a more pronounced impact on the learning rate. A more
salient punishment, such as pain, would lead to faster learning to motivate
future actions that prevent harmful outcomes36. In fact, painful outcomes
increase themotivational significance of errors tohelp avoidmaking the same
errors in the future37.Additionally, pain canact as aprimary teaching signal to
speedup learning38.WithinRLanddecision-makingparadigms,painhasalso
been found to impact the trade-off between exploiting known options or
exploring new ones39. In the context of psychopathy, however, very little is
known about the mechanisms of RL when choices can lead to painful out-
comes. Psychopathic traits have been associated with higher pain tolerance
and pain thresholds40–42. Therefore, we can expect that individuals with ele-
vated psychopathic traits are less influenced by the prospect of pain and
would show reduced learning from painful feedback. However, it is unclear
which computational RL mechanisms would be affected by a reduced pain
sensitivity with increasing levels of psychopathic traits.

To disentangle the differentmechanisms underlying impairedRLwith
elevated psychopathic traits, we utilized a computational model, the hier-
archical Gaussian filter (HGF33,34). The HGF provides a mathematical fra-
mework for learning about contingencies in a volatile environment and
allows us to quantify the extent to which learning processes are affected.
While standard reinforcement learning models such as the Rescorla-
Wagnermodel assume that the individual’s learning rate is fixed43, theHGF
model allows for the estimation of a dynamic learning rate. This makes the
HGF particularly well-suited for modeling learning in volatile environ-
ments. The Bayesian inference process approximated by the HGF update

equations44,45 is also currently considered to be the optimal way to update
beliefs in uncertain conditions46. The HGF allows for quantification of
“belief resetting” (i.e., parameterφ), which determines the speedwith which
individuals return to their original beliefs about reward contingencies. This
belief resetting essentially represents a cognitive process leading to the
response perseveration deficit reported in psychopathy19. Additionally, we
can quantify the sensitivity to reversals in contingencies (i.e., parameter
ω)18,31. Using the HGFmodel, we can also estimate how precise individuals
are in their initial predictions before learning occurs (i.e., the initial uncer-
tainty about contingencies at the beginning of the task) similarly to previous
work on psychopathy16.

The overarching goal of the present study was to quantify the latent
cognitive processes involved in learning from neutral vs. salient reinforcers
to make simple choices in relation to levels of psychopathic traits. At the
general level, we hypothesized that learning would differ depending on the
type of reinforcers individuals learn from. To this end, we contrasted the
cognitive computational parameters underlying learning in one condition
where outcomes were monetary gains and losses (i.e., non-painful pun-
ishments) with the parameters in a second condition where outcomes were
personalized rewards and painful punishments. Given the evidence for
learning impairments in psychopathy, we also hypothesized that psycho-
pathic traits would be associated with deficits in the RL processes. More
specifically, based on findings of reduced pain sensitivity with increasing
psychopathic traits and the proposed salience of pain as a reinforcer, we
expected more pronounced RL deficits in the pain condition. To test this
second hypothesis, we additionally incorporated an exploration readiness
parameter β that represents the tendency to explore new options versus
choosing in a more deterministic fashion. Since this tendency is robustly
influenced by pain39, we expected the exploration readiness in the pain
conditionwould also be linked to the level of psychopathic traits. Finally, we
investigated whether aberrant RL learning is associated with elevated levels
of psychopathic traits through the mediating role of experimental and self-
reportedpain sensitivity. If so, itwouldpoint toamechanism throughwhich
the pain processing impairs decision-making in psychopathy.

Methods
We recruited 111 healthy participants (age = 29.67 ± 9.32 [mean ± standard
deviation], 88% right-handed), including women (n = 61), men (n = 47),
andnon-binary (n = 2),withnohistoryofpsychiatric illness, neurological or
chronic pain conditions via social media and the electronic Radboud
research participation system. The data of 5 participants were excluded due
to equipment failure (2 cases), random responding (1 case), and outliers in
the estimated computational parameters (3 cases). The study was approved
by the Ethics Committee of the Faculty of Social Sciences, Radboud Uni-
versity (code ECSW-2020-120), and all participants gave informed consent.
The study was not preregistered. Self-report data on participant gender was
collected, but no data on race and/or ethnicity was obtained. Participants
provided written informed consent prior to taking part in the study.
Compensation for participationwas €10 per hour, and participants received
a small bonus, contingent on performance (~€6 euro and a personalized
reward, following the procedure described below). The sample size was
determined based on previous work with similar paradigms (effect size =
0.30, power = 0.90)16,47. Additionally, we employed aBayesian SEMas it can
offer increased power compared to traditional SEMs47, particularly in
relatively small samples (i.e., at n > 5048).

