

Computational Neuroimaging

Andreea Diaconescu

Methods & Models 2015

Special thanks to Christoph Mathys

What is it all about?

- Why do we use functional magnetic resonance imaging?
 - To measure brain activity
- When does the brain become active?
 - When it learns
 i.e., when its predictions & precisions about the world have to be
 adjusted
- Where do these predictions come from?
 - A model

- Model-based neuroimaging permits us to:
 - Infer the computational mechanisms underlying brain function
 - Localize such mechanisms
 - Compare different models

Explanatory Gap

Biological

- Molecular
- Neurochemical

Cognitive

- Computational
- "cognitive/
- computational phenotyping"

Phenomenological

- Performance Accuracy
- Reaction Time
- Choices, preferences

Computational Models

Three Levels of Inference

- Computational Level: predictions, prediction errors
- Algorithmic Level: reinforcement learning, hierarchical Bayesian inference, predictive coding
- Implementational Level: Brain activity, neuromodulation

David Marr, 1982

3 ingredients:

20/11/2015

Outline

Outline

How to build a model

Example of a simple model

Rescorla-Wagner Learning:

From perception to action

From perception to action

From perception to action to observation

Observing the observer

- The observer obtains input from the world via the sensory systems
- He/she has prior beliefs about the state of the world and how it is changing.
- Based on these prior beliefs and the sensory inputs, he makes predictions.

Daunizeau et al., PONE, 2011

Observing the observer

- The observer obtains input from the world via the sensory systems
- He/she has prior beliefs about the state of the world and how it is changing.
- Based on these prior beliefs and the sensory inputs, he makes predictions.

- As the experimenter, we want to infer on what the observer is thinking ...
- But all we can observe is his/her behaviour.
- We invert the observer's beliefs from his/her behaviour: computational model

Daunizeau et al., PONE, 2011

From perception to action

- In behavioural tasks, we observe actions *a*
- How do we use them to infer on beliefs λ ?
- Answer: we invert (estimate) a **response model**

Example of a simple response model

- Options A, B and C have values: $v_A = 8$, $v_B = 4$, $v_C = 2$
- We translate these values into action probabilities via a *Softmax* function:

$$p(a = A) = \frac{e^{\beta v_A}}{e^{\beta v_A} + e^{\beta v_B} + e^{\beta v_C}}$$

• Parameter β determines sensitivity to value differences:

All the necessary ingredients

- Perceptual model (updates based on prediction errors)
- Value function (inferred state to action value)
- Response model (action value to response probability)

Outline

Outline

Reinforcement Learning (RL) Models

- Reinforcement signals define an agent's goals (state created by the presence of reward)
 - in RL: goal of an agent is to take actions that lead to **maximization of** total future rewards

$$V(s_t) = E\left[\sum t(\tau)\right]$$

Value is the average sum of future rewards delivered from state s_t

- We want to learn V, but we can only learn an approximation of V based on the evidence so far.
- Simplify V via recursion: $V(s_t) = E[r_t] + V(s_{t+1})$

The teaching signal

- Update via reward prediction errors (PEs)
 - PE ≈ current reward previous value (prediction)

$$\delta_t = E[r_t] - \hat{V}(s_t)$$

- Rescorla-Wagner learning: PEs weighted by a fixed learning rate
 - Value update ≈ learning rate x PE

$$\Delta V(s_{t+1}) = \alpha(E[r_t] - \hat{V}(s_t))$$

$$\mu^{(k)} = \mu^{(k-1)} + \alpha(u^{(k)} - \mu^{(k-1)})$$

$$\Delta \mu^{(k)} = \alpha (u^{(k)} - \mu^{(k-1)}) = \alpha \delta^{(k)}$$

(Montague et al., 2004; Rescorla and Wagner, 1972)

Perception (learning) via hierarchical interactions

Hierarchical Bayesian Models

- Inference on the state of the world
- Beliefs are represented via probability distributions
 - Therefore: uncertainty (variance of the distribution) affects belief-updating
- Hierarchy of beliefs: state of the world and its volatility
- Efficient implementation in the brain promoted by evolutionary selection:
 - e.g. hierarchical architecture

Bayesian Models

- Includes uncertainty about hidden states
- Beliefs have precisions

Bayesian Models

- In all but the simplest cases, the equation for the model evidence has no closed-form solutions.
- One way to deal with this is to introduce approximations.
- One possible and plausible approximation to the model evidence is variational free energy (cf. Friston, 2007; Feynman, 1972)

The hierarchical Gaussian filter (HGF): a computationally tractable model for individual learning under uncertainty

Parameter **9** (how much volatility can change)

Parameter κ (connection between the levels)

Parameter ω (tonic learning rate, allows for individual

differences in x_2)

