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Abstract Paranoia is the belief that harm is intended by others. It may arise from selective
pressures to infer and avoid social threats, particularly in ambiguous or changing circumstances.
We propose that uncertainty may be sufficient to elicit learning differences in paranoid individuals,
without social threat. We used reversal learning behavior and computational modeling to estimate
belief updating across individuals with and without mental illness, online participants, and rats
chronically exposed to methamphetamine, an elicitor of paranoia in humans. Paranoia is associated
with a stronger prior on volatility, accompanied by elevated sensitivity to perceived changes in the
task environment. Methamphetamine exposure in rats recapitulates this impaired uncertainty-
driven belief updating and rigid anticipation of a volatile environment. Our work provides evidence
of fundamental, domain-general learning differences in paranoid individuals. This paradigm enables
further assessment of the interplay between uncertainty and belief-updating across individuals and
species.

Introduction

Paranoia is excessive concern that harm will occur due to deliberate actions of others (Freeman and
Garety, 2000). It manifests along a continuum of increasing severity (Freeman et al., 2005;
Freeman et al., 2010; Freeman et al., 2011, Bebbington et al., 2013). Fleeting paranoid thoughts
prevail in the general population (Freeman, 2006). A survey of over 7000 individuals found that
nearly 20% believed people were against them at times in the past year; approximately 8% felt peo-
ple had intentionally acted to harm them (Freeman et al., 2011). At a national level, paranoia may
fuel divisive ideological intolerance. Historian Richard Hofstadter famously described catastrophiz-
ing, context insensitive political discourse as the ‘paranoid style’:

“The paranoid spokesman sees the fate of conspiracy in apocalyptic terms—he traffics in the birth
and death of whole worlds, whole political orders, whole systems of human values. He is always man-
ning the barricades of civilization. He constantly lives at a turning point [emphasis added].”
(Hofstadter, 1964).

At its most severe, paranoia manifests as rigid beliefs known as delusions of persecution. These
delusions occur in nearly 90% of first episode psychosis patients (Freeman, 2007). Psychostimulants
also elicit severe paranoid states. Methamphetamine evokes new paranoid ideation particularly after
repeated exposure or escalating doses (86% and 68%, respectively, in a survey of methamphetamine
users) (Leamon et al., 2010).
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elLife digest Everyone has had fleeting concerns that others might be against them at some
point in their lives. Sometimes these concerns can escalate into paranoia and become debilitating.
Paranoia is a common symptom in serious mental illnesses like schizophrenia. It can cause extreme
distress and is linked with an increased risk of violence towards oneself or others. Understanding
what happens in the brains of people experiencing paranoia might lead to better ways to treat or
manage it.

Some experts argue that paranoia is caused by errors in the way people assess social situations.
An alternative idea is that paranoia stems from the way the brain forms and updates beliefs about
the world. Now, Reed et al. show that both people with paranoia and rats exposed to a paranoia-
inducing substance expect the world will change frequently, change their minds often, and have a
harder time learning in response to changing circumstances.

In the experiments, human volunteers with and without psychiatric disorders played a game
where the best choices change. Then, the participants completed a survey to assess their level of
paranoia. People with higher levels of paranoia predicted more changes would occur and made less
predictable choices. In a second set of experiments, rats were put in a cage with three holes where
they sometimes received sugar rewards. Some of the rats received methamphetamine, a drug that
causes paranoia in humans. Rats given the drug also expected the location of the sugar reward
would change often. The drugged animals had harder time learning and adapting to changing
circumstances.

The experiments suggest that brain processes found in both rats, which are less social than
humans, and humans contribute to paranoia. This suggests paranoia may make it harder to update
beliefs. This may help scientists understand what causes paranoia and develop therapies or drugs
that can reduce paranoia. This information may also help scientists understand why during societal
crises like wars or natural disasters humans are prone to believing conspiracies. This is particularly
important now as the world grapples with climate change and a global pandemic. Reed et al. note
paranoia may impede the coordination of collaborative solutions to these challenging situations.

Paranoia has thus far defied explanation in mechanistic terms. Sophisticated Game Theory driven
approaches (such as the Dictator Game [Raihani and Bell, 2018; Raihani and Bell, 2017]) have
largely re-described the phenomenon — people who are paranoid have difficulties in laboratory
tasks that require trust (Raihani and Bell, 2019). However, this is not driven by personal threat per
se, but by negative representations of others (Raihani and Bell, 2018; Raihani and Bell, 2017). We
posit that such representations are learned (Fineberg et al., 2014; Behrens et al., 2008), via the
same fundamental learning mechanisms (Cramer et al., 2002) that underwrite non-social learning in
non-human species (Heyes and Pearce, 2015). We hypothesize that aberrations to these domain-
general learning mechanisms underlie paranoia. One such mechanism involves the judicious use of
uncertainty to update beliefs: Expectations about the noisiness of the environment constrain whether
we update beliefs or dismiss surprises as probabilistic anomalies. The higher the expected uncer-
tainty (i.e., 'l expect variable outcomes’), the less surprising an atypical outcome may be, and the
less it drives belief updates ('this variation is normal’). Unexpected uncertainty, in contrast, describes
perceived change in the underlying statistics of the environment (Yu and Dayan, 2005; Payzan-
LeNestour and Bossaerts, 2011; Payzan-LeNestour et al., 2013) (i.e. ‘the world is changing’),
which may call for belief revision.

Since excessive unexpected uncertainty is a signal of change, it might drive the recategorization
of allies as enemies, which is a tenet of evolutionary theories of paranoia (Raihani and Bell, 2019).
We tested the hypothesis that this drive to flexibly recategorize associations extends to non-social,
domain-general inferences. We dissected learning mechanisms under expected and unexpected
uncertainty — probabilistic variation and changes in underlying task structure (volatility). Here, volatil-
ity is a property of the task. Unexpected uncertainty is the perception of that volatility. Participants
completed a non-social, three-option learning task which challenged them to form and revise associ-
ations between stimuli (colored card decks) and outcomes (points rewarded and lost), in addition to
their beliefs about the volatility of the task environment. They encountered expected uncertainty as
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probabilistic win or loss feedback (‘each option yields positive and negative outcomes, but in differ-
ent amounts’), and unexpected uncertainty as reassignment of reward probabilities between options
('sometimes the best option may change,’ reversal events). Although reversal events elicit unex-
pected uncertainty by driving re-evaluation of the options, participants increasingly anticipate rever-
sals and develop expectations about the stability of the task environment. We implemented an
additional task manipulation: a shift in the underlying probabilities themselves (contingency transi-
tion, unsignaled to the participants), that effectively changes task volatility. Armed with the task
structure and participants’ choices, we applied a Hierarchical Gaussian Filter (HGF)
model (Mathys et al., 2011; Mathys et al., 2014) which allowed us to infer participants’ initial
beliefs (i.e., priors) about task volatility, their readiness to learn about changes in the task volatility
itself (meta-volatility learning rate) and learning rates that captured their expected and unexpected
uncertainty regarding the task.

We examined the behavioral and computational correlates of paranoia both in-person and in a
large online sample, spanning patients and healthy controls with varying degrees of paranoia. We
also undertook a pre-clinical replication in rodents exposed chronically to saline or methamphet-
amine to determine whether a drug known to elicit paranoia in humans might induce similar percep-
tions of unexpected uncertainty, without contingency transition (Groman et al., 2018). We
predicted that people with paranoia and rats administered methamphetamine would exhibit stron-
ger priors on volatility, facilitating aberrant learning through unexpected uncertainty. We further
hypothesized that this learning style would manifest as frequent and unnecessary choice switching
(increased choice stochasticity and ‘win-switch’ behavior) rather than increased sensitivity to negative
feedback (increased ‘lose-switch’ behavior/decreased ‘lose-stay’ behavior).

Results

We analyzed belief updating across three reversal-learning experiments (Figure 1): an in laboratory
pilot of patients and healthy controls, stratified by stable, paranoid personality trait (Experiment 1);
four online task variants administered to participants via the Amazon Mechanical Turk (MTurk) mar-
ketplace (Experiment 2); and a re-analysis of data from rats on chronic, escalating doses of metham-
phetamine, a translational model of paranoia (Experiment 3) (Groman et al., 2018).

Experiment 1
First, we explored trans-diagnostic associations between paranoia and reversal-learning in-person.
Participants with and without psychiatric diagnoses (mood disorders: anxiety, depression, bipolar
disorder, n = 8; schizophrenia spectrum: schizophrenia or schizoaffective disorder, n = 8; and healthy
controls, n = 16), completed questionnaire versions of the Structured Clinical Interview for DSM-IV
Axis Il Personality Disorders (SCID-Il) screening assessment (Ryder et al., 2007), Beck's Anxiety
Inventory (BAI) (Beck et al., 1988), Beck’s Depression Inventory (BDI) (Beck et al., 1961), and demo-
graphic assessments (Table 1). Approximately two-thirds of participants endorsed three or fewer
items on the SCID-Il paranoid personality subscale (median = 1 item). Participants who endorsed
four or more items were classified as high paranoia (n = 11), consistent with the diagnostic threshold
for paranoid personality disorder. Low paranoia (n = 21) and high paranoia groups did not differ sig-
nificantly by age, nor were there significant group associations with gender, educational attainment,
ethnicity, or race, although a larger percentage of paranoid participants identified as racial minorities
or 'not specified’ (Table 1). Diagnostic category (i.e., healthy control, mood disorder, or schizophre-
nia spectrum) was significantly associated with paranoia group membership, ¥? (2, n = 32)=12.329,
p=0.002, Cramer’s V = 0.621, as was psychiatric medication usage, xz (1, n = 32)=9.871, p=0.003,
Cramer's V = 0.555. These differences were due to the higher proportion of healthy controls in the
low paranoia group. As expected, paranoia, BAI, and BDI scores were significantly elevated in the
high paranoia group relative to low paranoia controls (Table 1; paranoia: mean difference
(MD) = 0.536, CI=[0.455,0.618], t(30)=13.476, p=2.92E-14, Hedges' g = 5.016; BAI: MD = 0.585,
Cl=[0.239, 0.931], %(30)=3.453, p=0.002, Hedges’' g = 1.285, MD = —0.585; BDI: MD = 0.427, Cl=
[0.078, 0.775], t(11.854) = 2.67, p=0.021, Hedges’ g = 1.255).

Participants completed a three-option reversal-learning task in which they chose between three
decks of cards with hidden reward probabilities (Figure 1a and b). They selected a deck on each
turn and received positive or negative feedback (+100 or —50 points, respectively). They were
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Figure 1. Probabilistic reversal learning task. (a) Human paradigm: participants choose between three decks of cards with different colored backs (Blue,
Red, and Green) with different, unknown probabilities of reward and loss. (b) Reward contingency schedule for in laboratory experiment (Reward
probabilities associated with the different colored decks, Blue, Red, Green, across trials and blocks). On trial 81, the probability context shifted from
90%, 50%, and 10% (dark grey) to 80%, 40%, and 20% without warning (light grey). (c), Reward contingency schedules for online experiment. (d) Rat

Figure 1 continued on next page
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Figure 1 continued

paradigm: subjects choose between three noseports (Blue, Red, Green, for illustrative puposes) with different probabilities of sucrose pellet reward. (e)
Reward contingency schedule for rat experiment (Groman et al., 2018). Performance dependent reversals occur after a certain number of choices of
the high reward deck. Performance independent reversals occur regardless of participant behavior.

instructed to find the best deck with the caveat that the best deck may change. Undisclosed to par-
ticipants, reward probabilities switched among decks after selection of the highest probability
option in nine out of ten consecutive trials (‘'reversal events’). Thus, the task was designed to elicit
expected uncertainty (probabilistic reward associations) and unexpected uncertainty (reversal
events), requiring participants to distinguish probabilistic losses from change in the underlying deck
values. In addition, reward contingencies changed from 90%, 50%, and 10% chance of reward to
80%, 40%, and 20% between the first and second halves of the task (‘contingency transition’; block
1 = 80 trials, 90-50-10%; block 2 = 80 trials, 80-40-20%, unsignaled to the participants). This transi-
tion altered the volatility of the task environment, thereby making it more difficult to achieve rever-
sals and often delaying their occurrence. Successful achievement of reversals was contingent upon
adapting stay-vs-switch strategies, thereby testing subjects’ abilities to update beliefs about the
overall task volatility (‘metavolatility learning’). High paranoia subjects achieved fewer reversals
(MD = —2.31, CI=[-4.504,-0.111,], t(30)=-2.145, p=0.04, Hedges' g = 0.798), but total points
earned did not significantly differ, suggesting that there was no penalty for the different behaviors
expressed by the more paranoid subjects (Table 1). We predicted that paranoia would be associated
with unexpected uncertainty-driven belief updating.