Questionnaires
Psychopathic traits were assessed with the self-report psychopathy-short
form (SRP-SF6,49), a questionnaire with 29 items that yields a total psy-
chopathy score and facet scores for the Interpersonal, Affective, Lifestyle,
and Antisocial traits. Self-reported pain sensitivity was measured with the
pain sensitivity questionnaire (PSQ), a short self-rating instrument that
evaluates the individual’s perception to a range of physical stimuli that can
be encountered in daily life50. Higher scores on the PSQdenote a higher self-
reported sensitivity to various types of pain.
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Experimental pain assessment
Additionally, we collected sensory detection thresholds, pain thresholds,
andpain tolerance (defined as 7 on a 10-point numerical rating scale [NRS])
via a stepwise quantitative sensory testing (QST) procedure using the
Digitimer DS7A, a Food and Drug Administration (FDA) approved device
for experimental and clinical settings51. The pain assessment of participants
was sex-balanced and conducted by two trained researchers (a man and a
woman). The electrodewas placed on the inside of the non-dominant hand,
halfwaybetween thewrist and the elbow.The same locationwasused for the
delivery of the painful stimulus during the experimental task.

To obtain sensation detection and pain thresholds, we delivered elec-
trical shocks in increments of 0.1mA. The participant was asked to first
provide a verbal report if they experience “any sensation, even if it’s a small
sensation” and the intensity at which such a report was provided was
recorded as the sensation detection threshold. Upon verbal confirmation,
the intensity was reduced by one step until a “no” report was obtained, then
increased incrementally until another “yes” was obtained. The average
intensity across the three “yes” points was used as the threshold value. We
used the same procedure to obtain pain thresholds, only altering the
instructions slightly (“any pricking, burning, stinging, aching or painful
sensation”).

To measure pain tolerance, we increased the electrical current in steps
of 0.2mA, starting at 0mA.Participantswere instructed toverbally ratehow
painful the stimulation felt using a scale from 0 to 10 (0 = “a sensation, but
not painful”, 10 = “themost intense pain you can imagine”). The intensity of
the current at a 7 NRS rating was recorded as the subjective pain tolerance,
andno further increaseswere implemented. In caseswhen the tolerancewas
not reached due to themachine’s limitation (maximum intensity 9.99mA),
themaximum intensity was used instead. For 13 out of the 106 participants,
the tolerance level was not reached due to the described hardware limita-
tions. In light of this, we also collected a measure of “pain tolerance inten-
sity”, the subjectiveNRS rating given at themaximumdelivered stimulation.

Instructions for the pain assessment were delivered in English, but in
cases where the participant’s command of English was limited, the
descriptions were supplemented with Dutch words: “pricking (prikkend),
burning (brandend), stinging (stekend), aching (zeurend), or painful
(pijnlijk) sensation”.

Reinforcement learning task
A reinforcement-based probabilistic decision-making task (Fig. 1) was
adapted from prior research to study simple binary choices52. On each trial,
participantshad to choose oneof two stimuli (a green fractal card or a yellow
fractal card). The stimuli were kept the same throughout the task, but their
position was counter-balanced. The reinforcement schedule was the same

for all participants (Fig. 1B), with the reward probabilities of the two fractals
adding to 1 (i.e., p(yellow) = 1− p(green)). The task comprised two con-
ditions: a non-pain condition where outcomes were monetary gains and
losses (€0.10 and −€0.10, respectively) and a pain condition where out-
comes were personalized rewards or valence-matched electric shocks at the
tolerance level53. The order of conditions was kept the same for all partici-
pants, with the non-pain condition preceding the pain condition as it
represented standard RL and can, therefore, be used as a baseline.

To determine the personalized reward, we asked participants to rate a
list of potential participation rewards from1 (=least preferred) to 10 (=most
preferred). This was done prior to the reinforcement task or the experi-
mental pain assessment, immediately after participants provided informed
consent. Participants were informed that the item they rated as 7 on the 10-
point NRS scale would be used as a reward on the task and that the amount
of rewards (both monetary and personalized) would depend on their per-
formance. The reward list was available in both English and Dutch. The
monetary value and the size of all rewards on the list were roughly the same
(~€2 each). The full list of available personalized rewards can be found in the
Supplementary Fig. S1.

Computational model
Weestimated latent cognitive computations with theHGFmodel33,34. Based
on findings of response perseveration in psychopathy19,29,30, we selected a
model with a mean-reverting RL process which assumes that participants’
beliefs about outcome likelihoods reset toward their initial expectations
(which represents a potential process leading to a perseveration tendency).
The model estimates individual differences in prior uncertainty about the
reward contingencies (σ(0)), sensitivity to reversals in the contingencies (ω),
and belief resetting speed (φ).

The 3-level HGF model assumes that participants infer the true states
in the world x1–x3 (corresponding to outcome, likelihood of change of
outcome contingencies, and rate of change of outcome contingencies,
respectively)33,34. As these true states are hidden, participants generate beliefs
about them.On level 1 (x1), beliefs μ1 correspond to the outcome (win/loss).
On level 2 (x2), this information is used to infer the trial-by-trial beliefs about
likelihood of change in reward contingencies (environmental volatility) μ2.
Finally, individuals also generate beliefsμ3 about the rate/speed of change in
outcome contingencies x3. In the current model implementation, we only
estimated beliefs at the second level μ2, which depend on the prior uncer-
tainty σ(0), the reversal sensitivity ω and the belief resetting speed φ. This
perceptual model is combined with a softmax response model quantifying
(inverse) exploration readiness: how closely actions match beliefs. Higher
(more positive) values of ω denote reduced sensitivity to reversals, higher
values of σ(0) more uncertainty about the likelihood of contingency changes,

