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Why do I need to learn about Bayesian stats? 
 
Because SPM is getting more and more Bayesian: 

• Segmentation & spatial normalisation 

• Posterior probability maps (PPMs) 

• Dynamic Causal Modelling (DCM) 

• Bayesian Model Selection (BMS) 

• EEG: source reconstruction 
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Classical    and    Bayesian  
statistics 

 Flexibility in modelling 

 Incorporating prior information 

 Posterior probability of effect 

 Options for model comparison 

Probability of observing the 
data y, given no effect (θ = 0). 
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p-value: probability of getting the observed data in 
the effect’s absence. If small, reject null hypothesis 
that there is no effect. 

 One can never accept the null 
hypothesis 

 Given enough data, one can 
always demonstrate a significant 
effect 

 Correction for multiple 
comparisons necessary 

 

Bayesian Inference 

Statistical analysis and the illusion of objectivity. 
James O. Berger, Donald A. Berry 



Bayes‘ Theorem 

Reverend Thomas Bayes 
1702 - 1761 

“Bayes‘ theorem describes, how an ideally rational person 
processes information." 

Observed 
Data 

Prior 
Beliefs 

Posterior
Beliefs 
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Eliminating p(y,θ) gives Bayes’ rule: 

Likelihood 

Prior 

Evidence 

Posterior 

Bayes’ Theorem 
Given data y and parameters θ, the conditional probabilities are: 
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Bayesian statistics 

posterior      ∝   likelihood  ∙   prior 

Bayes theorem allows one to 
formally incorporate prior 
knowledge into computing 
statistical probabilities. 

Priors can be of different sorts: 
empirical, principled or shrinkage 
priors, uninformative. 

The “posterior” probability of the 
parameters given the data is an 
optimal combination of prior 
knowledge and new data, weighted by 
their relative precision. 

new data prior knowledge 

)|( θyp )(θp

)()|()|( θθθ pypyp ∝



Bayes in motion - an animation 
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 Observation of data 

 Formulation of a generative model 

  Model Inversion - Update of beliefs based upon 
observations, given a prior state of knowledge 

( | ) ( | ) ( )p y p y pθ θ θ∝

Principles of Bayesian inference 

Model 
Likelihood function   p(y|θ) 

prior distribution   p(θ) 

Data y 

Maximum a posteriori  
(MAP) 

Maximum likelihood 
(ML) 



Conjugate Priors 
 Prior and Posterior have the same form 
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Same form !! 

 Analytical expression. 
 Conjugate priors for all exponential family members. 
 Example – Gaussian Likelihood , Gaussian prior over mean 



Likelihood & prior 

Posterior: 

Prior 

Likelihood 

Posterior 

Gaussian Model 
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Relative precision weighting 
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 Bayesian regression: univariate case 

Relative precision weighting 

Normal densities 

εθ += xy
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 Bayesian GLM: multivariate case 

 One step if Ce is known. 
 Otherwise define conjugate prior or 

perform iterative estimation with EM. 

General 
Linear  
Model 

Normal densities 
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Bayesian model selection (BMS) 
Given competing hypotheses   
on structure & functional 
mechanisms of a system,     
which model is the best? 

 For which model m does 
p(y|m) become maximal? 

Which model represents the 
best balance between model  
fit and model complexity? 

Pitt & Miyung (2002), TICS 



θθθ dmpmypmyp  )|(),|()|( ∫ ⋅=Model evidence: 

Kass and Raftery (1995), Penny et al. (2004) NeuroImage 

Bayesian model selection (BMS) 

Model comparison via Bayes factor: 
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θ =Bayes’ rule: 

accounts for both accuracy and complexity of the model 

allows for inference about structure (generalizability) of the model 

Model averaging 

𝑝 𝜃|𝑦 = �𝑝 𝜃 𝑦,𝑚 𝑝(𝑚|𝑦)
𝑚

  

𝐵𝐵 =
𝑝(𝑦|𝑚1)
𝑝(𝑦|𝑚2) 

𝑝 𝑚1 𝑦)
𝑝(𝑚2|𝑦) =

𝑝(𝑦|𝑚1)
𝑝(𝑦|𝑚2)

