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What is it all about? W I

Translational Neuromodeling Unit

= Why do we use functional magnetic resonance imaging?
" To measure brain activity

" When does the brain become active?

= When it learns
i.e., when its predictions & precisions about the world have to be
adjusted

* Where do these predictions come from?
" A model
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Advantages of model-based ¥ N

neuroimaging

= Model-based neuroimaging permits us to:
* Infer the computational mechanisms underlying brain
function

= Localize such mechanisms

* Compare different models
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Explanatory Gap

Biological Cognitive

* Molecular « Computational
* Neurochemical * “cognitive/
* computational
phenotyping”

Computational
Models

Translational Neuromodeling Unit

Phenomenological

* Performance
Accuracy

* Reaction Time
* Choices, preferences
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m A
Three Levels of Inference W S

Translational Neuromodeling Unit

" Computational I evel. predictions, prediction errors

= _Algorithmic L evel: reinforcement learning, hierarchical

Bayesian inference, predictive coding

" Implementational I evel: Brain activity, neuromodulation

Y

David Marr, 1982

= 3ingredients:

1. Experimental

2. Computational model of
paradigm:

3. Model-based fMRI
learning:

analysis:
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OUtllne 4. Efficient

Design

1. Computational

3.
Implementational

2.
Algorithmic
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How to build a model W S

Translational Neuromodeling Unit

Predictions

@
\

Predictions Errors
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m A
Example of a simple model W S

Translational Neuromodeling Unit

Rescorla-Wagner Learning:

Prediction Error

Inferred States  New Input
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m A
From perception to action W I

Translational Neuromodeling Unit

Agent ; World
!

1 Sensory input
Perceptual aha

model with | X u
parameters X S~

True
hidden states

Inferred 7
hidden states

Response

\
model with (
parameters \/

Response

20/11/2015 Computational Neuroimaging, Andreea Diaconescu, Methods & Models 2015



m A
A4

Translational Neuromodeling Unit

(C

From perception to action

Agent ; World
!

Inversion of

Perceptual Model :
'». Sensory input
Perceptual \ S
model with | X _— u

narameters - .
X Generative Model

]
]
|
]
]
Inferred 1 ‘ | True
hidden states ' | X ) hidden states
' ]
f
{
|
]

Inversion of
Response Model _
Response \ ~
model with & / y
parameters { Response
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m A

From perception to action to observation W &

Translational Neuromodeling Unit

l ' -
Inversion of Perceptual‘/\gent | World
| Model !
1 i
I Perceptie] Y». Sensory input
|  modelwith | X u
iy ;PATRIIEIERs ¥ I Generative Model
I |
* 1
|
I |
I Inferred 7 ! True
| hidden states l idden states
> Y ] <
I
| Inversion of Response I
Model
I |
i ]
Response
' modelwith | ¢ > y
I parameters { Response
l
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Observing the observer

20/11/2015

The observer obtains
input from the world
via the sensory
systems

He/she has prior
beliefs about the state
of the world and how
it is changing.

Based on these prior
beliefs and the sensory
inputs, he makes
predictions.

m A
W S

Translational Neuromodeling Unit

Daunizeau et al., PONE, 2011
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m AN
Observing the observer W I

Translational Neuromodeling Unit

* The observerobtains
input from the world
via the sensory

systems \

« He/she has prior * Asthe experimenter, we want
beliefs about the state to infer on what the observer
of the world and how is thinking ...

it is changing.
 But all we can observe is

 Based on these prior his/her behaviour.
beliefsand the sensory . ,
inputs, he makes . We‘ invert the .observer S
predictions. beliefs from his/her
behaviour: computational
model

Daunizeau et al., PONE, 2011
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From perception to action -

Translational Neuromodeling Unit

Agent |, World
|

Sensory input

Perceptual
model with | X u
parameters y

|
I
|
|
I

Inferred 1
hidden states J

True
X hidden states

Response
model with ¢ y
parameters ¢ Response

* In behavioural tasks, we observe actions a
* How dowe use them to infer on beliefs A?

