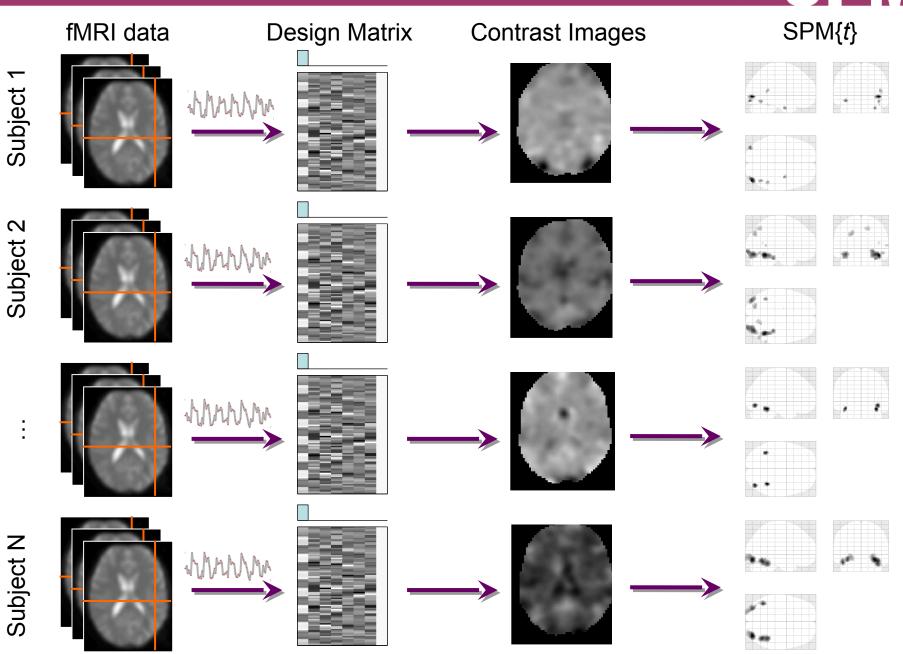


Group Analyses

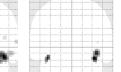

With many thanks to Guillaume Flandin, W. Penny, S. Kiebel, T. Nichols, R. Henson, J.-B. Poline, F. Kherif

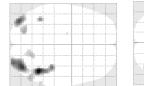
[▲]SPM

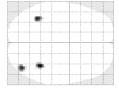
Image time-series

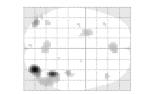
GLM: repeat over subjects

SDM

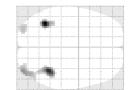

≜S PN

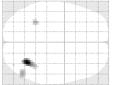

First level analyses (p<0.05 FWE):

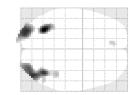

	10.77						
		_					
							_
100	1	1000					
			88 i a	i			


 10001				
· · · ·	i 📷			

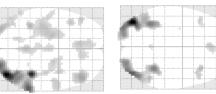
		 8				
					à	



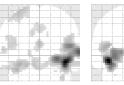







1	1	l		1	ŀ.													
		1						-					1		ŀ			
1	ŧ	ģ			 ş	i,			1	ĥ	ĥ							
								-									·	



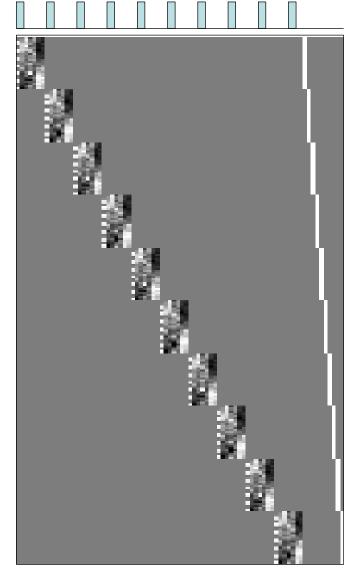

Data from R. Henson

																			- 1		
	ė						ю										- 8				
		ļ	í			1	l	ń	 	-	 	_	_	_	-	 			_	_	
			-	٠	-																
				e	1	ŝΙ															
				i						7						-		-			
				6	-										Г	Т		-			-
				÷	-					7						Т	_	-			
				i:										_			_	-	_		_
		1	-	1						-					_	- 1	_	-	-		-
			į.																		
		÷-																			
																			- 1		
																-1					

