

The Reverend Thomas Bayes (1702-1761)

Bayesian Inference

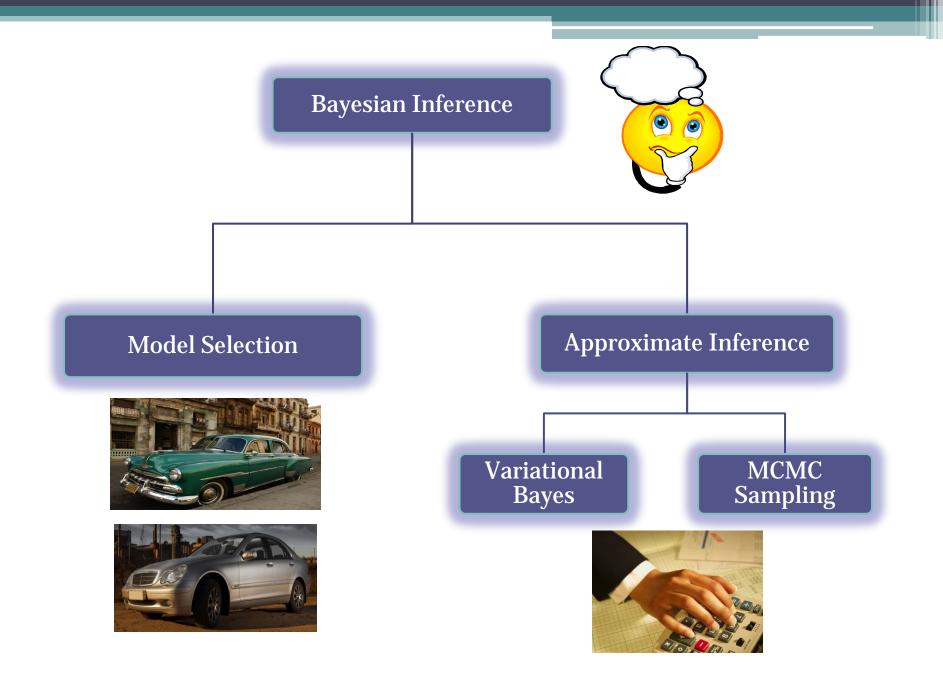
Sudhir Shankar Raman Translational Neuromodeling Unit, UZH & ETH

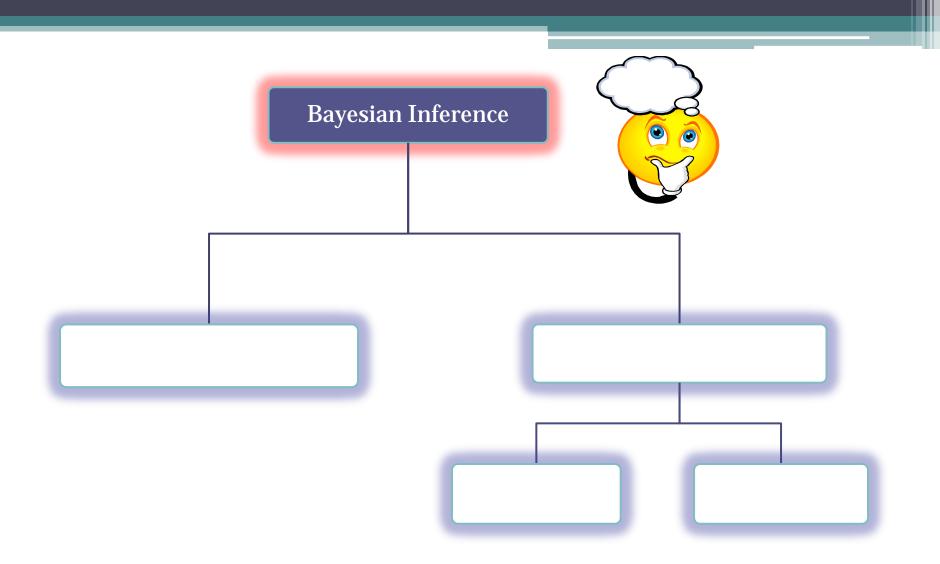
With many thanks for some slides to: Klaas Enno Stephan & Kay H. Brodersen

Why do I need to learn about Bayesian stats?

Because **SPM** is getting more and more **Bayesian**:

- Segmentation & spatial normalisation
- Posterior probability maps (PPMs)
- Dynamic Causal Modelling (DCM)
- Bayesian Model Selection (BMS)
- EEG: source reconstruction





Classical and Bayesian statistics

p-value: probability of getting the observed data in the effect's absence. If small, reject null hypothesis that there is no effect.

Probability of observing the data y, given no effect ($\theta = 0$).

$$H_0: \theta = 0$$
$$p(y | H_0)$$

Bayesian Inference

- \Rightarrow Flexibility in modelling
- Incorporating prior information
- Posterior probability of effect
- Options for model comparison