𝑝(𝑚1)
𝑝(𝑚2) 

BF10 Evidence against H0 

1 to 3 Not worth more than a 
bare mention 

3 to 20 Positive 

20 to 150 Strong 

> 150 Decisive 



Model Evidence 

McKay 1992, Neural Computations, Bishop PRML 2007 



Bayesian model selection (BMS) 

Various Approximations: 
• Akaike Information Criterion (AIC) – Akaike, 1974 

 
 
 

• Bayesian Information Criterion (BIC) – Schwarz, 1978 
 
 
 

• Negative free energy ( F ) 
• A by-product of Variational Bayes 
 

• Path Sampling (Thermodynamic Integration) - MCMC 

ln 𝑝(𝐷)  ≅ ln𝑝 𝐷 𝜃𝑀𝑀)  −𝑀 

ln 𝑝(𝐷)  ≅ ln 𝑝 𝐷 𝜃𝑀𝐿) −
1
2𝑀 ln (𝑁) 
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marginal likelihood 𝑝 𝑦  
(model evidence) 

prior likelihood 
posterior 

Bayesian inference formalizes model inversion, the process of 
passing from a prior to a posterior in light of data. 

Approximate Bayesian inference 

In practice, evaluating the posterior is usually difficult because we cannot 
easily evaluate 𝑝 𝑦 , especially when: 

• High dimensionality, complex form 
• analytical solutions are not available 
• numerical integration is too expensive 

𝑝 𝜃 𝑦 =
  𝑝 𝑦 𝜃     𝑝 𝜃   
∫ 𝑝 𝑦,𝜃 d𝜃

 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



Approximate Bayesian inference 

Stochastic 
approximate inference 
in particular sampling 

 

 design an algorithm that draws 
samples 𝜃 1 , … ,𝜃 𝑚  from 
𝑝 𝜃 𝑦  

 inspect sample statistics (e.g., 
histogram, sample quantiles, …) 

Deterministic 
approximate inference 
in particular variational Bayes 

 

 find an analytical proxy 𝑞 𝜃  that is 
maximally similar to 𝑝 𝜃 𝑦  

 inspect distribution statistics of 
𝑞 𝜃  (e.g., mean, quantiles, 
intervals, …) 

There are two approaches to approximate inference. They have 
complementary strengths and weaknesses. 

 asymptotically exact 
 computationally expensive 
 tricky engineering concerns 

 often insightful and fast 
 often hard work to derive 
 converges to local minima  

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 
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The Laplace approximation provides a way of approximating 
a density whose normalization constant we cannot 
evaluate, by fitting a Normal distribution to its mode. 

The Laplace approximation 

normalization constant 
(unknown) 

main part of the density 
(easy to evaluate) 

Pierre-Simon 
Laplace 

(1749 – 1827) 
French mathematician 

and astronomer 

This is exactly the situation we face in Bayesian inference: 

𝑝 𝑧   =         
1
𝑍

                ×            𝑓 𝑧  

𝑝 𝜃 𝑦   =      
1

𝑝 𝑦
             ×          𝑝 𝑦,𝜃  

model evidence 
(unknown) 

joint density 
(easy to evaluate) 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



Given a model with parameters 𝜃 = 𝜃1, … ,𝜃𝑝 , the Laplace 
approximation reduces to a simple three-step procedure: 

Applying the Laplace approximation 

 Find the mode of the log-joint: 

 𝜃∗ = arg max
𝜃

 ln 𝑝 𝑦,𝜃   

 Evaluate the curvature of the log-joint at the mode: 

 ∇∇ ln 𝑝 𝑦,𝜃∗   

 We obtain a Gaussian approximation: 
𝒩 𝜃 𝜇,Λ−1         with 𝜇 = 𝜃∗ 
 Λ = −∇∇ ln 𝑝 𝑦,𝜃∗  

 

 

 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 
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Limitations of the Laplace approximation 

ignores global 
properties of the 
posterior 

becomes brittle 
when the posterior 
is multimodal 

only directly applicable to 
real-valued parameters 

The Laplace approximation is often too strong a simplification. 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



Hypothesis Class 

Goal:  Choose q from a hypothesis class s.t. 

