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Overview

Last week: This week:

- “Best” estimate - Generalization out-of-sample

- Univariate - Large-scale, multivariate
Big idea

- Problem with last week’s “best fit": overfitting

In practise
- Tests, tests, tests (z, t, F)
- Tradeoffs (type-l/Il)
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Univariate regression, single voxel
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Univariate regression, single voxel
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Non-zero effect?
- Estimator

- Test statistic
- Test
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Univariate regression, single voxel

A toy example.

Non-zero effect?
- Estimator

- Test statistic
- Test
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Univariate regression, single voxel

B =103 = =1 4 S e

A toy example.
How to estimate?
- Error minimization

B =arg min|(y— XTI,

- Geometric projection
- Maximum likelihood
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Univariate cartoon

B#0! B,=07

8,18
) Y s

y fixed
Overfitting: 30! with 100%,

<

%J_ Reduce overfitting?

S - Type-l penalties

- Population prior penalties

- Problem in high dimensions
- Tradeoffs




Math univariate

B = argmin ||(y — XB)|2 = (XTX) X7y

5
Infer 8 from B 7
YV =X[+e e~ N(0,0%I)
B=(XTX)'XT(XB+e)~ N(ﬁ (XTX)_ )
dB=c"(XTX)'XT(XB+¢€)~ NEB,o?ct (XT X))

Assume X =1,
1
B=p+ - E :EI' Systematic bias?
i=1
Assume =0

B _ i
o/\n~ o/yn

We'd ideally eliminate bias and variance
Typically tradeoffs (Examples: confounding bias, multiplicity bias)
Conventional hierarchy of errors

~ N(0,1) Random variability?

)



Univariate hypothesis testing

H, predicts “small” T

(relative to o / J/n).

Is T surprisingly big?

Null Distribution of
“Test statistic” T

- Scale of 6 depends on design X (number of
replicates and explaining variation from independent
causes)

- May be reduced. o

- May be estimated via ¢
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Univariate hypothesis testing

O Test construction U,

Significance level a:
Acceptable a= threshold u_

o=p(T>u, |H)

Null Distribution of T
Procedure: if t > u_, then reject H0

d P-value:
Summarises evidence against H,,.
Chance of observing a value more extreme
than t under the null hypothesis.

p(T > t|Hp) I

Null Distribution of T
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Univariate hypothesis testing

 Test construction U

Significance level a:
Acceptable a= threshold u_

o=p(T>u, |H)

Null Distribution of T
Procedure: if t > u_, then reject H0

J Power of a test

Depends on random variance

Alternative Distribution of T
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Univariate regression

B?

Why multiple predictors?
Problems they solve/create?
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treatment 2

N/

treatment 1 -y

Independent treatments (orthogonal/decorrelated)
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C

movement

N/

treatment -y

Reduce variance
o2(X' X)) via o2

So increase sensitivity, for given type-I.

Like prospective “blocking”.
We know movement is a cause .

T
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C

movement

/ N/

treatment -y

T

Tradeoff: reduce bias but reduce power
9 / . ! -1
o2(X X) via (X X)

Derive variance inflation?
c.f. dependent predictors of interest
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Orthogonal regressor cartoon

Variability described by X; Variability described by X,

Testing for X; Testing for X,
Variability in Y
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Correlated regressors

Shared variance

Variability described by X,
¢x Agq paquosep Ajljigeuep

Variability in Y
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Correlated regressors

Conditional power

Variability described by X;
¢x Aq paquosap Ajljiqenen

Variability in Y
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Correlated regressors

Variability described by X;
¢x Aq paquosap Ajljiqelien

Variability in Y
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Correlated regressors

Omnibus power

Variability described by X;
¢x Aq paquosap Ajljigelen

Variability in Y
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Design orthogonality

For each pair of columns of the design
matrix, the orthogonality matrix depicts
the magnitude of the cosine of the
angle between them, with the range 0 to
1 mapped from white to black.

desigrn matrix

3 If both vectors have zero mean then
the cosine of the angle between the
vectors is the same as the correlation

design orhogonalty between the two variates.

Measure : abs. walue of cosine of angle between columns of desion matrix
Scale : black - colinear I:cna:+1f-%]
wuhite: - othogonal (zos=0)
gray - not orthogonal or colinear
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Correlated regressors/tests: summary

Orthogonalize before (factorial designs) not after: strong assumptions
about which regressor explains common variance (dangerous).
Linear models implicitly “orthogonalize™ individual regressors: When
testing for the first regressor, we are effectively removing the part of
the signal that can be accounted for by the second regressor:

y

1
Omnibus tests of joint hypothe1sis.

X ¥

Original regressors may not matter: interesting contrast should be
orthogonal from the rest of the design matrix.
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Why multiple predictors?
Problems they solve/create?

