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Abstract 
 

Background: Despite the marked inter-individual variability in the clinical presentation of schizophrenia, it remains 

unclear the extent to which individual dimensions of psychopathology relate to the functional variability in brain 

networks among patients. Here, we address this question using network-based predictive modeling of individual 

psychopathology along four data-driven symptom dimensions. Follow-up analyses assess the molecular 

underpinnings of predictive networks by relating them to neurotransmitter-receptor distribution patterns. 

 

Methods: We investigated resting-state fMRI data from 147 schizophrenia patients recruited at seven sites. 

Individual expression along negative, positive, affective, and cognitive symptom dimensions was predicted using 

relevance vector machine based on functional connectivity within 17 meta-analytic task-networks following a 

repeated 10-fold cross-validation and leave-one-site-out analyses. Results were validated in an independent 

sample. Networks robustly predicting individual symptom dimensions were spatially correlated with density maps 

of nine receptors/transporters from prior molecular imaging in healthy populations. 

 

Results: Ten-fold and leave-one-site-out analyses revealed five predictive network-symptom associations. 

Connectivity within theory-of-mind, cognitive reappraisal, and mirror neuron networks predicted negative, positive, 

and affective symptom dimensions, respectively. Cognitive dimension was predicted by theory-of-mind and 

socio-affective-default networks. Importantly, these predictions generalized to the independent sample. 

Intriguingly, these two networks were positively associated with D1 dopamine receptor and serotonin reuptake 

transporter densities as well as dopamine-synthesis-capacity. 

 

Conclusions: We revealed a robust association between intrinsic functional connectivity within networks for 

socio-affective processes and the cognitive dimension of psychopathology. By investigating the molecular 

architecture, this work links dopaminergic and serotonergic systems with the functional topography of brain 

networks underlying cognitive symptoms in schizophrenia. 
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Introduction   

Precise conceptualization of schizophrenia symptoms in terms of their underlying dimensional structure and 

associated neurobiology remains a challenge (1). Work focused on the subscales (positive, negative, and general 

symptoms) of the Positive and Negative Syndrome Scale (PANSS) (2) has not provided a clear understanding of 

underlying brain circuitry (3-5). We recently introduced a novel four-dimensional conceptualization of 

schizophrenia symptomatology which is stable and generalizable across populations and settings (5). As each 

symptom dimension captures a different clinical facet of schizophrenia (6-8), we would expect these to show 

differential relationships with functional brain networks. Identification of robust symptom-brain relationships (e.g., 

connectivity patterns and molecular substrates) in turn is key for developing reliable biomarkers and targeted 

treatments. 

Previous studies proposed that abnormal brain connectivity might be a precipitating factor for schizophrenia 

(9,10), questioning region-based analyses but resonating with the dysconnection hypothesis (9-12). Although 

resting-state functional MRI (fMRI) reveals broad patterns of aberrations that may underlie the pathophysiology of 

schizophrenia (12-15), the link between targeted symptom dimensions and associated connectivity patterns within 

distinct functional systems remain largely unknown. Pioneering work has explored symptom-brain associations 

based on regional activity and intrinsic connectivity networks (ICNs) using univariate group-level correlative 

approaches, but the results have been largely inconsistent (16-19). The clinical complexity of schizophrenia 

together with the differences in patient populations, scanners and study protocols across sites may have led to 

divergent results, posing a major challenge for establishing generalizable network-symptom relationships. 

Application of multivariable machine-learning and cross-validation strategies to multi-site data and validation of the 

resulting models on independent datasets is thus needed to derive robust network-symptom associations (20). 

It needs to be cautioned, though, that ICNs cannot readily be interpreted relative to cognitive and mental 

processes due to their unconstrained and task-independent nature (21). In contrast, meta-analytic functional 

Jo
urn

al 
Pre-

pro
of



2 

 

networks are derived from task-activation data, i.e., the identified networks consist of brain areas robustly 

engaged in specific tasks and therefore mental processes (22,23). Meta-analytic networks thus provide a 

promising avenue to characterize association between functionally meaningful systems and specific symptom 

dimensions. Considering these advantages, we here performed multivariable machine-learning on 

meta-analytically defined networks to explore predictive relationships between network-specific connectivity and 

dimensional psychopathology. 

