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Why do | need to learn about Bayesian stats?

Because SPM is getting more and more Bayesian:

e Segmentation & spatial normalisation
 Posterior probability maps (PPMs)

* Dynamic Causal Modelling (DCM)
Bayesian Model Selection (BMS)

EEG: source reconstruction



Bayesian Inference 7~ =
| Boyesion nference .@ .

O

Approximate Inference

Variational MCMC
Bayes Sampling

Model Selection







Classical and Bayesian
statistics

p-value: probability of getting the observed data in
the effect’'s absence. If small, reject null hypothesis
that there is no effect.

= One can never accept the null
Probability of observing the Ho :0=0 hypothesis
data y, given no effect (6= 0). p(y | Ho) = Given enough data, one can
always demonstrate a significant
effect
/Bayesian Inference \ = Correction for multiple
= Flexibility in modelling n(y,0) comparisons necessary
= Incorporating prior information p(6)
= Posterior probability of effect (0|y)
= Options for model comparison Statistical analysis and the illusion of objectivity.

K / James O. Berger, Donald A. Berry




Bayes’ Theorem

Posterior

Beliefs

Reverend Thomas Bayes
1702 - 1761

“Bayes’ theorem describes, how an ideally rational person
processes information."



Bayes’ Theorem

Given data y and parameters 6, the conditional probabilities are:

' N / N
ey =00 | yia=Ea
\ J \ J
Eliminating p(y, 6) gives Bayes’ rule:
Likelihood
~

— P(0]y) = p(y|08) p(@) — Prior
p(\y)

Evidence

Posterior




Bayesian statistics

new data prior knowledge e |
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Bayes theorem allows one to
formally inc-orporate prif)r The “posterior” probability of the
knoyvlfedge Into chputlng parameters given the data is an
knowledge and new data, weighted by

empirical, principled or shrinkage
priors, uninformative.



Bayes in motion - an animation
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Principles of Bayesian inference

= Formulation of a generative model

/‘7[ Likelihood function p(y/ 6 ]
% [ prior distribution p(6) ]

Model

= QObservation of data

| Data l. >

= Model Inversion - Update of beliefs based upon
observations, given a prior state of knowledge

é )

Maximum a posteriori
— L (MAP) )
l\b a : . I N

Maximum likelihood

(ML)

p(f1y) o p(y|6)p(6)




Conjugate Priors

= Prior and Posterior have the same form

0@ y) = P 10) PO)

/A

Same form !!

= Analytical expression.
= Conjugate priors for all exponential family members.
= Example — Gaussian Likelihood , Gaussian prior over mean



Gaussian Model
Likelihood & prior

p(6) =N(0] 1,,,)

.

" p(y|6)=N(y|6,4")
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posterior: p(A]y)=N(8] 1, 1Y)
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Bayesian regression: univariate case

Normal densities

Univariate _
pe) =N(@1n,,,) inear model | Y = X0 1€
i 2 0.8 oty |
p(y|6)=N(y|x0,07) — |
b 077 | — Likelihood %
g — Posterior
) 06
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Relative precision weighting



Bayesian GLM: multivariate case

Normal denSitieS General XO
_ _ Linear y= +€
p(O)— N(91np’cp) Model
p(y|0) =N(y; X6,C,) i
\ J 4r
f N 5
p@]y)=N (0;n9|y’C9|y)
\ y W) 0
2oL
é ) _
Ca|y_1 =X Ce_1X+Cp_1 o = Eigihood
— Posterior
Naly :Cﬁly(XTCe_lerCp_l"p) Rl ‘ ‘ ‘ | ‘ ‘
\ y 6 4 E; BO 2 4 6

" Onestep if C, is known.
=  Otherwise define conjugate prior or
perform iterative estimation with EM.






Bayesian model selection (BMS)

Given competing hypotheses
on structure & functional !
mechanisms of a system,
which model is the best?

¥

Which model represents the
best balance between model
fit and model complexity?

Goodness of fit

Good

A
|
| Overfitting
\

Model fit

Generalizability

Poor

I I I -

/ / \ Model complexity

R

Pitt & Miyung (2002), TICS

For which model m does
p(y|m) become maximal?