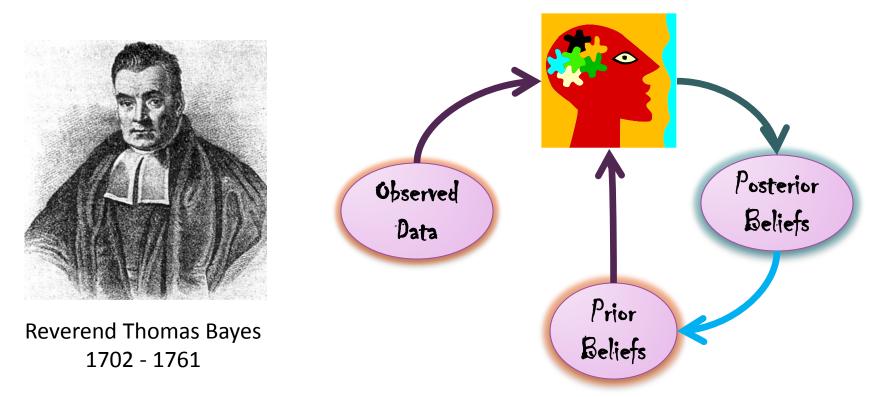
 \Rightarrow One can never accept the null hypothesis

- \Rightarrow Given enough data, one can always demonstrate a significant effect
- \Rightarrow Correction for multiple comparisons necessary

Statistical analysis and the illusion of objectivity. James O. Berger, Donald A. Berry

- $p(y,\theta)$
- $p(\theta)$
- $p(\theta \mid y)$

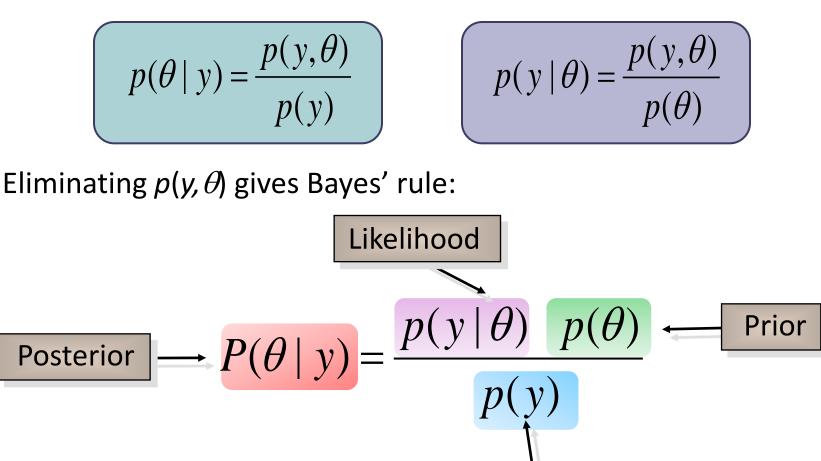
Bayes' Theorem



"Bayes' theorem describes, how an ideally rational person processes information."

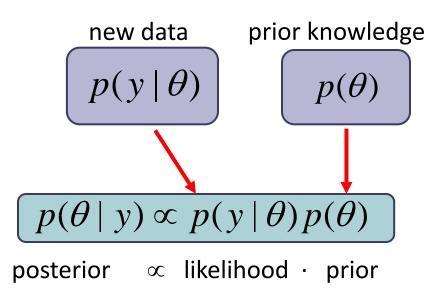
Bayes' Theorem

Given data y and parameters θ , the conditional probabilities are:



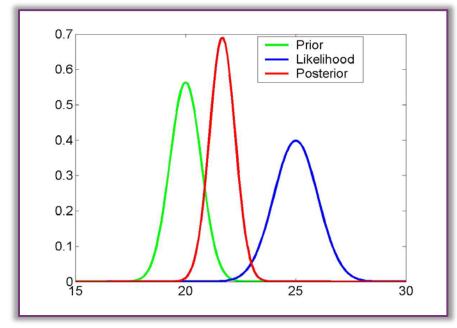
Evidence

Bayesian statistics



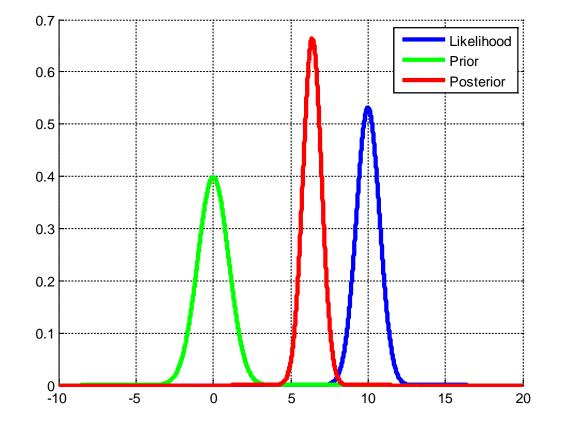
Bayes theorem allows one to formally incorporate prior knowledge into computing statistical probabilities.

Priors can be of different sorts: empirical, principled or shrinkage priors, uninformative.



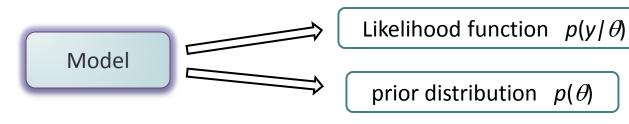
The "posterior" probability of the parameters given the data is an optimal combination of prior knowledge and new data, weighted by their relative precision.