Experiment 2

We aimed to replicate and extend our investigation of paranoia and reversal-learning in a larger
online sample. We administered three alternative task versions to control for the contingency transi-
tion (Figure 1c). Version 1 (n = 45 low paranoia, 20 high paranoia) provided a constant contingency
of 90-50-10% reward probabilities (Easy-Easy); version 2 (n = 69 low paranoia, 18 high paranoia) pro-
vided a constant contingency of 80-40-20% (Hard-Hard); version 3 (n = 56 low paranoia, 16 high
paranoia) served to replicate Experiment 1 with a contingency transition from 90-50-10% to 80-40-
20% (Easy-Hard); version 4 (n = 64 low paranoia, 19 high paranoia) provided the reverse contingency
transition, 80-40-20% to 90-50-10% (Hard-Easy). The stable contingencies (versions 1 and 2) lacked
contingency transitions. Versions 3 and 4 manipulated task volatility mid-way, although the contin-
gency transition was not signalled to participants. We predicted that high paranoia participants
would find versions 3 and 4 particularly challenging. Given that version 3 is easier to learn initially,
we expected participants to develop stronger priors and thus be more confounded by the contin-
gency transition, compared to version four participants.

Participants’ demographic and mental health questionnaire responses did not differ significantly
across task version experiments (Table 2). Total points and reversals achieved suggest variations in
task difficulty (Table 2, version effects: points earned, F(3, 299)=32.288, p=4.16E-18, n§=0.245;
reversals achieved, F(3, 299)=4.329, p=0.005, nﬁ=0.042), but there was no significant association
between task version and attrition rate (52.7%, 52.9%, 54.6%, and 53.1% attrition, respectively;
Xz (3, n =752)=0.167, p=0.983, Cramer’s V = 0.015).

Across task versions, high paranoia participants endorsed higher BAl and BDI scores (n = 73 high
paranoia, 234 low paranoia; BAI: F(1, 299)=38.752, p=1.63E-09, ng=0.115; BDI: F(1, 299)=74.528,
p=3.62E-16, n,23=0.20; Table 2). Both correlated with paranoia (BAI: Pearson’s r = 0.450, p=1.09E-16,
Cl=[0.348, 0.55]; BDI: Pearson's r = 0.543, p=6.26E-25, ClI=[0.448, 0.638]). Trial-by-trial reaction time
did not differ significantly between low and high paranoia (Table 2), but high paranoia participants
earned fewer total points (F(1, 299)=6.175, p=0.014, nf,=0.020) and achieved fewer reversals (F(1,
299)=5.762, p=0.017, n§=0.019; Table 2). Deck choice perseveration after negative feedback (lose-
stay behavior) did not significantly differ by paranoia group, but choice switching after positive feed-
back (win-switch behavior) was elevated in high paranoia (block 1: F(1, 299)=7.117, p=0.008,
n5=0.023; block 2: F(1, 299)=9.918, p=0.002, n3=0.032; Table 2).
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In Lab Online Version 3

Low High Low High

Paranoia Paranoia Paranoia Paranoia

(n=21) (n=11) Statistic p-value (n=56) (n=16) Statistic p-value
Demographics
Age (years) 36.0(3.2] 38.9[3.9] -0.531 27)t 0.6 38.6[1.4] 329017 2441 (41.8)f 0.019"
Gender 0.006 ()% 18 780 (1t 0.410
% Female 71.4% 72.7% n/a n/a 50.0% 62.5% n/a n/a
% Male 28.6% 27.3% n/a n/a 50.0% 37.5% n/a n/a
% Other or not specified 0% 0% n/a n/a 0% 0% n/a n/a
Education 4.972 (6)% 0.638° 5.351 (6)% 0.549%
% High school degree or equivalent 19.0% 45.5% n/a n/a 16.1% 6.3% n/a n/a
% Some college or university, no degree 14.3% 0% n/a n/a 17.9% 25.0% n/a n/a
% Associate degree 9.5% 9.1% n/a n/a 12.5% 12.5% n/a n/a
% Bachelor’s degree 23.8% 27.3% n/a n/a 35.7% 56.3% n/a n/a
% Master’s degree 9.5% 0% n/a n/a 14.3% 0% n/a n/a
% Doctorate or professional degree 4.8% 0% n/a n/a 1.8% 0% n/a n/a
% Completed some postgraduate 0% 0% n/a n/a 1.8% 0% n/a n/a
% Other / not specified 19.0% 18.2% n/a n/a 0% 0% n/a n/a
Ethnicity 134 (1)F 18 7 (1 18
% Hispanic, Latino, or Spanish origin 23.8% 18.2% n/a n/a 8.9% 6.3% n/a n/a
% Not of Hispanic, Latino, or Spanish origin 76.2% 81.8% n/a n/a 91.1% 93.8% n/a n/a
Race 6.250 ()t 0.186° 5.368 (4)F 0.229%
% White 61.9% 36.4% n/a n/a 85.7% 75.0% n/a n/a
% Black or African American 19.0% 36.4% n/a n/a 0% 12.5% n/a n/a
% Asian 14.3% 2.1% n/a n/a 3.6% 6.3% n/a n/a
% American Indian or Alaska Native 4.8% 0% n/a n/a 1.8% 6.3% n/a n/a
% Multiracial 0% 0% n/a n/a 3.6% 0% n/a n/a
% Other / not specified 0% 18.2% n/a n/a 5.4% 0% n/a n/a
Mental Health
Psychiatric diagnosis 12.329 (2)F 0.002% 7.850 (3)t 0.039%
% No psychiatric diagnosis 71.4% 9.1% adj. residuals 0.004 71.4% 50.0% adj. residuals 0.465
% Schizophrenia spectrum 19.0% 36.4% ad]. residuals 0.546 0% 6.3% adj. residuals 0.307
% Mood disorder 9.5% 54.5% ad]. residuals 0.020* 21.4% 43.8% adj. residuals 0.356
% Not specified 0% 0% ad]. residuals n/a 7.1% 0% ad]. residuals 0.751
% Medicated 23.8% 81.8% 9.871 (Mt 0.003% 7.1% 31.3% 8.730 (2 0.023%
Beck’s Anxiety Inventory 0.27 [0.08] 0.85[0.17] -3.453 (30)t 0.002 0.24 [0.04] 0.90 [0.20] -3.303 (16.179)F 0.0047
Beck’s Depression Inventory 0.23 [0.05] 0.66 [0.15] -2.67 (11.854)t 0.021" 0.25 [0.04] 1.03 [0.19] -3.951 (16.659)t 0.001"
SCID Paranoia Personality Score 0.09 [0.02] 0.63 [0.04] -13.476 (30) 2.92E-14 0.1 [0.02] 0.72 [0.04] -16.551 (70)t 6.712E-26
Reversal Learning Performance
Total points earned 7061.9 [286.9] 6290.9 [372.2] 1.608 (30)t 0.118 7533.0 [143.8] 6503.1 [340.6] 3.177 (700t 0.002
Total reversals achieved 4.810.7] 2.5[0.8] 2.145 (301 0.04 6.3[0.3] 4.910.8] 1.758 (20.14)+ 0.094"
% Achieving reversals 90.5% 72.7% 1.407 (Mt 0.327% 100% 87.5% 7.200 (F 0.047%
Trials to first reversal 29.2[4.5] 27.9 1] 0.136 (251 0.893 20.0[1.7] 13.7 [1.8] 1.774 (68)t 0.081
% Recovering post-reversal 81.0% 54.5% 2.490 (1)} 0.213° 91.1% 69.0% 3.482 (1)F 0.097%
Trials to switch 1.68 [0.22] 1.43[0.20] 0.671 24t 0.509 21002 2.6[0.6] -1.088 (64)t 0.280
Table 1 continued on next page
Reed et al. eLife 2020;9:e56345. DOI: https://doi.org/10.7554/eLife.56345 6 of 39


https://doi.org/10.7554/eLife.56345

e Llfe Research article

Table 1 continued

Human Biology and Medicine | Neuroscience

In Lab Online Version 3

Low High Low High

Paranoia Paranoia Paranoia Paranoia

(n=21) (n=11) Statistic p-value (n=56) (n=16) Statistic p-value
Trials to recovery 3.75[0.51] 410.93] -0.285 (21)t 0.779 29[0.3] 4.90.8] -2.694 (60)T 0.009
Win-switch rate, block 1 (90-50-10) 0.08 [0.03] 0.24 [0.09] -1.742 (12.379)t 0.106" 0.04 [0.01] 0.13 [0.09] -1.906 (15.762)t 0.075"
Win-switch rate, block 2 (80-40-20) 0.07 [0.04] 0.21 [0.1] -1.601 (30)T 0.12 0.02 [0.01] 0.12 [0.05] -2.02 (15.915)F 0.061"
Lose-stay rate, block 1 (90-50-10) 0.19 [0.03] 0.13 [0.06] 0.919 (30 0.365 0.30 [0.03] 0.39 [0.0¢] -1.425 (7001 0.158
Lose-stay rate, block 2 (80-40-20) 0.26 [0.05] 0.12 [0.05] 1.817 (30)t 0.079 0.33[0.03] 0.37 [0.06] -0.554 (70)t 0.581
Null trials 8.51[2.8] 10.4 [3.7] -0.391 (30)t 0.699 n/a n/a n/a n/a

T Independent samples t-test: t-value (df). Two-tailed p-values reported 1 Exact test, chi-square coefficient (df)§ Exact significance (2-sided)ql Equal varian-

ces not assumed # Not significant (bonferonni correction).

Experiment 3

To translate across species, we performed a new analysis of published data from rats exposed to
chronic methamphetamine (Groman et al., 2018). Rats chose between three operant chamber nose-
ports with differing probabilities of sucrose reward (70%, 30%, and 10%,; Figure 1d and e). Contin-
gencies switched between the 70% and 10% noseports after selection of the highest reinforced
option in 21 out of 30 consecutive trials (Figure Te). This task was most similar in structure to the
first blocks of online versions 2 and 4. There was no increase in unexpected volatility mid-way
through the task. Rats were tested for 26 within-session reversal blocks (Pre-Rx, n = 10 per group),
administered saline or methamphetamine according to a 23 day schedule mimicking the escalating
doses and frequencies of chronic human methamphetamine users (Groman et al., 2018), and tested
once per week for four weeks following completion of the drug regimen (Post-Rx; n = 10 saline,
seven methamphetamine) (Groman et al., 2018). Relative to rats exposed to saline, those rats
exposed to methamphetamine exhibited increased win-switch behavior, similar to what we has
observed in the high paranoia human participants, and additionally, unlike humans, they persever-
ated after negative feedback (Groman et al., 2018).

Computational modeling

We employed hierarchical Gaussian filter (HGF) modeling to compare belief updating across individ-
uals with low and high paranoia, as well as across human participants and rats exposed to metham-
phetamine (Table 3). We paired a three-level perceptual model with a softmax decision model
dependent upon third level volatility (Figure 2a). We inverted the model from subject data (trial-by-
trial choices and feedback) to estimate parameters for each individual (Figure 2b). Level 1 (xq) char-
acterizes trial-by-trial perception of task feedback (win or loss in humans, reward or no reward in
rats), Level 2 (x,) distinguishes stimulus-outcome associations (deck or noseport values), and Level 3
(x3) renders perception of the overall task volatility (i.e., frequency of reversal events, changes in the
stimulus-outcome associations).

Belief trajectories were unique to each subject due to the probabilistic, performance-dependent
nature of the task, so we estimated initial beliefs (priors) for x, and x3 (ug and ug, respectively). We
also estimated ®,, the tonic volatility of stimulus-outcome associations. Lower ®, indicates that sub-
jects are slower to adjust beliefs about the value of each option; they maintain rigid beliefs about
the underlying probabilities. The k parameter captures the impact of phasic volatility on updating
stimulus-outcome associations. In the setting of our experiments, k approximates the influence of
unexpected uncertainty. Higher k implies faster updating of stimulus-outcome associations - that is,
participants are more likely perceive volatility as reversal events. Our final parameter of interest, ®s,
characterizes perception of ‘meta-volatility,” such as changes in the frequency of reversal events
(Lawson et al., 2017). The lower w3, the slower a subject is to adjust their volatility belief; they
adhere more rigidly to their volatility prior (u3).