Bayesian model selection (BMS)

Bayes’ rule:[p(ﬁly,m): p(yli,(r;?s]()ﬁlm) ] Model evidence: [p(ylm):jp(y|9,m)° p(9|m)d0]

‘ accounts for both accuracy and complexity of the model

‘ allows for inference about structure (generalizability) of the model

Model comparison via Bayes factor:

[p(mlly) _ p(ylmy) p(ml)] [BF _ p(yImy) ]

p(mzly) pyImz)p(m;) p(y|Im;)
Model averaging BFio Evidence against Hg,
1to 3 Not worth more than a
bare mention
m 20 to 150 Strong
Kass and Raftery (1995), Penny et al. (2004) Neurolmage > 150 Decisive




Model Evidence

P(}"‘”’f) = jp(y@, n*z)p(@‘m) do

p(D) M,
\
0\
|

McKay 1992, Neural Computations, Bishop PRML 2007



Bayesian model selection (BMS)

Various Approximations:
e Akaike Information Criterion (AIC) — Akaike, 1974

[ Inp(D) =1Inp(D|Oy.) — M}

e Bayesian Information Criterion (BIC) — Schwarz, 1978

1
[ Inp(D) =Inp(D|0By;) — EM In(N) }

* Negative free energy ( F)
* A by-product of Variational Bayes

e Path Sampling (Thermodynamic Integration) - MCMC



Approximate Inference




Approximate Bayesian inference

Bayesian inference formalizes model inversion, the process of
passing from a prior to a posterior in light of data.

likelihood prior

posterior p(ylg) p(g)
o1v) =
p(6ly) [ 0y, 6)d0

marginal likelihood p(y)
(model evidence)

In practice, evaluating the posterior is usually difficult because we cannot
easily evaluate p(y), especially when:

e High dimensionality, complex form

* analytical solutions are not available

* numerical integration is too expensive

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_ 22.pdf



Approximate Bayesian inference

There are two approaches to approximate inference. They have
complementary strengths and weaknesses.

Deterministic b stochastic
approximate inference approximate inference
in particular variational Bayes in particular sampling
O find an analytical proxy q(0) that is O design an algorithm that draws
maximally similar to p(8|y) samples 6, ..., 0™ from
® inspect distribution statistics of p(6ly)
q(6) (e.g., mean, quantiles, ® inspect sample statistics (e.g.,
intervals, ...) histogram, sample quantiles, ...)
M often insightful and fast M asymptotically exact
often hard work to derive computationally expensive
converges to local minima tricky engineering concerns
[]

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_ 22.pdf
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The Laplace approximation

The Laplace approximation provides a way of approximating
a density whose normalization constant we cannot
evaluate, by fitting a Normal distribution to its mode.

1 . .
_ Pierre-Simon
p(Z) — Z X f(Z) Laplace
(1749 — 1827)
normalization constant main part of the density French mathematician
(unknown) (easy to evaluate) and astronomer

This is exactly the situation we face in Bayesian inference:

1
pBly) = —= x  p,0)
p(y)
model evidence joint density
(unknown) (easy to evaluate)

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf



Applying the Laplace approximation

Given a model with parameters 6 = (6, ..., 8,), the Laplace
approximation reduces to a simple three-step procedure:

o Find the mode of the log-joint:
0" = arg max Inp(y, 0)

9 Evaluate the curvature of the log-joint at the mode:
VVinp(y,6%)

9 We obtain a Gaussian approximation:
NO|lu A  withu =6*
A=-VVinp(y,07)

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_ 22.pdf



Limitations of the Laplace approximation

The Laplace approximation is often too strong a simplification.

0.25} | 0.25} —log joint
= = approximation
0.2¢ /4 ' 0.2¢ _
p \‘ e becomes brittle 3
Iy properties of the when the posteriof
0.15} [y posterior ] 0.15} is multimodal
Iy
Iy
0.1t ! \ 0.1t
TN
: ‘ / N\
0.05f / \ I 0.05 y \
\ /
] / \\
/ \\ ,.-/ N
Q== ————— e Qb= == e =
-10 0 10 20 -10 0 10 20

only directly applicable to
real-valued parameters

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013 03_22.pdf



Variational Bayes

Goal: Choose g from a hypothesis class s.t.
KL(q[l p) == O

Model Evidence
Hypothesis Class log p(y | m)

'l KL(qu( qﬂ q%\ _M
P(01Y) A\‘B
I

Free
Energy

(F)




——
Variational calculus

Variational Bayesian inference is based on variational calculus.