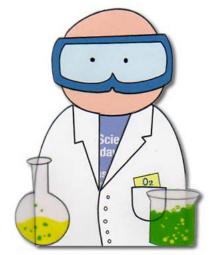
Bayes in motion - an animation



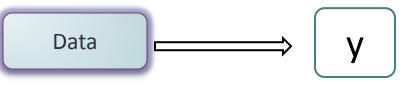
Principles of Bayesian inference

⇒ Formulation of a generative **model**

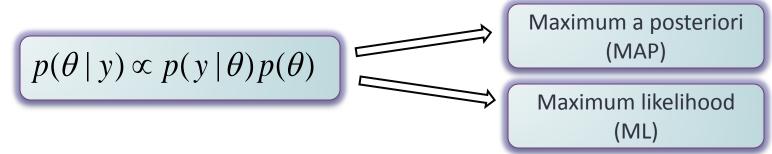




⇒ Observation of data

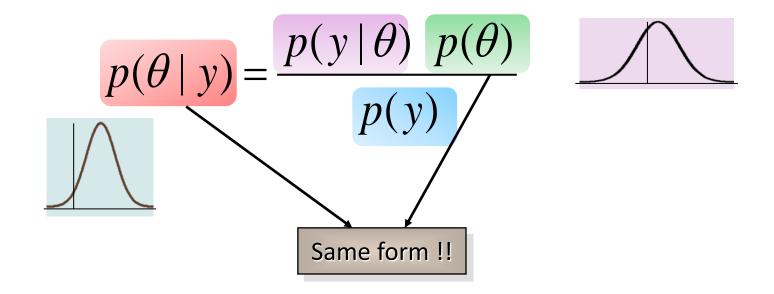


Model Inversion - Update of beliefs based upon observations, given a prior state of knowledge

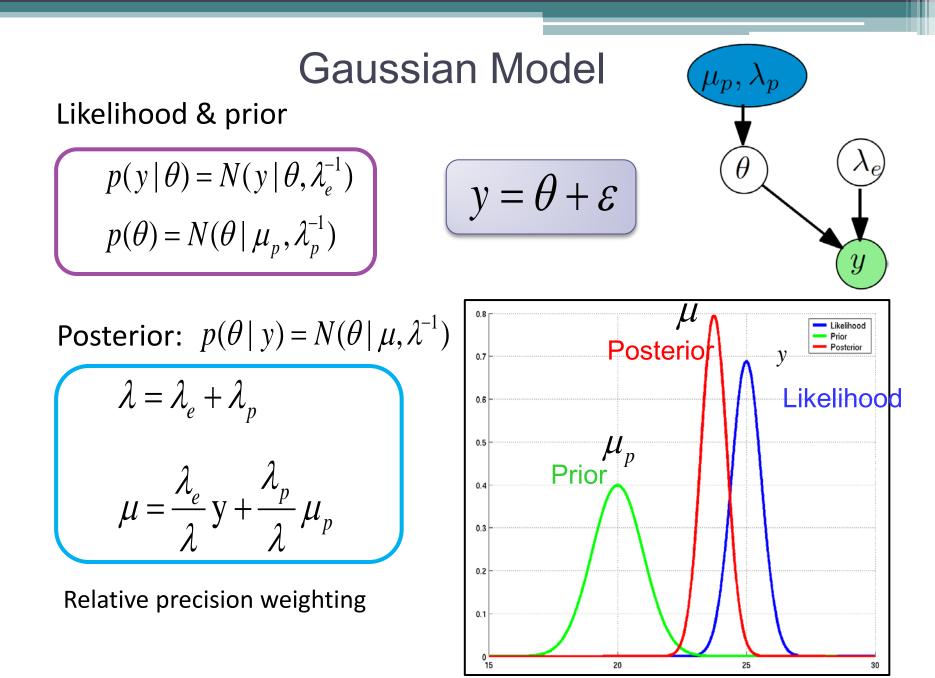


Conjugate Priors

⇒ Prior and Posterior have the same form



- \Rightarrow Analytical expression.
- ⇒ Conjugate priors for all exponential family members.
- ⇒ Example Gaussian Likelihood , Gaussian prior over mean



Bayesian regression: univariate case

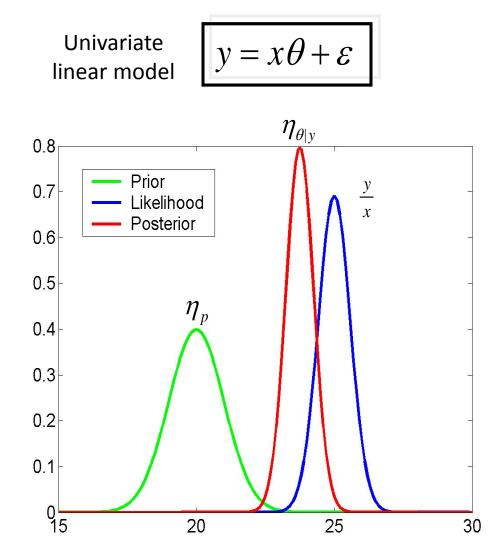
Normal densities

$$p(\theta) = N(\theta \,|\, \eta_p, \sigma_p^2)$$

$$p(y \mid \theta) = N(y \mid x\theta, \sigma_e^2)$$

$$p(\theta \mid y) = N(\theta \mid \eta_{\theta \mid y}, \sigma_{\theta \mid y}^2)$$

$$\frac{1}{\sigma_{\theta|y}^2} = \frac{x^2}{\sigma_e^2} + \frac{1}{\sigma_p^2}$$
$$\eta_{\theta|y} = \sigma_{\theta|y}^2 \left(\frac{x}{\sigma_e^2}y + \frac{1}{\sigma_p^2}\eta_p\right)$$



Relative precision weighting

Bayesian GLM: multivariate case

Normal densities

$$p(\mathbf{\theta}) = N(\mathbf{\theta}; \mathbf{\eta}_p, \mathbf{C}_p)$$

$$p(\mathbf{y} | \mathbf{\theta}) = N(\mathbf{y}; \mathbf{X}\mathbf{\theta}, \mathbf{C}_e)$$