« Answer: we invert (estimate) a response model
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m A
Example of a simple response model™

Translational Neuromodeling Unit

= Options A, B and C have values: vy = 8,vg = 4,v,; = 2

= We translate these values into action probabilities via a Soffmax
function:

eﬁvA

p(a - A) - eBva + ePvB 4 eBVc

= Parameter [ determines sensitivity to value differences:

F—o1 B =06

A B C
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m AN
All the necessary ingredients ¥ N

Translational Neuromodeling Unit

= Perceptual model (updates based on prediction errors)
= Value function (inferred state to action value)

= Response model (action value to response probability)
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OUtllne 4. Efficient

Design

1. Computational

3.
Implementational

2.
Algorithmic
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-
Reinforcement Learning (RL) Models ¥

Translational Neuromodeling Unit

= Reinforcement signals define an agent’s goals (state created by the
presence of reward)

= in RL: goal of an agent 1s to take actions that lead to maximization of

total future rewards
Vis) = B[ t@)]

Value 1s the average sum of

future rewards delivered from
state S,

= We want to learn 1/, but we can only learn an approximation of [ based
on the evidence so far.

= Simplify " via recursion: V(s,) = E[r,] + V(S¢41)

20/11/2015
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m A
The teaching signal W S

Translational Neuromodeling Unit

= Update via reward prediction errors (PEs)
* PE = current reward - previous value (prediction)

6, = Elre] — V(St)

= Rescorla-Wagnerlearning: PEsweighted by a fixed learning rate
" Value update = learningrate x PE

AV (st41) = a(Elr] - V(St))

A‘u(k) — a(u(k) — l,l(k_l)) — aé‘(k)

(Montague et al., 2004; Rescorla and Wagner, 1972)
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m AN
Perception (learning) via hierarchical ™

Translational Neuromodeling Unit

interactions

Top-down;
Predictions

Bottom-up;
Sensations/Prediction Error
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m A
W S

Translational Neuromodeling Unit

Hierarchical Bayesian Models

= Inference on the state of the world

= Beliets are represented via probability distributions

" Therefore: uncertainty (variance of the distribution) affects
belief-updating

= Hierarchy of beliefs: state of the world and its volatility

= Efficient implementation in the brain promoted by

evolutionary selection:
" e.g. hierarchical architecture
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Bayesian Models W S

Translational Neuromodeling Unit

Agent ; World

5. Sensory input

Perceptual
model with X
parameters y

True
hidden states

Inferred 1 \
hidden states \

Bayes’ Rule
p(ulx,9) - p(x,9) « p(x,I|u)

likelihood  prior posteri

Response
model with (
parameters ¢

Response

* Includes uncertainty about hidden states

* Beliefs have precisions
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Bayesian Models W S

Translational Neuromodeling Unit

likelihood  prior
() = PP
posterior J p(ulx)p(x")dx

evidence

= In all but the simplest cases, the equation for the model evidence
has no closed-form solutions.

= One way to deal with this 1s to introduce approximations.

= One possible and plausible approximation to the model evidence is
variational free energy (ct. Friston, 2007; Feynman, 1972)
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The hierarchical Gaussian filter (HGF): a vV VW

computationally tractable model for individual oo vesonciin
learning under uncertainty

Parameter 9 (how much
volatility can change)

.» state X3 (estimate of
volatility of the state of

the world)

Parameter K (connection
between the levels)

Parameter w (tonic learning
rate, allows for individual .p  State X (current belief

about the state of the
world)

state X1 (sigmoid

differences in x5)

transformation of x5,
Mathys et al., Frontiers, 2011 category)

20/11/2015
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The hierarchical Gaussian filter (HGF): a u ,‘ “ )

° L] [ J [ )
computationally tractable model for individual e uomeoroseing un:
learning under uncertainty

State of the
world Model
P(x5™) ~ N(x;*7),8)
" Gaussian
Log V: latiiity random walk with p(x;,¥)
of ten?jenc constant step
y size 9 | >
X, (k1)
P(x,™) ~ N(x,*1), exp(kxs+w))
Tendency Gaussian
X, random walk with p(x;%)
towards step size
category “1” exp(kx;+w) | >
x. (k1)
2
. p(x;=1) = 8(x,)
Stimulus p(x,=0) = 1-5(x,)
category Sigmoid trans- ’
X, formation of x, plx,=1)
(uon or u1 n) ' Xg
0

Mathys et al., Frontiers, 2011
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m A
HGPF: Variational inversion and W S

update equations

= Inversion proceeds by introducing a mean field approximation and
fitting quadratic approximations to the resulting variational energies.