Variational Bayes 

Free 
Energy 

(F) 

)||( pqKL 0 

)|( yp θ

q1 
q2 

q3 

q4 

q5 

q6 

)|(log myp
Model Evidence 

)||( pqKL
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Variational Bayesian inference is based on variational calculus. 

Variational calculus 

Standard calculus 
Newton, Leibniz, and 
others 
 

• functions 
𝑓: 𝑥 ↦ 𝑓 𝑥   

• derivatives  d𝑓d𝑥 
 
Example: maximize the 
likelihood expression 
𝑝 𝑦 𝜃  w.r.t. 𝜃 

Variational calculus 
Euler, Lagrange, and 
others 
 

• functionals 
𝐹:𝑓 ↦ 𝐹 𝑓   

• derivatives  d𝐹d𝑓 

 
Example: maximize the 
entropy 𝐻 𝑝  w.r.t. a 
probability distribution 
𝑝 𝑥  

Leonhard Euler 
(1707 – 1783) 

Swiss mathematician, 
‘Elementa Calculi 

Variationum’ 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



ln 𝑝(𝑦) = ln 𝑝(𝑦,𝜃)
𝑝 𝜃 𝑦

 

 = ∫ 𝑞 𝜃   ln  𝑝(𝑦,𝜃)
𝑝 𝜃 𝑦

  d𝜃 

 = ∫ 𝑞 𝜃 ln  𝑝(𝑦,𝜃)
𝑝 𝜃 𝑦

 𝑞 𝜃
𝑞 𝜃

  d𝜃 

 = ∫ 𝑞 𝜃 ln 𝑞 𝜃
𝑝 𝜃 𝑦

+ ln 𝑝(𝑦,𝜃)
𝑞 𝜃

d𝜃 

 = ∫ 𝑞 𝜃 ln 𝑞 𝜃
𝑝 𝜃 𝑦

d𝜃  +   ∫ 𝑞 𝜃 ln 𝑝(𝑦,𝜃)
𝑞 𝜃

d𝜃 

Variational calculus lends itself nicely to approximate Bayesian 
inference. 

Variational calculus and the free energy 

KL[𝑞||𝑝] 
divergence between 
𝑞 𝜃  and 𝑝 𝜃 𝑦  

𝐹(𝑞,𝑦) 
free energy 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



Variational calculus and the free energy 

Maximizing 𝐹 𝑞, 𝑦  is equivalent 
to: 

• minimizing KL[𝑞| 𝑝  

• tightening 𝐹 𝑞,𝑦  as a lower 
bound to the log model 
evidence 

In summary, the log model 
evidence can be expressed as: 

ln𝑝(𝑦) = KL[𝑞| 𝑝  +  𝐹 𝑞,𝑦   

 divergence 
≥  0 

(unknown) 

free energy 
(easy to evaluate 

for a given 𝑞) 

KL[𝑞| 𝑝  

ln𝑝 𝑦 ∗ 

𝐹 𝑞,𝑦  

KL[𝑞| 𝑝  

ln𝑝 𝑦  

𝐹 𝑞,𝑦  

initialization 
… 

… 
convergence 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



Computing the free energy 

We can decompose the free energy 𝐹(𝑞,𝑦) as follows: 

𝐹(𝑞,𝑦) = ∫ 𝑞 𝜃 ln 𝑝 𝑦,𝜃
𝑞 𝜃

d𝜃 

 = ∫ 𝑞 𝜃 ln𝑝 𝑦,𝜃  𝑑𝑑 − ∫ 𝑞 𝜃 ln 𝑞 𝜃  𝑑𝑑 

 = ln 𝑝 𝑦,𝜃 𝑞     +   𝐻 𝑞  

expected 
log-joint 

Shannon 
entropy 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



When inverting models with 
several parameters, a common 
way of restricting the class of 
approximate posteriors 𝑞 𝜃  is to 
consider those posteriors that 
factorize into independent 
partitions, 

𝑞 𝜃 = �𝑞𝑖 𝜃𝑖
𝑖

, 

where 𝑞𝑖 𝜃𝑖  is the approximate 
posterior for the 𝑖th subset of 
parameters. 