Fig. 1 | Reinforcement learning task and the employed reinforcement schedule
A Task design: the stimuli were presented on screen for a maximum of 1.5 s. The
feedback was shown for 1 s. B Reinforcement Schedule: The blue line depicts the

reward likelihood of the green fractal. The first 160 trials were part of the non-pain
condition (coin/crossed-out coin), whereas trials 161–320 were from the pain
condition (naturalistic reward/shock).
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higherφ—a greater tendency to stick to the prior beliefs μð0Þ2 , and lower β—a
stronger tendency to explore new options. Note that all four computational
parameters have been studied and validated before (σ(0) andφ in46,ω in35;φ
and β in54). The full update equations can be found in the Supplement.

Statistical analyses
Behavioral data analysis. Accuracy (percentage of choices of the sti-
mulus with the higher reward probability), win-stay, and lose-switch
rates were compared with Bayesian paired samples t-tests in Jamovi55,
with the Bayes Factor (BF) computed with default flat priors for the
alternative hypothesis reported. BF > 100 represents decisive evidence,
BF between 10 and 30—strong evidence, and BF between 3 and 10—
substantial evidence for Hi

56. 2We first assessed whether behavioral
performance measures were associated with psychopathic traits, using a
combination of frequentist non-parametric Spearman’s rank correla-
tions in R55 and zero-order Bayesian correlations with default priors in
Mplus57. Non-parametric Spearman’s rank correlations were used due to
the non-normal distribution of the psychopathic traits’ data. However,
since the task performance measures represent aggregates of behavior
(mean accuracy, win-stay, lose-shift), we also conducted a post-hoc
analysis on the trial-wise choices made by participants. A Bayesian
Generalized Linear Mixed Model was fit on the behavioral choice using
the bmrs package in R58–61.We regressed the choice to stay or switch from
the previously chosen option (0 = stay, 1 = switch) on the four psycho-
pathic traits, controlling for trial number, condition, and the outcome of
the previous trial. Interactions between the psychopathic traits, condi-
tions, and outcomes were also included. The random effects structure
contained a by-subject intercept and slopes for trial, condition, and
outcome. This model was fit with a Bernoulli distribution and default
priors. FourMarkov Chains were used, with 3000 iterations (the first half
discarded as burn-in) each. Convergence was assessed visually via trace
plots and by looking at the R-hat values of the posterior estimates (R-hat
values should be <1.05).Model fit was determined based on the predictive
posterior plots.

Pain data analysis. We assessed whether the psychopathic traits were
associated with electrical pain threshold, tolerance, and tolerance
intensity, and PSQ scores using non-parametric Spearman’s rank cor-
relations in R62 and Bayesian zero-order correlations with default priors
in Mplus57. We additionally looked at the correlations between the psy-
chopathy subscale and total scores with our measures of experimental
pain sensitivity (electrical pain threshold, tolerance, tolerance intensity)
and self-reported pain sensitivity as measured with the PSQ. Due to the
highly skewed nature of the pain tolerance intensity data, we conducted
Kendall tau-b Bayesian correlations using default priors in Jamovi63 in
place of the zero-order Bayesian correlations inMplus. The dual-analysis
approach was undertaken to ensure the robustness of the results. For the
Bayesian correlations in Mplus, we estimated the coefficients and cor-
responding 95% credibility intervals (CIs) with a Bayesian estimator
(PX1) based on Markov Chain Monte Carlo (MCMC) sampling with
four Markov chains and 75,000 iterations (first half discarded as burn-in
training trials) using default priors. Model fit was determined based on
the posterior predictive p-value (PPP-value), which should approach 0.5,
and the posterior predictive check using χ2 testing (the 95% CIs of the χ2

test should include 0)16,57,64. The 95% CI of the non-parametric
frequentist correlations were estimated using the bootstrap method
with 9999 resamples. A result was considered statistically significant only
when both the Bayesian and frequentist approaches yielded converging
results35,65.

Computational model selection. We compared the three-level mean-
revertingHGFmodel described above (i.e., themainmodel) with reduced
HGF models (M1–M4) and a Rescorla-Wagner model (RW). M1
assumes individual differences in learning are driven only by reversal
sensitivity ω and uncertainty in original beliefs σ(0); M2 estimates

individual differences in learning based on two parameters, reversal
sensitivity ω and belief resetting φ; M3 represents the main model and
assumes individuals differ in all three parameters (reversal sensitivity ω,
uncertainty σ(0) and belief resettingφ). Additionally, as the pain condition
always followed the non-pain one, an additionalmodel (M4)was built for
the pain trials only. M4 is identical to M3, but the modal of the subjects’
posterior estimates in the non-pain condition was used as the new prior
for the three parameters. This allowed us to account for the carry-over of
beliefs across the two conditions. Finally, we also fitted an RW model
where learning is governed by a single learning rate parameter α. The
models were compared using Bayesian model selection (BMS)66, as
implemented in the Statistical Parametric Mapping 12 toolbox (https://
www.fil.ion.ucl.ac.uk/spm/), using the optimal Bayes observer posteriors
as priors. All models were fitted separately for the pain and non-pain
conditions using the HGF toolbox (https://tnu.ethz.ch/tapas) and the
optimal Bayes parameters as priors (except forM4). The full procedure is
detailed in the Supplement, with the prior means and variances of the
competing models in Supplement Tables S1 and S2.