= This leads to simple one-step update equations for the sufficient
statistics (mean and precision) of the approximate Gaussian posteriors
of the hidden states x..

= The updates of the means have the same structure as value updates in
Rescorla-Wagner learning:

Prediction
Error

Precisions determine
the learningrate

20/11/2015 Computational Neuroimaging, Andreea Diaconescu, Methods & Models 2015



m A
Hierarchical Learning W I

Simulations: 4=0.5, ®=-2.2, k=14

Posterior expectation My of log-volatility of tendency X,

T T T | T |

1 | ] 1 |
0 50 100 150 200 250 300
Trial number

Posterior expectation Ky of tendency X,

I I I | I I

=
- ! | 1 1 !
0 50 100 150 200 250 300
Trial number
Stimulus category x , (green) and posterior expectation of x =1 (red)
g A S S —— e somis o wia b @ ovsmme stmswees ol soee o]
=
=
» 0.5¢
x‘.-
| e ittt T T et Sttt St
0 50 100 150 200 250 300
Trial number
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m AN
HGF: Hierarchical Precision-weighted “ W

PEs
1 1
1. Value Update: Apz = ol 0p Where  m, =1, + i
e kK 1
2. Volatility Update: Auz = oWy 55
3
RL models: Av =|lal 6

20/11/2015
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m A
W S

Translational Neuromodeling Unit

HGF: Dynamic Learning Rates

1.2

=HGF mulhat
I0IO prob struct

==Ir HGF 2nd

=Ir HGF 3rd

e T

0.8 v v V

) I M |y
\ | [

| ) | |
|

4.0 6A0 8A0 1 60 1 éO 140 1 60 1 80
Trials
Diaconescu et al., 2013
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m A
HGF: Dynamic Learning Rates P NP

Translational Neuromodeling Unit

0.6 :
=]r HGF 2nd
===1r HGF 3rd
"""""" RW Ir

0.5 |

041 -

03 | /\ |

1

0.1+ —

0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180

Trials
Diaconescu et al., 2013
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-
Which model is better? W I

Translational Neuromodeling Unit

= Reinforcement Learning? = Hierarchical Bayesian
Model?

20/11/2015 Computational Neuroimaging, Andreea Diaconescu, Methods & Models



Model Comparison: An example

= Advice-Taking Task:

m A
W S

Translational Neuromodeling Unit

PLAYER
Binary Lottery Advice Outcome
, m —) Decision —) ,
- =
Progress Bar Silver Gold
I H
y
ADVISER
Additional .
Information Advice
’ o
Player’s Progess Player’s Goals
I [
Gold Range Silver Range
y
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Model Space

m A
W S

Translational Neuromodeling Unit

GI:;ZZ?:?;;:; ‘ No Volatility Rescorla-
Factor 1: Perceptual Models (HGF) | meF | Wagner
Factor 2: o
. ili Decisi Decision ecision
Response Models: Belief Volatility Noise Noise Noise
to Decision Mapping | 1 ] l
Factor 3: | | | |
Response Models: _ ' \
Integrated: Refiuced. Integrated: Reduced: Integrated: ‘ Reduced: Integrated: Reduced:
e teivers s Reduced Aﬁi:: 3::1) Advice (M2 A:;:ea ?:14) Advice (MS) Aﬁiif :‘r:v) ’ Advice (18 Adfr‘ilcia(::lm) Advice (M1
Reduced: Cue Reduced: Cue Reduced: Cue Reduced: Cue
Specific Models M3) (M6) (M9) (M12)
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Winning model bnv

