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Overview of SPM
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What is the problem we want to solve?

• We have an experimental paradigm and
want to test whether brain activity is
(linearly) related to the paradigm.

• We will try to solve the problem by
modeling the data.
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Modelling the measured data

GLM for fMRI 4

stimulus 
function

1. Decompose data into effects and
error

2. Form statistic using estimates of
effects and error

Make inferences about effects of interestWhy?

How?

data
linear
model

effects 
estimate

error 
estimate

statistic



A very simple experiment
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time

• One session
• 7 cycles of rest and listening
• Blocks of 6 scans with 7 sec 

TR

What is the brain‘s response
to such a stimulation?



How is brain data related to the input?
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time

single voxel 
time series

Question: Is there a change in the BOLD response between listening and rest?

What we know.

What we measure.



A linear model of the data
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Explain your data… 
as a combination of experimental manipulation,confounds and errors

Single voxel regression model:
regressors

x1 x2



Writing everything in matrix notation
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eXy += βSingle voxel regression model:



The way it looks in SPM
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We need …

• … to specify the design matrix.
• … specify a noise model, e.g. 
• … and then, estimate the parameters b 

that minimize the error
– Minimization of the error depends on 

assumptions about the noise.
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Summary: Mass-univariate GLM
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Model is specified by
1. Design matrix X
2. Assumptions about e

N: number of scans
p: number of regressors

eXy += β

The design matrix embodies all available knowledge about 
experimentally controlled factors and potential confounds.
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How to fit the model parameters.
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Data 
predicted by 
our model

e = error between 
predicted and actual data

Goal is to determine the 
betas that minimize the 
quadratic error

OLS (Ordinary Least Squares)



OLS – Ordinary least squares
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We want to 
minimize the 
quadratic 
error 
between 
data and 
model



OLS – Ordinary least squares
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Summary: OLS solution
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Geometric perspective
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Projection matrix P



Correlated and orthogonalized regressors
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When x2 is orthogonalized with 
regard to x1, only the parameter 
estimate for x1 changes, not that 
for x2!

Correlated regressors = 
explained variance is shared 
between regressors
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We are nearly there …
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linear model

effects
estimate

error
estimate

statistic



Problems of this model
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1. BOLD responses have a delayed 
and dispersed form (cf. Lecture 1).

HRF

2. The  BOLD signal includes substantial amounts of low-
frequency noise.

3. The data are serially correlated (temporally autocorrelated) 
→ this violates the assumptions of the noise model in the 
GLM



Summary: Mass-univariate GLM
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Model is specified by
1. Design matrix X
2. Assumptions about e

N: number of scans
p: number of regressors

eXy += β

The design matrix embodies all available knowledge about 
experimentally controlled factors and potential confounds.
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Problem 1: The BOLD response
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The response of a linear time-invariant (LTI) system is the convolution of the input 
with the system's response to an impulse (delta function).



Solution: Convolution with the HRF
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expected BOLD response 
= input function ⊗ impulse 
response function (HRF)

 ⊗ HRF
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t
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blue = data
green = predicted response, taking convolved with HRF
red = predicted response, NOT taking into account the HRF



Problem 2: Low frequency noise
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blue = data
black = mean + low-frequency drift
green = predicted response, taking into account 

low-frequency drift
red = predicted response, NOT taking into 

account low-frequency drift



Solution 2: High-pass filtering
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discrete cosine 
transform (DCT) set



Solution 2: High-pass filtering
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blue = data
black = mean + low-frequency drift
green = predicted response, taking into account 

low-frequency drift
red = predicted response, NOT taking into 

account low-frequency drift

Linear model



Problem 3: Serial correlations
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sphericity = i.i.d.
error covariance is a 
scalar multiple of the

identity matrix:
Cov(e) = σ2I









=

10
01

)(eCov









=

10
04

)(eCov









=

21
12

)(eCov

Examples for non-sphericity:

non-identity

non-independence



Problem 3: Serial correlations
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n: number of scans

n

n

autocovariance
function

withttt aee ε+= −1 ),0(~ 2σε Nt

1st order autoregressive process: AR(1)



Solution 3: Pre-whitening
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• Pre-whitening: 

1. Use an enhanced noise model with multiple error covariance 
components, i.e. e ~ N(0, σ2V) instead of e ~ N(0, σ2I).

2. Use estimated serial correlation to specify filter matrix W for 
whitening the data.

WeWXWy += β

This is i.i.d



How to define W?
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• Enhanced noise model

• Remember linear transform 
for Gaussians

• Choose W such that error 
covariance becomes spherical

• Conclusion: W is a simple function of V
 ⇒ so how do we estimate V ?

WeWXWy += β
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Find W – multiple covariance components.
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= λ1 + λ2

Q1 Q2

Estimation of hyperparameters λ with EM (expectation maximisation) or 
ReML (restricted maximum likelihood). For more details see (Friston et al, 
Neuroimage, 16:465; 2002)

V

enhanced noise model error covariance components Q
and hyperparameters λ



linear model

effects
estimate

error
estimate

statistic

c = 1 0 0 0 0 0 0 0 0 0 0

Null hypothesis: 01 =β
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 Lecture: Classical (frequentist) inference
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Outlook: Contrasts and statistical maps
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Q: activation during 
listening ?

c = 1 0 0 0 0 0 0 0 0 0 0

Null hypothesis: 01 =β
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Summary of GLM
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WeWXWy += β

c = 1 0 0 0 0 0 0 0 0 0 0
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For brevity:



Physiological confounds

GLM for fMRI 34

• head movements

• arterial pulsations (particularly bad in brain stem)

• breathing

• eye blinks (visual cortex)

• adaptation effects, fatigue, fluctuations in 
concentration, etc.

 Lecture: Noise models in fMRI and noise correction



Outlook – further challenges
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• correction for multiple comparisons

• variability in the HRF across voxels

• slice timing

• limitations of frequentist statistics
→ Bayesian analyses

• GLM ignores interactions among voxels
→ models of effective connectivity

These issues are discussed in future lectures.



Correction for multiple comparison
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• Mass-univariate approach: 
We apply the GLM to each of a huge number of voxels 
(usually > 100,000).

• Threshold of p<0.05 → more than 5000 voxels significant 
by chance!

• Massive problem with multiple comparisons! 

• Solution: Gaussian random field theory

 Lecture: Multiple comparison correction 



Variability in the BOLD response
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• HRF varies substantially across voxels and subjects

• For example, latency can differ by ± 1 second

• Solution: use multiple basis functions

• See talk on event-related fMRI



Summary
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• Mass-univariate approach: same GLM for each voxel

• GLM includes all known experimental effects and 
confounds

• Convolution with a canonical HRF

• High-pass filtering to account for low-frequency drifts

• Estimation of multiple variance components (e.g. to 
account for serial correlations)
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Supplementary slides



1. Express each function in 
terms of a dummy variable τ.

2. Reflect one of the functions: 
g(τ)→g( − τ).

3. Add a time-offset, t, which 
allows g(t − τ) to slide along 
the τ-axis.

4.Start t at -∞ and slide it all the way to +∞. Wherever the 
two functions intersect, find the integral of their product. In 
other words, compute a sliding, weighted-average of 
function f(τ), where the weighting function is g( − τ).

The resulting waveform (not shown here) is the convolution 
of functions f and g. If f(t) is a unit impulse, the result of 
this process is simply g(t), which is therefore called the 
impulse response.

Convolution step-by-step (from Wikipedia):
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