Multiplicity:

8 predictors
8 estimators
1 test statistic

cTR~N(cTB,0%cT(XTX) 1c)

# estimators # # test-stats (2*2 design, tests)
estimator dependence # test-stat dependence
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Univariate contrast estimation

O A contrast selects a specific effect of interest.
[1000000000000000000]

= A contrast c is a vector of length p.

= ¢! B is a linear combination of regression
coefficients S.

c=[1000 ..]7

CTB=1XB+0XPB+0XP3+0XpLy+
= B1

c=[100—-10..]7

c"B=1XB+0XBr+0XPs+—1XBy+
= B1— PB4

cTB~N(cTR,0%cT(XTX) 1c)
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Univariate hypothesis testing: summary

T-test signal-to-noise (estimate/ s.e. estimate).

1 Alternative hypothesis:
H: ¢"B=0 vs H;: "B>0

—~

1 T-contrasts linear combinations of ﬁ
 Functionally independent of regressor/contrast scale
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Univariate hypothesis testing

effect of interest >0 ?

T — .

¢c=10000000 Question: amplitude > 0 ?

. B, =c'B>07

B,B,B,B,B; -

[ Null hypothesis: ‘ H,: ¢'8=0 I

— Estimated
o effect
Test statistic: 7= = Effect * Precision

Scale of error

N N

ro_<¢b . cP
\/V21r(cT/§) J&ch(XTX)_Ic

~~/

N-p
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Univariate hypothesis testing

1 For a given contrast c:

ResMS image
beta_ ??77? images
AT A
A 7T 1 77 AD . g 8
p=(X"X) X"y 9=
N-p

con_?77?7 image spmT_?7?7?? image

"B

SPM{f}
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Univariate hypothesis testing

c™=10000000 Q: activation during

. listening ?
B1 B2 B3 Ba Ps .
-
—
SPAMresults: Threshold T = 3.2057 {p<0.001}
voxel-leve
Tp I
C p
t —~ (Zs) P uncorrecte Mm mm  mm
) 13.94 Inf §.000 -63 -27 15
var(c”p 12.04 Inf 0.000  -48 -33 12
11.82 Inf 0.000 -66 -21 6
13.72 Inf 0.000 57 -21 12
12.29 Inf 0.000 63 -12 -3
9.89 7.83 0.000 57 -39 6
7.39 6.36 0.000 36 -30 -15
6.84 5.99 0.000 51 0 48
6.36 5.65 0.000 -63 -54 -3
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Notes on contrasts
Y B (5)
Vvare’B) sl (") [0

The T-statistic does not depend on the
scaling of the regressors.

[ The T-statistic does not depend on the
scaling of the contrast.

d Contrast CTB depends on scaling.

- Beware interpretation of the contrasts
themselves (eg, ¢’ f3 for a second
level analysis: sum # average

- Beware non-orthogonal contrasts. Are
two linear combinations confounded?
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Problems with multiplicity

Confounding bias
//’// - Covariate adjustment (costs
power)
- Omnibus test (costs interpretability’
- Similar for multiple overfitting
(family-wise type-| error next lecture)




F-test - the extra-sum-of-squares principle

Model comparison:

Null Hypothesis HO: True model is X0 (reduced model)

X, Test statistic: explained over
unexplained variability (error)

_ RSS,—RSS
RSS

F

—» RSS,

Zérzeduced F o E S S F
RSS s

v, = rank(X) — rank(X,)
v, = N —rank(X)

or Reduced model?

Classical Inference and Design Efficiency | 36



F-test - multidimensional contrasts — SPM{F}

Joint linear hypothesis:
Null Hypothesis HO: B, =8,=8,=8,=8,=68,=0 l&g _ll c'8=0

00100000
00010000
T — 00001000
00000100
00000010
00000001

Is any of 3, ; non-zero?
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F-contrast in SPM

ResMS image
beta 77?7 images
AT A
A T | T AD . 8 g
p=(X"X) X'y o=
N-p

ess 7777 images spmF_?7?7?? images

(RSS, - RSS) SPM{F)
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F-test example: movement related effects

contrasti

contrast(s)

Design matrix
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F-test: summary

F-test a nested submodel = model comparison.

4 F test: weighted sum-of-squares of one or several
combinations of the regression coefficients 3.

1 Needn't explicitly separate X = [X, X,] thanks to
multidimensional contrasts.

1 Hypotheses:

(1> (1) 8 8 Null Hypothesis H,: B, =, =,=0
3 3 (1) 3 Alternative Hypothesis /1 , : at leastone B, #0

1 Univariate contrast: the square of the t-test, testing positive or
negative effects.
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Types of dependence...

- Noise (last week)

- Regressors (confound bias & variance)

- Contrasts (next lecture)

- Tests

Omnibus tests

- Combine dependent tests but weaken
Interpretation

- Threshold adjustment (next lecture)