After the winning model was selected with the BMS procedure, we
performed 100 simulations per participant using the individual parameter
estimates from themodel.We correlated the simulated and original choices
and visually inspected whether the true choice trajectories resembled the
choice trajectories simulatedwith themodel. Next, we fit the samemodel to
the simulated data to assess parameter recovery by evaluating the correla-
tions between the original (true) and recovered parameters. Finally, to
determine if the model was also a realistic model for the data, we also used
joint Bayesian zero-order and frequentist non-parametric correlations to
evaluate the relationships between the estimated parameters and task per-
formance (accuracy, win-switch, lose-stay).

Analysis of computational modeling results. After extracting the
estimated computational parameters for both conditions, we used
Bayesian t-tests in Jamovi with default priors to assess for differences in
the learning processes between conditions to answer the first hypothesis
(regardless of psychopathic traits). Following that, we evaluated the zero-
order Bayesian and frequentist non-parametric Spearman’s rank corre-
lations between the learning parameters and psychopathic traits using the
approach detailed above (see “Pain data analysis”). We then fit a series of
structural equationmodels (SEMs) inMplus to evaluate the paths leading
from the computational parameters to the psychopathic traits,
accounting for the role of pain. To test whether psychopathy would be
associated with reduced pain sensitivity40–42, lower reversal sensitivity35,
higher prior uncertainty in beliefs (similarly to findings of increased task-
related belief uncertainty16), or higher belief resetting, we built two sets of
SEMs: one with the individual psychopathy factors, and one with a latent
psychopathy factor, onto which the four traits were loaded35,67. This
allowed us to assess the paths leading from the learning parameters to
both the individual psychopathic traits and psychopathy as a construct
(accounting for the shared variance between the traits). The SEMswerefit
for the pain and non-pain parameters separately to test for the effect of
the condition. For the pain SEM model, we also regressed a latent pain
factor on the learning parameters and used it as a predictor of psycho-
pathy (or psychopathic traits). The latent pain factor comprised the
experimental pain tolerance and the self-reported pain sensitivity (i.e.,
PSQ scores). We also tested a model where the pain measurements
(electrical pain threshold, electrical pain tolerance, and self-reported pain
sensitivity) were loaded onto the latent factor, producing almost identical
results but with a worse model fit. Due to the highly skewed nature of the
pain tolerance intensity and concerns over possible ceiling effects, it was
not included in the SEM analysis. For all SEMs, we tested both indirect
and direct paths.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Results
Behavioral task performance results
Participants were able to learn the reward contingencies well, with no
credible evidence for differences in accuracy between the non-pain
(m = 70.2 ± 10.0%) and pain conditions (m = 68.8 ± 11.5%, BF = 0.33).
Win-stay rates did not differ significantly between the non-pain
(m = 51.7 ± 11.0%) and pain conditions (m = 52.4 ± 10.6%, BF = 0.15).
There was also no credible evidence for the difference between lose-shift
rates in the non-pain (m = 11.1 ± 7.1%) and the pain condition
(m = 10.4 ± 6.7%, BF = 0.30) (Fig. 2).

No significant correlations were found between the task performance
measures (accuracy, win-stay, lose-shift) and the four psychopathic traits
(see SupplementaryTable S4). TheBayesian generalized linearmixedmodel
(GLMM), however, revealed an interaction between affective traits and the
outcomeonprevious trials in predicting switchingbehavior. The interaction
was evaluated with a post-hoc analysis using the emmeans package in R49.
More specifically, elevated Affective traits were associated with a greater
tendency to switch after a previous win, b = 0.39, 95% CI [0.10–0.67] when
controlling for the effect of the outcomeon the previous trial, condition, and
the trial number. The full GLMM results can be found in the Supplement
(Table S6, Fig. S2).

Pain data results
Electrical pain threshold, electrical pain tolerance, and self-reported pain
sensitivity (i.e., asmeasuredwith the PSQ) scores showedmoderate-to-high
correlations with each other, but the electrical pain tolerance intensity was
only associated with electrical pain threshold and electrical pain tolerance
measures (Table 1).

While all four psychopathic traits correlated positively with pain tol-
erance in the Bayesian analyses, only the association between the Lifestyle
facet and experimental pain tolerancewas statistically significant in the non-
parametric analyses (rBayes = 0.27, 95% CI [0.18–0.34], rnp = 0.25, 95% CI
[0.05–0.42]). The Lifestyle facet also correlated with reduced pain tolerance
intensity across both statistical families (rBayes =−0.20, 95% CI [−0.07 to
−0.32], rnp =−0.24, 95% CI [−0.01 to −0.43]), as did the Antisocial facet
(rBayes =−0.24, 95% CI [−0.11 to −0.37], rnp =−0.28, 95% CI [−0.08 to
−0.45]), and the Affective facet (rBayes =−0.18, 95% CI [−0.05 to −0.30],
rnp =−0.22, 95%CI [−0.01 to−0.40]), The full correlations are reported in
Supplementary Table S5.