In order to facilitate a link to treatment, we furthermore explored whether robustly symptom-related functional 

networks would mirror to the spatial topography of underlying molecular features, given that functional brain 

systems relate to molecular architecture (24-27). Specifically, connectivity-neurotransmitter coupling has been 

proposed and observed in healthy populations (28,29). Similarly, network dysconnectivity in schizophrenia has 

been associated with altered neurotransmission (30,31) involving dopaminergic, serotonergic, 

gamma-aminobutyric acid (GABA)-ergic, and glutamatergic pathways (32-35). Here, it is interesting to note that 

current anti-psychotic drugs mainly targeting the dopamine system are primarily effective against positive rather 

than negative or cognitive symptoms (36,37). Understanding the molecular substrate of specific dimensions of 

psychopathology may thus provide leads on new treatment strategies.  

We therefore assessed a broad range of meta-analytic networks relating to social, affective, executive, 

memory, language, and sensory-motor functions regarding their predictive power for individual positive, negative, 

affective and cognitive symptom-dimensions (6) in schizophrenia. Machine-learning approaches with a stringent 

validation sequence of 10-fold cross-validation, leave-one-site-out analyses, and generalization to an independent 

sample was implemented to identify robust predictions. Subsequently, whole-brain density maps of nine 

receptors/transporters from prior in vivo molecular imaging studies were employed to investigate the molecular 

architecture spatially coupled to the identified predictive networks.  
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Materials and Methods   

Sample  

A total of 147 schizophrenia patients from seven centers located in Europe and the USA represented the main 

sample (Table S1; Supplement). These sites differed significantly in illness duration (p<0.001)(Table S1). An 

independent sample with 117 schizophrenia patients (Table S2; Supplement) retrieved from the 

Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) database (38) was used for independent 

model validation. For both samples, diagnosis of schizophrenia was established based on the DSM-IV, the 

DSM-IV-TR, or the ICD-10 criteria (see Supplement and [6]). These international datasets cover a broad range of 

clinical states, settings, and medical systems, facilitating identification of robust network-symptom associations. 

Current drug dosages of antipsychotic medication were olanzapine-equivalent transformed (39). For each site, 

subjects gave written informed consent and study approval was given by the respective ethics 

committees/institutional review boards. Approval for pooled re-analysis was provided by the ethics committee of 

the University of Düsseldorf, Germany. 

 

Calculation of dimensional symptom scores 

Severity of psychopathology was assessed using the PANSS (2). The 30 PANSS items were compressed into 

four (negative, positive, affective, and cognitive) symptom dimensions (Figure S1A) identified in our prior 

factorization analysis on two large, multi-site schizophrenia samples as stable and well-generalizable across 

populations, settings, and medical systems (6). Each dimensional score for an individual was calculated as the dot 

product between the coefficients loaded on the particular dimension within the dimensional-structure (Figure S1) 

and the 30 PANSS item scores of that individual (as implemented in DCTS: http://webtools.inm7.de/sczDCTS/). 

Higher scores on a dimension indicate more-severe symptoms (Figure S1B). 

Jo
urn

al 
Pre-

pro
of



4 

 

Definition of functional brain networks 

Seventeen functional networks, which cover a broad range of domains reflecting cognitive, socio-affective, and 

sensory-motor functions that have been implicated in schizophrenia, were employed (Table S3). These networks 

were based on coordinate-based meta-analyses (21,22) and represent regions demonstrating convergent 

activations associated with specific functional domains across many prior task-fMRI studies. They hence provide 

the best “a priori” estimate of the location of specific functional networks and hence here assessed by resting-state 

fMRI in new subjects. For convenience, we grouped these 17 networks into six broad functional domains (Figure 1 

&Table S3), though it must be stressed that each network was analyzed separately. 

 

FMRI data processing 

All resting-state fMRI scans (Tables S4&S5) were preprocessed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm) 

(see [6] and Supplement). After excluding subjects with excessive head-motion (40) or poor image quality (cf. 

Supplement), 126 and 100 schizophrenia patients were retained in the main and the B-SNIP validation sample, 

respectively (Table 1). Head motion differed significantly between the sites but did not correlate with the residuals 

of any symptom dimensions after adjusting for age/gender/site. Still, we adjusted head-motion effects in predictive 

modeling as a conservative approach to rule out (any) possible predictability based on movement. 

White matter and CSF signals as well as 24 head-motion parameters (41,42) were regressed out from the 

overall fMRI time-series (42) but the global mean signals were not removed given ongoing controversies (43,44). 