 ·····	
 · · · · · ·	

		· · · · · ·			·····
					o
	Į				
		···•			
ģ			ļ		
	<u>.</u>	- in the second s	ŀ		

- T			
		I	
1			
	100000		
	1000		


Fixed effects analysis (FFX)

Subject 1

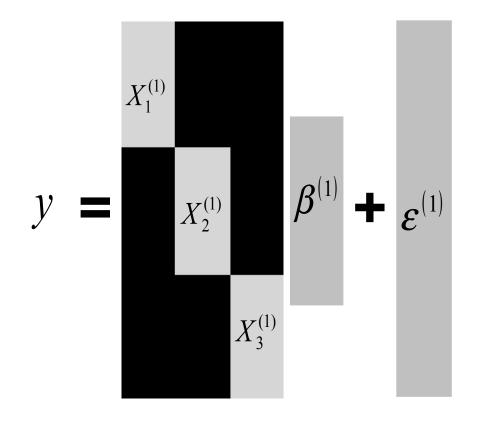
Subject 2

Subject 3

Subject N

Implicit HM: Strong pooling across rows and columns (contrast).

Modelling all subjects at once

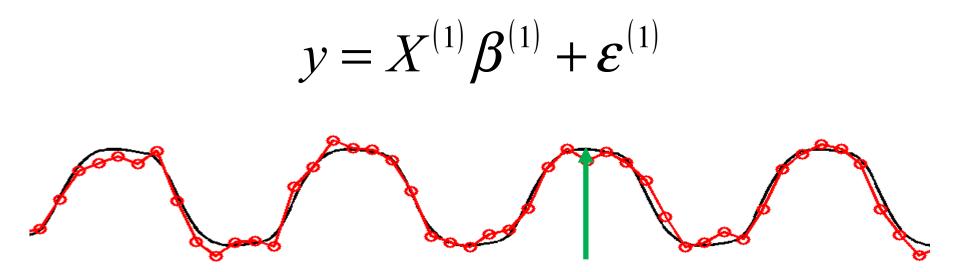

Simple model
 Lots of degrees of freedom

- Large amount of data
- Assumes common variance over subjects at each voxel

Fixed effects analysis (FFX)

$$y = X^{(1)}\beta^{(1)} + \varepsilon^{(1)}$$

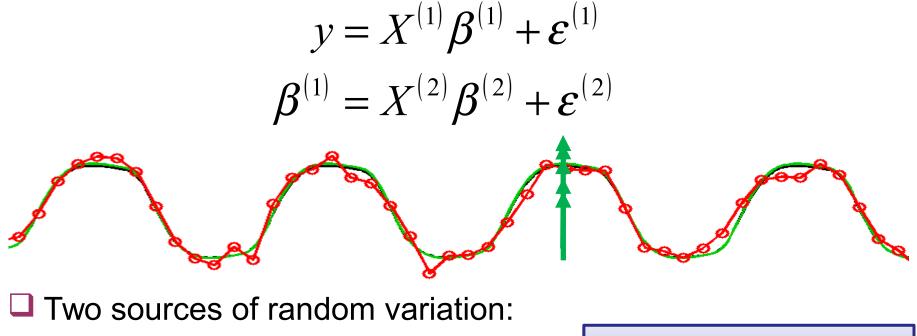
Modelling all subjects at once


Simple model
 Lots of degrees of freedom

Large amount of data

X Assumes common variance over subjects at each voxel

Fixed effects



Only one source of random variation (over sessions):
 measurement error
 Within-subject Variance

True response magnitude is *fixed*.