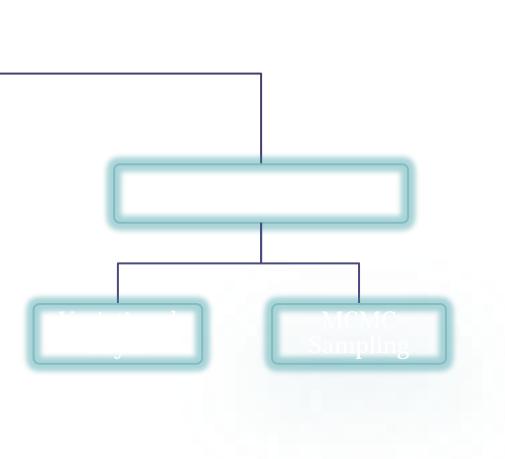
$$p(\mathbf{\theta} \mid y) = N(\mathbf{\theta}; \mathbf{\eta}_{\theta \mid y}, \mathbf{C}_{\theta \mid y})$$

$$\mathbf{C}_{\theta|y}^{-1} = \mathbf{X}^T \mathbf{C}_e^{-1} \mathbf{X} + \mathbf{C}_p^{-1}$$
$$\mathbf{\eta}_{\theta|y} = \mathbf{C}_{\theta|y} \left(\mathbf{X}^T \mathbf{C}_e^{-1} \mathbf{y} + \mathbf{C}_p^{-1} \mathbf{\eta}_p \right)$$

General $\mathbf{y} = \mathbf{X}\mathbf{\Theta} + \mathbf{e}$ Linear Model 6 2 0¹ θ_2 -2 Prior -4 Likelihood Posterior -6 -6 -4 -2 2 0 4 6 β₁

 θ_1

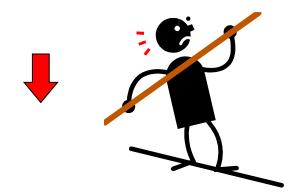
- One step if C_e is known.
- Otherwise define conjugate prior or perform iterative estimation with EM.



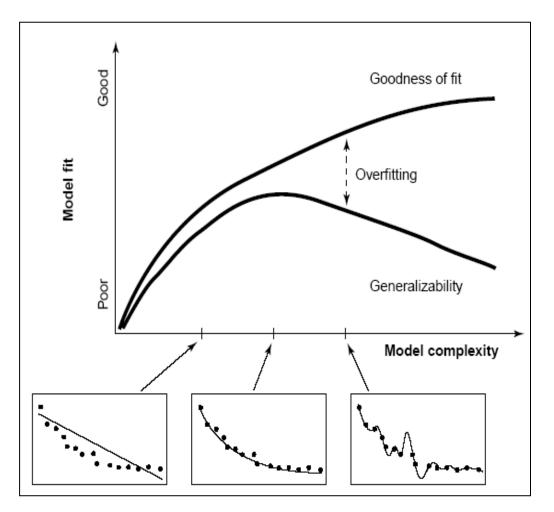
Bayesian model selection (BMS)

Given competing hypotheses on structure & functional mechanisms of a system, which model is the best?

Which model represents the best **balance** between model fit and model complexity?



For which model m does p(y|m) become maximal?



Pitt & Miyung (2002), TICS

Bayes' rule:
$$p(\theta | y, m) = \frac{p(y | \theta, m)p(\theta | m)}{p(y | m)}$$
 Model evidence:
$$p(y | m) = \int p(y | \theta, m) \cdot p(\theta | m) d\theta$$

accounts for both accuracy and complexity of the model
allows for inference about structure (generalizability) of the model

Model comparison via Bayes factor:

 $\frac{p(m_1|y)}{p(m_2|y)} = \frac{p(y|m_1)}{p(y|m_2)} \frac{p(m_1)}{p(m_2)}$

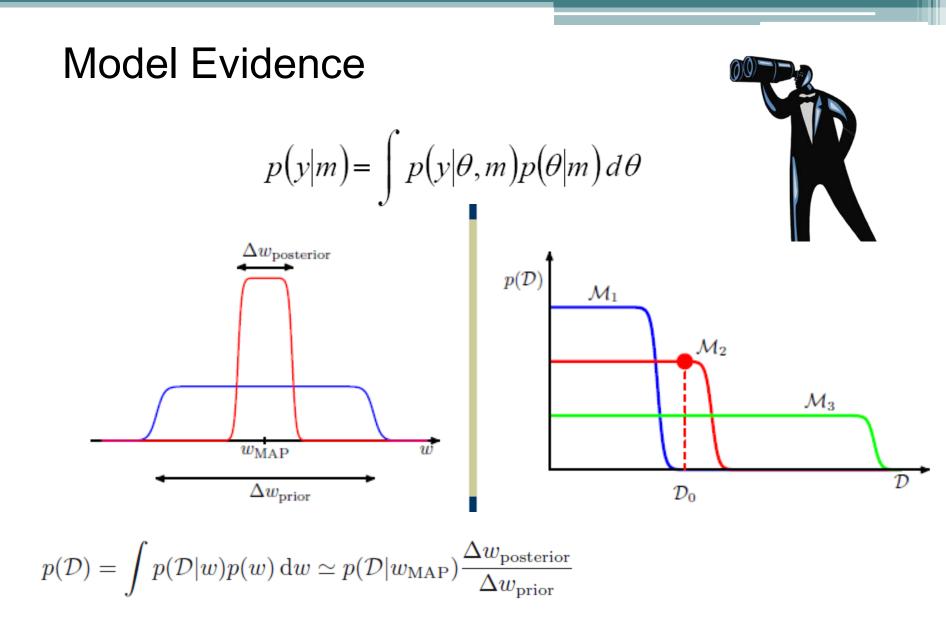
Model averaging

$$p(\theta|y) = \sum_{m} p(\theta|y,m)p(m|y)$$

Kass and Raftery (1995), Penny et al. (2004) NeuroImage

$$BF = \frac{p(y|m_1)}{p(y|m_2)}$$

BF ₁₀	Evidence against H ₀
1 to 3	Not worth more than a bare mention
3 to 20	Positive
20 to 150	Strong
>150	Decisive



McKay 1992, Neural Computations, Bishop PRML 2007

Bayesian model selection (BMS)

Various Approximations:

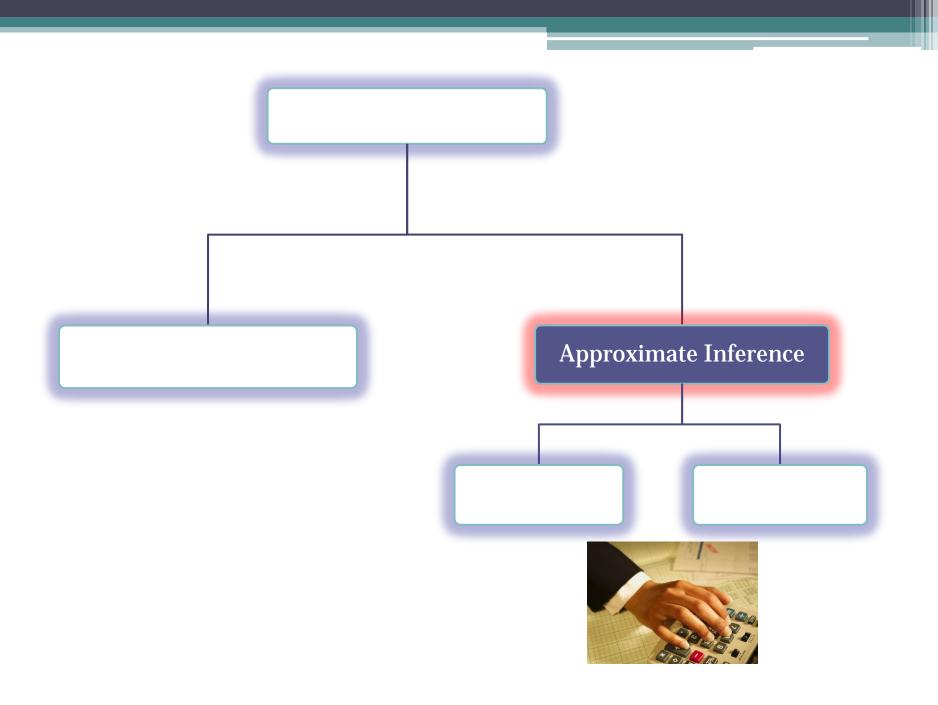
• Akaike Information Criterion (AIC) – Akaike, 1974

$$\ln p(D) \cong \ln p(D|\theta_{ML}) - M$$

• Bayesian Information Criterion (BIC) – Schwarz, 1978

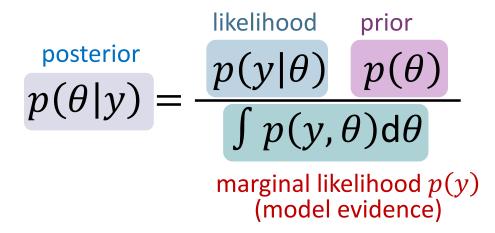
$$\ln p(D) \cong \ln p(D|\theta_{ML}) - \frac{1}{2}M\ln(N)$$

- Negative free energy (F)
 - A by-product of Variational Bayes
- Path Sampling (Thermodynamic Integration) MCMC



Approximate Bayesian inference

Bayesian inference formalizes *model inversion*, the process of passing from a prior to a posterior in light of data.



In practice, evaluating the posterior is usually difficult because we cannot easily evaluate p(y), especially when:

- High dimensionality, complex form
- analytical solutions are not available
- numerical integration is too expensive

Approximate Bayesian inference

There are two approaches to approximate inference. They have complementary strengths and weaknesses.