The mean-field assumption 

𝜃1 
𝜃2 

𝑞 𝜃1  𝑞 𝜃2  

Jean Daunizeau, www.fil.ion.ucl.ac.uk/ 
~jdaunize/presentations/Bayes2.pdf 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



= �𝑞 𝜃 ln
𝑝 𝑦, 𝜃
𝑞 𝜃

d𝜃 

= ��𝑞𝑖   ×   ln𝑝 𝑦,𝜃 −� ln 𝑞𝑖
𝑖𝑖

d𝜃 

= �𝑞𝑗�𝑞𝑖  ln 𝑝 𝑦,𝜃 − ln 𝑞𝑗
\𝑗

d𝜃 − �𝑞𝑗�𝑞𝑖� ln 𝑞𝑖
\𝑗\𝑗

d𝜃 

= �𝑞𝑗 ��𝑞𝑖 ln𝑝 𝑦,𝜃
\𝑗

d𝜃\𝑗

ln 𝑝 𝑦,𝜃 𝑞\𝑗

− ln𝑞𝑗 d𝜃𝑗 −�𝑞𝑗��𝑞𝑖
\𝑗

ln�𝑞𝑖
\𝑗

d𝜃\𝑗 d𝜃𝑗 

= �𝑞𝑗 ln
exp ln𝑝 𝑦,𝜃 𝑞\𝑗

𝑞𝑗
d𝜃𝑗    +    𝑐 

= −KL 𝑞𝑗|| exp ln𝑝 𝑦,𝜃 𝑞\𝑗    +    𝑐 

Variational inference under the mean-field assumption 

𝐹 𝑞, 𝑦  
mean-field 
assumption: 
𝑞 𝜃 = ∏ 𝑞𝑖 𝜃𝑖𝑖  



In summary: 
𝐹 𝑞,𝑦 =−KL 𝑞𝑗||exp ln𝑝 𝑦,𝜃 𝑞\𝑗 + 𝑐 

Suppose the densities 𝑞\𝑗 ≡ 𝑞 𝜃\𝑗  are 
kept fixed. Then the approximate 
posterior 𝑞 𝜃𝑗  that maximizes 𝐹 𝑞,𝑦  is 
given by: 

𝑞𝑗∗ = arg max
𝑞𝑗

𝐹 𝑞,𝑦  

 = 1
𝑍

exp ln𝑝 𝑦,𝜃 𝑞\𝑗  

 
Therefore: 
ln𝑞𝑗∗ = ln𝑝 𝑦,𝜃 𝑞\𝑗

=:𝐼 𝜃𝑗

− ln𝑍 

Variational algorithm under the mean-field assumption 

This implies a straightforward 
algorithm for variational 
inference: 
 
 Initialize all approximate 

posteriors 𝑞 𝜃𝑖 , e.g., by 
setting them to their 
priors. 

  
 Cycle over the parameters, 

revising each given the 
current estimates of the 
others. 

 
 Loop until convergence. 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



Typical strategies in variational inference 

no parametric 
assumptions 

parametric 
assumptions 
𝒒 𝜽 = 𝑭 𝜽 𝜹  

no mean-field 
assumption 

(variational inference 
= exact inference) 

fixed-form 
optimization of 

moments 

mean-field 
assumption 
𝒒 𝜽 = ∏𝒒 𝜽𝒊  

iterative free-form 
variational 

optimization 

iterative fixed-form 
variational 

optimization 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



We are given a univariate dataset 
𝑦1, … ,𝑦𝑛  which we model by a simple 

univariate Gaussian distribution. We 
wish to infer on its mean and precision: 

 𝑝 𝜇, 𝜏 𝑦  

Although in this case a closed-form 
solution exists*, we shall pretend it 
does not. Instead, we consider 
approximations that satisfy the mean-
field assumption: 

 𝑞 𝜇, 𝜏 = 𝑞𝜇 𝜇  𝑞𝜏 𝜏  

Example: variational density estimation 

𝜇 

𝑦𝑖 

𝜏 𝑝 𝜇 𝜏  = 𝒩 𝜇 𝜇0, 𝜆0𝜏 −1  
𝑝 𝜏  = Ga 𝜏 𝑎0,𝑏0  

𝑝 𝑦𝑖 𝜇,𝜏  = 𝒩 𝑦𝑖 𝜇,𝜏−1  
𝑖 = 1 …𝑛 

mean precision 

data 

10.1.3; Bishop (2006) PRML 
Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



