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Overview of SPM
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What is the problem we want to solve?

 We have an experimental paradigm and
want to test whether brain activity Is
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Modelling the measured data

Why? Make inferences about effects of interest

1. Decompose data into effects and
How? error

2. Form statistic using estimates of
effects and error
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A very simple experiment

b b b b b b b
’ B tir’ne

« One session What is the .brain‘_s response
« 7 cycles of rest and listening to such a stimulation?
» Blocks of 6 scans with 7 sec

TR
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How Is brain data related to the input?

What we measure.

single voxel
time series
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What we know.

time

Question: Is there a change in the BOLD response between listening and rest?
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A linear model of the data

Explain your data...

as a combination of experimental manipulation,confounds and errors
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Single voxel regression model: y Xﬂl _|_ XZﬁz _I_d regressors
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Writing everything in matrix notation

a1 L

BOLD signal

Single voxel regression model:

By
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y=Xfg+e

error
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The way It looks iIn SPM
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Nn: number of scans
y=Xf+e

P: number of regressors
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e ... to specify the design matrix.

- ... specify a noise model, e.g.|e ~ N(0,5°I)

* ... and then, estimate the parameters b
that minimize the error Y ¢

t=1

— Minimization of the error_depends on
assumptions about the noise.
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Summary: Mass-univariate GLM

y=Xf+¢€
e~ N(0,o°l)

Model is specified by
1. Design matrix X
2. Assumptions about e

<
[
>
+
D

N number of scans
N v N v Nv p. number of regressors

The design matrix embodies all available knowledge about
experimentally controlled factors and potential confounds.
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How to fit the model parameters.

OLS (Ordinary Least Sqguares)

o
— y=Xp Data
— = le=y-y predicted by
- — = | o~ our model
- o (e=y-Xp ,\ ,\
— ] min(e’€) = min((y— XB)' (y— XP))
y X €

Goal is to determine the
betas that minimize the
guadratic error

e = error between
predicted and actual data
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OLS - Ordinary least squares

e'e=(y—-XpB) (y-Xp)

We want to
minimize the
guadratic
error
between
data and
model
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OLS - Ordinary least squares

e'e = (y - XB) (y - XpB)
e'e=(y" - BTXT)(y - XB)
e'e=y'y -y XB- B XTy+ B XTXB

e'e = yTy_zlngTer,ngTxﬁ\

T "
B L oXTy+2XTXJ
op
0=-2XTy+2X"XB < \

N\

B=(X"X)"X'y OLS estimate for g
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Summary: OLS solution

Objective: N 5
estimate parameters E et
to minimize t=1

Ordinary least squares
estimation (OLS)
(assuming i.i.d. error):

B=(XTX)"XTy
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Geometric perspective

Residual
forming matrix R
OLS estimates e =Ry
L=(X"X)'X"y R=1-P

Projection matrix P
Design space § = Py
defined by X

P=X(XTX)'XT"
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Correlated and orthogonalized regressors

defined by X

Design space

X5

y= Xlﬂl + Xzﬁz +€

ﬁ1:ﬁ2:1l

y =X /p; + X;ﬂ; t€

181>1;:B; =1

Correlated regressors =

explained variance is shared
between regressors

When X, is orthogonalized with
regard to x,, only the parameter
estimate for x, changes, not that
for x,!
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We are nearly there ...

linear model

effects

—T estimate

\ error

estimate

> statistic
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Problems of this model

0.08} HRF

1. BOLD responses have a delayed
and dispersed form (cf. Lecture 1). ..l

0 w—

-0.02

0 5 10 15 20 25 30
time [s]

2. The BOLD signal includes substantial amounts of low-
frequency noise.

3. The data are serially correlated (temporally autocorrelated)
— this violates the assumptions of the noise model in the
GLM
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Summary: Mass-univariate GLM

<
1

N ¢ N ¢

N4

Model is specified by
1. Design matrix X
2. Assumptions about e

N: number of scans
p. number of regressors

The design matrix embodies all available knowledge about
experimentally controlled factors and potential confounds.
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Problem 1: The BOLD response

1 1
15 20
lime (seconds)

f ®gkt) :J f(r)g(t—7)dr

The response of a linear time-invariant (LTI) system is the convolution of the input
with the system's response to an impulse (delta function).