Priors did not differ between groups at x, (Table 3) but paranoid individuals and rats exposed to
methamphetamine exhibited elevated p3, they expected greater task volatility (Figure 2b, blue). In
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Block effect Group effect* Interaction effect
Statistic® p-value Statistic® p-value Statistic® p-value
Experiment 1
W3 11.672 (1) 0.002 1.294 (1) 0.264 6.948 (1) 0.013
us 25.904 (1) 1.809E-5 7.063 (1) 0.012 5.344 (1) 0.028
K 7.768 (1) 0.009 7.599 (1) 0.010 0.003 (1) 0.960
0% 2.182 (1) 0.150 4.186 (1) 0.050 0.058 (1) 0.811
u2° 4.831 (1) 0.036 1.261 (1) 0.270 0.370 (1) 0.547
BIC 0.061 (1) 0.807 8.801 (1) 0.006 1.7 (1) 0.202
Experiment 2, Version 3
03 14.932 (1) 0.0002 1.128 (1) 0.292 1.406 (1) 0.240
us 64.651 (1) 1.54E-11 6.366 (1) 0.014 0.003 (1) 0.959
K 15.53 (1) 0.0002 13.521 (1) 0.0005 0.011 (1) 0.916
0% 0.027 (1) 0.869 8.70 (1) 0.004 0.090 (1) 0.765
ud 11.432 (1) 0.001 0.030 (1) 0.864 0.203 (1) 0.653
BIC 1.110E-5 (1) 0.997 16.336 (1) 0.0001 1.678 (1) 0.199
Experiment 3: Rats
w3 30.086 (1) 6.2785E-5 4.579 (1) 0.049 9.058 (1) 0.009
us 31.416 (1) 5.0188E-5 8.454 (1) 0.011 5.159 (1) 0.038
K 9.132 (1) 0.009 13.356 (1) 0.002 2.644 (1) 0.125
Wy 32192 (1) 4.4173E-5 22.344 (1) 0.0003 18.454 (1) 0.001
ud 5.226 (1) 0.037 0.368 (1) 0.553 2.087 (1) 0.169
BIC 5.052 (1) 0.040 1.890 (1) 0.189 0.331 (1) 0.573

Block refers to first versus second half in human studies, Pre-Rx vs Post-Rx in rat studies.3 Group refers to low versus high paranoia in humans, saline versus

methamphetamine in rats §F-statistic (degrees of freedom); df error = 30 in Experiment 1, 70 in Experiment 2, Version 3, and 50 in Experiment 3:

Rats; split-plot ANOVA (i.e., repeated measures with between-subjects factor).

Experiment 1, we observed an interaction between task block and paranoia group (F(1, 30)=5.344,
p=0.028, n§=0.151; Table 1): ug differed between high and low paranoia in both blocks (block 1, F
(1, 30)=4.232, p=0.048, n2=0.124, MD = 0.658, CI=[0.005,1.312]; block 2, F(1, 30)=7.497, p=0.010,
n3=0.20, MD = 1.598, CI=[0.406, 2.789]), but only low paranoia subjects significantly updated their
priors between block 1 and block 2 (F(1, 30)=39.841, p=5.85E-07, n,§=0.570, MD = 1.504, CI=[1.017,
1.99). In Experiment 2, the analogous task design (version 3) demonstrated significant effects of
block (F(1, 70)=64.652, p=1.54E-11, nf,=0.480, MD = 1.303, CI=[0.980,1.627]) and paranoia (F(1, 70)
=6.366, p=0.014, nf,=0.083, MD = 0.909, CI=[0.191, 1.628]; Table 1). Rats showed a similar effect
following methamphetamine exposure with a significant time (Pre-Rx, Post-Rx) by treatment (meth-
amphetamine, saline) interaction (F(1, 15)=5.159, p=0.038, nf,=0.256; pre versus post methamphet-
amine effect: F(1, 15)=12.186, p=0.003, MD = 1.265, Cl=[-0.493, 2.037]; Pre-Rx mean [standard
error]=—1.25 [0.56] saline, —0.77 [0.80] methamphetamine; Post-Rx: m = —0.69 [0.74] saline, 0.58
[0.73] methamphetamine). Random effects meta-analyses confirmed significant cross-experiment
replication of elevated 3 in human participants with paranoia (in laboratory and online version 3;
MDpyera = 1.110, CI=[0.927, 1.292], zyeta = 11.929, p=8.356E-33) and across humans with paranoia
and rats exposed to methamphetamine (MDyera = 2.090, CI=[0.123, 4.056], zmeta = 2.083,
p=0.037). Both paranoid humans and rats administered chronic methamphetamine had strong
beliefs that the task contingencies would change rapidly and unpredictably — in other words, they
expected frequent reversal events. Methamphetamine exposure made rats behave like humans with
high paranoia (Figure 2b, Post-Rx condition, orange). This is particularly striking when compared to
human data from the first task block (before contingency transition), when task designs are most sim-
ilar across experiments.

Reed et al. eLife 2020;9:e56345. DOI: https://doi.org/10.7554/eLife.56345 11 of 39


https://doi.org/10.7554/eLife.56345

e Llfe Research article

Human Biology and Medicine | Neuroscience

3-level HGF model

Metavolatility

Level 3

'xswn} —y X ) =
4 \ y

Contingency context
(Phasic volatility)

e ———
~ I~
N

Phasic volatilit\y\
coupling

i \-\ Perceptual model
V\ '\

‘\ .\

\ \

Tonic volatility
(Level 2)

1
|
i
i
i
i
i
i|Level 2
i

A
let-ﬂ} ""l xl(t)/; -
A 4 .4

Stimulus-outcome
associations

Level 1
A -
‘x,IMI} - X, ) ==
4 A

Win or loss feedback

s
Response

Softmax,
B = exp(-pat) model

In laboratory

Low paranoia High paranoia

ok

Low paranoia,
block 1

Low paranoia,
block 2

14

-2

-3

0.2

0.0 -

Version 3 (online)

Low paranoia High paranoia

for B0

High paranoia,
block 1
High paranoia,
block 2

Rat
Saline Meth
3
— 2]
—
. B
4o 1
—o o
! 04 o e
|
1] — Cer ] ==
= B3 - -
] - ==
-3-
27 *

0.8+ *x

0.6 1 B

0.2 -

0.0 -

Pre-Rx

Post-Rx,
saline

Post-Rx,
methamphetamine

Figure 2. Hierarchical Gaussian Filter (HGF) model parameters. (a) 3-level HGF perceptual model (blue) with a softmax decision model (green). Level 1
(x4): trial-by-trial perception of win or loss feedback. Level 2 (x,): stimulus-outcome associations (i.e., deck values). Level 3 (x3): perception of the overall

reward contingency context. The impact of phasic volatility upon x; is captured by « (i.e., coupling). Tonic volatility modulates x3 and x, via @3 and ®,,
respectively. uJ is the initial value of the third level volatility belief. (b) HGF model parameter estimates from each of our three studies (in laboratory,
online, rat - columns), @s, U3, , and @, displayed hierarchically, in rows, in parallel with the position of the particular parameter in the model depiction

in a). Parameters replicate across high paranoia groups in the in-laboratory experiment (n = 21 low paranoia [gray], 11 high paranoia [orange]; dark bars
are initial task blocks, lighter bars follow the contingency transition); the analogous online task (version 3, n = 56 low paranoia [gray], 16 high paranoia
[orange]; dark bars are initial task blocks, lighter bars follow the contingency transition); and rats exposed to chronic, escalating saline or
methamphetamine (n = 10 per group, Pre-Rx [dark gray]; Post-Rx, n = 10 saline [light grayl], seven methamphetamine [orange]). Center lines depict
medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers
are represented by dots; crosses represent sample means; data points are plotted as open circles. *p<0.05, **p<0.01, ***p<0.001.
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Table 4. Corrections for multiple comparisons.

Group effect T Interaction effect®
"~ Survives Survives  Critical Benjamini-Hochberg Survives Survives  Critical Benjamini-Hochberg
bonferroni?$ FDR? value p-value bonferroni?$ FDR? value p-value
Experiment 1
03 N/A N/A 0.05 0.264 No No 0.0125 0.052
g Yes Yes 0.025 0.024 No No 0.025 0.056
K Yes Yes 0.0125 0.04 N/A N/A 0.05 0.96
O No No 0.0375 0.0667 N/A N/A 0.0375 1.081
Experiment 2,
Version 3
03 N/A N/A 0.05 0.292 N/A N/A 0.0125 0.96
s No Yes 3.75E-02 0.0187 N/A N/A 0.05 0.959
K Yes Yes 0.0125 0.002 N/A N/A 0.0375 1.221
o Yes Yes 0.025 0.008 N/A N/A 0.025 1.53
Experiment 3:
Rats
03 No Yes 5.00E-02 0.049 Yes Yes 0.025 0.018
ud Yes Yes 3.75E-02  0.0147 No No 0.0375 0.0507
K Yes Yes 0.025 0.004 N/A N/A 0.05 0.125
; Yes Yes 0.0125 0.0012 Yes Yes 0.0125 0.004

N/A denotes to p-values that were not significant before corrections. T Low versus high paranoia in humans, saline versus methamphetamine in rats. T

Group by time (i.e., first versus second half in human studies, Pre-Rx vs Post-Rx in rat studies). § p-value < 0.0125.

Paranoid participants and methamphetamine exposed rats updated stimulus-outcome associa-
tions more strongly in response to perceived volatility (e.g., correctly or incorrectly inferred reversals;
Figure 2b). x showed significant paranoia group and block effects across the in laboratory experi-
ment and online version 3 (Table 1; paranoia effects, in laboratory: F(1, 30)=7.599, p=0.010,
ng=0.202, MD = 0.081, CI=[0.021, 0.140]; online version 3: F(1, 70)=13.521, p=0.0005, ng=0.162,
MD = 0.068, Cl=[0.031-0.104]; MDpgra = 0.079, CI=[0.063, 0.095], zmeTa = 9.502 p=2.067E-21); see
Table 3 for block effects). x increased from baseline in rats on methamphetamine, yielding signifi-
cant effects of treatment (F(1, 15)=13.356, p=0.002, n§=0.471, MD = 0.045, CI=[0.019, 0.072]) and
time (F(1, 15)=9.132, p=0.009, n,23=0.378, MD = 0.041, CI=[0.012, 0.069)]); however, the interaction
between time and treatment did not reach statistical significance (Table 3; Pre-Rx m = 0.499 [0.015]
saline, 0.523 [0.040] methamphetamine; Post-Rx: m = 0.518 [0.053] saline, 0.585 [0.029] metham-
phetamine). Replication of group effects was significant across all three experiments
(MDpera = 2.063, CI=[0.341, 3.785], zyera = 2.348, p=0.019). Thus, learning was more strongly
driven by unexpected uncertainty in high paranoia participants and rats chronically administered
methamphetamine; they were faster to interpret volatility as reversal events than their low paranoia
and saline exposed counterparts.

Expected uncertainty (w,) was decreased in paranoid participants and rats exposed to metham-
phetamine (Figure 2b). In laboratory and online (version 3), paranoid individuals were slower to
update stimulus-outcome associations in response to expected uncertainty (Table 1, @, paranoia
effect, in laboratory: F(1, 30)=4.186, p=0.050, n,§=0.122, MD = —1.188, Cl=[-2.375,-0.002]; online
version 3: F(1, 70)=8.7, p=0.004, n3=0.111, MD = —0.993, Cl=[-1.665,-0.322]; MDyera = —1.154,
Cl=[—1.455,-0.853], zmeta = —7.521, p=5.450E-14). The effects of methamphetamine exposure in
rats were consistent (MDyera = —1.992, Cl=[—3.318,-0.665], zmera = —2.943, p=0.003) yet more
striking, with a strongly negative ®, accounting for the more pronounced lose-stay behavior or per-
severation in rats (time by treatment interaction, F(1, 15)=18.454, p=0.001, nf,=0.552; pre versus
post methamphetamine: F(1, 15)=42.242, p=1.0E-5°%, n3=0.738, MD = —1.604, CI=[-2.130,-1.078];
Pre-Rx m = 0.198 [0.33] saline, —0.036 [0.42] methamphetamine; Post-Rx: m = —0.023 [0.56] saline,
—1.640 [0.71] methamphetamine). High paranoia humans and rats exposed to methamphetamine
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Figure 3. Paranoia effects across task versions. (a) Estimated model parameters derived from participant choices in response to the tasks. Low paranoia
is shown in gray, high paranoia is shown in orange. ug, K, and m; are shown in separate panels (top, middle, and bottom panels, respectively; y-axes).
X-axes depict each separate online task version from Experiment 2 (version 1: Easy-Easy, version 2: Hard-Hard, version 3: Easy-Hard, version 4: Hard-
Easy). (b) Behavior. Win-switch rate (top): paranoid participants switched between decks more frequently after positive feedback. Rates are collapsed
across all task versions and blocks (paranoia group effect; n = 234 low paranoia [gray], 73 high paranoia [orange]). U-value (bottom): a measure of
choice stochasticity, calculated for low (gray) and high (orange) paranoia participants and collapsed across task blocks. U-values are shown separately
for each online task version (1 through 4, as in part a). In versions 3 and 4 only (the versions containing unsignaled contingency transitions), paranoid
participants showed higher U-values, suggesting increasingly stochastic switching rather than perseverative returns to a previously rewarding option.
Center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and
75th percentiles, outliers are represented by dots; crosses represent sample means; data points are plotted as open circles. P-values correspond to
estimated marginal means post-hoc comparisons: *p<0.05, **p<0.01, ***p<0.001.

maintained rigid beliefs about the underlying option probabilities relative to low paranoia and saline

controls. This was associated with perseverative behavior in the rats but not in humans.