Voxels within a 6 mm sphere around each of the meta-analytically derived peak-activation coordinate formed a 

node. The first eigenvariate of the time-series from all the voxels within each node was calculated as the regional 

characteristic time-series containing better signal-to-noise ratio than the peak voxel alone. For each network, 

Pearson’s correlation was calculated between the characteristic time-series for each pair of the nodes resulting in 
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an N x N matrix of resting-state functional connectivity (rs-FC). The upper triangle of the resulting connectivity 

matrix was extracted, linearized and Fisher’s Z-transformed to provide the features for our predictive modeling. 

 

Prediction of symptom dimensions using network rs-FC  

Multivariable regression via a relevance vector machine (RVM)(47) was implemented and evaluated using 500x 

repeated10-fold cross-validation, individually for each combination of functional network and symptom dimension 

in the main sample. Using each network individually in the model was intended to ensure the functional specificity 

of our results. Importantly, RVM is a sparse learning method, i.e., only a few of the learned feature weights are 

non-zero, lending interpretability as to which features (connections) are predictive. As recommended (48), the 

symptom dimensional-scores and rs-FC features were adjusted for confounding effects of age, gender, site, and 

head-motion (DVARS). To avoid data-leakage within cross-validation (49), confound regression models were 

learned only on the training-set and then applied on both training and test data (50,51). The RVM model trained on 

the (confound-adjusted) training data and was then applied to the (confound-adjusted) held-out data. Folds were 

stratified to accommodate different sample sizes across sites. Prediction performance was evaluated using 

Pearson’s correlation between the (adjusted) scores and their predictions. Significant predictions were further 

validated for their generalizability across sites using leave-one-site-out cross-validation following the same 

schematic but training on all sites but one and testing on the left-out site (Supplement). Statistical significance of 

the cross-validation-based correlations was determined through 1000 permutations by shuffling the symptom 

dimensional-scores (lowest p=0.001, right-tailed; Supplement) (49,52). 

Critically, we validated predictive associations confirmed by leave-one-site-out cross-validation in the 

independent B-SNIP sample. For this, we trained RVM models on the significantly predictive networks in the entire 

Jo
urn

al 
Pre-

pro
of



6 

 

main sample and then, without further fitting or modification, applied them to held-out B-SNIP data. Robust 

associations passing this strict three-step validation procedure were then further assessed as described below. 

In addition, connections within the networks identified with robust associations with symptoms were combined 

to test the possible improvement in prediction performance. Control analyses were performed by repeating all 

validation procedures by including illness duration or olanzapine-equivalent dosage as confounds. For comparison, 

i) we predicted the three PANSS subscales (positive, negative, and general psychopathology) using the same 

three-step validation procedure and each network individually as in our main analyses, and ii) we predicted the 

four symptom dimensions using whole-connectome (39060 connections) which comprised pairwise connectivity 

between all the nodes pooled from the 17 meta-analytic networks. 

 

Identification of reliably predictive connections and subnetworks 

The intrinsic feature selection in RVM through its sparse modeling was leveraged to identify reliably predictive 

connections and the potential subnetworks formed by them. A connection was identified as reliably predictive 

when it had non-zero weights in: i) at least 80% of the 10-fold cross-validation repetitions, ii) at least six out of the 

seven (i.e., >80%) leave-one-site-out analyses, and iii) the models trained on the entire main sample for validation 

in B-SNIP. The cutoff of 80% is suggested as a conservative threshold in both real and simulated data (53). To 

assess the predictive capacity of the subnetworks, RVM models were trained using the rs-FC of the subnetworks 

on the main sample and tested in B-SNIP. 

 

Spatial correlation with receptor/transporter densities  

Finally, we evaluated the topographical relationship between network-node location and the distribution of several 

receptor/transporter systems, assessing for highly-expressed receptors/transporters in the identified networks 
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relative to the entire brain. This was tested by comparing the average receptor/transporter density across all 

nodes within a given network against a null-distribution based on 1000 random network configurations generated 

by re-distributing the nodes throughout the grey matter while preserving the between-node distances (±6mm 

tolerance). Seven dopamine and serotonin receptors (dopaminergic: D1 and D2/3; serotonergic: 5-HT1a, 5-HT1b, 

and 5-HT2a) and transporters (dopamine transporter and 5-HTT serotonin reuptake transporter), together with 