Standard calculus
Newton, Leibniz, and
others

e functions

fix e f(x)

e derivatives %
X

Example: maximize the
likelihood expression

p(y|0) w.rt. 6

Variational calculus
Euler, Lagrange, and
others

 functionals
F:f — F(f)

. dr
derivatives a7

Example: maximize the
entropy H|[p] w.rt. a
probability distribution

p(x)

Leonhard Euler
(1707 — 1783)

Swiss mathematician,
‘Elementa Calculi
Variationum’

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013 03 22.pdf



Variational calculus and the free energy

Variational calculus lends itself nicely to approximate Bayesian

inference.

,0
npO) =G

= q(8) In P8 49

r(Oly)
S o 258 5
5403 2+ 0228
= [q®In-L2-d0 + [q(0)InE%do
KLallp P,y
divergence between free energy

q(0) and p(0]y)

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf



Variational calculus and the free energy

In summary, the log model Inp(y)" —x Inp(y) —Fx
evidence can be expressed as: 5 KL[.q||p]

Inp(y) = KL[q|lp] + F(q,y)

F(q}y) .K....:..
divergence free energy :
> 0 (easy to evaluate
(unknown)  for agiven q)

KL[q]Ip]

Maximizing F(q, y) is equivalent
to:

F(q,y) l |

* minimizing KL[q||p]

e tightening F(q,y) as a lower
bound to the log model
evidence initialization

convergence

A

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf



Computing the free energy

We can decompose the free energy F(q, y) as follows:

_ r(.6)
F(q,y) = | q(0) In==52de

=Jq@) Inp(y,0) df — [ q(6)Inq(8) dO
=(Inp(y,0)); + Hlq]
L Y ) - J

expected Shannon
log-joint entropy

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf



The mean-field assumption

When inverting models with
several parameters, a common
way of restricting the class of
approximate posteriors q(60) is to
consider those posteriors that
factorize into independent
partitions,

q(6) = ]_[ q:(6)),

where q;(6;) is the approximate
posterior for the ith subset of
parameters.

05=

IR
A
T

o

Jean Daunizeau, www.fil.ion.ucl.ac.uk/
~jdaunize/presentations/Bayes2.pdf

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_ 22.pdf



Variational inference under the mean-field assumption

F(q,y) = f q(6) 1np;3('£) d6

mean-field
- assumption:

— fr q; X lnp(y,H) —Zlnqi déo q(g) — qul(el)

i i
=JCIj —[qi (lnP()’,Q)—lnq]')dQ—Jle_[ql'zlnfhdg

\J VAR
=f‘1j fl_[qilnp(y,e)de\j—lnqj dej—fq]'fn%lnl_[%‘dg\jd@j

\J \J \J
(Inp(y0))q,
exp (<1n p(y, 0))q\j)
=quln 7 do; + ¢
J

=—KL[CIJIIexp(ﬂnp(yﬁ))qv)] e



Variational algorithm under the mean-field assumption

In summary: This implies a straightforward
F(q,y) = —KL [qj|| exp ((lnp(y, 0))q\j)] +c glgorlthm for variational
inference:

Suppose the densities q\; = q(H\j) are
kept fixed. Then the approximate
posterior q(Hj) that maximizes F(q,y) is
given by:

O Initialize all approximate
posteriors gq(0;), e.g., by
setting them to their
priors.

q; =argmaxF(q,y)
9 ® Cycle over the parameters,

= %exp ((ln p(y, 9))q\j) revising each given the
current estimates of the
Therefore: others.
Ing; = Slnp(yf 0»‘1\1 ~Inz © Loop until convergence.
=:1(6)

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_ 22.pdf



Typical strategies In variational inference

parametric
assumptions
q(0) = F(6]5)

No parametric

assumptions

: " : fixed-form
no mean-field (variational inference Y
: - : optimization of
assumption = exact inference)
moments
mean-field iterative free-form iterative fixed-form
assumption variational variational

NCERIUICH) optimization optimization

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf



il
Example: variational density estimation

We are given a univariate dataset
{y1, ..., ¥} Wwhich we model by a simple mean precision

ur-1ivaria.te Gauss_ian distribution. We p(u|7) = N (ulpo, ()LOT)_l)
wish to infer on its mean and precision:

p(7) = Ga(t|ao, by)
p(utly)
Although in this case a closed-form
solution exists*, we shall pretend it | data 1 (vl 1) =Nt
does not. Instead, we consider i=1..n

approximations that satisfy the mean-
field assumption:

q(u, 7) = q,(1) q.:(7)