Deterministic approximate inference

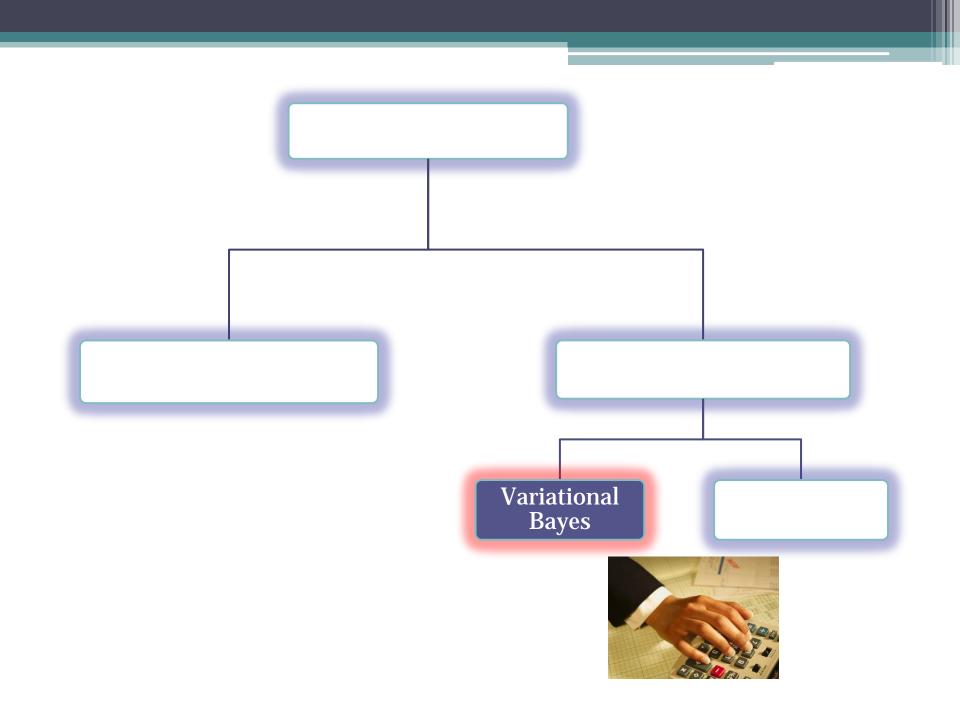
in particular variational Bayes

- find an analytical proxy $q(\theta)$ that is maximally similar to $p(\theta|y)$
- 2 inspect distribution statistics of $q(\theta)$ (e.g., mean, quantiles, intervals, ...)
- ✓ often insightful and fast
 ✓ often hard work to derive
- Converges to local minima

Stochastic approximate inference

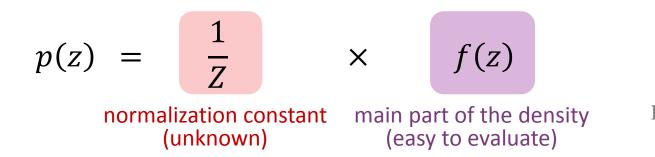
in particular sampling

- design an algorithm that draws samples $\theta^{(1)}, \dots, \theta^{(m)}$ from $p(\theta|y)$
- inspect sample statistics (e.g., histogram, sample quantiles, ...)
- ☑ asymptotically exact
- **S** computationally expensive
- ☑ tricky engineering concerns



The Laplace approximation

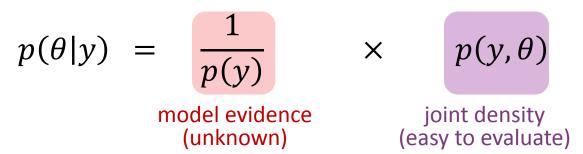
The Laplace approximation provides a way of approximating a density whose normalization constant we cannot evaluate, by fitting a Normal distribution to its mode.



Pierre-Simon Laplace (1749 – 1827)

French mathematician and astronomer

This is exactly the situation we face in Bayesian inference:



Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf

Applying the Laplace approximation

Given a model with parameters $\theta = (\theta_1, ..., \theta_p)$, the Laplace approximation reduces to a simple three-step procedure:

Evaluate the curvature of the log-joint at the mode: $\nabla \nabla \ln p(y, \theta^*)$

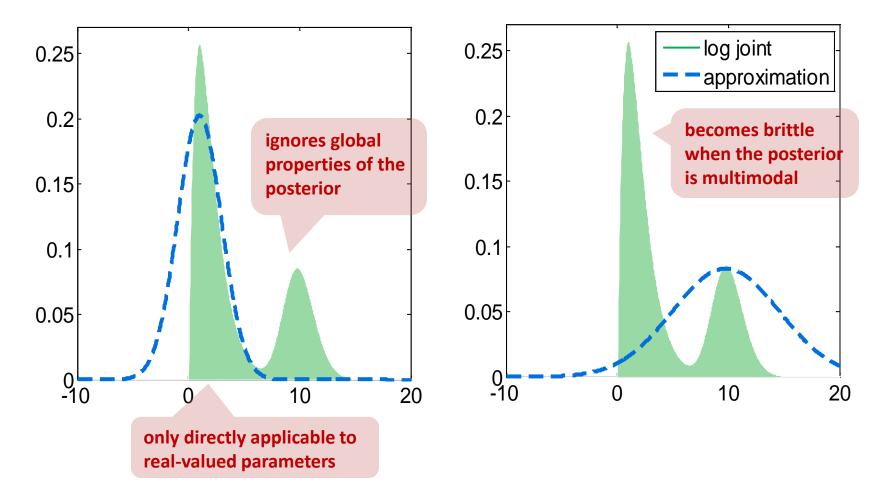
3 We obtain a Gaussian approximation:

$$\mathcal{N}(\theta|\mu, \Lambda^{-1})$$
 with $\mu = \theta^*$
 $\Lambda = -\nabla\nabla \ln p(y, \theta^*)$