Social Interactive Stlldy EEG Study nslational Neuromodeling Unit
L7 ¥ HGF 17 HGF
~ . ¥No Volatility —~ ) ¥ No Volatility
2 05 7 HGF > 0.5 HGF
—
N’ et
(oW “Rescorla-Wagner E “Rescorla-Wagner
0 : 0 . >
| |
H1ntegrated: ¥ Integrated:
— Advice & Cue —~ Advice & Cue
> ¥ Reduced: Advice > , “Reduced:
= 0.5 7 0.5 7 Advice
[ “Reduced: Cue [aW 'Reduced: Cue
/ 4 / | 374
0~ 0~
fMRI Study 1 fMRI Study 2
1 ¥ HGE 17 ®HGE
— ¥ No Volatility —_ , ¥ No Volatility
%\ 0.5 7 HGE %\ 0.5 7 HGF
\Q/.. | ’ “ Rescorla-Wagner \Q/.. 7 B Y Rescorla-Wagner
0 - 0« >
1 7 1 1
®Integrated: ¥ Integrated:
~~ Advice & Cue —~ Adyvice & Cue
> v “Reduced: Advice > : “Reduced: Advice
s 0.5 7 =05 7
[a W Reduced: Cue [a W 'Reduced: Cue
0~ l 0
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Winning model :,Av

Translational Neuromodeling Unit

Level 3: Volatility of intentions

p ()~ §,9)

Level 2: Tendency towards helpful advice (adviser fidelity

(k—1)
p( ()) ~ (D, g lexs T )y

Level 1: Observations (accurate or inaccurate advice)

p(x;=1) =

1+ e7*2

D (u(k) — 1|‘u§k—1), ) p&) = { (k-1) +(1- {)(:"(k)

k) B
Py = 1Jp9) = — L

p@F 4 (1 — ptB
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m AN
Model-based fMRI: The advantage W S

Translational Neuromodeling Unit

The question event-related/block designs answer:

— Where in the brain do particular experimental conditions
elicit BOLD responses?

The question model-based fMRI answers:

- How (i.e, by activation of which areas) does the brain
implement a particular cognitive process?

It is able to do so because its regressors correspond to

particular cognitive processes instead of experimental
conditions.

Computational Neuroimaging, Andreea Diaconescu, Methods & Models 2015



m AN
Example of a simple learning model ™

Translational Neuromodeling Unit

= Pavlovian conditioning:

= abstract visual stimuli paired
with sweet/neutral taste

8¢ = Elr ] +yV(ser1) — V(se)

= Signed PE with a fixed learning
rate:

= yventral striatum
= OFC and cerebellum

8 1 8 1.5
56 0.8 2 ]: - . smees ae -
) Sl . . e .
E* ANANERO AL N R
=04 ;;-c.s
§°2 g .| T,
Q 4 [

o 20 40 60 80 ©O-15 - ) h 1

% B O'Dohertyet al., Neuron, 2003
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m A
Application of the HGF: Sensory Learning W \J

Translational Neuromodeling Unit

cue prediction target ITI
300 ms 800/1000/1200 ms 150/300 mMs 2000 500 msS

time

Changes in cue strength (black), and
posterior expectation of visual category (red)

1 4 T T T T T T

0.5F i

0 50 100 150 200 250 300

Iglesiasetal., Neuron, 2013
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m A
Application of the HGF: Two types of PEs W \&J

Translational Neuromodeling Unit

1. Outcome PE

1 I |
0.5 ' | [ | - €2

0 | ) | |
0 50 100 150 200 250 300

2. Cue-Outcome Contingency PE

I | I 'l

2~

M
w

0 S0 100 150 200 250 300

Iglesias et al., Neuron,

Computational Neuroimaging, Andreea Diaconescu, Methods & Models 2015



m A
Application of the HGF: Representation ofe &

precision-weighted PEs

1. Outcome PE 2. Probability PE
I w
F
4 -}
£
zZ=-18
* right VTA * left basal forebrain
Dopamine Acetycholine

Iglesias et al., Neuron, 2013
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m AN
Neuromodulatory Systems s