Random effects

- measurement errors
- response magnitude (over subjects)

Response magnitude is random

each subject/session has random magnitude


Within-subject Variance

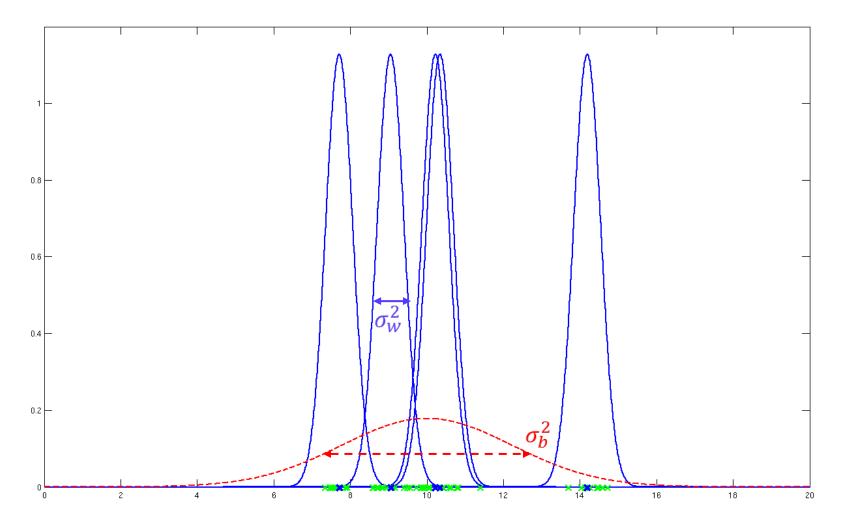
Between-subject Variance

Random effects

 $y = X^{(1)} \boldsymbol{\beta}^{(1)} + \boldsymbol{\varepsilon}^{(1)}$ $\boldsymbol{\beta}^{(1)} = \boldsymbol{X}^{(2)}\boldsymbol{\beta}^{(2)} + \boldsymbol{\varepsilon}^{(2)}$

- measurement errors
- response magnitude (over subjects)

Response magnitude is *random*


- each subject/session has random magnitude
- but population mean magnitude is *fixed*.

Within-subject Variance

Between-subject Variance

Random effects

Probability model underlying random effects analysis

Fixed vs random effects

With **Fixed Effects Analysis (FFX)** we compare the group effect to the *within-subject variability*. It is not an inference about the population from which the subjects were drawn.

With **Random Effects Analysis (RFX)** we compare the group effect to the *between-subject variability*. It is an inference about the population from which the subjects were drawn. If you had a new subject from that population, you could be confident they would also show the effect.

Fixed vs random effects

Fixed isn't "wrong", just usually isn't of interest.

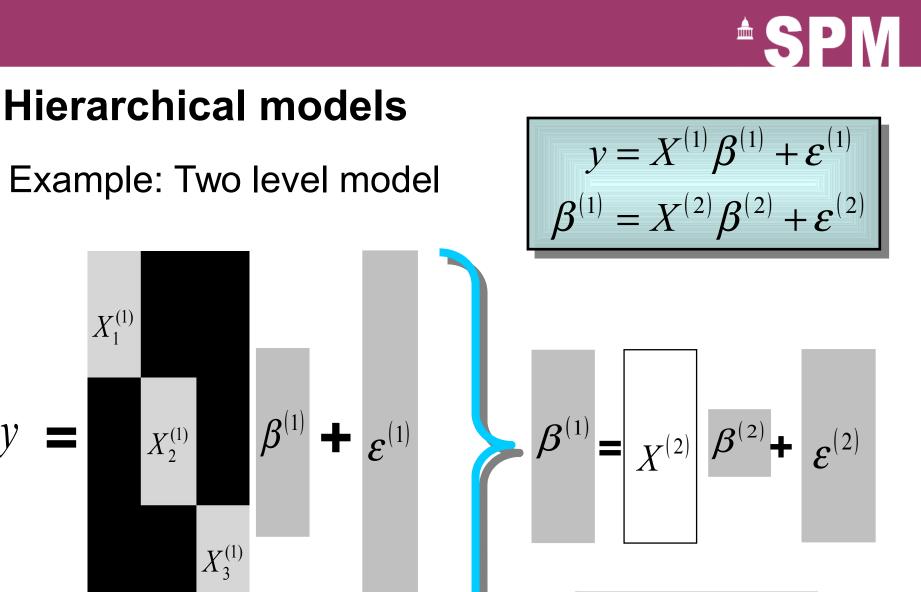
Summary:

Fixed effects inference:

"I can see this effect in this cohort"

Random effects inference:

"If I were to sample a new cohort from the same population I would get the same result"


[▲] SPM

Terminology

Hierarchical linear models:

- Random effects models
- Mixed effects models
- Nested models
- Variance components models

- ... all the same
- ... all alluding to multiple sources of variation (in contrast to fixed effects)

First level

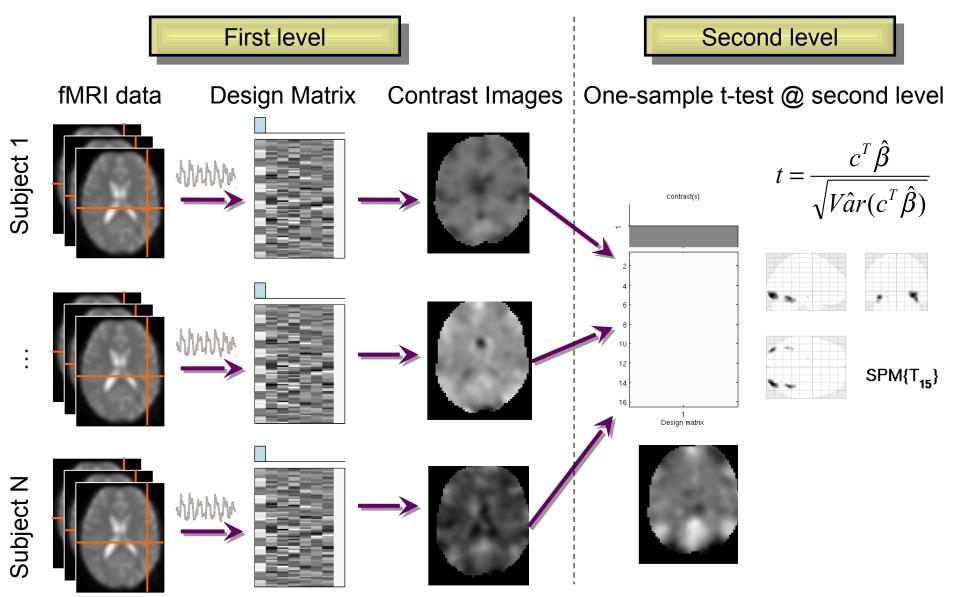
Second level

Hierarchical models

- Restricted Maximum Likelihood (ReML)
- Parametric Empirical Bayes
- Expectation-Maximisation Algorithm

fMRI model specification	
fMRI model specification (design only) fMRI data specification	
Mixed-effects (MFX) analysis	FFX Specification
Factorial design specification Model estimation	MFX Specification
Results Report	
Physio/Psycho-Physiologic Interaction	
	fMRI model specification (design only) fMRI data specification Mixed-effects (MFX) analysis Factorial design specification Model estimation Contrast Manager Results Report Bayesian Model Selection

spm mfx.m


But:

Many two level models are just too big to compute.

- And even if, it takes a long time!
- Any approximation?

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

Summary Statistics RFX Approach **SPM**

Generalisability, Random Effects & Population Inference. Holmes & Friston, NeuroImage,1998.

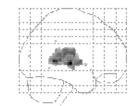
Assumptions

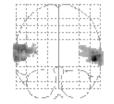
□ The summary statistics approach is exact if for

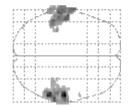
each session/subject:

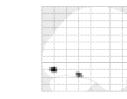
Within-subjects variances the same

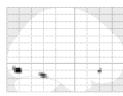
- First level design the same (e.g. number of trials)
- Other cases: summary statistics approach is robust against typical violations.

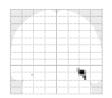

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

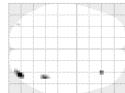

Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007. Simple group fMRI modeling and inference. Mumford & Nichols. NeuroImage, 2009.