F-DOPA (a reflection of presynaptic dopamine-synthesis-capacity) and the GABAergic receptor GABAa were 

investigated. While all systems are linked to schizophrenia (32,34,35), we here tested specific 

receptors/transporters. Density estimates were derived from average group maps of healthy volunteers (D1: N=13; 

D2/3: N=7; 5-HT1a: N=35; 5-HT1b: N=23; 5-HT2a: N=19; 5-HTT: N=18; dopamine transporter: N=147; F-DOPA: 

N=12; GABAa: N=6) scanned in prior multi-tracer molecular imaging studies (Supplement). For comparability, 

these maps, in MNI152 space, were all resampled to an isotropic 2mm spatial resolution as in our fMRI data and 

linearly rescaled to 0-100. 

Furthermore, the significantly higher expressed receptors/transporters were entered into a spatial correlation 

analysis (54,55) calculated as rank correlation between the node importance scores and receptor/transporter 

densities calculated for these nodes (Figure 4B). The node importance score was calculated by summing the 

selection frequency of the connections of each node derived from the repeated 10-fold cross-validation. Bootstrap 

analysis was conducted to ensure robustness. To establish the statistical significance of a spatial correlation 

against chance, spatial permutation test was employed where the null distribution was estimated based on the 

correlations between the node importance scores for a given network and the nodal receptor/transporter densities 

extracted from1000 simulated (random) networks (Supplement). 
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Results 

 

Network-based prediction of specific symptom dimensions  

Predictive modeling with a stringent three-step validation revealed several predictive networks-psychopathology 

relationships. In the first step (10-fold cross-validation), the affective, negative, and positive symptom dimensions 

could be significantly predicted using rs-FC within the mirror neuron system (MNS), the theory-of-mind (ToM) and 

the cognitive emotion regulation (CER) networks, respectively, while the cognitive dimension was predicted by 

three networks, ToM, empathy and extended socio-affective default (eSAD) (Figure 2A, B). Except for the 

empathy-cognitive prediction, all these predictive networks-symptom associations (Figure 2B) were confirmed in 

the second validation step, i.e., leave-one-site-out analysis (Figure 2C).  

As the 10-fold cross-validation and leave-one-site-out analyses were both performed in the main sample, they 

may still be optimistic with respect to the generalization to new patient populations. Therefore, we added a third 

validation step using a completely independent sample. Three of the five leave-one-site-out validated associations 

(ToM-negative, CER-positive, MNS-affective) were not confirmed in this step. However, training RVM models on 

the entire main sample and testing it in the B-SNIP dataset revealed that the ToM and eSAD networks were 

significantly predictive of cognitive symptoms (Figure 2D). Comparatively, combing the connections in these two 

networks only yielded a marginal improvement in the prediction of cognitive dimension in B-SNIP (r=0.24, 

p=0.018). 

In complementary analyses, no significant effects of illness duration or olanzapine-equivalent dosage on the 

four symptom-dimension scores were found (all p>0.05 in the fitted general linear models). Conversely, controlling 

for illness duration or olanzapine-equivalent dosage did not alter the overall predictive patterns. Highlighting the 

utility of our four-dimensional conceptualization of schizophrenia symptomatology (6), predicting the traditional 
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three PANSS subscales,10-fold cross-validation and leave-one-site-out experiments on the main sample only 

revealed two predictive patterns (ToM-negative, eSAD-general psychopathology) that did, however, not generalize 

to B-SNIP (Figure S2). The whole-connectome comprising nodes from all networks was not predictive of any of 

the four symptom dimensions (all r-values<0.11, p>0.13; 500x repeated 10-fold cross-validation), supporting our 

use of individual networks as a priori biologically meaningful dimensionality reduction. 

 

Reliably predictive connections and the predictiveness of subnetworks  

Ten connections within eSAD and eight connections within ToM were identified as consistently relevant for 

predicting the cognitive symptoms (Figure 3A,Table S6), i.e., were selected in more than 80% of the different 

cross-validation runs (repeated10-fold and leave-one-site out) and in the final models trained on the entire main 

sample for validation in B-SNIP. The ensuing ToM and eSAD subnetworks featured three spatially overlapping 

nodes located in the ventro-medial prefrontal cortex (vmPFC), left middle temporal gyrus, and posterior cingulate 

cortex (PCC)/precuneus and highlighted the vmPFC-PCC/precuneus connection (Figure 3B, Table S7). In turn, 

connections to subcortical regions including bilateral amygdala/hippocampus and the ventral striatum were 

specific to the eSAD subnetwork. 

A model based on the identified eSAD subnetwork showed almost identical prediction performance for the 

B-SNIP data compared to the one trained on whole eSAD (Figure 3C, note that subnetwork definition was only 

based on the main sample, i.e., there is no leakage of information about the B-SNIP data). Interestingly, compared 

to whole ToM network (Figure 2D), the ToM subnetwork demonstrated an improved performance (Figure 3C). This 

confirms the power of sparse modeling in RVM to identify the truly relevant features.  
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Relationship to molecular architecture  

Results showed that eight receptors/transporters (Figure 4A) are highly-expressed in one or both networks (ToM, 

eSAD) relative to the simulated networks with perturbed spatial configuration of nodes (histograms of node 

distance shown in Figure S3). Spatial correlation between the node importance (Table S9) and the spatially 

corresponding density of those significant receptors/transporters revealed a relationship to both the dopaminergic 

and the serotonergic systems (Figure 4C). Specifically, the nodes of ToM that showed higher importance in 

predicting the cognitive dimension tracked with higher dopamine-synthesis-capacity (r=0.54, p=0.02). The 

prediction importance of the nodes within the eSAD network correlated positively with densities of D1 (r=0.66, 

p=0.007) and 5-HTT (r=0.53, p=0.046), as well as dopamine-synthesis-capacity (r=0.54, p=0.036). The 

significance was corroborated by bootstrapped confidence intervals.  
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Discussion 

By employing predictive modeling to multi-site fMRI data with a strict out-of-sample validation procedure (repeated 

10-fold, leave-one-site-out, independent dataset), two a priori, meta-analytically defined functional networks, ToM 

and eSAD, were identified as significantly and robustly predictive of the cognitive symptom dimension in 

schizophrenia patients. In contrast, prediction using the original PANSS subscales failed to generalize to the 

independent sample, supporting the notion that these traditional dimensions do not correspond well to underlying 

neurobiology. Through the implicit feature selection of RVM, reliably predictive connections were identified which 

constituted subnetworks connecting nodes mainly distributed in the (medial) prefrontal cortex, PCC, temporal 

regions as well as subcortical structures. Moreover, higher densities of D1 dopamine receptor and 5-HTT serotonin 

transporter as well as elevated dopamine-synthesis-capacity were related to the node importance of the ToM and 

the eSAD networks in the prediction of cognitive symptomatology. 

 

Symptom dimensions were differentially predicted by different functional networks 

Contrasting the prevalent notion of global or widespread brain deficits (10-12) in schizophrenia, we here revealed 

specific networks-psychopathology relationships based on the predictive capacity of functional systems for 

patient-specific symptom severity along four dimensions. Two networks, ToM and eSAD, both predicting the 

cognitive dimension, passed our strict validation steps (see Supplement and Table S8 for an additional explorative 

analysis correlating cognitive scores assessed using scale other than the PANSS with the true and the predicted 

cognitive dimensional scores). As ToM subserves social cognition while the eSAD network relates to 

socio-affective processes, these results support previous findings indicating that compromised “social brain” 

development in schizophrenia relates to higher-level cognitive deficits (56,57). Somewhat surprisingly, these two 

networks did not allow a robust prediction of negative or affective symptoms, even though other socio-affective 
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networks [CER: reappraisal process of emotional stimuli (58); MNS: emotional aspect of social cognition (18)], 

predicted positive and affective dimensions, respectively in the main sample. Hence, it stands to reason that 

different socio-affective networks capture individual variance of different symptom dimensions. Of note, these 

predictions did not generalize to B-SNIP, potentially due to between-sample differences in clinical characteristics, 

highlighting that building models that generalize to novel cohorts remains a challenge (59). We also noted that the 

cognitive dimension was not robustly predicted by any of the assessed cognitive networks, mirroring previous 

work in healthy subjects showing that task-based functional connectivity yields better predictions of cognition than 

networks at rest (60-62). 