Translational Neuromodeling Unit

3. Noradrenaline

1. Dopamine

PPN /§ o X
==

e T——

Substantia nigra
pars compacta

Locus ceruleus

Ventral
tegmental area
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W S

Translational Neuromodeling Unit

Application to Social Learning

Cue & Advice Decision Phase Oulcome

<a

8

3s 2s

recommendations of adviser were
veridical (pre-recorded videos from
behavioural study)

volatility of advice (changing
intentions of adviser through incentive
structure)

interactive, gender-matched (40 male
subjects)

fMRI design: Philips Achieva 3T
TR/TE 2500/36ms, 2 X 2 x 3 mm3

Diaconescu et al., PLoS CB 2014
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first fMRI study second fMRI study conjunction across studies
x=8,y=18,z=46 x=8,y=18,z=46 x=8,y=18,z=46
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Adviser Intentions Prediction Error W I

Translational Neuromodeling Unit

X=-6,y=4,Z=-1

Al‘
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m AN
How do we construct regressors that W S
e o Translational Neuromodeling Unit
correspond to cognitive processes and use

them in SPM?

1. Pass individual subject trial history into SPM:

Cue & Advice Decision QOutcome

3s 2s

Response y ( =1 advice was taken), input u (green=1 advice was accurate)

1 . 7 7 [ [ 1t 1 1 1 1 [ 11 __J1 ;N J (e I N NN N __ JZ1 1 J

Ot o000 120 =10 T00 T80
Trials

Diaconescuetal., In Prep
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m A
How do we construct regressors that W S

Translational Neuromodeling Unit
correspond to cognitive processes and
use them in SPM?

2. Estimated subject-by-subject model parameters:

] Model Inversion: runnning model/param combination 4 of 546
) Irreqular trials: none

Ignored trials: none
Irreqular trials: none

Calculating the negative free energy...

Results:
mu2_0: 1.0665
sa2_0: 1.4966
mu3_0: 1
sa3_0: 1
ka: 0
om: -10
th: 1.0000e-18
p: [1.0665 1.4966 1 1 0 -10 1.0000e-18]
ptrans: [1.0665 0.4032 1 0 -22.3327 -10 -34.5388]
zel: 0.8816
ze2: 48.0000
p: [0.8816 48.0000]
ptrans: [2.0073 3.8712]

Negative free energy F: -82.9603
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m A
How do we construct regressors that W S

Translational Neuromodeling Unit
correspond to cognitive processes and
use them in SPM?

3. Generate model-based time-series:

0 50 100 150
Trial number

3. Convolve them with HRF:

IBE-YANS

0 20 40 60 80 100 120 140 160
Tral number

Adapted from O’Doherty et al., 2007

20/11/2015
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W S

Translational Neuromodeling Unit

How do we construct
regressors that correspond to

cognitive processes and use Ve ~
them in SPMD Model States N?pral Recordip\gs
=

5. Construct your GLM:

Adapted from Behrens et al., 2010
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m AN
Estimate: single subject -

Translational Neuromodeling Unit

0. First-level analysis:

"  Load your regressors: regl =

[1x189 double]
[1x189 double]
[1x189 double]

FH mulhat <1x189 double>
H positive_PE <1x189 double>
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m A

Estimate: single subject UU

0. First-level analysis:

=  Open SPM: Specify first Reaii.. &) Slice timing Smooth

level analysis . _
Core... u Norm... u Segment

Specify 1st-level Review

Specify 2nd-level Estimate
Results

Dynamic Causal Modelling

Display Check Reg Re... u FMRI u
To... u PPIs ImCalc DICOM Import

Help utll.... ’ Batch Quit
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m A
W S

Translational Neuromodeling Unit

Estimate: single subject

: :
0. First-level analysis: APRr=TEPET— .