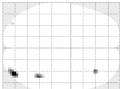

Summary Statistics RFX Approach


Robustness









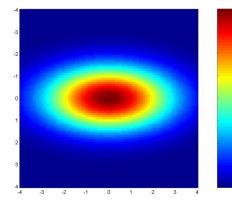
1		1			
i i		1.1			
1		1.1			
1	ļ				
4		1.1			
1	ŧ.				
1					
1					
1					
4					

Viewing faces

Hierarchical Model

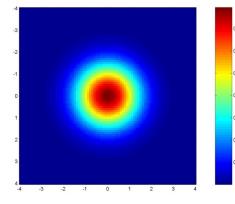
Listening to words

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

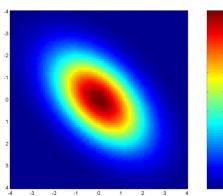

ANOVA & non-sphericity

- One effect per subject:
 - Summary statistics approach
 - One-sample t-test at the second level
- More than one effect per subject or multiple groups:
 - Non-sphericity modelling
 - Covariance components and ReML

GLM assumes Gaussian "spherical" (i.i.d.) errors


sphericity = iid: error covariance is scalar multiple of identity matrix: Cov(e) = σ²I

Examples for non-sphericity:

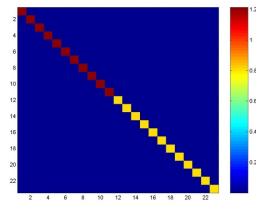


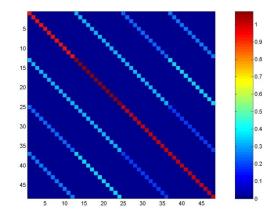
$$Cov(e) = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$$

non-identically distributed

 $Cov(e) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$

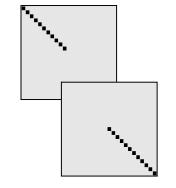
 $\int_{0.07}^{0.07} Cov(e) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

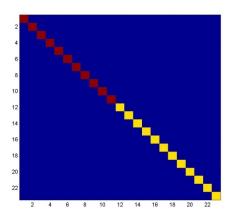

non-independent

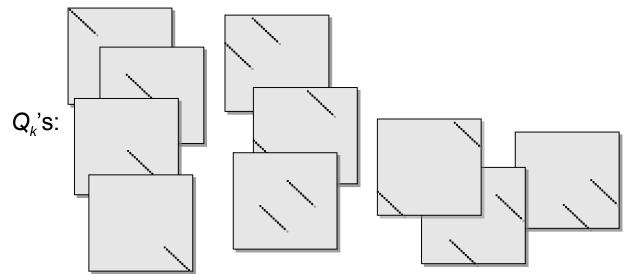

2nd level: Non-sphericity

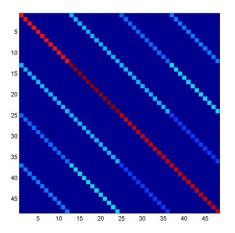
Error covariance matrix

Errors are independent but not identical (e.g. different groups (patients, controls))


Errors are not independent and not identical (e.g. repeated measures for each subject (multiple basis functions, multiple conditions, etc.))