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf

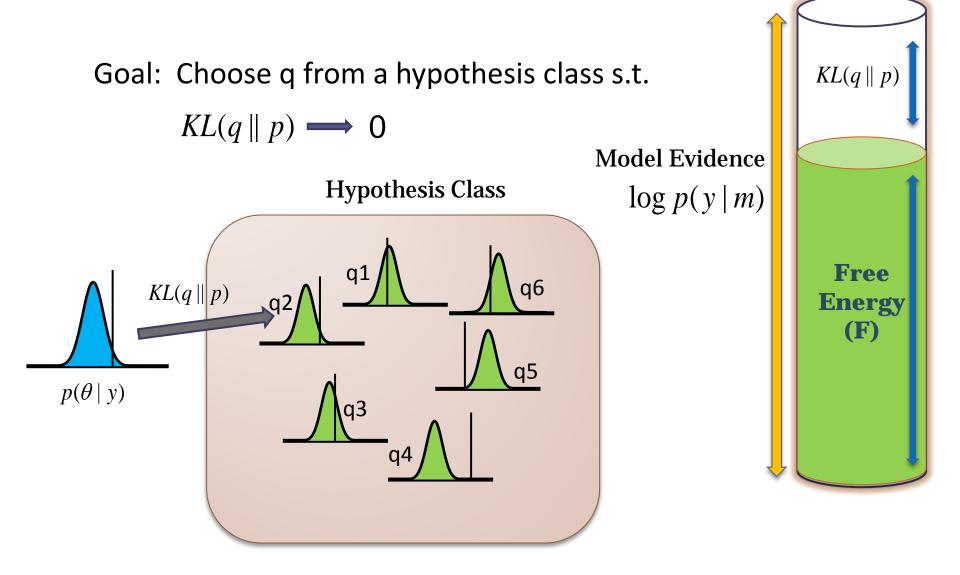
Limitations of the Laplace approximation

The Laplace approximation is often too strong a simplification.



Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf

Variational Bayes



Variational calculus

Variational Bayesian inference is based on variational calculus.

Standard calculus

Newton, Leibniz, and others

- functions $f: x \mapsto f(x)$
- derivatives $\frac{df}{dx}$

Example: maximize the likelihood expression $p(y|\theta)$ w.r.t. θ

Variational calculus

Euler, Lagrange, and others

• functionals $F: f \mapsto F(f)$

• derivatives
$$\frac{dF}{df}$$

Example: maximize the entropy H[p] w.r.t. a probability distribution p(x)

Leonhard Euler (1707 – 1783)

Swiss mathematician, 'Elementa Calculi Variationum'

Variational calculus and the free energy

Variational calculus lends itself nicely to approximate Bayesian inference.

 $\ln p(y) = \ln \frac{p(y,\theta)}{p(\theta|y)}$ $=\int q(\theta) \ln \frac{p(y,\theta)}{p(\theta|y)} d\theta$ $=\int q(\theta) \ln \frac{p(y,\theta)}{p(\theta|y)} \frac{q(\theta)}{q(\theta)} d\theta$ $= \int q(\theta) \left(\ln \frac{q(\theta)}{p(\theta|y)} + \ln \frac{p(y,\theta)}{q(\theta)} \right) d\theta$ $= \int q(\theta) \ln \frac{q(\theta)}{p(\theta|y)} d\theta + \int q(\theta) \ln \frac{p(y,\theta)}{q(\theta)} d\theta$ KL[q||p]F(q, y)divergence between free energy $q(\theta)$ and $p(\theta|y)$

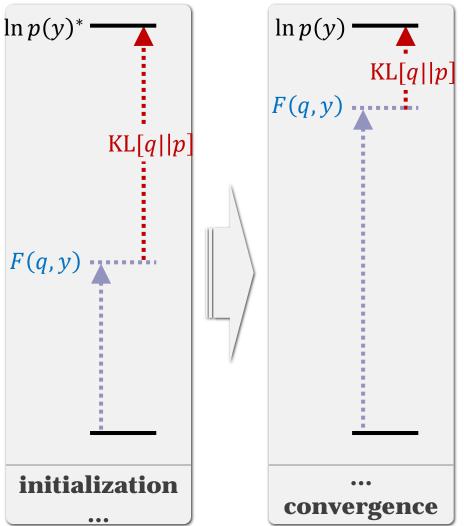
Variational calculus and the free energy

In summary, the log model evidence can be expressed as:

 $\ln p(y) = \underbrace{\text{KL}[q||p]}_{\geq 0} + \underbrace{F(q, y)}_{\text{(easy to evaluate (unknown) for a given }q)}$

Maximizing F(q, y) is equivalent to:

- minimizing KL[q||p]
- tightening F(q, y) as a lower bound to the log model evidence



Computing the free energy

We can decompose the free energy F(q, y) as follows:

$$F(q, y) = \int q(\theta) \ln \frac{p(y, \theta)}{q(\theta)} d\theta$$

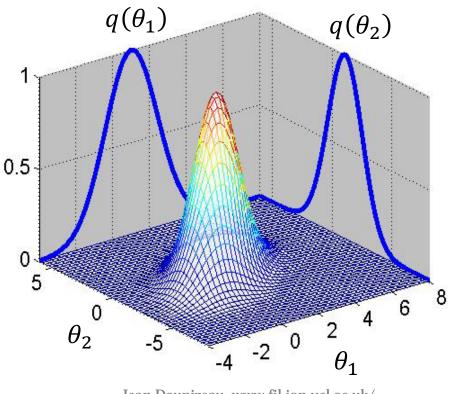
= $\int q(\theta) \ln p(y, \theta) d\theta - \int q(\theta) \ln q(\theta) d\theta$
= $\langle \ln p(y, \theta) \rangle_q + H[q]$
expected Shannon
entropy

The mean-field assumption

When inverting models with several parameters, a common way of restricting the class of approximate posteriors $q(\theta)$ is to consider those posteriors that factorize into independent partitions,

$$q(heta) = \prod_i q_i(heta_i)$$
 ,

where $q_i(\theta_i)$ is the approximate posterior for the i^{th} subset of parameters.