Meta-volatility learning (w3) was similarly decreased across paranoia and methamphetamine
exposed groups (in laboratory, online version 3, and rats: MDygra = —1.155, Cl=[-2.139,-0.171],
zmveTa = —2.3, p=0.021), suggesting more reliance on expected task volatility (i.e., anticipated fre-
quency of reversal events) than on actual task feedback. In laboratory, we observed a block by para-
noia group interaction (Table 1, F(1, 30)=6.948, p=0.010, nf,=0.188). Post-hoc tests differentiated
first and second blocks for the low paranoia group only (F(1, 30)=26.640, p=1.5E-5, n3=0.470,
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Table 5. Experiment 2 effects across block, paranoia group, and task version.
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Block*group*
Block Group Version Version Group*version Block*group Block*version

F F F F F F F

CHM P (df)f P (dfyt P (df)t P (df)f P (df)t P (df)t P
®s  3722(1) 0055 0499 (1) 0481 2061(3) 0105 0415() 0742 1005(3) 0391 0145(]) 0704 7.0155(3) 1.42E-4
W 2881 (1) 1.01E-45 2604 (1) 0108 2.321(3) 0075 0261(3) 0853 2329(3) 0075 0281(1) 0597 00613 098
K 1209 (1) 7.65E-24 3602 (1) 0059 233;536 0002 008(3) 0971 4178(3) 0006 1028 (1) 0312 2559 (3 0055
@, 353(1) 7.92E9 4435(1) 0036 4155(3) 0.007 0.166(3) 0919 2809 (3) 004 2387 (1) 0123 8697 (3) 1.5E-5
W 713(1)  1.33E-15 0242(1) 0623 0616(3) 0605 1081(3) 0358 0412(3) 0744 0057 (1) 0812 1505(3) 0213
BIC 566(1) 6.23E-13 8073(1) 0005 5385(3) 0001 0262(3) 0853 4927(3 0002 0451 (1) 0502 11.905(3) 2.19E-07

T F-statistic (degrees of freedom); df error = 299; split-plot ANOVA (i.e., repeated measures with two between-subjects factors).

N/A denotes to p-values that were not significant before corrections. T Low versus high paranoia in humans, saline versus methamphetamine in rats. ¥

Group by time (i.e., first versus second half in human studies, Pre-Rx vs Post-Rx in rat studies). § p-value < 0.0125.

MD = —0.876, Cl=[-1.222,-0.529]). The paranoia effect did not reach statistical significance for
online version 3 (block effect only, F(1, 70)=14.932, p=0.0002, n§=0.176, MD = -0.692, Cl=
[-1.050,-0.335]; Table 3), but meta-analytic random effects analysis confirms a significant paranoia
group difference (in laboratory and online version 3: MDygra = —0.341, Cl=[-0.522,-0.159],
ZmeTta = —3.68, p=0.0002). Methamphetamine exposure rendered w3z more negative in rats (time by
treatment interaction, (F(1, 15)=9.058, p=0.009, nf,=0.376; pre versus post methamphetamine: F(1,
15)=30.668, p=5.7E-5, n3=0.672, MD = —1.210, Cl=[-1.676,-0.745]; Pre-Rx m = —0.692 [0.44]
saline, —0.607 [0.51] methamphetamine; Post-Rx: m = —1.044 [0.44] saline, —1.817 [0.32] metham-
phetamine). These data indicate that paranoia and methamphetamine are associated with slower
learning about changes in task volatility, suggesting greater reliance on volatility priors than task
feedback.

In summary, our modeling analyses suggest the following about paranoia in humans and metham-
phetamine exposed animals: they expect the task to be volatile (high u3), their expectations about
task volatility are more rigid (low ®3), and they confuse probabilistic errors and task volatility as a sig-
nal that the task has fundamentally changed (high x, low ).

We applied False Discovery Rate (FDR) correction for multiple comparisons of each model param-
eter (Hochberg and Benjamini, 1990). k group effects survived corrections within each experiment
(Table 4). In addition to x, ug survived for experiment 1; ug and ®, survived in online version 3; and
13, 0z, and s survived in experiment three as group effects. Such correction is not yet standard
practice with this modeling approach (Lawson et al., 2017, Powers et al., 2017, Sevgi et al., 2016)
but we believe it should be, and when effects survive correction we should increase our confidence
in them.

Paranoia effects across task versions

To examine the relationship between beliefs about contingency transition and paranoia within our
HGF parameters, we performed split-plot, repeated measures ANOVAs across all four task versions.
Paranoia group effects were specific to versions of the task in which we explicitly manipulated uncer-
tainty via contingency transition which increased volatility (Figure 3, Table 5, versions 3 and 4). Spe-
cifically, we observed paranoia by version interactions for x (F(3, 299)=4.178, p=0.006, n§=0.040)
and o, (F(3, 299)=2.809, p=0.040, n,z)=0.027; Table 2). Post-hoc tests confirmed that significant para-
noia group effects were restricted to version 3 (k: F(1, 299)=12.230, p=0.001, n§=0.039,
MD = 0.068, CI=[0.03,0.106]; w,: F(1, 299)=8.734, p=0.003, n§=0.028, MD = —0.993, Cl=[-1.655,-
0.332]) and a trend for version 4 (wy: F(1, 299)=2.909, p=0.089, n§=0.010, MD = -0.528, Cl=
[—1.138, 0.081], Figure 3a). ug also exhibited a paranoia by version trend (Table 2, (3, 299)=2.329,
p=0.075, n3=0.023), largely driven by version 3 (F(1, 299)=6.206, p=0.013, n3=0.020, MD = 0.909,
Cl=[0.191, 1.628]; Figure 3a). There were no significant paranoia effects or interactions for w3
(Table 5). In sum, our contingency shift manipulation — from easily discerned options to underlying
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®3 u30
Effect Df F p-value F p-value F p-value F p-value
Demographics (age, gender, ethnicity, and race)
Block 1, 294 0.328 0.568 10.835 0.001 3.425 0.066 2711 0.101
Block * Age 1, 294 0.659 0.418 2.035 0.155 2.195 0.14 0.212 0.646
Block * Gender 1, 294 0.363 0.547 0.105 0.746 4.042 0.046 0.096 0.757
Block * Ethnicity 1,294 0.016 0.901 0.042 0.837 0.268 0.605 0.024 0.876
Block * Race 1,294 3.244 0.073 0.279 0.598 0.082 0.775 1.386 0.24
Block * Paranoia Group 1, 294 0.001 0.969 0.162 0.687 0.738 0.391 1.189 0.277
Block * Version 3,294 7.61 7.25E-05 0.561 0.641 2.568 0.055 8.613 1.97E-05
Block * Paranoia Group * Version 3,294 0.451 0.717 0.135 0.939 0.119 0.949 0.1 0.96
Age 1, 294 3.054 0.082 2.974 0.086 2.101 0.149 2.339 0.128
Gender 1, 294 0.438 0.509 0.02 0.886 0.005 0.941 0.014 0.905
Ethnicity 1,294 0.029 0.865 0.059 0.808 0.087 0.768 0.221 0.639
Race 1, 294 0.072 0.789 2.218 0.138 0.373 0.542 0.333 0.564
Paranoia Group 1, 294 4.71E-04 0.983 0.741 0.39 1.795 0.182 3.302 0.071
Version 3,294 1.845 0.14 1.914 0.128 4.975 0.002 3.786 0.011
Paranoia Group * Version 3,294 0.935 0.424 1.911 0.129 3.599 0.014 1.919 0.127
Mental health factors (medication usage, diagnostic category, BAl score, and BDI score)
Block 1, 257 3.333 0.069 95.753 3.12E-19 25.498 8.78E-07 8.341 0.004
Block * BAI 1, 257 0.26 0.611 1.532 0.217 2.852 0.093 0.394 0.531
Block * BDI 1, 257 0.009 0.926 0.208 0.649 6.55 0.011 0.597 0.441
Block * Medication Usage 1, 257 0.027 0.87 1.288 0.258 0.691 0.407 0.871 0.352
Block * Diagnostic Category 1,257 1.366 0.244 1.785 0.183 0.063 0.803 0.208 0.649
Block * Paranoia Group 1,257 0.068 0.795 0.298 0.586 0.298 0.586 0.007 0.935
Block * Version 3, 257 5.872 0.001 0.531 0.662 0.906 0.439 6.16 0.0005
Block * Paranoia Group * Version 3, 257 1.024 0.383 0.869 0.458 0.266 0.85 0.095 0.963
BAI 1, 257 1.108 0.294 0.012 0.913 0.954 0.33 0.921 0.338
BDI 1, 257 0.037 0.848 0.574 0.449 1.343 0.248 2.372 0.125
Medication Usage 1, 257 0.327 0.568 0.058 0.81 0.002 0.966 0.467 0.495
Diagnostic Category 1, 257 4.252 0.04 0.004 0.949 1.443 0.231 1.743 0.188
Paranoia Group 1, 257 0.057 0.811 0.233 0.63 1.032 0.31 1.695 0.194
Version 3, 257 3.183 0.025 273 0.045 5.274 0.002 4.468 0.004
Paranoia Group * Version 3, 257 0.311 0.818 2.307 0.077 4.556 0.004 3.397 0.019
Global cognitive ability (educational attainment, income, and cognitive reflection)
Block 1, 290 1.19E-04 0.991 51.264 7.60E-12 28.675 1.83E-07 18.388 2.51E-05
Block * Education 1, 290 0.603 0.438 0.001 0.975 0.033 0.856 0.258 0.612
Block * Income 1, 290 1.211 0.272 2.874 0.091 3.483 0.063 2421 0.121
Block * Cognitive Reflection 1,290 1.83 0.177 0.709 0.401 1.221 0.27 4.667 0.032
Block * Paranoia Group 1, 290 0.005 0.946 0.359 0.55 0.263 0.608 0.885 0.348
Block * Version 3,290 8.861 1.27E-05 0.182 0.909 2.325 0.075 8.815 1.35E-05
Block * Paranoia Group * Version 3, 290 0.826 0.48 0.478 0.698 0.15 0.929 0.3 0.825
Education 1, 290 0.111 0.739 0.578 0.448 1.395 0.239 0.608 0.436
Income 1, 290 2.763 0.098 1.382 0.241 0.055 0.814 1.035 0.31
Cognitive Reflection 1, 290 0.164 0.686 12.807 0.0004 0.224 0.636 0.807 0.37
Paranoia Group 1, 290 0.069 0.793 0.555 0.457 2.477 0.117 4715 0.031
Table 6 continued on next page
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®3 u30 K 2
Effect Y F p-value F p-value F p-value F p-value
Version 3,290 2.104 0.1 2.55 0.056 5.53 0.001 3.799 0.011
Paranoia Group * Version 3,290 1.288 0.279 2.568 0.055 4.469 0.004 2.793 0.041

probabilities that are closer together — increased unexpected uncertainty the most, particularly in
highly paranoid participants, compared to the other task versions.