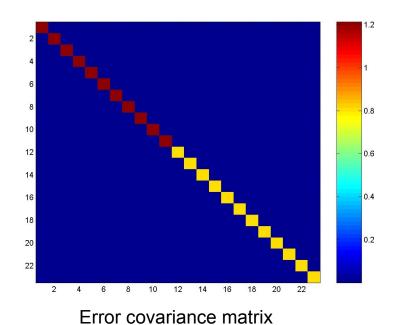


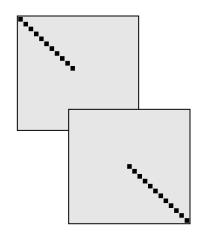

2nd level: Variance components


$$\operatorname{Cov}(\varepsilon) = \sum_{k} \lambda_{k} Q_{k}$$

Error covariance matrix

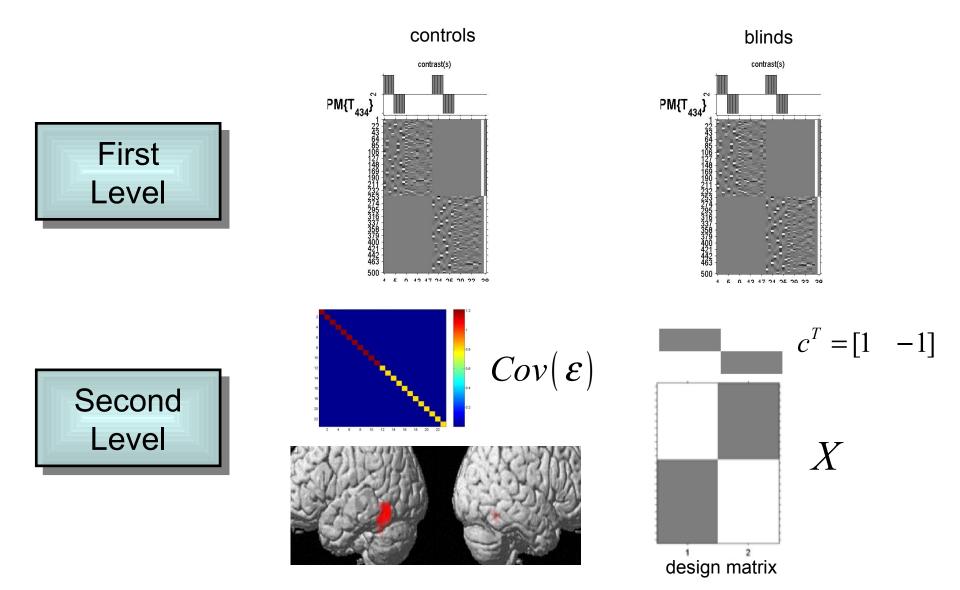
[▲] SPM


Example 1: between-subjects ANOVA


- Stimuli:
 - Auditory presentation (SOA = 4 sec)
 - 250 scans per subject, block design
 - 2 conditions
 - Words, e.g. "book"
 - Words spoken backwards, e.g. "koob"
- Subjects:
 - ▶12 controls
 - ➤11 blind people

Example 1: Covariance components

- Two-sample t-test:
 - Errors are independent but not identical.
 - 2 covariance components



 Q_k 's:

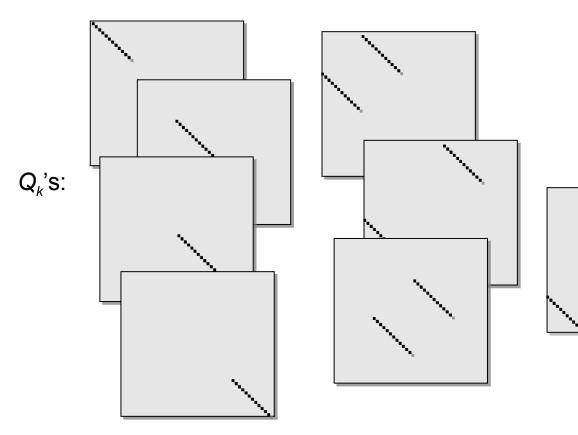
Example 1: Group differences

Example 2: within-subjects ANOVA

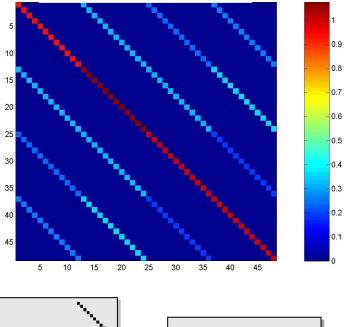
- Stimuli:
 - \succ Auditory presentation (SOA = 4 sec)
 - 250 scans per subject, block design

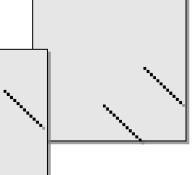
> Words:	Motion	Sound	Visual	Action
Subjector	"jump"	"click"	"pink"	"turn"

Subjects:

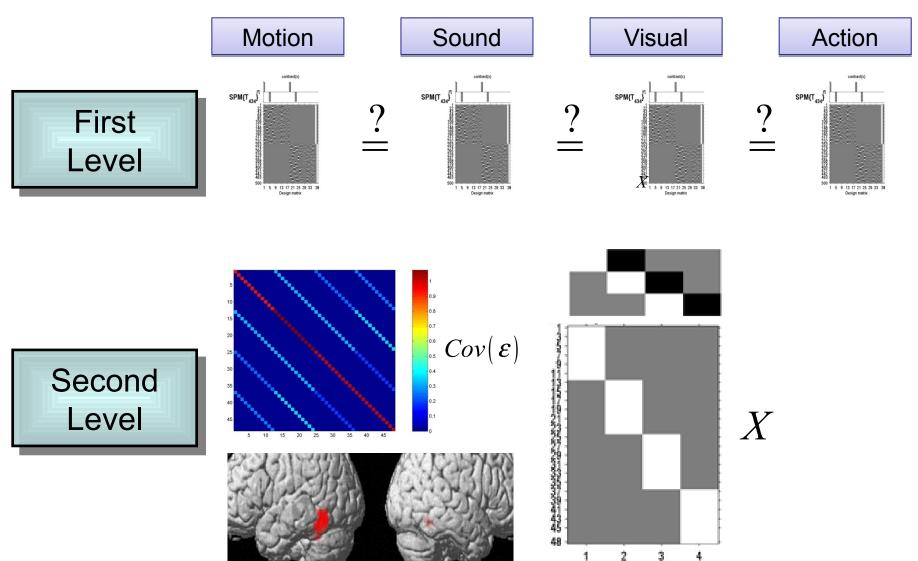

- 12 controls
- Question:
 - What regions are generally affected by the semantic content of the words?

Noppeney et al., Brain, 2003.