DEHE P

Module List Current Module: fMRI model specification

=  Load Design matrix into

. fMRI model specification =] Help on: fMRI model specification |~
Batch edltor Model estimation DER Directory ...data/F_AK_2811/spm_glm/
Contrast Manager DER Timing parameters
. Units for design Seconds
. Interscan interval 2.5
. Microtime resolution 16
. Microtime onset 8 —
Data & Design
. Subject/Session
.. Scans 1335 files
.. Conditions
... Condition
. Name prediction_cue_adv
. Onsets 189x1 double
. Durations 0

. Time Modulation No Time Modulation
. Parametric Modulations

..... Parameter

...... Name mulhat

...... Yalues 189x1 double

...... Polynomial Expansion 1st order =
Current Itent Name

PE -

i 1D ll Edit Value

Condition Name
A String is entered.
The string must have at least 1 characters.

20/11/2015
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Translational Neuromodeling Unit

Estimate: single subject' I bt

. . _Ejn 4 | & g contrast(s)
0. First-level analysis: N v |
. . - ) » <
=  FExamine results:

- PE 200

| SPM{T b

TE e - 600

' 7 v 80

1200 p

10 20 30 40
Design matrix
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Translational Neuromodeling Unit

Estimate: single subject -

. . EEFCGEES  EETlS -
0. First-level analysis: 8 2’. > ",:'-., conkast)

. - ] t. " 2
=  Examine results: = = =
= mulhat .
R s

10 20 30 40
Design matrix
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m A

Estimate: group

0. Second-level analysis:

= Open SPM: Specity Reali.. [0} Slice timing smooth

second-level analysis . _
Core... u Norm... u Segment

Specify 1st-level Review

Specify 2nd-level Estimate
Results

Dynamic Causal Modelling

Display Check Reg Re... u FMRI u
To... u PPIs ImCalc DICOM Import

Help utll.... ’ Batch Quit
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Estimate: group ¥ N

Translational Neuromodeling Unit

7. Second-level analysis: variation in PE representation across
different learning styles

= * \ Ji‘ - , f’ * - contrast(s)

L 10
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OUtllne 4. Efficient

Design

1. Computational

3.
Implementational

2.
Algorithmic
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Tips for efficient experimental design ™

Translational Neuromodeling Unit

1. Design your “model space” before designing your experiment:

"  The research question and set of hypotheses will determine your model space

"  TFormalize your hypotheses mathematically: these will become your models

2. Use simulations to desion vour “optimal’” input structure
gny p p

= Input structure which best allows you to identify your parameters of interest
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Example: Social learning experiment @
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Cue & Advice Decision Outcome

<a

=+

3s 2S

* .

Is

* How do subjects infer on the advice accuracy?

= Do they integrate the binary lottery information along with the
advice?
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Example: Social learning experiment @

Translational Neuromodeling Unit

Cue & Advice Decision Outcome

<a

=+

3s 2S

* .

Is

= Hypothesis: Subjects infer on the adviser’s intentions, which then
determines the validity of the advice.

= Subijects integrate both sources of information during decision-

making
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Example: Social learning experiment @
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= Based on our hypotheses, we define our model space:

Hypothesis 1: intentions?

Hierarchical No Volatility R
. . escorla-
Gaussian Filter
Perceptual Models siant HGE Wagner
Response Models: Integrated: ) Iriegrated: Reduced: | Imiegrated: Reduced:
Integrated versus Reduced | "™ Advice 019 Avice ) [ advice 0 e
Reduced: Cue Reduced: Cue Reduced: Cue
(M3) (M6) (M9)

Hypothesis 2: integration?
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Example: Social learning experiment @
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= Simulations: under what conditions high @
can we recover our parameters of

. medium
interest? w

low W
No Volatility: 80% adviser reliability
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Example: Social learning experiment @

Translational Neuromodeling Unit

= Simulations: under what conditions, hich @
can we recover our parameters of

. medium
interest? w

low W
High Volatility: 80% adviser reliability

=
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Simulation Results: Demo W S
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Take-Home Message ¥ N

Translational Neuromodeling Unit

= Efficient experimental design is formalizing hypotheses in terms of
mathematical models.

= Model-based regressors allow for investigation of mechanisms in
the brain that are not accessible via direct observation.

= Abstract model-based quantities such as prediction error have
shown to correlate with strong neuronal activation.

= In SPM, model-based regressors are treated just like any other
parametric modulation.
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