Computational model selection
The BMS procedure identified the three-level mean-reverting HGF model
as the best fittingmodel to the data (Fig. 3A) (M3 for the non-pain data and
M4 for the pain data). The pattern of simulated choices closely tracked that
of the real participants’ behavior (Fig. 3B). The parameters of the winning
model were also well recovered, with correlations ranging from 0.84 for σ2

(0)

on the pain trials to 0.97 forφ on the non-pain trials (Fig. 3C). The Bayesian
zero-order and non-parametric correlations also demonstrated sensible
associations between the estimated parameters and the behavior (accuracy,
win-switch, lose-shift) that elicited them, supporting the ecological validity
of the computational model (Supplementary Table S3).

Computational modeling results
The Bayesian t-tests showed credible evidence for differences in the learning
parameters across conditions. Individuals displayed higher uncertainty in
their original beliefs about contingencies in pain (m = 0.27 ± 0.13) compared
to the non-pain condition (m = 0.21 ± 0.12, BF = 17.0); higher belief resetting
in pain (m = 0.32 ± 0.17) than the non-pain condition (m = 0.25 ± 0.17,
BF > 100); decreased sensitivity to reversals (represented by more negative ω
values) in pain (m =−6.67 ± 1.07) compared to the non-pain condition
(m =−6.08 ± 1.31, BF > 100); and reduced exploration readiness (repre-
sentingmore stochastic responding) in pain (m = 54.3 ± 32.09) relative to the
non-pain condition (m = 33.3 ± 12.25, BF > 100) (Fig. 4).

The correlations that retained significance across both analyses
included the associations between Interpersonal traits and the original
beliefs’ uncertainty (σ(0)) in the pain condition (rBayes = 0.22, 95% CI
[0.02–0.40], rnp = 0.27, 95%CI [0.08–0.43]), andAffective traits and original
beliefs’ uncertainty (σ(0)) in the pain condition (rBayes = 0.21, 95% CI
[0.02–0.39], rnp = 0.26, 95% CI [0.05–0.44]).

The SEMs where the learning parameters in the non-pain condition
were regressed onto the four psychopathic traits demonstrated an excellent
model fit, PPP = 0.43, χ2 95%CI [−20.83 to 25.5], but there was no evidence
for unique associations between the psychopathic traits and the learning
parameters. Similar results were obtainedwhen the facet scores were loaded
on a latent psychopathy factor (PPP= 0.53, χ2 95% CI −20.91 to 17.98]).

For the pain condition, the model assessing the relationships between
the learning parameters, the latent pain factor, and individual psychopathic
traits also yielded an excellent fit (PPP = 0.51, χ2 95% CI [−26.28 to 24.43])
(see Fig. 5). Lower pain sensitivity as measured by the latent pain factor,

Fig. 2 | Task performance comparison across the non-pain (blue) and pain (orange) condition. Caption: Model-free task performance (accuracy, lose-shift, win-stay
rates) across the two conditions (blue = non-pain, orange = pain), n = 106 participants.
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predicted higher latent psychopathy scores, β = 0.31, 95% [0.06–0.58].
Additionally, the path from belief resetting φ to the latent pain factor was
also significant, β = 0.27, 95% [0.05–0.48], suggesting an association
between lower pain sensitivity and faster belief resetting. The indirect path
from the learning parameters to the latent psychopathy factor through pain
was also significant, β = 0.08, 95% [0.004–0.22]. The path model where the
individual psychopathic traits were regressed on the learning parameters
and the latent pain factor did not converge.

Discussion
The overarching goal of the present study was to investigate the rela-
tionships between psychopathic traits and the latent cognitive processes

involved in RL in a non-offender sample. First, we found that the latent
parameters describing learning in pain and non-pain condition differed
significantly, supporting our hypothesis that learning differs depending
on the type of reinforcer individuals learn from. Concerning the second
research aim, we uncovered impairments in the latent cognitive pro-
cesses subserving binary decision-making. In particular, the super-
ordinate psychopathy factor was associated with a tendency to disregard
evidence and stick to initial (i.e., pre-learning) expectations in the pain
condition. Third, thismaladaptive tendencywas specificallymediated by
an insensitivity to pain at higher levels of psychopathic traits. While not
explicitly part of our a priori hypotheses, additional analyses also indi-
cated that higher Affective traits predicted a greater tendency to switch

Table 1 | Correlations between the pain measures

Electrical pain tolerance Self-reported pain sensitivity (PSQ score) Electrical pain tolerance intensity (NRS score)

Electrical pain threshold rBayes = 0.35* [0.17–0.51]
rnp = 0.33* [0.14–0.49]

rBayes =−0.21*, [−0.35 to −0.06]
rnp =−0.28*, [−0.45 to −0.08]

rBayes =−0.21*, [−0.39 to −0.02]
rnp =−0.28* [-.44 to −0.09]

Electrical pain tolerance rBayes =−0.31* [−0.32 to −0.21]
rnp =−0.49* [−0.65 to −0.30]

rBayes =−0.49* [−0.63 to −0.33]
rnp =−0.54* [−0.66 to −0.42]

Self-reported pain sensitivity
(PSQ score)

rBayes = 0.17, [−0.03 to 0.35]
rnp = 0.19, [−0.05 to 0.38]

Note. Significance is denoted based on the 95%CIs whichmust not contain 0, and denoted with an asterisk and in bold. Abbreviations: PSQ pain sensitivity questionnaire, rBayes correlation coefficient for
the zero-order Bayesian correlations, rnp correlation coefficient for the non-parametric Spearman’s rank correlations (with bootstrapped 95% confidence intervals using 9999 resamples).