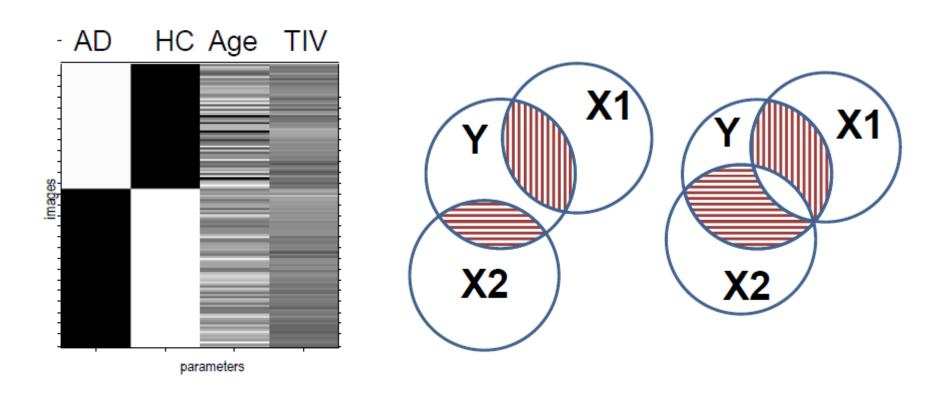

[▲]SPM


Example 2: Covariance components

Errors are not independent and not identical

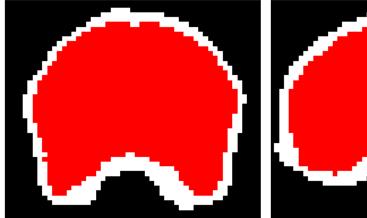

Error covariance matrix

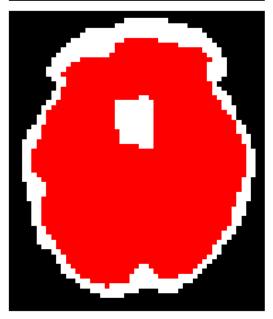
[▲] SPM


Example 2: Repeated measures ANOVA

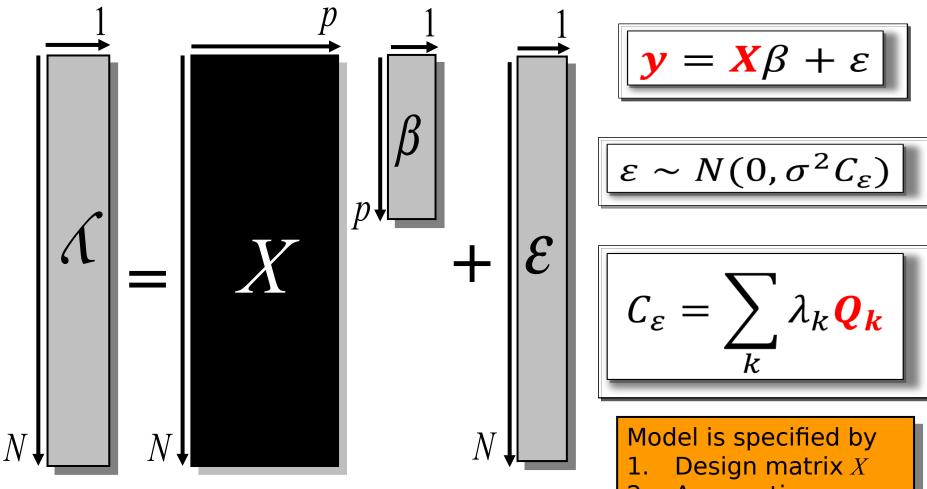
Design matrix

[▲]SPM


ANCOVA model

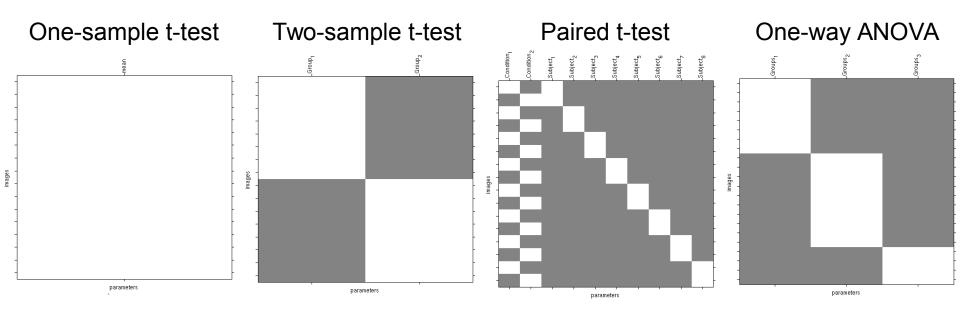

Mean centering continuous covariates for a group fMRI analysis, by J. Mumford: http://mumford.fmripower.org/mean_centering/

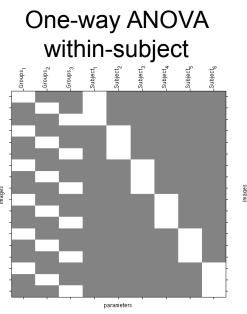
Analysis mask: logical AND

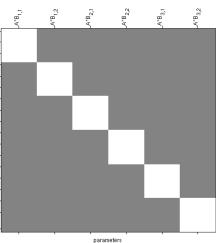

[▲] SPN

SPM interface: factorial design specification

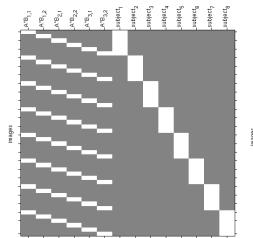
- Many options...
 - One-sample t-test
 - Two-sample t-test
 - Paired t-test
 - Multiple regression
 - One-way ANOVA
 - > One-way ANOVA within subject
 - Full factorial
 - Flexible factorial


^ASPN


General Linear Model


2. Assumptions about ε

[▲]SPM



Full Factorial

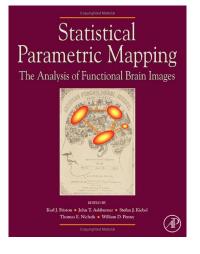
Flexible Factorial

Flexible Factorial

1, halaus

parameters

parameters


[▲] SPM

Summary

- Group Inference usually proceeds with RFX analysis, not FFX. Group effects are compared to between rather than within subject variability.
- Hierarchical models provide a gold-standard for RFX analysis but are computationally intensive.
- Summary statistics approach is a robust method for RFX group analysis.
- Can also use 'ANOVA' or 'ANOVA within subject' at second level for inference about multiple experimental conditions or multiple groups.

Bibliography:

- Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.
- Generalisability, Random Effects & Population Inference. Holmes & Friston, NeuroImage, 1998.
- Classical and Bayesian inference in neuroimaging: theory.
 Friston et al., NeuroImage, 2002.
- Classical and Bayesian inference in neuroimaging: variance component estimation in fMRI.
 Friston et al., NeuroImage, 2002.
- Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.
- Simple group fMRI modeling and inference. Mumford & Nichols, NeuroImage, 2009.