Univariate normal distribution 

ln𝒩 𝑥 𝜇, 𝜆−1  = 1
2

ln 𝜆 − 1
2

ln𝜋 − 𝜆
2
𝑥 − 𝜇 2 

 = −1
2
𝜆𝑥2 + 𝜆𝜆𝜆 + 𝑐 

Multivariate normal distribution 

ln𝒩𝑑 𝑥 𝜇,Λ−1  = −1
2

ln Λ−1 − 𝑑
2

ln2𝜋 − 1
2
𝑥 − 𝜇 𝑇Λ 𝑥 − 𝜇  

 = −1
2
𝑥𝑇Λ𝑥 + 𝑥𝑇Λ𝜇 + 𝑐 

Gamma distribution 
ln Ga 𝑥 𝑎, 𝑏  = 𝑎 ln 𝑏 − ln Γ 𝑎 + 𝑎 − 1 ln 𝑥 − 𝑏 𝑥 
 = 𝑎 − 1 ln 𝑥 − 𝑏 𝑥 + 𝑐 
 

Recurring expressions in Bayesian inference 

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



= ln𝑝 𝑦, 𝜇, 𝜏 𝑞 𝜏 + 𝑐 

= ln�𝑝 𝑦𝑖 𝜇, 𝜏
𝑛

𝑖 𝑞 𝜏

+ ln𝑝 𝜇 𝜏 𝑞 𝜏 + ln𝑝 𝜏 𝑞 𝜏 + 𝑐 

= ln∏𝒩 𝑦𝑖 𝜇,𝜏−1 𝑞 𝜏 + ln𝒩 𝜇 𝜇0, 𝜆0𝜏 −1
𝑞 𝜏 + lnGa 𝜏 𝑎0,𝑏0 𝑞 𝜏 + 𝑐 

= � −
𝜏
2
𝑦𝑖 − 𝜇 2

𝑞 𝜏
+ −

𝜆0𝜏
2

𝜇 − 𝜇0 2

𝑞 𝜏

+ 𝑐 

=�−
𝜏 𝑞 𝜏

2
𝑦𝑖2 + 𝜏 𝑞 𝜏 𝑛𝑦̅𝜇−𝑛

𝜏 𝑞 𝜏

2
𝜇2 −

𝜆0 𝜏 𝑞 𝜏

2
𝜇2 +𝜆0𝜇𝜇0 𝜏 𝑞 𝜏 −

𝜆0
2
𝜇02 +𝑐 

=−
1
2

 𝑛 𝜏 𝑞 𝜏 +𝜆0 𝜏 𝑞 𝜏   𝜇2  + 𝑛𝑦̅ 𝜏 𝑞 𝜏 +𝜆0𝜇0 𝜏 𝑞 𝜏   𝜇+ 𝑐 

𝜆𝑛 = 𝜆0 + 𝑛 𝜏 𝑞 𝜏  
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Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 
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Variational density estimation: precision 𝜏 
ln𝑞∗ 𝜏  

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



Variational density estimation: illustration 

Bishop (2006) PRML, p. 472 

𝑞 𝜃  

𝑝 𝜃 𝑦  

𝑞∗ 𝜃  

Source: Kay H. Brodersen, 2013,  http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf 



TAPAS 

• Variational Bayes Linear Regression 
▫ http://www.translationalneuromodeling.org/tapas/ 



 



Demo VB 

• Linear Regression 
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Markov Chain Monte Carlo(MCMC) sampling    

𝜃1 𝜃2 𝜃3 𝜃N …………………... 