Covariate analyses

We completed three ANCOVAs for each HGF parameter derived from Experiment 2: demographics
(age, gender, ethnicity, and race); mental health factors (medication usage, diagnostic category, BAI
score, and BDI score); and metrics and correlates of global cognitive ability (educational attainment,
income, and cognitive reflection; Tables 6 and 7). For «, our metric of unexpected uncertainty, the
paranoia by version interaction remained robust across all three ANCOVAs (demographics: F(3, 294)
=3.753, p=0.011, n3=0.037; mental health: F(3, 257)=4.417, p=0.005, n2=0.049; cognitive: F(3, 290)
=4.304, p=0.005 ng=0.043). The paranoia by version trend of pu$ diminished with inclusion of demo-
graphic, mental health, and cognitive covariates (demographic: A3, 294)=1.997, p=0.119, n§=0.020;
mental health: F(3, 257)=1.942, p=0.123, n§,=0.022; cognitive: K3, 290)=2.193, p=0.089, nf,=0.022).
The paranoia by version interaction for ®, was robust to mental health and cognitive factors (F(3,
257)=3.617, p=0.014, nf,=0.041; F(3, 290)=3.017, p=0.030, n§,=0.030). A paranoia group effect and
paranoia by version trend remained with inclusion of demographics (®,, paranoia effect: F(1, 294)
=4.275, p=0.040, n,23=0.0’|4; interaction: F(3, 294)=2.507, p=0.059, n§=0.025). Thus x — participants’
perception of unexpected uncertainty — was the only parameter whose main effect of paranoia
(higher x in high paranoia participants) and paranoia-by-version interaction (higher x in high paranoia
participants as a function of increasing unexpected volatility in version 3) survived covariation for
demographic, mental health and cognitive covariates. We are most confident that high paranoia par-
ticipants have higher unexpected uncertainty which drives their excessive updating of stimulus-out-
come associations.

Relationships between parameters and paranoia

We found a significant correlation between k and paranoia scores (Figure 4). However, depression
and anxiety were also related to x, and indeed, paranoia and depression correlate with one another,
in our data and in other studies (Na et al., 2019). In order to explore commonalities among the rat-
ing scales in the present data, we performed a principle components analysis (Figure 5), identifying
three principle components. The first principle component (PC 1) explained 82.3% of the variance in
the scales and loaded similarly on anxiety, depression, and paranoia. It correlated significantly with
kappa (r = 0.272, p=0.021). Depression, anxiety and paranoia all contribute to PC1. We suggest that
this finding is consistent with the idea that depression and anxiety represent contexts in which para-
noia can flourish and likewise, harboring a paranoid stance toward the world can induce depression
and anxiety.

Table 7. Modified Cognitive Reflection Questionnaire ltems.

Item Prompt

1 A folder and a paper clip cost $1.10 in total. The folder costs $1.00 more than the paper clip.
How much does the paper clip cost?

2 If it takes 5 clerks 5 min to review five applications, how long would it take 100 clerks to review 100 applications?

3 In a garden, there is a cluster of weeds. Every day, the cluster doubles in size. If it takes 48 days for the cluster to cover the entire garden, how long
would it take for the cluster to cover half of the garden?
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Figure 4. Correlations between k and symptoms, with and without paranoia scores of zero. Paranoia (SCID-II, top), depression (BDI, middle), and
anxiety (BAI, bottom). (a) Among all 72 subjects from online version 3, x correlates with paranoia (r = 0.30, p=0.011, top) and depression (r = 0.250,
p=0.034, middle), but not anxiety (r = 0.210, p=0.077, bottom). (b) Among participants who endorse at least one paranoia item (SCID-Il paranoia >0,
n = 39), k correlates with paranoia (r = 0.588, p=8.1E-5, top), depression (r = 0.427, p=0.007, middle), and anxiety (r = 0.367, p=0.021, bottom). All

correlations are two-tailed.
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Figure 5. Dimensionality reduction analysis. Principal component analysis (PCA) was performed on behavioral data to explain the relationship between
k and the rating scales - paranoia (SCID), depression (BDI) and anxiety (BA). (a) Scree plot of PCA illustrates percent of variance for each component
explained by SCID, BDI and BAI. (b) Principal component 1 (PC1) plotted against k values. k correlates with PC1 (r = 0.272, p=0.021).

Multiple regression

In order to make the case that our observations were most relevant to paranoia, we examined the
effects of paranoia, anxiety, and depression on K within the online version three dataset with multi-
ple regression. A significant regression equation was found (F(3,68)=3.681, p=0.016), with an R
(Freeman et al., 2005) of 0.140. Participants’ predicted x equaled 0.486 + 0.062 (PARANOIA)
+0.012 (BDI) —0.006 (BAI). Paranoia was a significant predictor of k (B = 0.343, t = 2.470, p=0.016,
Cl=[0.012, 0.113]) but depression and anxiety were not (BDI: B = 0.086, t = 0.423, p=0.674, Cl=
[—0.043, 0.066]; BAI: B = —0.043, t = —0.218, p=0.828, CI=[-0.063, 0.050]). Examination of correla-
tion plots for k (Figure 4) revealed a much stronger relationship when analyses were restricted to
individuals with paranoia scores greater than O (i.e., endorsement of at least one item); among par-
ticipants who denied all questionnaire items, a minority (seven out of 32) exhibited elevated x. To
account for the possibility that some individuals with severe paranoia may avoid disclosing sensitive
information, we performed additional analyses of participants who endorsed one or more paranoia
item. The correlation between paranoia and « in the first block of the task increases from r = 0.3,
p=0.011, CI=[0.074, 0.497] (all participants, n = 72) to r = 0.588, p=8.0E-5, CI=[0.335, 0.762] (partici-
pants with paranoia >0, n = 39). In this subset, a significant regression equation was also found (F
(3,35)=6.322, p=0.002), with an R%of 0.351 (Figure 4). Participants’ predicted « was equal to 0.432 +
0.150 (PARANOIA)+0.013 (BDI) —0.004 (BAI). Paranoia was a significant predictor of k (3 = 0.538,
t = 2.983, p=0.005, CI=[0.048, 0.252]) but depression and anxiety were not (BDI: B = 0.111,
t = 0.494, p=0.624, CI=[-0.041, 0.067]; BAI: B = —0.035, t = —0.163, p=0.872, CI=[—-0.057, 0.049)).
Thus, paranoia predicts kappa across participants. Anxiety and depression do not predict kappa.

Behavior and simulations

Win-switching was the prominent behavioral feature of both paranoid participants and rats exposed
to methamphetamine (Table 1, Table 2; Groman et al., 2018). Collapsed across blocks and task ver-
sions, our Experiment 2 data demonstrated a main effect of paranoia group (Figure 3b; F(1, 299)
=9.207, p=0.003, n3=0.030, MD = 0.059, CI=[0.021, 0.097]; version trend: F(3299)=2.263 p=0.081,
n§=0.022; low paranoia: m = 0.06 [0.01], high paranoia: m = 0.12 [0.02]). To elucidate whether this
behavior was stochastic or predictable (e.g., switching back to a previously rewarding option), we
calculated U-values (Kong et al., 2017), a metric of behavioral variability employed by behavioral
ecologists (increasingly an inspiration for human behavioral analysis [Fung et al., 2019]), particularly
with regards to predator-prey relationships (Humphries and Driver, 1970). When a predator is
approaching a prey animal, the prey’s best course of action is to behave randomly, or in a protean
fashion, in order to evade capture (Humphries and Driver, 1970). The more protean or stochastic
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Figure 6. Parameter effects on simulated task performance. We simulated behavior from low paranoia participants
(online Version 3, n = 54) to evaluate the effects of ,u$, @, and ws on win-shift and lose-stay rates. Estimated
perceptual parameters were averaged across subjects to create a single set of baseline parameters. Additional
parameter sets were created by doubling or halving one parameter at a time (e.g., 2 k or 0.5 k), while the others
were held constant (n.b., 2 @, violated model assumptions and was excluded from analysis). We also included the
average parameter values of rats exposed to methamphetamine (Meth). Ten simulations were run per subject for
each condition (i.e., parameter set). Win-shift and lose-stay rates were calculated, then averaged across
simulations and subjects. Rates from each condition were divided by the baseline condition rate to generate
relative win-shift and lose-stay rates. We compared relative rates for each condition to the baseline (relative rate of
1, depicted as the dotted line; paired t-tests, Bonferroni-corrected p-values). Of note, baseline parameters were
positive for k and ®,, and negative for p3 and ms. Consequently, the doubled (2x) condition makes u3 and w; more
negative (lower). (n = 54). Box-plots: center lines show the medians; box limits indicate the 25th and 75th
percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers are
represented by dots; crosses represent sample means; data points are plotted as open circles; *p<0.05, **p<0.01,
***<0.001.

the behavior, the closer to the U-value is to 1. Across task blocks, paranoid participants exhibited
elevated choice stochasticity (paranoia by version interaction, F(3, 298)=3.438, p=0.017, nf,=0.033;
Table 2). Post-hoc tests indicate that this stochasticity was specific to versions with contingency tran-
sition, suggesting a relationship to unexpected uncertainty (Figure 3b; version 3, F(1, 298)=17.585,
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Figure 7. Parameter recovery. (a) Actual subject trajectory: this is an example choice trajectory from one participant (top). The layers correspond to the
three layers of belief in the HGF model (depicted in Figure 2a). Focusing on the low-level beliefs (yellow box): The purple line represents the subject’s
estimated first-level belief about the value of choosing deck 1; blue, their belief about the value of choosing deck 2; and red, their belief about the

value of choosing deck 3. Simulated subject trajectory represents the estimated beliefs from choices simulated from estimated perceptual parameters
from that participant (middle), and Recovered subject trajectory represents what happens when we re-estimate beliefs from the simulated choices

(bottom). Crucially, Simulated trajectories closely align with real trajectories (the increases and decreased in estimated beliefs about the values of each
deck [purple, blue, red lines] align with each other across actual, simulated and recovered trajectories), although trial-by-trial choices (colored dots and

Figure 7 continued on next page
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Figure 7 continued

arrow) occasionally differ. Outcomes (1 or 0; black dots and arrows) remain the same. (b) Actual versus Recovered: these data represent the belief
parameters estimated from the participant’s responses (Actual) compared to those estimated from the choices simulated with the participant’s
perceptual parameters (Recovered). Actual and Recovered values significantly correlate for @, (r = 0.702, p=2.52E-11) and «x (r = 0.305, p=0.011) but not
o3 (r = 0.172, p=0.16) or pJ (r = 0.186, p=0.13). Box plots: gray indicates low paranoia, orange designates high paranoia; center lines depict medians;
box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers are
represented by dots; crosses represent sample means; data points are plotted as open circles. Online version three dataset.

p=3.6E-5, n3=0.056, MD = 0.071, CI=[0.038, 0.104]; version 4, F(1, 298)=6.397, p=0.012, n3=0.021,
MD = 0.039, CI=[0.009, 0.07]). Our task manipulation, increasing unexpected volatility, increases
win-switching behavior and stochastic choice more in more paranoid participants.

To test the propriety of our model, we simulated data for each subject in online version 3 and
determined whether or not key behavioral effects (Figure 7a, Table 1, Table 8) were present. Using
individually estimated HGF parameters to generate ten simulations per participant, we recapitulated
both elevated win-switch behavior (paranoia effect, F(1, 70)=15.394, p=2.01E-4, nf,=0.180,
MD = 0.186, CI=[0.091, 0.28]) and choice stochasticity (U-value; paranoia effect, F(1, 70)=13.362,
p=0.0005, nf,=0.160, MD = 0.065, CI=[0.030, 0.101]) in simulated paranoid participants (Figure 7b;
simulated win-switch rate, low paranoia: m = 0.24 [0.02], high paranoia: m = 0.43 [0.04]; simulated
U-value, low paranoia: m = 0.851 [0.008], high paranoia: m = 0.916 [0.016]). Neither real nor simu-
lated data showed any significant relationship between lose-stay behavior and paranoia (Table 1,
Table 2, Table 8). To demonstrate the effects of parameters on task performance, we performed
additional simulations in which we doubled or halved a single parameter at a time from the baseline
average of low paranoia participants. These results confirmed the impact of x, ®,, and w3 on win-
shift behavior (Figure 4). Parameter recovery revealed significant correlations for x and m, between
original subject parameters and those estimated from simulations (Figure 6; w: r = 0.702, p=2.52E-
11, CI=[0.557, 0.805]; x: r = 0.305, p=0.011, CI=[0.072, 0.506]). Higher level parameters (w3, ud)
were less consistently recovered, as noted in previous publications (Bréker et al., 2018). Thus, the
model we chose, with meta-volatility and three coupled layers of belief, successfully simulates the
key features of paranoid behavior: higher win-switching and stochastic choice.

Alternate models

Our model is complex and other simpler reinforcement learning models might explain behavior on
this task. Given the win-switching behavior we sought to understand, we fit a model from Lefebvre
and colleagues that instantiated biased belief updating via differential weighting of positive and

Table 8. Simulations and behavior.

