
Group Analyses
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GLM: repeat over subjects
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First level analyses (p<0.05 FWE):

Data from R. Henson



Fixed effects analysis (FFX)

Subject 1

Subject 2

Subject 3

Subject N

…
Modelling all 

subjects at once

 Simple model
 Lots of degrees of 

freedom

 Large amount of 
data

 Assumes common 
variance over 
subjects at each 
voxel

Implicit HM: Strong 
pooling across rows and 
columns (contrast). 
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 Only one source of random variation (over sessions):
 measurement error

 True response magnitude is fixed.

Fixed effects

Within-subject VarianceWithin-subject Variance
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Random effects

Within-subject VarianceWithin-subject Variance

Between-subject VarianceBetween-subject Variance

 Two sources of random variation:
  measurement errors
  response magnitude (over subjects)

 Response magnitude is random
  each subject/session has random magnitude
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 Two sources of random variation:
  measurement errors
  response magnitude (over subjects)

 Response magnitude is random
  each subject/session has random magnitude
but population mean magnitude is fixed.

Random effects

Within-subject VarianceWithin-subject Variance

Between-subject VarianceBetween-subject Variance
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Probability model underlying random effects analysis

Random effects

 

 



With Fixed Effects Analysis (FFX) we compare 
the group effect to the within-subject variability. It is 
not an inference about the population from which 
the subjects were drawn. 

With Random Effects Analysis (RFX) we compare 
the group effect to the between-subject variability. It 
is an inference about the population from which the 
subjects were drawn. If you had a new subject from 
that population, you could be confident they would 
also show the effect.

Fixed vs random effects



 Fixed isn’t “wrong”, just usually isn’t of interest.

 Summary:
 Fixed effects inference:

“I can see this effect in this cohort”

 Random effects inference:

“If I were to sample a new cohort from the same

population I would get the same result”

Fixed vs random effects



Terminology

Hierarchical linear models:

 Random effects models

 Mixed effects models

 Nested models

 Variance components models

… all the same

… all alluding to multiple sources of variation

(in contrast to fixed effects)
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Example: Two level model
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Second levelSecond level

First levelFirst level

Hierarchical models
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Hierarchical models
 Restricted Maximum Likelihood (ReML)

 Parametric Empirical Bayes

 Expectation-Maximisation Algorithm

spm_mfx.m

But:

 Many two level models 
are just too big to 
compute.

  And even if, it takes a 
long time!

 Any approximation?

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.



Summary Statistics RFX Approach

Contrast ImagesfMRI data Design Matrix
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First levelFirst level

Generalisability, Random Effects & Population 
Inference. Holmes & Friston, NeuroImage,1998.

Second levelSecond level

One-sample t-test @ second level
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Summary Statistics RFX Approach

Assumptions
The summary statistics approach is exact if for 

each session/subject:

  Within-subjects variances the same

  First level design the same (e.g. number of trials)

 Other cases: summary statistics approach is 

robust against typical violations.

Simple group fMRI modeling and inference. Mumford & Nichols. NeuroImage, 2009.

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.



Summary Statistics RFX Approach

Robustness

Summary
statistics

Summary
statistics

Hierarchical
Model

Hierarchical
Model

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

Listening to words Viewing faces



ANOVA & non-sphericity

 One effect per subject:

 Summary statistics approach

 One-sample t-test at the second level

 More than one effect per subject or 

multiple groups:

 Non-sphericity modelling

 Covariance components and ReML



GLM assumes Gaussian “spherical” (i.i.d.) errors

sphericity = iid:
error covariance is 
scalar multiple of 
identity matrix:
Cov(e) = 2I

sphericity = iid:
error covariance is 
scalar multiple of 
identity matrix:
Cov(e) = 2I

Examples for non-sphericity:

non-identically
distributed

non-independent
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Errors are independent 
but not identical

(e.g. different groups (patients, controls))

Errors are independent 
but not identical

(e.g. different groups (patients, controls))

Errors are not independent 
and not identical

(e.g. repeated measures for each subject 
(multiple basis functions, multiple 

conditions, etc.))

Errors are not independent 
and not identical

(e.g. repeated measures for each subject 
(multiple basis functions, multiple 

conditions, etc.))

2nd level: Non-sphericity
Error covariance matrix



2nd level: Variance components

Error covariance matrix

Qk’s:

Qk’s:

  



 Stimuli:
 Auditory presentation (SOA = 4 sec)
 250 scans per subject, block design
 2 conditions

• Words, e.g. “book”
• Words spoken backwards, e.g. “koob”

 Subjects:
12 controls
11 blind people

Example 1: between-subjects ANOVA

Data from Noppeney et al.



Error covariance matrix

 Two-sample t-test:
 Errors are independent

but not identical.
 2 covariance components

Qk’s:

Example 1: Covariance components



controls blinds

design matrix

Example 1: Group differences
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Example 2: within-subjects ANOVA
 Stimuli:

 Auditory presentation (SOA = 4 sec)
 250 scans per subject, block design
 Words:

 Subjects:
 12 controls

 Question:
 What regions are generally affected by the 

semantic content of the words?

“turn”“pink”“click”“jump”

ActionVisualSoundMotion

Noppeney et al., Brain, 2003.



Example 2: Covariance components

Errors are not independent

and not identical

Qk’s:

Error covariance matrix



Example 2: Repeated measures ANOVA
MotionMotion

First
Level

First
Level

Second
Level

Second
Level

?
=

?
=

?
=

SoundSound VisualVisual ActionAction

X

 Cov 

X



ANCOVA model

Mean centering continuous covariates for a group fMRI analysis, by J. Mumford:
http://mumford.fmripower.org/mean_centering/



Analysis mask: logical AND
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SPM interface: factorial design specification

 Many options…
 One-sample t-test
 Two-sample t-test
 Paired t-test
 Multiple regression
 One-way ANOVA
 One-way ANOVA – within subject
 Full factorial
 Flexible factorial
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2. Assumptions 

about 
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One-sample t-test Two-sample t-test Paired t-test One-way ANOVA

One-way ANOVA 
within-subject

Full Factorial Flexible Factorial Flexible Factorial



Summary

  Group Inference usually proceeds with RFX analysis, not 
FFX. Group effects are compared to between rather than 
within subject variability. 

  Hierarchical models provide a gold-standard for RFX 
analysis but are computationally intensive.

  Summary statistics approach is a robust method for RFX 
group analysis.

  Can also use ‘ANOVA’ or ‘ANOVA within subject’ at 
second level for inference about multiple experimental 
conditions or multiple groups.



Bibliography:

 Statistical Parametric Mapping: The Analysis of Functional 
Brain Images. Elsevier, 2007.

 Generalisability, Random Effects & Population Inference.
Holmes & Friston, NeuroImage,1998.

 Classical and Bayesian inference in neuroimaging: theory. 
Friston et al., NeuroImage, 2002.

 Classical and Bayesian inference in neuroimaging:  variance component 
estimation in fMRI.
Friston et al., NeuroImage, 2002.

 Mixed-effects and fMRI studies.
Friston et al., NeuroImage, 2005.

 Simple group fMRI modeling and inference. 
Mumford & Nichols, NeuroImage, 2009.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	GLM assumes Gaussian “spherical” (i.i.d.) errors
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Bibliography:

