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Last week: 
- “Best” estimate 
- Univariate

This week: 
- Generalization out-of-sample
- Large-scale, multivariate

Big idea
- Problem with last week’s “best fit”: overfitting  

In practise
- Tests, tests, tests (z, t, F)
- Tradeoffs (type-I/II)

Overview
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Univariate regression, single voxel

Tim
e
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Univariate regression, single voxel
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A toy example.

Non-zero effect?
- Estimator
- Test statistic
- Test
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Univariate regression, single voxel

Tim
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A toy example.
How to estimate?
- Error minimization

- Geometric projection
- Maximum likelihood



Univariate cartoon

y random

y fixed

Overfitting:            with 100%,

Reduce overfitting?
- Type-I penalties 
- Population prior penalties
- Problem in high dimensions
- Tradeoffs



Math univariate

- We’d ideally eliminate bias and variance
- Typically tradeoffs (Examples: confounding bias, multiplicity bias)
- Conventional hierarchy of errors

Systematic bias?

Random variability?

cT



H0 predicts “small” T
(relative to               ).

Is T surprisingly big?
Null Distribution of 
“Test statistic” T
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Univariate hypothesis testing

 

- Scale of             depends on design X (number of 
replicates and explaining variation from independent 
causes)  

- May be reduced.
- May be estimated via 



❑ P-value:
Summarises evidence against H0.

     Chance of observing a value more extreme 
than t under the null hypothesis.

Null Distribution of T

❑ Test construction

Significance level α:
     Acceptable α ⇨ threshold uα

t

p-value  

Null Distribution of T

α

uα

Procedure: if t > uα , then reject H0  
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Univariate hypothesis testing



❑ Test construction

Significance level α:
     Acceptable α ⇨ threshold uα

Procedure: if t > uα , then reject H0  

❑ Power of a test 

Depends on random variance

Null Distribution of T

α

uα
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Univariate hypothesis testing

Alternative Distribution of T

uα



Univariate regression
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Why multiple predictors?
Problems they solve/create? 
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treatment 2

ytreatment 1

?

Independent treatments (orthogonal/decorrelated)

?
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Reduce variance

so increase sensitivity, for given type-I.

Like prospective “blocking”.
We know movement is a cause .

movement

treatment
?

y
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movement

treatment

Tradeoff: reduce bias but reduce power

Derive variance inflation?
c.f. dependent predictors of interest

y
?



  

Orthogonal regressor cartoon

Variability in Y
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Correlated regressors

  

Shared variance

Variability in Y
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Correlated regressors

  

Variability in Y
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Conditional power



Correlated regressors

  

Variability in Y
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Conditional power



Correlated regressors

  

Variability in Y
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Correlated regressors

  

Variability in Y

Classical Inference and Design Efficiency 23



Correlated regressors

  

Variability in Y
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Correlated regressors

  

Variability in Y

Classical Inference and Design Efficiency 25

Omnibus power



Design orthogonality

For each pair of columns of the design 
matrix, the orthogonality matrix depicts 
the magnitude of the cosine of the 
angle between them, with the range 0 to 
1 mapped from white to black.

❑ If both vectors have zero mean then 
the cosine of the angle between the 
vectors is the same as the correlation 
between the two variates.
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● Orthogonalize before (factorial designs) not after: strong assumptions 
about which regressor explains common variance (dangerous). 

● Linear models implicitly “orthogonalize” individual regressors: When 
testing for the first regressor, we are effectively removing the part of 
the signal that can be accounted for by the second regressor:

● Omnibus tests of joint hypothesis. 

● Original regressors may not matter: interesting contrast should be 
orthogonal from the rest of the design matrix.

Correlated regressors/tests: summary

x1

x2

x1

x2

x1

x2x
⊥

x
⊥

2

1

2
x⊥ = x2 – x1.x2 
x1
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Multiplicity:
8 predictors
8 estimators
1 test statistic

# estimators ≠ # test-stats  (2*2 design, tests)
estimator dependence ≠ test-stat dependence

Why multiple predictors?
Problems they solve/create? 