Fig. 3 | Model comparison and recovery of the winning model (mean-reverting
HGF with uncertainty in original beliefs, reversal sensitivity, and belief reset-
ting). ABayesianmodel comparison for the two conditions. Thewinning perceptual
M3 model for the non-pain data includes reversal sensitivity ω, uncertainty in
original beliefs σ(0), and belief resetting φ. The winning perceptualM4model for the
pain condition includes the same parameters but with their priors informed by the
posterior estimates from the non-pain condition. B Choice trajectories: the original
choices (averaged across participants; black) are closely tracked by the simulated
choices (averaged across simulations and across participants) in the non-pain (left;

blue) and pain (right; orange and dashed) conditions. C Correlations between real
and recovered parameters in the non-pain condition: uncertainty in original beliefs
σ(0) (r = 0.92, BF > 100), belief resetting φ (r = 0.97, BF > 100), reversal sensitivity ω
(r = 0.94, BF > 100), and exploration readiness β (r = 0.91, BF > 100).D Correlation
between real and recovered parameters in the pain condition: uncertainty in original
beliefs σ(0) (r = 0.84, BF > 100), belief resetting φ (r = 0.96, BF > 100), reversal sen-
sitivity ω (r = 0.92, BF > 100), and exploration readiness β (r = 0.94, BF > 100).
N = 103 participants.
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after a winning choice regardless of the type of reinforcer (personalized
or naturalistic reward).

The computationalmodeling approachweundertook revealed that the
model best explaining binary decision-making accounted for individual
differences in the uncertainty individuals have about the original outcome
likelihoods, their sensitivity to reversals in the outcome likelihoods, and a
belief resetting process which quantified how quickly they revert to their
original beliefs. Partially in line with our predictions, we also found that
psychopathic traits were associated with aberrations in the learning
mechanisms only in the pain condition. More specifically, elevated Inter-
personal and Affective traits correlated with increased uncertainty in ori-
ginal beliefs about outcome likelihoods in the pain condition.We could not
find support for the hypothesis that exploration readiness in the pain
condition would be associated with psychopathic traits. Crucially, however,
we demonstrated that reduced pain sensitivity mediated the relationship

between the superordinate psychopathy factor and increased belief reset-
ting, representing a return tooriginal beliefs about outcomecontingencies in
the pain condition.

Our findings of reduced pain sensitivity with elevated psychopathic
traits support prior findings of higher pressure pain thresholds68 and
tolerance40,42,69, as well as reduced fear of pain40,70. In the present study, the
Bayesian zero-order correlations demonstrated associations between pain
threshold, tolerance, and tolerance intensity, and virtually all four psycho-
pathy facets. However, across the two statistical families we employed, only
the correlations between the Lifestyle traits and pain tolerance, as well as the
correlations between the pain tolerance intensity and Affective, Lifestyle,
and Antisocial traits, remained significant. Nonetheless, as most of the
research on the topic has been conducted in the pressure pain domain, our
results also demonstrate an association between higher psychopathic traits
and reduced electrical pain sensitivity.

Fig. 4 | Comparison of estimated parameters
across non-pain (blue) and pain (orange) trials.
A Prior uncertainty in beliefs σ(0) in the pain vs.
non-pain condition. B Belief resetting φ across
conditions. C Reversal sensitivity ω (more negative
values denote reduced sensitivity) across conditions.
D Exploration readiness β (higher values denote
decreased exploration readiness) across conditions.
Significance level denoted by an asterisk (***BF >
100), n = 103 participants.

Fig. 5 | Structural EquationModel depicting the linear relationships between the
latent psychopathy factor and the learning parameters via pain sensitivity. Solid
lines denote the regression coefficients, while factor loadings are represented by a
black dashed line. The direct path c’ is denoted by a gray dashed line. Bold numbers

with asterisks mark the significant associations between variables (95% Bayesian
Credible Interval not including 0), n = 103 participants. INT interpersonal traits,
AFF affective traits, LIF lifestyle traits, ANT antisocial traits, PSQ pain sensitivity
questionnaire
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A reduced pain sensitivity could lead to potentially dangerous situa-
tions being perceived as less threatening71, likely resulting in more risky
behavior. Individuals with higher Meanness psychopathic traits (such as
irresponsibility and callousness) rate imagined scenes of self-inflicted harm
as less painful, suggesting theyunderestimate the danger associatedwith the
depicted injury69. Similarly, the Lifestyle facet, which covers excessive
engagement in dangerous behaviors, negatively predicts the level of distress
experienced at the prospect of pain64. Traits related to low threat sensitivity
have been linked to both higher pain tolerance42 and lower reported fear of
pain, pain anxiety, and pain catastrophizing40,70. Thus, pain insensitivity
with increasing levels of psychopathy might influence decision-making
when faced with potentially painful outcomes.