: 10.1.3; Bishop (2006) PRML
Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013 03_22.pdf



Recurring expressions in Bayesian inference

Univariate normal distribution

In NV (x|u, A71) =%ln/1—%lnn—%(x—u)2
= —%sz + Aux + ¢

Multivariate normal distribution

_ 1, . d 1
In NV, (x|u,A™Y) = —-In|A 1 —EanE—E(x—u)TA(x—u)

= —%xTAx +xTAu+c

Gamma distribution
In Ga(x|a, b) =alnb—InT(a)+(a—1)Inx —b x
=(a—1Inx—-bx+c

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf



Variational density estimation: mean u
Ing* (1) =(npQy,u,)gq +c

n

In Hp(yil.u: T)> + (hlp(.ulr))q(r) + (lnp(T)>q(T) +C
q(7)

l

AoT

= (VT g + Nl g, (A7) ™) g + (InGaltlag, by))ger) + ¢
— 7 +C

T
= E <—§(3’i—ﬂ)2> +
q(7) 4(0)

(D _ (1) Ao{7) Ao
= 2 —— W+ (Dgniu—n ;’(T) s —TQ(T)MZ + dobiol D gy —— G + ¢

(u— #0)2

1 . 5 - o
= = "D + oD} #* + (W Dg +Aoto(Dg} 1 +c  Fon”

= q"(W) = N (ulpn, 41 with 1, = (A + 1)(0)g()

_ ny(T)qr) + Aoto{T) g _ Aoty + 1y
Hn An AO +n

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013 03_22.pdf




Variational density estimation: precision t

Ing*(z)=AlnpQy, L, g +¢

n
= <1n]_[N(yi|u,r-1)
i=1
Eln(lor)——

ji-lmx—ﬁf(-— )? + .
5 zyl H

i=1 q(u)
+{(ap =D Int—byT)g +¢

+ (In NV (ulpg, (A7) ™ Ng + {InGaltlag, bo)) g + ¢
q(u)

Ao T
o o)
q(u)

n T ) 1 1 AT 5
=5t = (X0 =W 354 +5InT ==k = 1) )qy + (@0 =D It —het +c
n 1 1 A
= {E +5+ (a0 - 1)} Int — {5 C0i — W qw + 70((# — o)) + bo} T+cC
= q* (1) = Ga(t|a,, b,,) with n+1

=qg +
anaoz

o AO 2 1 2
by, = by + 7((# — o) Vg T E(Z(yi — W qw

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013 03_22.pdf



Variational density estimation: illustration

(a) (b)

p(O1y)
1t 1t
91 0 B 1 91 0 K 1
2 - 2

(c) (d)

]
o

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013 03_22.pdf Bishop (2006) PRML, p. 472



Tnstltuke for Biomedical Englneering, Lnlversity of Zurlch & ETH Zurich

T A P A | -vnv Translaflonal Neuromodeling Unit

HOME hNEWS RESEARCH PROGRAMME TEAM HISTORY OF THE ThL CONTACT FORSCHLUINGSAMBLUILANE

official website 2

uzhjethz

= = E L =

TAGE

Bayesian grain:
CNC course DCM Cups:
EESG faq PRI HEF

rauraphammacalogy
Physinlagical Noise

schicaphrima
Socal dedsion making SPM
statistics TAPAS
teaching

Varistinnal Bayes videns

* Physln: P
s HGF: +
* MICP
* VBLM
* mpdem

sbsarvad behaviaur

Mass

TARAS is written ir

Deownload

s registration lorm, The ir

ake you to the pag

@ ta tha n

t at TAPAS@sympa.othz.ch. Users wi

Subscribe” link on

Documentation

Detailed des can be found in the Documentation section
Data
Sample can be found in Data section,

Publications

The publications

saftware are list

in the Publications section

« Variational Bayes Linear Regression
= http://www.translationalneuromodeling.org/tapas/