In turn, intrinsic connectivity patterns within the ToM network are robustly predictive of the cognitive status in 

individual schizophrenia patients. ToM is the cognitive ability of an individual to infer others’ mental states, 

intentions and believes (63). As these involve complex cognitive processes and considering that the cognitive 

dimension of schizophrenia psychopathology encompasses symptoms such as “conceptual disorganization”, “lack 

of insight”, and “disturbed abstract thinking”, such predictive relationship is not unexpected. Convergently, ToM 

deficits, which are prevalent in schizophrenia and a well-established feature and vulnerability marker of this 

disorder (64), are known to associate with symptoms of disorganization (65). Abnormal neural activation in 

response to tasks targeting ToM has also been reported in schizophrenia involving temporo-parietal junction as 

well as prefrontal and temporal regions where the current ToM meta-network is distributed (66,67).  

It is interesting to note that the ToM network also predicted negative symptoms in the main sample though 

this did not generalize to the B-SNIP data. Given that the subnetworks of ToM predicting negative and cognitive 

dimensions, respectively, were largely divergent (Figure 3B, Figure S4), this resonates with the notion that ToM 

encompasses multiple components (68).  

Intriguingly, cognitive symptoms in schizophrenia were also linked to socio-affective processes via the 
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prediction using the eSAD network. This corroborates recent studies consistently linked neural activity patterns in 

the default-mode network (DMN) to cognitive abilities (69,70), and that the implication of the DMN-derived eSAD 

network (71) in cognitive processing is hence unsurprising. Our finding moreover resonates well with a literature 

suggesting that socio-affective factors impact and modulate cognitive performance like working memory and 

attention in schizophrenia patients (72-74). The use of seemingly non-cognitive psychosocial methods has been 

proposed as a potential remediation strategy for cognitive deficits in schizophrenia (72), and indeed successfully 

applied in practice (74). Consequentially, we would hypothesize that the cognitive dysfunctions in schizophrenia 

might relate to an impaired integration of self- and other-related processes. Since the interaction of the (core) 

DMN with other brain regions and networks is more reflective of schizophrenia symptoms than within-DMN 

connectivity (18,75,76), it is not surprising that the DMN was not predictive, but the eSAD was which comprises 

regions going beyond the DMN. 

 

Molecular architecture of the networks robustly predicted cognitive dimension 

Cognitive deficits are a lifelong burden for patients with schizophrenia because there are so few effective 

medications including mainstay anti-dopaminergic agents (37,77). In line with the notion that dopaminergic 

dysfunction alone doesn’t account for the whole picture of schizophrenia psychopathology (78,79), here we 

revealed that the networks and nodes predictive of individual cognitive symptom-load are related to both 

dopaminergic (32) and serotonergic systems (78). These data extend previous region-of-interest analyses (80,81) 

to a comprehensive topographical level and are supported by findings that cognitive deficits relate to D1 receptor 

elevation in schizophrenia (80). The current extension to a network-level investigation is important, as 

schizophrenia patients are characterized by dysconnection between distant brain regions and network-based 

analyses can nominate mechanisms of action for the development of novel pharmacological treatments (82). In 
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line with involvement of dopamine functioning in cognitive deficits in schizophrenia (32), the cognitive dimension of 

psychopathology was associated with dopamine-synthesis-capacity. Increased dopamine-synthesis-capacity in 

schizophrenia was not only reported in the striatum (32) but also cortical areas including prefrontal cortex (83,84) 

where multiple nodes within the ToM and the eSAD networks are located. 

Moreover, cognitive symptoms were linked to the density of 5-HTT, which plays a critical role in regulating 

serotonergic concentration and signaling. Serotonergic dysfunction and 5-HTT polymorphism (85) have been 

involved in schizophrenia pathophysiology (34,78). Previous postmortem and in vivo PET studies have yielded 

inconsistent results on the alteration of 5-HTT density in schizophrenia (34), while an over-expression of 5-HTT 

mRNA in the prefrontal and temporal cortex has been demonstrated (86). We here revealed a potential role of 

5-HTT in cognitive deficits via the networks involved in socio-affective processes, resonating with the proposed 

implication of 5-HTT in the affective domain (87,88). While atypical anti-psychotics including olanzapine and 

risperidone target also the 5-HT2a serotonin receptor (89,90), their effects on 5-HTT seems to be equivocal (91,92). 

Interestingly, anti-psychotic drugs, pimavanserin and SEP-363856 have just been introduced that preferentially 

target serotonin and not dopamine receptors (93,94), suggesting increased focus also on serotonergic pathways. 