T
JANERNEANE R
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Solution: Convolution with the HRF

120

expected BOLD response
= input function ® impulse

: t
response function (HRF) et T ®g(t) = I f(zr)g(t—7)dz
| 0
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Scans
blue = data
green = predicted response, taking convolved with HRF
red = predicted response, NOT taking into account the HRF
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Problem 2: Low frequency noise

MRI Scanner Cutaway
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blue = data
black = mean + low-frequency drift
green = predicted response, taking into account
low-frequency drift
red = predicted response, NOT taking into

account low-frequency drift
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Solution 2: High-pass filtering

Frequency domain
128 second High-pass filter
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Solution 2: High-pass filtering
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Linear model
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blue = data
black = mean + low-frequency drift
green = predicted response, taking into account
low-frequency drift
red = predicted response, NOT taking into

account low-frequency drift
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Problem 3: Serial correlations

sphericity = 1.i.d.
error covariance is a
scalar multiple of the

identity matrix:

Cov(e) = &l

Examples for non-sphericity:

Iaa'
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4 0
Cov(e) =

t o
S0
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non-identity

S H
K Cov(e) =

I 1 2

non-independence
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Problem 3: Serial correlations

e =ae_ +¢& with g ~ N(0,5°)

15t order autoregressive process: AR(1)

autocovariance
function

S

b= . e
2] [ - 8]

autocovariance

o
~

0.2f

Nn: number of scans
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Solution 3: Pre-whitening

* Pre-whitening:

1. Use an enhanced noise model with multiple error covariance
components, i.e. e ~ N(0, ¢?V) instead of e ~ N(O, &2l).

2. Use estimated serial correlation to specify filter matrix W for
whitening the data.

This is I.1.d
i
Wy =WX 23 +We
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How to define W?

- Enhanced noise model e ~N (O, 0'2\/)

« Remember linear transform X~ N (,U’ 0-2), y = ax
for Gaussians ) o
=Yy~ N(ay,a“c”?)

e Choose W such that error
covariance becomes spherical We ~ N (O, O 2W 2\/)
=WV =
e Conclusion: W is a simple function of V
= s0 how do we estimate V ? —\W =V Y?

Wy =WX 23 +We
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Find W — multiple covariance components.

2\/ V oc Cov(e)
e~ N (O, O ) V=10
enhanced noise model error covariance components Q

and hyperparameters A

Estimation of hyperparameters A with EM (expectation maximisation) or
ReML (restricted maximum likelihood). For more details see (Friston et al,
Neuroimage, 16:465; 2002)
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c=10000000000

]
= : effects Null hypothesis: 3, = 0
I m —T estimate
- tatistl
< = \ rror statistic
I . estimate .
[ |
C
7
Std(c’ B)

- Lecture: Classical (frequentist) inference
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Outlook: Contrasts and statistical maps

Q: activation during
listening ?

Null hypothesis: 181 =0

H B B B EEE [ ]
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Summary of GLM

Wy =WX 3 +We —
/ t=— b ~ /

- - std (c" B) JE7CT WX (WX)" ¢

IB — (VVX) WYL>< 4

sfd(c" B) =

_ | A
c=10000000000 W =V ? &222(\/\/3’_\/\/)(15)2
oV = Cov(e) tr(R)
R=1-WXWX)"

For brevity:

‘(\NX)*z(XTWX)‘leI

ReML-
estimates
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Physiological confounds

 head movements

 arterial pulsations (particularly bad in brain stem)
e breathing

* eye blinks (visual cortex)

e adaptation effects, fatigue, fluctuations in
concentration, etc.

- Lecture: Noise models in fMRI and noise correction
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Outlook — further challenges

 correction for multiple comparisons
 variability in the HRF across voxels
 slice timing

 limitations of frequentist statistics
— Bayesian analyses

 GLM ignores interactions among voxels
— models of effective connectivity

These issues are discussed in future lectures.
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Correction for multiple comparison

« Mass-univariate approach:
We apply the GLM to each of a huge number of voxels
(usually > 100,000).

* Threshold of p<0.05 — more than 5000 voxels significant
by chance!

* Massive problem with multiple comparisons!

« Solution: Gaussian random field theory

-> Lecture: Multiple comparison correction
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Variability in the BOLD response

HRF varies substantially across voxels and subjects

For example, latency can differ by £ 1 second

Solution: use multiple basis functions

See talk on event-related fMRI

0 5 10 15 20 PST(s)
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 Mass-univariate approach: same GLM for each voxel

 GLM includes all known experimental effects and
confounds

e Convolution with a canonical HRF
e High-pass filtering to account for low-frequency drifts

o Estimation of multiple variance components (e.g. to
account for serial correlations)
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Supplementary slides



Convolution step-by-step;(from Wikipedia):

1. Express each functionin 0
terms of a dummy variable .

2. Reflect one of the functions:
g(t)—ga( - 1). fte)

*********************

3. Add atime-offset, t, which . !
allows g(t - 1) to slide along : glt=7) !
the t-axis. |

4.Start t at -~ and slide it all the way to +~. Wherever the
two functions intersect, find the integral of their product. In
other words, compute a sliding, weighted-average of
function f(t), where the weighting function is g( - 7).

The resulting waveform (not shown here) is the convolution
of functions f and g. If f(t) is a unit impulse, the result of
this process is simply g(t), which is therefore called the
impulse response.

—————————————————————
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