19 $x_3^{(k)}$ κ,ω $x_2^{(k)}$ $x_2^{(k-1)}$ $x_1^{(k)}$

state x_3 (estimate of volatility of the state of the world)

state x_2 (current belief about the state of the world)

state x_1 (sigmoid transformation of x_2 , category)

Mathys et al., Frontiers, 2011

The hierarchical Gaussian filter (HGF): a computationally tractable model for individual learning under uncertainty

Mathys et al., Frontiers, 2011

HGF: Variational inversion and update equations

- Inversion proceeds by introducing a mean field approximation and fitting quadratic approximations to the resulting variational energies.
- This leads to simple one-step update equations for the sufficient statistics (mean and precision) of the approximate Gaussian posteriors of the hidden states x_i .
- The updates of the means have the same structure as value updates in Rescorla-Wagner learning:

$$\Delta \mu_i = \frac{\widehat{\pi}_{i-1}}{\pi_i} \delta_{i-1}$$
 Prediction Error

Precisions determine the learning rate

Hierarchical Learning

Simulations: $\theta = 0.5$, $\omega = -2.2$, $\kappa = 1.4$

HGF: Hierarchical Precision-weighted PEs

1. Value Update:
$$\Delta \mu_2 = \frac{1}{\pi_2} \cdot \delta_1$$
 where $\pi_2 = \hat{\pi}_2 + \frac{1}{\hat{\pi}_1}$

2. Volatility Update:
$$\Delta \mu_3 = \frac{\kappa}{2} \cdot \frac{1}{\pi_3} \cdot w_2 \cdot \delta_2$$

RL models:
$$\Delta v = \alpha \cdot \delta$$

HGF: Dynamic Learning Rates

Diaconescu et al., 2013

HGF: Dynamic Learning Rates

Diaconescu et al., 2013

32

Which model is better?

- Reinforcement Learning?
- Hierarchical Bayesian Model?

Model Comparison: An example

Advice-Taking Task:

Model Space

Winning model

0

Winning model

Level 3: Volatility of intentions

$$p\left(x_3^{(k)}\right) \sim \mathcal{N}(x_3^{(k-1)}, \vartheta)$$

Level 2: Tendency towards helpful advice (adviser fidelity)

$$p\left(x_2^{(k)}\right) \sim \mathcal{N}\left(x_2^{(k-1)}, e^{(\kappa x_3^{(k-1)} + \omega)}\right)$$

Level 1: Observations (accurate or inaccurate advice)

$$p(x_1 = 1) = \frac{1}{1 + e^{-x_2}}$$

$$p\left(u^{(k)} = 1 \middle| \mu_1^{(k-1)}, \tilde{c}\right) = b^{(k)} = \zeta \, \mu_1^{(k-1)} + (1 - \zeta)\tilde{c}^{(k)}$$

$$p(y^{(k)} = 1 | b^{(k)}) = \frac{b^{(k)^{\beta}}}{b^{(k)^{\beta}} + (1 - b^{(k)})^{\beta}}$$

Outline

Outline

Model-based fMRI: The advantage

The question event-related/block designs answer:

 Where in the brain do particular experimental conditions elicit BOLD responses?

The question model-based fMRI answers:

 How (i.e., by activation of which areas) does the brain implement a particular cognitive process?

It is able to do so because its regressors correspond to particular cognitive processes instead of experimental conditions.

Example of a simple learning model

- Pavlovian conditioning:
 - abstract visual stimuli paired with sweet/neutral taste

$$\delta_t = E[r_t] + \gamma \hat{V}(s_{t+1}) - \hat{V}(s_t)$$

- Signed PE with a fixed learning rate:
 - ventral striatum
 - OFC and cerebellum

O'Doherty et al., Neuron, 2003

Application of the HGF: Sensory Learning

Changes in cue strength (black), and posterior expectation of visual category (red)

Iglesias et al., Neuron, 2013

Application of the HGF: Two types of PEs

1. Outcome PE

2. Cue-Outcome Contingency PE

Iglesias et al., Neuron,

Application of the HGF: Representation of the PEs

1. Outcome PE

z = -18

right VTA**Dopamine**

2. Probability PE

left basal forebrainAcetycholine

Iglesias et al., Neuron, 2013

Neuromodulatory Systems

Application to Social Learning

recommendations of adviser were **veridical** (pre-recorded videos from behavioural study)

volatility of advice (changing intentions of adviser through incentive structure)

interactive, gender-matched (**40** male subjects)

fMRI design: Philips Achieva 3T TR/TE 2500/36ms, 2 x 2 x 3 mm³

Diaconescu et al., *PLoS CB* 2014

Advice Fidelity Prediction Error

conjunction across studies

x = 8, y = 18, z = 46

second fMRI study

x = 8, y = 18, z = 46

first fMRI study

x = 8, y = 18, z = 46

Adviser Intentions Prediction Error

$$x = -6$$
, $y = 4$, $z = -11$

Adviser Intention Uncertainty

Pass individual subject trial history into SPM:

Response y (orange=1 advice was taken), input u (green=1 advice was accurate)

Diaconescu et al., In Prep

- 2. Estimated subject-by-subject model parameters:
 - Model Inversion:

```
runnning model/param combination 4 of 546
Irregular trials: none
Ignored trials: none
Irregular trials: none
Optimizing...
Calculating the negative free energy...
Results:
     mu2_0: 1.0665
     sa2_0: 1.4966
     mu3 0: 1
     sa3 0: 1
        ka: 0
        om: -10
        th: 1.0000e-18
         p: [1.0665 1.4966 1 1 0 -10 1.0000e-18]
    ptrans: [1.0665 0.4032 1 0 -22.3327 -10 -34.5388]
       ze1: 0.8816
       ze2: 48.0000
         p: [0.8816 48.0000]
    ptrans: [2.0073 3.8712]
```

Negative free energy F: -82.9603

3. Generate model-based time-series:

3. Convolve them with HRF:

Adapted from O'Doherty et al., 2007

52

5. Construct your GLM:

Adapted from Behrens et al., 2010

- 6. First-level analysis:
 - Load your regressors: reg1 =

```
[1x189 double]
[1x189 double]
[1x189 double]
```

```
→ mu1hat <1×189 double>
→ positive_PE <1×189 double>
```


- 6. First-level analysis:
 - Open SPM: Specify first level analysis

- 6. First-level analysis:
 - Load Design matrix into Batch editor

- 6. First-level analysis:
 - Examine results:
 - PE

57

- 6. First-level analysis:
 - Examine results:
 - mu1hat

Estimate: group

- 6. Second-level analysis:
 - Open SPM: Specify second-level analysis

Estimate: group

7. Second-level analysis: variation in PE representation across different learning styles

Outline

Outline

Tips for efficient experimental design

- 1. Design your "model space" before designing your experiment:
 - The research question and set of hypotheses will determine your model space
 - Formalize your hypotheses mathematically: these will become your models

- 2. Use simulations to design your "optimal" input structure
 - Input structure which best allows you to identify your parameters of interest

- How do subjects infer on the advice accuracy?
- Do they integrate the binary lottery information along with the advice?

- Hypothesis: Subjects infer on the adviser's intentions, which then determines the validity of the advice.
- Subjects integrate both sources of information during decisionmaking

Based on our hypotheses, we define our model space:

Example: Social learning experiment

Simulations: under what conditions can we recover our parameters of interest?

No Volatility: 80% adviser reliability

Example: Social learning experiment

Simulations: under what conditions, can we recover our parameters of interest?

High Volatility: 80% adviser reliability

Simulation Results: Demo

Take-Home Message

- Efficient experimental design is formalizing hypotheses in terms of mathematical models.
- Model-based regressors allow for investigation of mechanisms in the brain that are not accessible via direct observation.
- Abstract model-based quantities such as prediction error have shown to correlate with strong neuronal activation.
- In SPM, model-based regressors are treated just like any other parametric modulation.

References

- 1. Diaconescu, A.O., Mathys, C., Weber, L.A.E., Daunizeau, J., Kasper, L., Lomakina, E.I., Fehr, E., and Stephan, K.E. (2014). Inferring on the Intentions of Others by Hierarchical Bayesian Learning. PLoS Comput Biol *10*, e1003810.
- 2. Feynman, Richard P. (1972). Statistical Mechanics: A Set of Lectures. Reading, Mass: W. A. Benjamin.
- 3. Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., and Penny, W. (2007). Variational free energy and the Laplace approximation. NeuroImage *34*, 220–234.
- 4. Iglesias, S., Mathys, C., Brodersen, K.H., Kasper, L., Piccirelli, M., den Ouden, H.E.M., and Stephan, K.E. (2013). Hierarchical Prediction Errors in Midbrain and Basal Forebrain during Sensory Learning. Neuron *80*, 519–530.
- 5. Mathys, C., Daunizeau, J., Friston, K.J., and Stephan, K.E. (2011). A Bayesian foundation for individual learning under uncertainty. Front Hum Neurosci *5*.
- 6. Mathys, C.D., Lomakina, E.I., Daunizeau, J., Iglesias, S., Brodersen, K.H., Friston, K.J., and Stephan, K.E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 8.
- 7. Montague, P.R., Hyman, S.E., and Cohen, J.D. (2004). Computational roles for dopamine in behavioural control. Nature *431*, 760–767.
- 8. Rescorla, R.A., and Wagner, A.R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement. (New York: Appleton-Century-Crofts).