In fact, we found impairments in RL with elevated psychopathic traits,
specifically in the pain but not in the non-pain condition. Correlational
results, for instance, showed that stronger Interpersonal and Affective traits
correlated with a higher uncertainty about outcome likelihoods in the pain
condition. The free-energy principle proposes that reducing cognitive
uncertainty is essential for learning72,73, therefore, larger initial uncertainty
would lead to less successful RL. Behaviorally, more uncertain beliefs at the
beginning of the task (i.e., the initial beliefs) were correlated with lowerwin-
stay rates, representing a tendency to abandon winning choices. The higher
uncertainty might bias the initial beliefs (and their updating during learn-
ing) and make ambiguous situations or outcomes be interpreted in a more
pessimistic fashion, leading to less-than-optimal decision-making.

While this is the first study to demonstrate an increase in uncertainty
about initial beliefs with higher psychopathic traits, previous studies have
found increasingly uncertain representations about contingency changes
with higher psychopathic35 and higher callous-unemotional traits (which
maponto the affective facet in adult populations48)16. It should benoted that,
while Interpersonal andAffective facetswere associatedwithhigher original
belief uncertainty across conditions, only the correlations for the pain
condition retained significance across the two statistical families we used.
One explanation could be that, as the pain condition always followed the
non-pain one, individuals with higher Interpersonal or Affective traits tend
to perceive their own learning as less effective as the task progresses even
though that was not reflected in their performance (i.e., neither facet was
associated with reduced accuracy). Alternatively, they might exhibit a more
profound impairment of the cognitive mechanism forming event-outcome
representations when learning from painful outcomes. Since correlation
analysis is limited in terms of the explanations it can provide,more complex
relationships can be modeled with SEMs.

The SEMfindings indeed revealed impairments in theRL frompain but
in relation to increased belief resetting. The increased tendency to return to
initial beliefs about reward contingencies was positively associated with a
latent psychopathy factor. Importantly, the relationship was mediated by
reduced pain sensitivity. In practice, the increased belief resetting represents a
perseveration strategy where incoming trial-by-trial evidence is disregarded
in favor of the initial beliefs. In the current computational framework, this
effectively represents a return to maximum uncertainty about the reward
contingencies. These observed alterations in reversal learning echo previous
work on deficient threat and pain conditioning in psychopathy16,74. More
specifically, the faster belief resetting represents a maladaptive perseveration
strategy, well-documented in relation to elevated psychopathic traits19,29,30,75.
This builds upon prior work that suggests psychopathy is associated with a
general deficit in adapting behavior as event-outcome associations
change17,18,76–78. Thus, beyond confirming the established deficits in reversal
learning, our results specify the computational processes behind the reversal
learning impairments in individuals with stronger psychopathic traits. They
also highlight the role of different reinforcers in learning54 and indicate a
mechanism through which pain insensitivity may disrupt RL.

We shouldnote thatweonly observed alterations in thepain condition.
One explanation could be that learning from pain fundamentally differs
from learning from non-painful outcomes. In general, painful outcomes
result in greater amygdala activation79 as well as different event-related
potentials (ERPs) compared to monetary losses or other non-painful

outcomes80. ERPs to painful feedback also peak earlier, suggesting faster
processing, possibly due to the higher salience of the naturalistic
punishment80. However, combined, our results point to an important
implication: that painful punishments might not be salient enough for
individuals with psychopathic traits to learn from. In general, pain sensi-
tivity comprises two components: the intensity of pain and its unpleasant-
ness. While the intensity is thought to reflect the sensory-discriminative
aspect of pain, pain’s unpleasantness is related to aspects that motivate
individuals to reduce or stop the pain (affective-motivational aspect)81.
Importantly, both of these processes can be affected by factors going beyond
biological differences. The biopsychosocial model of pain proposes that
social and psychological factors, such as expectations and personality traits,
affect the experience of pain82,83. Tolerance levels, in particular, are thought
to be related more to the affective-motivational aspect84,85, suggesting that
individuals with elevated psychopathic traits might be less bothered by the
unpleasantness of pain.At the same time, however, the negative correlations
between Affective, Lifestyle and Antisocial traits and our measure of pain
intensity at the tolerance level also indicate individuals high in those traits
might also have reduced sensory sensitivity to experimental pain. Taken
together, these results suggest that people with elevated levels of psycho-
pathic traitsmight feel less intense pain froma standardized stimulus and/or
perceive the pain as less unpleasant, compared to people low in those traits.
This notion is additionally supported by findings of reductions in pain-
related ERPs with higher levels of psychopathic traits36.