 

Limitations and Considerations 

First, the effect sizes for the correlation between the symptom scores and their predictions were moderate. 

However, despite the clinical complexity of the population and the heterogeneities in scanners and protocols, the 

effect sizes are similar to the previously reported for predicting, e.g., creativity (95), personality (48), and memory 

performance (96) in healthy subjects (r-values mostly around 0.2-0.35). Since olanzapine-equivalent dosage did 

not correlate with symptom scores or alter the prediction pattern after additionally controlling for the dosage in 

cross-validation, medication would be largely a source of random variation in our data and hence make our results 
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more conservative. Second, we acknowledge that task-specific changes in network topology and related 

dynamics may also explain the variance in individual symptoms (97,98) and should be the scope of future studies 

to complement our resting-state findings. Third, although meta-analytically derived peak coordinates are the most 

likely location of specific functional networks, there may exist individual-specific topological differences which in 

turn may reflect pathophysiological mechanisms underpinning individual symptoms. Future studies assessing the 

contribution of individual-specific topology to the prediction of symptoms are desired. Forth, although 

glutamatergic dysfunction has been increasingly implicated in schizophrenia neurocognitive deficits (79,99), there 

are no publicly available in vivo maps reflecting the glutamatergic system. Fifth, within-subject (longitudinal) 

studies assessing symptoms, rs-FC and receptor densities are needed. Finally, we acknowledge that the sample 

sizes for some of our employed receptor/transporter maps from prior molecular imaging studies are modest as 

acquisition of molecular imaging data in large samples remains difficult. 

 

Based on rs-FC within different meta-analytic task-activation networks covering a broad range of functional 

domains and predictive modeling with strict validations, intrinsic connectivity patterns of networks implicated in 

socio-affective processing was revealed to robustly associate with the cognitive dimension of psychopathology. 

Our investigation of the molecular architecture of the identified predictive networks implied a potential involvement 

of 5-HTT serotonin transporter, besides the dopaminergic system, in schizophrenia cognitive symptomatology, 

possibly providing hints into treatments.    
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Figure Legends: 
 

Figure 1. Overview of the 17 functional networks derived from prior coordinate-based meta-analytical 

studies.  

Networks were assigned to six broad domains according to their main functional roles, as implicated in the tasks 

included in the source publications of these meta-analytical networks, in multiple neuro-cognitive and 

socio-affective processes. We also note that networks such as the task-deactivation default-mode (DMN) network 

(22) and the extended socio-affective-default (eSAD) network which is derived from DMN regions (71) can be 

engaged during multiple processes (69,70). Details can be found in Supplementary Table S3.  

Yellow nodes represent the spheres created from the coordinates with 6mm radius and blue lines denote the 

pair-wise connections between the nodes. Connections within each network were used separately in our 

predictive modeling to investigate network-specific relationships with individual dimensions of psychopathology. 
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Figure 2. Multivariable prediction of the four symptom dimensions from within-network resting-state 

functional connectivity using relevant vector machine.  

A) Circos plot shows the 500x repeated 10-fold cross-validation results for the main sample. Correlations between 

the actual (confound-adjusted) dimensional symptom scores and their predictions are color-coded from light grey 

(0) to dark red (0.35), *p<0.05, **p<0.01.  

B) Scatter plots show the six significant predictions identified by 10-fold cross-validation in main sample. 

C) Scatter plots show the leave-one-site-out cross-validation results for the six significant predictions identified by 

10-fold cross-validation in main sample. Apart from the prediction of cognitive dimension from the rs-FC within the 

empathy network, other predictions were all confirmed by leave-one-site-out with significant correlations identified. 

D) Scatter plots show the significant predictions in the independent B-SNIP sample. Models trained within the 

main sample were used for this validation analysis in B-SNIP. Shaded areas represent 95% confidence intervals.  

 

Abbreviations: EmoSF, emotional scene and face processing; Rew, reward-related decision making; CER, 

cognitive emotion regulation; ToM, theory-of-mind; MNS, minor neuron system; DMN, default mode network; 

eSAD, extended socio-affective default; VigAtt, vigilant attention; CogAC, cognitive action control; eMDN, 

extended multi-demand network; SM, semantic memory; SP, speech production; WM, working memory; AM, 

autobiographical memory; AP, auditory processing. 
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Figure 3. Reliably predictive connections for the two networks that robustly predicted the cognitive 

dimension and validation of the formed subnetworks in the independent sample 

A) Reliably predictive connections selected in more than 80% of the different cross-validation runs (repeated 

10-fold and leave-one-site out) and in the final models trained on the entire main sample for validation in B-SNIP. 