Win-switch rate U-value Lose-stay rate
Effect  Df F p-value F p-value F p-value
Experiment 1 - -
Block 1,30 1.465 0.236 16.999 0.0003 1.334 0.257
Block*Paranoia Group 1, 30 0.602 0.444 2.393 0.132 2.575 0.119
Paranoia Group 1, 30 3.579 0.068 3.312 0.079 2.283 0.141
Experiment 2, Version 3
Block 1,70 0.935 0.337 10.153 0.002 0.122 0.728
Block*Paranoia Group 1,70 0.001 0.982 0.003 0.958 1.93 0.169
Paranoia Group 1,70 12.698 0.001 19.209 4.03E-05 1.095 0.299
Simulations'
Block 1,70 0.176 0.676 3.335 0.072 5.073 0.027
Block*Paranoia Group 1,70 2.039 0.158 2.624 0.1 0.036 0.85
Paranoia Group 1,70 15.394 0.0002 13.362 0.0005 0.042 0.839

tSimulated data from experiment 2, Version 3.
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Table 9. Alternative models fail to capture paranoia group differences.

Low Paranoia (n=56)1

Paranoia Group Paranoia x Block
High Paranoia (n=16)t Effect? Effect?

Mean SEM

95% CI Mean SEM 95% CI F(df) P F(df) P

Q-learning with learning rates for positive and negative prediction errors

Positive prediction error (a+)

1st half 0.463 0.038 [0.388, 0.538] 0.475 0.071 [0.335, 0.616] 0.243 (1, 70) 0.623 0.118 (1, 70) 0.732
2nd half 0.476 0.039 [0.398, 0.555] 0.535 0.074 [0.379, 0.672]

Negative prediction error (a-)

1st half 0.421 0.022 [0.377, 0.464] 0.365 0.041 [0.284, 0.446] 1.292 (1, 70) 0.260 0.320 (1, 70) 0.573
2nd half 0.386 0.021 [0.344, 0.427] 0.364 0.039 [0.285,0.442]

Inverse temperature ()

1st half 271 74.0 [126, 416] 147 133 [-114, 408] 1.626 (1, 70) 0.207 0.043 (1, 70) 0.837
2nd half 316 82.3 [155, 477] 145 132 [-114, 403]

2-level HGF with softmax decision model

n2

1st half -0.059 0.081 [-0.218, 0.100] -0.303 0.157 [-0.611, 0.005] 3.039 (1, 70) 0.086 0.385 (1, 70) 0.537
2nd half -0.244 0.082 [-0.405, -0.082] -0.566 0.155 [-0.869, -0.262]

Inverse temperature (B)

1st half 131 30.6 [71.3,191] 353 6.20 [23.2, 47.5] 2.665 (1, 70) 0.107 0.250 (1, 70) 0.619
2nd half 119 30.6 [58.7, 179] 52.1 121 [28.3, 75.9]

T Online version 3 data ¥ Repeated measures ANOVA.

negative prediction errors (Lefebvre et al., 2018). Fitting this model to online version 3, we saw no
significant paranoia group differences in learning rates for positive or negative prediction errors in
parameters derived from all 180 trials (independent samples t-test: a*, t(70)=-0.532, p=0.597; o, t
(70)=0.963, p=0.339), nor did we see any significant block*paranoia or paranoia group effects by
repeated measures ANOVA (block*paranoia: o, F(1, 70)=0.188, p=0.732, o, F(1, 70)=0.378,
p=0.540; paranoia group: o, F(1, 70)=0.243, p=0.623, o, F(1, 70)=1.292, p=0.260). See Table 9.

We can also simplify within our hierarchical Gaussian Filter framework. The model we chose had
three layers of beliefs and the highest level seemed to capture most of the task and paranoia effects
of interest (Figure 8). To confirm this suspicion, we removed the third layer, fitting an HGF model
that had beliefs about outcomes and deck values but no beliefs about volatility, no unexpected vola-
tility learning rate, nor meta-volatility. This model failed to capture the task effects or group differen-
ces in its parameters (see Table 9).

Therefore, a more complicated model, one that captures higher-level beliefs about contingency
transitions or learning when to learn, seems most appropriate, and indeed, that type of model was
able to simulate the key features of our data (Palminteri et al., 2017). Future work will compare and
contrast different potential computational models included, but not limited to Bayesian Hidden State
Markov Models (Hampton et al., 2006), as well as switching (Gershman et al., 2014) and volatile
Kalman Filters (Piray and Daw, 2020).

Clustering analysis

Given the apparent similarity in effects of paranoia and methamphetamine in humans and rats,
respectively (Figure 2b), we searched for latent structure in our data using two-step cluster analysis
(Tkaczynski, 2017). This approach sorts subjects into groups (clusters) on the basis of some experi-
menter-selected variables such as estimated model parameters. The goal is to find distinct subsets
in the data such that each cluster exhibits a cohesive pattern of relationships between the variables.
Whereas some clustering approaches require the experimenter to predefine the expected number
of clusters, two step-clustering determines both the optimal number of clusters and the composition
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Figure 8. Behavioral data and simulations. (a) Plots of in laboratory and online behavioral metrics. Win-switch rate (switching after positive feedback),
U-value (behavioral stochasticity) and Lose-stay rate (perseverating after a loss). Low paranoia participants are shown in gray, High paranoia in orange.
Win-switch rates and U-values are collapsed across blocks. For Lose-stay rates, darker colors are block one data and lighter colors are block two data.
Behavioral switching patterns replicate across in laboratory and online version three experiments. Perseveration after negative feedback (lose-stay
behavior) did not significantly differ between paranoia groups or task block. (b) Simulated data generated from HGF perceptual parameters (version 3).
Win-switch rate, U-value and Lose-stay rate of the simulated data are depicted. The model simulated data replicate the win-switch and U-value
behavioral differences between high and low paranoia participants presented in panel a. Like the real participants, there was no difference in lose-stay
rates in the simulated data. Center lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile
range from the 25th and 75th percentiles, outliers are represented by dots; crosses represent sample means; data points are plotted as open circles.

*p<0.05, **p<0.01, ***p<0.001. Plots of participant behavioral metrics (a) are presented side by side with simulated data (b).

of each cluster. The greater the similarity (or homogeneity) within a group and the greater the differ-

ence between groups, the better the clustering.
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Figure 9. Cluster analysis of HGF parameters. Two-step cluster analysis of model parameters (w3, 13, « , ©,) across
rat and human data sets (rat, post-Rx; in laboratory and online version 3, block 1). Automated clustering yielded an
optimal two clusters with good cohesion and separation (average silhouette coefficient = 0.7; cluster size

ratio = 2.46). (a) Density plots for 1S, k, 0y, and o3 (light pink) depict cluster-specific distributions for each
parameter (red). Unlike frequency histograms (that depict the number of data points in bins), density plots employ
smoothing to prioritize distribution shape and are not restricted by bin size. Beneath each density plot, box-plots
of overall median, 25t quartile, and 75th quartile for each parameter are aligned (pink), with cluster medians and
quartiles superimposed (red). Relative to the overall distribution, Cluster 1 (n = 35) medians are elevated for u3
and k, decreased for @, and 3. Cluster 2 (n = 86) falls within each overall distribution. (b) Predictor importance of
included parameters. Consistent with the color scheme in Figure 2a, Uncertainty weighting parameters (k, w,, ®3)
are depicted in purple and u§ the prior is in blue. (c) Distribution of cluster identities within groups. Black bars
signify the proportion of group members assigned to Cluster one and gray bars represent the proportion of group
members assigned to Cluster 2. Cluster one membership is significantly associated with paranoia and
methamphetamine groups %1, n = 121)=29.447, p=5.75E-8). Columns display means [standard error] or

Figure 9 continued on next page
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Figure 9 continued

percentage of participants within the described category, test-statistics, and p-values. TIndependent samples
t-test: t-value (df). Two-tailed P-values reported. *Chi square coefficient (df). SFisher's exact test, exact significance
(2-sided). ﬂEqual variances not assumed. *Not significant (Bonferonni correction). Data presented in Figure 8;
repeated measures ANOVA, paranoia group trend or effect: F(df), P; estimated marginal means and standard
error. HData presented in Figure 2; repeated measures ANOVA, F(df), P. In laboratory: paranoia x block
interactions for s, u3; paranoia group effects for «, w,. Version 3: paranoia group effects reported. See Table 3
for complete ANOVA. results. Version columns display means [standard error] or percentage of participants within
the described category. TUnivariate analysis, F(df). *Exact test, chi-square coefficient (df). § Exact significance (2-
sided). 'Monte Carlo significance (2-sided). HData presented in Figure 3; repeated measures ANOVA, F(df), P.
Mean values collapsed across blocks.

Considering that paranoia and methamphetamine exposure share a pattern of elevated u3 and «
accompanied by decreased m, and w3 (Table 10), we hypothesized that these four variables would
yield a distinct cluster: a ‘paranoid style’ across species. We analyzed u3, x, 0,, and w3 estimates
derived from the first block of experiment one and online version 3 (pre-context change data,
because rats do not experience a context shift) with post-chronic exposure rat data (methamphet-
amine and saline). We identified two clusters with good cohesion and separation, meaning that sub-
jects sorted into two groups (each containing rodents and humans) whose parameters travelled in
such a way that their values were close to the centroid or mean of the cluster they were in and as far
as possible from the centroid of the other cluster (average silhouette coefficient = 0.7; cluster size
ratio = 2.46; Figure 9a). All parameters contributed to clustering; ¥ contributed most strongly
(Figure 9b). Importantly, the cluster solution did not separate rats from humans (despite the differ-
ences in task structure, incentives, manipulanda, and phylogeny). Relative to the overall distribution,
Cluster one was characterized by high k and u3, and decreased , and w3. Cluster one membership
was significantly associated with high paranoia and methamphetamine exposure, (1, n = 121)
=29.447, p=5.75E-8, Cramer’s V = 0.493 (Figure 9c). Notably, no participants in the low paranoia
group with paranoia scores above zero were ascribed Cluster one membership. The cluster solution
was robust to validation by split-half analysis (removing half of the participants and repeating the
clustering), removal of the rat subjects, and removal of human participants. In each case, we identi-
fied two clusters with good cohesion and separation (Split-half 1, n = 19 cluster 1, 42 cluster 2: sil-
houette coefficient = 0.6; Split-half 2, n = 17 cluster 1, 43 cluster 2: silhouette coefficient = 0.7; No
Rat, n = 26 cluster 1, 78 cluster 2: silhouette coefficient = 0.7; Rat Only, n = 6 cluster 1, 11 cluster 2:
silhouette coefficient = 0.7). In summary, paranoid participants and methamphetamine-exposed rats
cluster together (high p$, high x, low ®,, and low s), suggesting that these parameters share an
underlying generative process and that paranoia and methamphetamine have similar effects on
reversal-learning.

Table 10. Summary of paranoia/methamphetamine effects on belief-updating.

In lab Online Rats
3 lT M A4
ud + RS t
K t o *
(7] + Feal +

u - - -

* i Non-significant increase/decrease in high paranoia or meth, relative to low paranoia or saline T | Trend-level
increase/decrease in high paranoia or meth, relative to low paranoia or saline # Significantly higher/lower in high
paranoia or meth, relative to low paranoia or saline - - No significant findings or trends 1 Baseline trend; parameter
decreases in second block for low but not high paranoia f Version 3 only § Trend-level significance disappears with
inclusion of demographic covariates 9 Significance reduced to trend with inclusion of demographic covariates.
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Discussion

During non-social probabilistic reversal-learning, paranoid individuals and rats chronically exposed to
methamphetamine have higher initial expectations of task volatility (ug). In other words, they start
the task anticipating more changes in stimulus-outcome associations, and they switch choices readily
and excessively in anticipation of reversal events. By relying more on their expectations of volatility
than on actual experience (exemplified by switching even after positive feedback), they are slower to
learn about changes in task volatility. This manifests as decreased meta-volatility learning (ws) and
failure to significantly adjust p3 after contingency transitions. More paranoid individuals are similarly
slower to adjust expected deck values (lower ;) but faster to attribute volatility to reversal events
(elevated «), perceiving change (unexpected uncertainty) instead of normal statistical variation
(expected uncertainty). They sit at Hofstadter's ‘turning point’, constantly expecting change but
never learning appropriately from it.

In the reversal learning literature, choice switching after positive feedback has garnered less
attention than perseverative behavior and sensitivity to negative feedback (Izquierdo et al., 2017,
Waltz, 2017). Individuals with depression and schizophrenia seemingly perseverate less than healthy
controls, but this has formerly been attributed to increased sensitivity to negative feedback
(Waltz, 2017; Robinson et al., 2012). However, elevated win-switch tendencies have been reported
in youths with bipolar disorder, major depressive disorder, and anxiety disorder (Dickstein et al.,
2010). A prior study in people with schizophrenia described excessive win-switch behavior that cor-
related with the severity of delusional beliefs and hallucinations (Waltz, 2017). Likewise, an elevated
prior on environmental volatility (u3) and higher sensitivity to this volatility (k) have been observed in
HGF analyses of 2-choice probabilistic reversal-learning in medicated and unmedicated patients with
schizophrenia (Deserno, 2018). These authors did not explore paranoia specifically.