These insights align with theoretical frameworks of how pain affects
behavioral adaptation. The RL framework of pain conceptualizes it as a
behavioral control signal that minimizes current but also potential harm38.
Pain sensitivity is endogenously fine-tuned tomaximize the value of pain as
a learning signal so individuals can balance the acquisition of new infor-
mationwhileminimizing threat38. Therefore, if the painful outcomes do not
elicit the same sensationof unpleasantness that shouldurge the individual to
choose a course of action that reduces pain, then theywill not be sufficiently
aversive enough to motivate a behavioral adaptation. Beyond demonstrat-
ing reduced learning due to reduced pain sensitivity, our findings also shed
light on the specific RLmechanismdisrupted by the reduced aversion of the
painful reinforcer. Because individualswithpsychopathic traits are relatively
pain-insensitive, they ignore the painful negative outcomes and adhere to
their initial beliefs because the pain is not sufficiently motivating to drive
incorporating those outcomes.

While pain is thought to represent a complex interplay of biological,
psychological, and social factors, pain sensitivity and reduced RL might
share a common biological substrate. The affective-motivational aspect of
pain is encoded in the anterior cingulate cortex (ACC86,87), an area also
involved in reversal87 and associative learning88. Previous work within the
same computational framework has found that the ACC is critical for
maintaining representations of uncertainty and environmental volatility89,
and encoding prediction errors about contingencies90. However, neither of
these studiesmeasuredpsychopathic traits or accounted forperseveration in
original beliefs. In this study, we found an association between psychopathy
and increased belief resetting, specifically in the pain condition and through
the role of reduced pain sensitivity, which could point to a shared neural
mechanism that is impaired in psychopathy, possibly linked to the well-
documented aberrations in ACC activity91. Given these findings, future
research should explore the role of pain as a behavior control signal, ideally
by directly collecting pain ratings of subjective intensity andunpleasantness.

Limitations
It should be noted that our results are based on individuals from the general
population.While we had a good distribution of scores on the psychopathic
traits, comparable to other studies9,10, studying the concepts of interest in a
population with more extreme psychopathic traits (e.g., offenders) would
allow for an even more in-depth assessment of the learning deficits. Addi-
tionally, we only employed a computational and behavioral approach to
investigate the relationship of interest. Given the findings of diminished
pain-relatedERPswithhigherpsychopathic traits36, exploring learning from
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pain with electrophysiological methods could elucidate the mechanisms at
play. Furthermore, the sharedneural underpinnings of reversal learning and
affective pain processing in the ACC should be explored in more detail,
ideally with functional brain imaging.

Another point to consider is that, as the painful negative outcome was
always paired with a subjective reward (to ensure outcomes had a matched
valence), we cannot directly disentangle the effects of reward and punish-
ment sensitivity on learning. In general, psychopathy is associated with
reduced punishment sensitivity and reduced punishment learning23,26. The
observed effects can, therefore, be driven by a pull towards the reward, a
push away from the punishment, or a combination of both. Given the
salience of thepainful outcomes in the literature37,56, it is highly likely that the
aberrations in learning processes can be attributed to a dampened effect of
punishment (see ref. 25). However, future research should aim to disen-
tangle the two mechanisms and isolate the specific role of pain on RL in
people with higher psychopathic traits. The fixed order of conditions also
presents a further limitation. Practice effects with the task might explain
some of the differences between the non-pain and pain conditions, given
that the pain condition always followed the non-pain one. Thus, we
recommend accounting for possible practice and order effects to gain a
deeper understanding of the specific impact pain has on RL.

Lastly, it should be noted that, while the computational parameters
explaining learning in the two conditions differed, there was no significant
difference between the behavioral task performance measures (accuracy,
win-stay, lose-switch) between conditions. These results appear surprising
at first, especially since the latent mechanisms are estimated based on the
behavior. One explanation could be related to the more informed priors we
adopted in modeling the pain condition data. It is, therefore, possible that
the difference in parameters could be attributed to the pain model repre-
senting a better fit than the non-pain model. However, another inter-
pretation is that, while the behavior was comparable across conditions, the
contribution of the various mechanisms differed depending on the type of
reinforcer individuals learned from. In a sense, the same level of accuracy (or
rates of switching behavior) can be achieved through different levels of
involvement of the underlying cognitive processes, the combination of
which could represent unique strategies adopted in each condition. This
suggests that while observed behavior might remain consistent, the
mechanisms driving it vary, further highlighting the importance of con-
sidering the latent cognitive processes when studying learning.

Conclusions
In conclusion, adaptive decision-making requires weighing in outcomes
associated with different actions but also learning about change in these
associations.We demonstrated impairment in a computationalmechanism
underlying RL that leads individuals with elevated psychopathic traits to
persevere with their original beliefs, resulting in a more exploitative
decision-making style. Themediating role of reduced pain sensitivity in this
process brings together findings of affective, pain, and reversal learning
deficits in psychopathy and is crucial for our understanding of antisocial
behavior. Individual differences in pain processing may contribute to the
development of antisocial behavior92, and empathy and empathic
respondingmight also be reliant on intact RL93. The present results suggest a
mechanism through which physical pain insensitivity contributes to
maladaptive decision-making and prevents those with psychopathic traits
from effectively learning from their past mistakes.
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