SEMINARS B EVENTS

Zurlch Computational

INTERNAL

Paychiolry Meeting 2014







Demo VB

e Linear Regression



MCMC
Sampling




il
Markov Chain Monte Carlo(MCMC) sampling

Andrei Markov
(1856 — 1922) Proposal

Russian distribution

mathematician q(@)

o A general framework for sampling from a large class of Pos_teriqr
distributions distribution
o Scales well with dimensionality of sample space p (6 |y)

o Asymptotically convergent



Markov chain properties

* Transition probabilities — homogeneous
( p(6* | 6%, ...,00 = p(8°F 6% = T,(6",6Y) J

e |nvariance

[ p*(9) = Z T(6', 0)p*(91) J — ——
> Ergodic ) Reversible | B _
e Detailed Balance H\\ \ 2 Invariant \/-'"

I

' .
=\

{ T(8,6")p*(6) =T(6',0)p*(6") }

Homogeneous )

* Ergodicity

{ p*(6) = lim (p(6™)) VP(HO)J




Metropolis-Hastings Algorithm

* |nitialize 6 at step 1 - for example, sample from prior
* At step t, sample from the proposal distribution:

o~ q@le)

* Accept with probability: 25

p(67|y) q(HtIH*))
- p(6tly)q(6+|6Y)

A(0%,0%Y) ~ min (1

* Metropolis — Symmetric proposal distribution

* | p(@* |y) 0 0.5 1 1.5 2 2.5 3
[ A(@ ; Ht) ~ min (1, p(9t|}’) Bishop (2006) PRML, p. 539




R
Gibbs Sampling Algorithm

» Special case of Metropolis Hastings
* At step t, sample from the conditional distribution:

- 0,51 ~ p(6,04, ......,0,0) )
0,51 ~ p(6,|0,, ......,0.10)

6
- /
e Acceptance probability =1
* Blocked Sampling




Posterior analysis from MCMC

OD—=D =D —=@— —()

Obtain independent samples:

O Generate samples based on MCMC sampling.

O Discard initial “burn-in” period samples to remove dependence
on initialization.

O Thinning- select every mt sample to reduce correlation .

O Inspect sample statistics (e.g., histogram, sample quantiles, ...)



MAP estimate via Simulated Annealing

e Add a temperature parameter and ﬂ
schedule to update it

e Algorithm
= SetT =1

= Until convergence
S p'/T(6ly)
- For every K iterations sample from:

« Reduce T




R —————————————
T3\ Convergence Analysis

 Single chain methods AreVeei'
» Geweke (1992)

= Raftery-Lewis (1992)

 Multi-chain methods

s Gelman-Rubin — (1992)
- Potential Scale Reduction factor




R
Model evidence using MCMC

E, [p(Due,M)p(euM)]

 Importance Sampling p(D | M) = $()
peim]
ES’[ 8(6) ]
* Prior arithmetic mean vy L
fY) =+ ?;pmem)

o ——

» Posterior harmonic mean J(Y)

| —

TN M 1
M mezl p(Y |e)



Thermodynamic Integration

e Path Sampling (Thermodynamic Integration)
9(6) = p(D |6, M p(6 | M).

PeL0( = ~( | Bitogd \
Model

T=0.8 Q:&);Oa_;(_):» ................... — E, 5 (logLk)

/ Evidence
T=0.5 (@)= D— (@D~ —() | Egs(loglk)

=00 @D~ @ =@ | Eyelogd

Ogata ,Y. 1989. Num.Math.55:137-157,
Gelman,A.1998. . Stat . Sci . 13:163 — 185



Derivation - Extra 750) = p(D 16, MP (6 | M)

1
ps(0) = —-q5(0), (15) ,
p pg- Defining the potential
)
When g tends to 0 (resp. 1), pg converges pointwise to . . .
po (resp. p1), and Zg to Zg (resp. Zy). one has thus the first moment identity:
Taking the derivative of In Zg with respect to 8:
dinZs 132 a” algﬁzﬁ = Eg[U]. (24)
B Zs 9
_1a [ 25(6)d0 (18) }ntegrating over [0, 1] yields the log-ratio one is looking
T Zs 3B Je or:
= 21_ f 3‘3;;9)119 (19) p=InZ —InZ, (25)
dInZ
) / L0 50, o -/ s (26)
“Jogp®) 3 Zs 01
_ / G ln;:;(e) ps(6)d6 1) = fo Eg[U]dB. (27)
®
d1nqs(6)
= — 22
s o), @)



Other MCMC variants

 Slice Sampling
e Adaptive MH
 Hamiltonian Monte Carlo

e Population MCMC
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Demo MCMC

e Linear Regression



summary

Bayesian Inference

Model Selection Approximate Inference
Variational MCMC
Bayes Sampling
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