Posterior 
distribution 

𝑝 𝜃 𝑦  

Proposal 
distribution 

q(𝜃) 

𝜃0 

 A general framework for sampling from a large class of 
distributions 

 Scales well with dimensionality of sample space 

 Asymptotically convergent 

Andrei Markov 
(1856 – 1922) 

Russian  
mathematician 



Markov chain properties 
• Transition probabilities – homogeneous 

 
 

• Invariance 
 
 
 

• Detailed Balance 
 
 
 

• Ergodicity 

𝑝 𝜃𝑡+1  𝜃1, … , 𝜃𝑡) =  𝑝 𝜃𝑡+1  𝜃𝑡)  =    𝑇𝑡(𝜃𝑡+1,𝜃𝑡)  

MCMC 

Homogeneous 

Ergodic 
Invariant 

Reversible 

𝑝∗ 𝜃 = �𝑇 𝜃′, 𝜃 𝑝∗ 𝜃′

𝜃′

 

𝑝∗ 𝜃 = lim
𝑛→∞

𝑝 𝜃𝑛    ∀ 𝑝(𝜃0) 

𝑇 𝜃,𝜃′ 𝑝∗ 𝜃 = 𝑇 𝜃′, 𝜃 𝑝∗ 𝜃′  



Metropolis-Hastings Algorithm 
• Initialize 𝜃 at step 1  - for example, sample from prior 
• At step t, sample from the proposal distribution: 

 
 

• Accept with probability: 
 
 
 
 

• Metropolis – Symmetric proposal distribution 

𝜃∗ ~ 𝑞 𝜃∗ 𝜃t) 

𝐴(𝜃∗,𝜃𝑡) ~ 𝑚𝑚𝑚 1, 
𝑝 𝜃∗ 𝑦) 𝑞(𝜃t|𝜃∗)
𝑝 𝜃𝑡 𝑦)𝑞(𝜃∗|𝜃t)  

𝐴(𝜃∗,𝜃𝑡) ~ 𝑚𝑚𝑚 1, 
𝑝 𝜃∗ 𝑦)
𝑝 𝜃𝑡 𝑦)  Bishop (2006) PRML, p. 539 



Gibbs Sampling Algorithm 

• Special case of Metropolis Hastings 
• At step t, sample from the conditional distribution: 

 
 
 
 
 

• Acceptance probability = 1 
• Blocked Sampling 

𝜃1
𝑡+1    ~     𝑝 𝜃1 𝜃2

𝑡, … … ,𝜃𝑛𝑡  

𝜃2
𝑡+1    ~     𝑝(𝜃2|𝜃1

𝑡+1, … … ,𝜃𝑛𝑡) 
             : 
             : 
             : 
𝜃𝑛



Posterior analysis from MCMC 

Obtain independent samples: 
 

 Generate samples based on MCMC sampling. 

 Discard initial “burn-in” period samples to remove dependence 
on initialization. 

 Thinning- select every mth sample to reduce correlation . 

 Inspect sample statistics (e.g., histogram, sample quantiles, …) 

𝜃1 𝜃2 𝜃3 𝜃N …………………... 𝜃0 



MAP estimate via Simulated Annealing 

• Add a temperature parameter and 
schedule to update it  
 
 

• Algorithm 
▫ Set T = 1 
▫ Until convergence 
 For every K iterations sample from:  
 Reduce T 

𝑝1/𝑇 𝜃 𝑦)  

T = 1 

T = 0.1 



Convergence Analysis 

• Single chain methods 
▫ Geweke (1992) 
▫ Raftery-Lewis (1992) 
 
 

• Multi-chain methods 
▫ Gelman-Rubin – (1992) 
 Potential Scale Reduction factor 



Model evidence using MCMC 

• Importance Sampling 
 
 

• Prior arithmetic mean 
 
 
 

• Posterior harmonic mean 
 
 
 
 



Thermodynamic Integration 

• Path Sampling (Thermodynamic Integration) 
 

T=1.0 
T=0.8 

T=0.5 

T=0.0 

E1.0(logLk) 

E0.8(logLk) 

E0.5(logLk) 

E0.0(logLk) 

Model 
Evidence 

Ogata ,Y. 1989.  Num.Math.55:137-157,     
Gelman,A.1998. . Stat . Sci . 13:163 — 185   



Derivation - Extra 

 



Other MCMC variants 

• Slice Sampling 
 

• Adaptive MH 
 

• Hamiltonian Monte Carlo 
 

• Population MCMC 
 



TAPAS 

• mpdcm – GPU based MCMC 
▫ http://www.translationalneuromodeling.org/tapas/ 



Demo MCMC 

• Linear Regression 



Summary 
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