B) Overlapping between the two subnetworks.  

C) Scatter plots show the significant correlations in B-SNIP using the models trained within the main sample. 

 

Abbreviations: ToM, theory-of-mind; eSAD, extended socio-affective default; CER, cognitive emotion regulation, 

MNS, mirror neuron system. Amy, amygdala; Hipp, hippocampus; vmPFC, ventro-medial prefrontal cortex; 

dmPFC, dorso-medial prefrontal cortex; mFG, medial frontal cortex; aMTG, anterior middle temporal gyrus, IFG, 

inferior frontal gyrus; TPJ, temporo-parietal junction, PCC, posterior cingulated cortex, PrC, precuneus; SGC, 

subgenual cingulate cortex, vBG, ventral basal ganglia; ACC, anterior cingulated cortex. 
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Figure 4. Significantly highly-expressed receptors and transporters at the nodes of the robustly predictive 

networks relative to the entire brain, as well as the schematic and results for the spatial correlation 

analysis with receptor/transporter density maps  

A) Histograms show the null distributions for the receptor/transporter densities of the 1000 simulated (random) 

networks. Red lines indicate the true averaged receptor/transporter densities across the different nodes within real 

networks. 

B) Procedure for conducting the spatial correlation analysis between network nodes and receptor/transporter 

density maps.  

C) Bootstrapped Spearman correlations (repeated 10,000 times) between the node importance score and the 

nodal receptor/transporter density estimates for the two identified networks which robustly predicted the cognitive 

symptom dimension. Bootstrap nodes were drawn with replacement from the real networks, and then the 

correlation analysis was done on them. Boxes refer to the Spearman rho values. The red line depicts the median, 

the green diamond depicts the mean, and the whiskers represent the 5th and 95th percentiles. Significant 

correlations derived from spatial-level permutation tests are marked with an asterisk (*p<0.05, **p<0.01). 

Abbreviations: ToM, theory-of-mind; eSAD, extended socio-affective default; Cog, cognitive dimension; DAT: 

dopamine transporter; rs-FC: resting-state functional connectivity.  
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Table 1. Demographic and clinical characteristics of schizophrenia patients used for 

predictive analysis 

 

Characteristics 

Main sample 

(N=126, seven 

sites) 

The independent B-SNIP 

sample for validation 

(N=100, two sites) 

p-value 

Demographic    

Age (years) 34.19 (11.45) 34.28 (12.31) 0.948 

Gender (male/female) 92/34 71/29 0.767 

Illness during (years) 10.48 (9.87) 12.35 (11.13) 0.187 

PANSS subscales  

Positive 14.86 (5.35) 14.91 (5.72) 0.945 

Negative 14.76 (5.85) 

30.25 (10.13) 

15.01 (5.64) 

27.98 (7.46) 

0.743 

General 0.062 

Illness severity (total 

PANSS) 

Scores on the dimensions 

of PANSS 

59.87 (18.11) 

 

57.90 (15.78) 

 

0.390 

 

Negative 2.76 (2.44) 2.81 (2.23) 0.859 

Positive 3.26 (2.36) 3.28 (2.55) 0.954 

Affective 3.33 (2.33) 2.69 (1.71) 0.022 

Cognitive 2.49 (1.92) 2.72 (1.79) 0.357 

Medication    

Atypical antipsychotics 97 (75.8%) 71 (71.0%)  

Typical antipsychotics 5 (3.9%) 4 (4.0%)  

Both A & T 7 (5.5%) 13 (13.0%)  

None or unknown 19 (14.8%) 12 (12.0%)  

Current antipsychotic 

medicatione 

19.23 (11.91) 18.96 (13.47)  

 

Data are mean (SD), or n (%). p Values in bold indicate a significance of p<0.05. Except for gender, which was 

based on chi-square test, other statistics were all based on two-sample t test. Of note, because the detailed 

medication information was missing for several patients in different proportions for the three datasets, statistical 

comparisons were not conducted. 

PANSS, Positive and Negative Syndrome Scale; 
eDemonstrated in olanzapine-equivalent dosage (mg/day). 
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