We assessed paranoia across the continuum of health and mental illness, provided three choice
options, and explicitly manipulated unexpected volatility across task versions. The version that
shifted from an easier to a more difficult contingency context (version 3) was associated with para-
noia group effects on ug, K, and @y, and a meta-analytic effect on 3. Furthermore, this contingency
transition — an exposure to truly unexpected volatility — rendered low paranoia controls more similar
to their paranoid counterparts by decreasing their meta-volatility learning (®3). Paranoid participants
responded to contingency transitions in version 3 and version four by switching stochastically. These

Table 11. Questionnaire item completion (% responses).

Questionnaire/subscale Experiment 1 Experiment 2
Age 90.6% 99.7%
Gender 100.0% 100.0%
Ethnicity 100.0% 100.0%
Race 100.0% 100.0%
Education 100.0% 99.7%
Meds 100.0% 90.6%
Dx 100.0% 94.1%
Income N/A 98.0%
SCID-II Paranoia - all items 96.9% 94.1%
SCID-II Paranoia - one item missing 3.1% 5.5%
SCID-Il Paranoia - three items missing 0.0% 0.3%
Cognitive reflection - all items N/A 97.7%
Beck’s Anxiety Inventory (BAI) - all items 90.6% 96.7%
BAI - one item missing 3.1% 2.9%
BAI - two items missing 6.3% 0.3%
Beck’s Depression Inventory (BDI) - all items 100.0% 99.0%
BDI - one item missing 0.0% 1.0%
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findings suggest a continuum of behavioral responses to volatility, moving from optimal learning to
diminished feedback sensitivity (i.e, decreased w3 in low paranoia participants) and from diminished
feedback sensitivity (lower s and increased win-switching in high paranoia participants) toward
complete dissociation from experienced feedback (stochastic switching).

Unexpected uncertainty, the perception of change in the probabilities of the environment — par-
ticularly ‘unsignaled context switches” (Yu and Dayan, 2005) which increase unexpected volatility —
is thought to promote abandonment of old associations and new learning. However, our results sug-
gest that this response might vary according to a hierarchy of belief. Paranoid participants were
quick to abandon ‘best deck’ associations and explore alternative options (i.e., x, beliefs), but in turn
they relied more on their higher-level beliefs about the task volatility (x3 beliefs) and less on sensory
feedback (lower metavolatility learning). Our analysis of covariates warrants specific focus on «, the
sensitivity to unexpected volatility. Other parameter-paranoia associations did not endure after con-
trolling for demographic factors (age, gender, ethnicity, and race), although we see their derange-
ment in our rodent study as well as in the significant meta-analytic effects across our experiments.
Furthermore, these demographic factors are themselves strong predictors of paranoia (Holt and
Albert, 2006; lacovino et al., 2014; Mahoney et al., 2010). It is notable too that x was the most
powerful discriminator of the two clusters of human and animal participants. We conclude that ele-
vated k - belief updating tethered to unexpected volatility - is the parameter change most robustly
associated with paranoia. Doubling « in our simulations induced significantly more win-switching.

Multiple neurobiological manipulations may induce such win-switching behavior. Lesions of the
mediodorsal thalamus in non-human primates (Chakraborty et al., 2016) or neurons projecting
from the amygdala to orbitofrontal cortex in rats (Groman et al., 2019) engender win-switching.
Unexpected uncertainty, and the k parameter of the HGF in particular (Marshall et al., 2016), are
thought to be signaled via the locus coeruleus and noradrenaline (Yu and Dayan, 2005; Payzan-
LeNestour and Bossaerts, 2011; Payzan-LeNestour et al., 2013; Tervo et al., 2014). This mecha-
nism is thought to modulate switching versus staying behaviors (Kane et al., 2017; Aston-
Jones and Cohen, 2005; Aston-Jones et al., 1999; Eldar et al., 2013), as well as responses to
stress (Borodovitsyna et al., 2018, McCall et al., 2015; Atzori et al., 2016) and subliminal fear
cues (Liddell et al., 2005) to coordinate fight-or-flight responses (Atzori et al., 2016). The dual role
of the locus coeruleus in recognizing and responding to threats as well as unexpected uncertainty
suggests that dysfunction could produce both parancia and the inferential abnormalities we
observed. Methamphetamine may induce similar dysfunction (Ferrucci et al., 2019; Ferrucci et al.,
2013; Ferrucci et al., 2008). Acute moderate doses increase pre-synaptic catecholamine release,
particularly noradrenaline (Rothman et al., 2001), and induce exploratory locomotive effects modu-
lated through adrenoceptors on dopamine neurons (Ferrucci et al., 2013).

Excessive release of noradrenaline from the locus coeruleus into the anterior cingulate cortex
drives feedback insensitivity and stochastic switching behavior in rats completing a three-option
counter prediction task (Tervo et al., 2014). Evolutionarily, departure from predictable, rational
actions might offer an adaptive mechanism for escape from intractable threat. As a protean defense
mechanism, behavioral stochasticity impedes predators’ abilities to create accurate, actionable coun-
termeasures (Humphries and Driver, 1970; Richardson et al., 2018; Humphries and Driver, 1967).
If driven by excessive unexpected uncertainty, underwritten by noradrenaline, protean defense may
represent a heavily conserved, continuous common mechanism underlying vigilance and false alarms
(Aston-Jones et al., 1994; Rajkowski et al., 1994; Usher et al., 1999), arousal-linked attentional
biases (Eldar et al., 2013) and selective processing of social threats. However, protean behaviors
are not necessarily adaptive. Pathological insensitivity to feedback and reliance on internal beliefs
over evidence constitute a ‘break from reality’ — in other words, psychosis.

Efference copy models of motor control Wolpert and Ghahramani, 2000 have been evoked to
explain psychotic symptoms (Blakemore et al., 2000; Blakemore et al., 1998; Blakemore et al.,
1999; Blakemore et al., 2002; Frith et al., 2000a; Frith et al., 2000b; Shergill et al., 2005;
Shergill et al., 2014). Aberrant mismatches between expected and experienced sensory consequen-
ces of actions, weighted by their uncertainty (Wolpert and Ghahramani, 2000), can lead to the mis-
attribution of one’s movements to an external agent (Blakemore et al., 2000; Blakemore et al.,
1998; Blakemore et al., 1999, Blakemore et al., 2002; Frith et al., 2000a; Frith et al., 2000b;
Shergill et al., 2005; Shergill et al., 2014). Since we model others’ intentions with reference to our
model of ourselves (Friston and Frith, 2015), volatile experiences of ones’ body and actions will
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lead to uncertain and ultimately more threatening inferences about others (Friston and Frith, 2015).
This would be entirely consistent with the present observations.

When confronted with intractable unexpected uncertainty our participants rely on higher-level
beliefs about the task environment. When humans experience non-social volatility, (For example
through threats to their sense of control [Whitson and Galinsky, 2008] or exposure to surprising
non-social stimuli [Proulx et al., 2012; Heine et al., 2006]), they appeal to the influence of powerful
enemies, even when those enemies’ influence is not obviously linked to the volatility (Sullivan et al.,
2010). Our account places the locus of paranoia at the level of the individual. Here, our account
departs from evolutionary accounts of paranoia grounded in coalitional threat (Raihani and Bell,
2019; persecutors are not scapegoats that increase group cohesion. Rather, when paranoid, we
have a ready explanation for hazards. With a well-defined persecutor in mind, a volatile world may
be perceived to have less randomly distributed risk (Sullivan et al., 2010). However, paranoia might
become a self-fulfilling prophecy, engendering more volatility and negative social interactions. This
aspect may be captured in our task through win-switch behavior. By failing to incorporate positive
feedback from the best option, paranoid individuals sample sub-optimal options which delivers mis-
leading positive feedback.

There are some important limitations to our conclusions. Compared with humans, rats are rela-
tively asocial. But they are not completely asocial. In our experiment they were housed in pairs, and,
more broadly, they evince social affiliative interactions with other rats (Donaldson et al., 2018;
Kondrakiewicz et al., 2019; Urbach et al., 2010). A further limitation centers on the comparability
of our experimental designs. In humans our comparisons were both within (contingency transition)
and between groups (low versus high paranoia). In rats, the model was also mixed with some
between (saline versus methamphetamine) and some within-subject (pre versus post chronic treat-
ment) comparisons. We should be clear that there was no contingency context transition in the rat
study. However, just as that transition made low paranoia humans behave like high paranoia, chronic
methamphetamine exposure made rats behave on a stable contingency much like high paranoia
humans - even in the absence of contingency transition. The comparable results across species,
despite these differences, warrant the inference that our basic, relatively asocial, approach provides
a robust tool for computational dissection of learning mechanisms.

Social interactions play a rich and undeniable role in paranoia, but translational, domain-general
approaches may ultimately facilitate biological insights into paranoia, psychosis and delusions
(Corlett and Fletcher, 2014; Feeney et al., 2017). Whilst we contend that our task is relatively free
of social features (certainly compared to others [Raihani and Bell, 2017]), the possibility remains
that the elevated U-values in our participants are reflective of attempts (and perhaps failures) to pre-
dict our intentions as experimenters. Indeed, this is a possibility raised previously with regards to
simple conditioned behaviors in experimental animals. Even during Pavlovian conditioning, animals
may attempt to infer a generative model of the task environment, which might, ultimately, include
the experimenter arranging the contingencies (Gershman and Niv, 2012, Gershman and Niv,
2010). It is possible that all instances of human cognitive testing involve an element of inference by
the participant with regards to the intentions of the experimenter, whether or not the task at hand is
explicitly social, and indeed, all cognitive functions may be aimed at or modulated by such infer-
ences (Turner et al., 1994).

In summary, a strong belief in the volatility of the world necessitates hypervigilance and a facility
with change. However, in paranoia, that belief in the volatility of the world is itself resistant to
change, making it difficult to reassure, teach, or change the minds of people who are paranoid. They
remain ‘on guard,” adhering to expectations over evidence. By using a non-social task, we have
shown that this paranoid style is not restricted to the social domain, and that it can be modeled in
relatively asocial animals. Additionally, our domain-general approach reaffirms the merit of establish-
ing expectations of a stable, predictable environment to promote recovery from paranoia-associated
illness (Powers et al., 2018). We note with interest the apparent relationship between conspiratorial
ideation and societal crisis situations (terrorist attacks, plane crashes, natural disasters or war)
throughout history, with peaks around the great fire of Rome (AD 64), the industrial revolution, the
beginning of the cold war, 9/11, and contemporary financial crises (van Prooijen and Douglas,
2017). In today's world of escalating uncertainty and volatilty — particularly environmental climate
change and viral pandemics — our findings suggest that the paranoid style of inference may prove
particularly maladaptive for coordinating collaborative solutions.
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Materials and methods

Experiments were conducted at Yale University and the Connecticut Mental Health Center (New
Haven, CT) in strict accordance with Yale University’s Human Investigation Committee and Institu-
tional Animal Care and Use Committee. Informed consent was provided by all research participants.

Experiment 1

English-speaking participants aged 18 to 65 (n = 34) were recruited from the greater New Haven
area through public fliers and mental health provider referrals. Exclusion criteria included history of
cognitive or neurologic disorder (e.g., dementia), intellectual impairment, or epilepsy; current sub-
stance dependence or intoxication; cognition-impairing medications or doses (e.g. opiates, high
dose benzodiazepines); history of special education; and color blindness. Participants were classified
as healthy controls (n = 18), schizophrenia spectrum patients (schizophrenia or schizoaffective disor-
der; n = 8), and mood disorder patients (depression, bipolar disorder, generalized anxiety disorder,
post-traumatic stress disorder; n = 8) on the basis of clinician referrals and/or self-report. Participants
were compensated $10 for enrolment with an additional $10 upon completion. Two healthy controls
were excluded from analyses due to failure to complete the questionnaires and suspected substance
use, respectively.

Experiment 2

332 participants were recruited online via Amazon Mechanical Turk (MTurk). The study advertise-
ment was accessible to MTurk workers with a 90% or higher HIT approval rate located within the
United States. To discourage bot submissions and verify human participation, we required partici-
pants to answer open-ended free response questions; submit unique, separate completion codes for
the behavioral task and questionnaires; and enter MTurk IDs into specific boxes within the question-
naires. All submissions were reviewed for completion code accuracy, completeness of responses (i.
e., declining no more than 30% of questionnaire items), quality of free response items (e.g., length,
appropriate grammar and content), and use of virtual private servers (VPS) to submit multiple
responses and/or conceal non-US locations (Dennis VPS paper, 2018). Upon approval, workers were
compensated $6. Those who scored in the top 25% on the card game (reversal-learning task) earned
a $2 bonus. We rejected or excluded 19 submissions that geolocation services (https://www.iploca-
tion.net/) identified as originating outside of the United States or from suspected server farms, four
submissions for failure to manually enter MTurk ID codes, and two submissions for insufficient ques-
tionnaire completion. Submissions with grossly incorrect completion codes were rejected without
further review.