 



Univariate contrast estimation

 

 

 

[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
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❑ T-contrasts linear combinations of
❑ Functionally independent of regressor/contrast scale

T-test signal-to-noise (estimate/ s.e. estimate).

H0: vs     HA:
❑ Alternative hypothesis:
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Univariate hypothesis testing: summary



cT = 1 0 0 0 0 0 0 0

T = 

Estimated
effect 

Scale of error 

effect of interest > 0 ?
=

amplitude > 0 ?
=

β1 = cTβ > 0 ?
β1 β2 β3 β4 β5 ...

Question:

Null hypothesis: H0: c
Tβ=0 

Test statistic:
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 = Effect * Precision 

Univariate hypothesis testing



con_???? image

ResMS image

spmT_???? image

SPM{t}

❑ For a given contrast c:

beta_???? images
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Univariate hypothesis testing



Q: activation during 
listening ?

Null hypothesis: β1 = 0

❑ Passive word listening versus rest

SPMresults: Threshold T = 3.2057  {p<0.001}
voxel-leve
l

p uncorrecte
d

T

( Z≡) Mm    mm     mm

 13.94   Inf 0.000 -63 -27  15
 12.04   Inf 0.000 -48 -33  12
 11.82   Inf 0.000 -66 -21   6
 13.72   Inf 0.000  57 -21  12
 12.29   Inf 0.000  63 -12  -3
  9.89  7.83 0.000  57 -39   6
  7.39  6.36 0.000  36 -30 -15
  6.84  5.99 0.000  51   0  48
  6.36  5.65 0.000 -63 -54  -3
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Univariate hypothesis testing



 

The T-statistic does not depend on the 
scaling of the regressors.

[1      1      1       1         ]

- Beware interpretation of the contrasts          
themselves (eg,          for a second 
level analysis: sum ≠ average

- Beware non-orthogonal contrasts. Are 
two linear combinations confounded?

❑ The T-statistic does not depend on the 
scaling of the contrast.

/ 4

S
ubject 

1

[1       1      1         ]

S
ubject 

5

❑ Contrast          depends on scaling.
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/ 3

Notes on contrasts



Problems with multiplicity

35

- Confounding bias
- Covariate adjustment (costs 

power)
- Omnibus test (costs interpretability)

- Similar for multiple overfitting 
(family-wise type-I error next lecture)



F-test - the extra-sum-of-squares principle

Model comparison:

Full model ? 

X1  X0

or Reduced model? 

X0 Test statistic: explained over 
unexplained variability (error)

ν1 = rank(X) – rank(X0)
ν2 = N – rank(X)

RSS RSS0
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Null Hypothesis H0: True model is X0 (reduced model)



F-test - multidimensional contrasts – SPM{F}

Joint linear hypothesis:

Full model ? 
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Null Hypothesis H0: β3 = β4 = β5 = β6 = β7 = β8 = 0 

X1  (β3-8)X0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

cT  =

cTβ = 0 

Is any of β3-8 non-zero? 



F-contrast in SPM

ResMS image

spmF_???? images

SPM{F}

ess_???? images

( RSS0
  -  RSS )

beta_???? images
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F-test example: movement related effects

Design matrix

2 4 6 8
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contrast(s)

Design 
matrix

2 4 6 8

10
20
30
40
50
60
70
80

contrast(
s)
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F-test: summary

F-test a nested submodel ⇨ model comparison.

❑ Univariate contrast: the square of the t-test, testing positive or 
negative effects.

❑ F test: weighted sum-of-squares of one or several 
combinations of the regression coefficients β. 

❑ Needn’t explicitly separate X = [X0 X1] thanks to 
multidimensional contrasts.

❑ Hypotheses:
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Summary

Types of dependence...
- Noise (last week)
- Regressors (confound bias & variance)
- Contrasts (next lecture)
- Tests
Omnibus tests
- Combine dependent tests but weaken 

interpretation
- Threshold adjustment (next lecture)
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