Experiment 3

Subject information, behavioral data acquisition, and behavioral analyses were described previously
(Groman et al., 2018). Long Evans rats (Charles River; n = 20) ranged from 7 to 9 weeks of age.
Rats were exposed to escalating doses and frequency of saline (n = 10) or methamphetamine
(n = 10, three withdrawn during dosing), imitating patterns of human methamphetamine users
(Segal et al., 2003; Han et al., 2011). Prior to dosing (Pre-Rx), rats completed 26 within-session
reversal sessions, including up to eight reversals per session. Post-dosing (Post-Rx), rats completed
one test session per week for four weeks. Computational model parameters were estimated from
each session and averaged across treatment conditions to yield one Pre-Rx and Post-Rx set of
parameters per rat.

Behavioral task

Participants completed a 3-option probabilistic reversal-learning paradigm. Three decks of cards
were displayed on a computer monitor for 160 trials. Participants selected a deck on each trial by
pressing the predesignated key. We advised participants that each deck contained winning and los-
ing cards (+100 and —50 points), but in different amounts. We also stated that the best deck may
change. Participants were instructed to find the best deck and earn as many points as possible.
Probabilities switched between decks when the highest probability deck was selected in 9 out of 10
consecutive trials (performance-dependent reversal). Every 40 trials the participant was provided a
break, following which probabilities automatically reassigned (performance-independent reversal).
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In Experiment 1, the task was presented via Eprime 2.0 software (Psychology Software Tools,
Sharpsburg, PA). Participants were limited to a 3 s response window, after which the trial would time
out and record a null response. A fixation cross appeared during variable inter-trial intervals (jitter-
ing). Task pacing remained independent of response time. In block 1 (trials 1-80) the reward proba-
bilities (contingency) of the three decks were 90%, 50%, and 10% (90-50-10%). Without cue or
warning (i.e. unsignaled to the participants) the contingency transitioned to 80%, 40%, and 20% (80-
40-20%) upon initiation of block 2 (trials 81-160).

In Experiment 2, the task was administered via web browser link from the MTurk marketplace.
We changed the task timing to self-paced and eliminated null trials and inter-trial jittering. A prog-
ress tracker was provided every 40 trials. Workers were randomly assigned to one of four task ver-
sions, using restricted block randomization to ensure comparable numbers of high paranoia
participants across task versions. Version one had a constant contingency of 90-50-10%. Version 4
maintained a constant contingency of 80-40-20%. Version 3 replicated the 90-50-10% (block 1) to
80-40-20% (block 2) context transition of Experiment 1. Version 4 presented the reversed contin-
gency transition, 80-40-20% (block 1) to 90-50-10% (block 2). We analyzed attrition rates across the
four versions.

Questionnaires

Following task completion, questionnaires were administered via the Qualtrics survey platform
(Qualtrics Labs, Inc, Provo, UT). Items included demographic information (age, gender, educational
attainment, ethnicity, and race) and mental health questions (past or present diagnosis, medication
use, Structured Clinical Interview for DSM-IV Axis Il Personality Disorders (SCID-Il) (Ryder et al.,
2007), Beck’s Anxiety Inventory (BAIl) (Beck et al., 1988), Beck's Depression Inventory (BDI)
(Beck et al., 1961). We removed the single suicidality question from the BDI for Experiment 2.
Experiment 2 included additional items: income, three cognitive reflection questions (Table 7), and
three free response items (‘What do you think the card game was testing?’, ‘Did you use any particu-
lar strategy or strategies? If yes, please describe’, and ‘Did you find yourself switching strategies
over the course of the game?’). We quantified trait-level paranoia using the paranoid personality
subscale of the SCID-Il, and we included an ideas of reference item from the schizotypy subscale
('When you are out in public and see people talking, do you often feel that they are talking about
you?’) This item, along with other SCID-Il items, has previously been included as a metric of paranoia
in the general population (Bebbington et al., 2013; Bell and O’Driscoll, 2018). Participants who
endorsed four or more paranoid personality items (i.e., the cut-off for the top third identified in
Experiment 1) were classified as 'high paranoia.’ Each participant’s SCID-II, BAIl, and BDI scores were
normalized by total scale items answered. Response rates were higher than 90% for all questionnaire
items and scales (Table 11).

Behavioral analysis

We analyzed tendencies to choose alternative decks after positive feedback (win-switch) and select
the same deck after negative feedback (lose-stay). Win-switch rates were calculated as the number
of trials in which the participant switched after positive feedback divided by the number of trials in
which they received positive feedback. Lose-stay rates were calculated as number of trials in which a
participant persisted after negative feedback divided by total negative feedback trials. In Experi-
ment 1, we excluded post-null trials from these analyses. To further characterize switching behavior,
we calculated U-values, a measure of choice stochasticity:

log(a;) x
_yp DOV 1
= log(B) R

U —value =

where B is the number of possible choice options (i.e., card decks or noseports) and o equals the
relative frequency of choice option i (Kong et al., 2017). To avoid any choice counterbalancing
effects across reversals, choice frequencies were determined by the underlying probabilities of the
decks rather than their physical attributes (e.g., deck position or color). Additional behavioral analy-
ses included trials to first reversal, trials to post-reversal recovery, and trials to post-reversal switch.
The latter two were restricted to the first reversal in the first block. Trials post-reversal were counted
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from the first-negative feedback trial following the true reversal event. Recovery was defined as
switching to the best deck and staying for at least one additional trial.

Computational modeling

Materials

The Hierarchical Gaussian Filter (HGF) toolbox v5.3.1 is freely available for download in the TAPAS
package at https://translationalneuromodeling.github.io/tapas (Mathys et al., 2011, Mathys et al.,
2014). We installed and ran the package in MATLAB and Statistics Toolbox Release 2016a (Math-
Works, Natick, MA).

Perceptual parameter estimation

In the human reversal-learning experiments, we estimated perceptual parameters individually for the
first and second halves of the task (i.e., blocks 1 and 2). Each participant’s choices (i.e., deck 1, 2, or
3) and outcomes (win or loss) were entered as separate column vectors with rows corresponding to
trials. Wins were encoded as ‘1’, losses as ‘0’, and choices as ‘1’, '2’, or '3'. We selected the autore-
gressive 3-level HGF multi-arm bandit configuration for our perceptual model and paired it with the
softmax-mu03 decision model.

Rat reversal-learning data was entered similarly, with choices designated as ‘1’, ‘2’, or ‘3’ and
reward presence or absence noted as ‘1" and ‘0’, respectively. Perceptual parameters were esti-
mated as a single block per session and averaged across Pre-Rx or Post-Rx sessions for each subject.
Since the contingency remained 70-30-10%, we used the default start point values of u, and s, as
in block one estimations for the human reversal-learning experiments).

Simulations

We performed ten simulations per participant (online version 3) to determine whether our parameter
estimates and model successfully captured behavioral differences between groups (e.g., win-switch
rates). Each simulation required the participant’s actual data (i.e., the column vectors ‘outcomes’ and
‘choices’) and the corresponding set of derived perceptual parameters. On each trial, a new choice
was simulated conditional on the actual inputs in previous trials.

To illustrate the effects of each parameter on task behavior we doubled or halved one parameter
at a time, by establishing a baseline set of perceptual parameters containing the average values
from the low paranoia participants (online version 3). We then ran 10 simulations per subject for
each of the following conditions: baseline, 2k, 0.5k, 2u3, 0.5u3, 203, 0.503, 205, 0.50,, and the aver-
age perceptual parameters (k, 13, @3, and ®,) from Post-Rx methamphetamine rats. The 2w, condi-
tion yielded parameters in a region where model assumptions were violated (negative posterior
precision error message) and was excluded from further analysis. Win-shift and lose-stay rates were
calculated from each simulation as follows, and then averaged for each condition:

. . Number of trials in which choice switched after positive feedback
Win—switch rate =

Total positive feedback trials

Number of trials in which choice repeated after negative feedback
Lose—stay rate =

Total negative feedback trials

For each participant, we divided rates derived from each condition by the baseline rates to deter-
mine relative win-switch and lose-stay rates. We compared each relative rate to the baseline condi-
tion (i.e., 1.0) with paired-samples t-tests using Bonferroni-corrected p-values.

Parameter recovery
We performed perceptual parameter estimation (see above) on 10 simulations per subject using first
block data from online version 3. These simulations were generated from each subject’s correspond-
ing perceptual parameters. We averaged recovered parameters across simulations and low versus
high paranoia (Figure 7).
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Alternative models

We employed a Q-learning model with separate parameter weights for positive and negative predic-
tion errors to determine whether differential weighting might contribute to paranoia group effects.
This model has been described previously (Lefebvre et al., 2018). We also evaluated whether a sim-
pler two-level HGF model might suffice to capture paranoia group differences. To sever the third
level from the model, we fixed the log- k parameter at negative infinity (i.e., by additionally setting
the variance to zero), and similarly fixed the values of s, w3, ®,, @3 at the values previously assigned
in the configuration file. Parameter estimation was performed as described above, with a softmax
decision model.

Statistics

Unless otherwise specified, statistical analyses and effect size calculations were performed in IBM
SPSS Statistics, Version 25 (IBM Corp., Armonk, NY), with an alpha of 0.05. Box-plots were created
with the web tool BoxPlotR (Spitzer et al., 2014). Model parameters were corrected for multiple
comparisons using the Benjamini Hochberg (False Discovery Rate) method. Bonferroni corrected
results were largely consistent (Table 4).

To compare questionnaire item means between two groups (Table 1, low versus high paranoia),
we conducted independent samples t-tests. To compare questionnaire item means across paranoia
groups and task versions (Table 2), we employed univariate analyses. Associations between charac-
teristic frequencies and subject group or task version were evaluated by Chi-Square Exact tests (two
groups) or Monte Carlo tests (more than two groups). Pearson correlations established the associa-
tions between paranoia and BDI scores, BAI scores, win-switch rates, and k. We selected two-tailed
p-values where applicable and assumed normality. Multiple regressions were conducted with k esti-
mates from the first task block (dependent variable) and paranoia, BAI, and BDI scores from online
version 3.

To compare HGF parameter estimates and behavioral patterns (win-switch, U-value, lose-stay)
across block, paranoia group (Experiment 1, Experiment 2 version 3), and/or task version (Experi-
ment 2), we employed repeated measures and split-plot ANOVAs (i.e., block designated within-sub-
ject factor, paranoia group and task version as between subject). We similarly evaluated Experiment
three parameter estimates for treatment by time interactions. For Experiment 2, we performed
ANCOVAs for 3, , o,, and o3 to evaluate three sets of covariates: (1) demographics (age, gender,
ethnicity, and race); (2) mental health factors (medication usage, diagnostic category, BAl score, and
BDI score); (3) and metrics and correlates of global cognitive function (educational attainment,
income, and cognitive reflection). Unless otherwise stated, post-hoc tests were conducted as least
significant difference (LSD)-corrected estimated marginal means.

Meta-analyses were conducted using random effects models with the R Metafor package (Viecht-
bauer, 2010). Mean differences were assessed for low versus high paranoia groups in the in-labora-
tory experiment and online version 3. Standardized mean differences (methamphetamine or high
paranoia versus saline or low paranoia) were employed to account for the differences in task design
between animal and human studies.

The 2-step clustering analysis approach was selected to automatically determine optimal cluster
count and cluster group assignment. Clustering variables included paranoia-relevant parameter esti-
mates (ug, K, 02, and m3) from Experiment 1 (block 1); online, version 3 (block 1), and rats (Post-Rx)
as continuous variables with a Log-likelihood distance measure, maximum cluster count of 15, and
Schwarz's Bayesian Criterion (BIC) clustering criterion. We validated our clustering solution by sort-
ing the data into two halves and running separate cluster analyses. We also compared cluster solu-
tions derived exclusively from rat data versus human data. A Chi-Square test determined the
significance of the association between cluster membership and group (methamphetamine/high
paranoia versus saline/low paranoia).

Data availability
Data are available on ModelDB (McDougal et al., 2017; http://modeldb.yale.edu/258631) with
accession code p2c8qg74m.
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