Jean Daunizeau, www.fil.ion.ucl.ac.uk/ ~jdaunize/presentations/Bayes2.pdf

Variational inference under the mean-field assumption

$$F(q, y) = \int q(\theta) \ln \frac{p(y, \theta)}{q(\theta)} d\theta$$

$$= \int \prod_{i} q_{i} \times \left(\ln p(y, \theta) - \sum_{i} \ln q_{i} \right) d\theta$$

$$= \int q_{j} \prod_{i} q_{i} \left(\ln p(y, \theta) - \ln q_{j} \right) d\theta - \int q_{j} \prod_{i} q_{i} \sum_{i} \ln q_{i} d\theta$$

$$= \int q_{j} \left(\int \prod_{i} q_{i} \ln p(y, \theta) d\theta_{i} - \ln q_{j} \right) d\theta_{j} - \int q_{j} \int \prod_{i} q_{i} \ln \prod_{i} q_{i} d\theta_{i} d\theta_{i}$$

$$= \int q_{j} \ln \frac{\exp\left(\left(\ln p(y, \theta) \right)_{q_{i}} \right)}{q_{j}} d\theta_{j} + c$$

$$= -\mathrm{KL} \left[q_{j} || \exp\left(\left(\ln p(y, \theta) \right)_{q_{i}} \right) \right] + c$$

Variational algorithm under the mean-field assumption

In summary:

$$F(q, y) = -\mathsf{KL}\left[q_{j} || \exp\left(\langle \ln p(y, \theta) \rangle_{q_{j}}\right)\right] + c$$

Suppose the densities $q_{\setminus j} \equiv q(\theta_{\setminus j})$ are kept fixed. Then the approximate posterior $q(\theta_j)$ that maximizes F(q, y) is given by:

$$q_j^* = \arg \max_{q_j} F(q, y)$$
$$= \frac{1}{Z} \exp\left(\langle \ln p(y, \theta) \rangle_{q_{\setminus j}}\right)$$

Therefore:

$$\ln q_j^* = \underbrace{\langle \ln p(y,\theta) \rangle_{q_{\setminus j}}}_{=:I(\theta_j)} - \ln Z$$

This implies a straightforward algorithm for variational inference:

- Initialize all approximate posteriors $q(\theta_i)$, e.g., by setting them to their priors.
- Cycle over the parameters, revising each given the current estimates of the others.

Loop until convergence. B

Typical strategies in variational inference

	no parametric assumptions	parametric assumptions $q(\theta) = F(\theta \delta)$
no mean-field assumption	(variational inference = exact inference)	fixed-form optimization of moments
mean-field assumption $q(\theta) = \prod q(\theta_i)$	iterative free-form variational optimization	iterative fixed-form variational optimization

Example: variational density estimation

We are given a univariate dataset $\{y_1, \dots, y_n\}$ which we model by a simple univariate Gaussian distribution. We wish to infer on its mean and precision:

 $p(\mu,\tau|y)$

Although in this case a closed-form solution exists*, we shall pretend it does not. Instead, we consider approximations that satisfy the meanfield assumption:

$$q(\mu,\tau) = q_{\mu}(\mu) q_{\tau}(\tau)$$

mean precision

$$\begin{array}{cccc}
\mu & \tau & p(\mu|\tau) &= \mathcal{N}(\mu|\mu_0, (\lambda_0\tau)^{-1}) \\
p(\tau) &= \mathrm{Ga}(\tau|a_0, b_0) \\
\vdots & y_i & \vdots \\
data & p(y_i|\mu, \tau) &= \mathcal{N}(y_i|\mu, \tau^{-1}) \\
i &= 1 \dots n
\end{array}$$

10.1.3; Bishop (2006) PRML

Recurring expressions in Bayesian inference

Univariate normal distribution

$$\ln \mathcal{N}(x|\mu,\lambda^{-1}) = \frac{1}{2}\ln\lambda - \frac{1}{2}\ln\pi - \frac{\lambda}{2}(x-\mu)^2$$
$$= -\frac{1}{2}\lambda x^2 + \lambda\mu x + c$$

Multivariate normal distribution

$$\ln \mathcal{N}_{d}(x|\mu, \Lambda^{-1}) = -\frac{1}{2} \ln |\Lambda^{-1}| - \frac{d}{2} \ln 2\pi - \frac{1}{2} (x-\mu)^{T} \Lambda(x-\mu)$$
$$= -\frac{1}{2} x^{T} \Lambda x + x^{T} \Lambda \mu + c$$

Gamma distribution

$$\ln \operatorname{Ga}(x|a,b) = a \ln b - \ln \Gamma(a) + (a-1) \ln x - b x$$
$$= (a-1) \ln x - b x + c$$

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf

Variational density estimation: mean μ

$$\begin{aligned} \ln q^*(\mu) &= \langle \ln p(y,\mu,\tau) \rangle_{q(\tau)} + c \\ &= \left\langle \ln \prod_i^n p(y_i|\mu,\tau) \right\rangle_{q(\tau)} + \langle \ln p(\mu|\tau) \rangle_{q(\tau)} + \langle \ln p(\tau) \rangle_{q(\tau)} + c \\ &= \langle \ln \prod \mathcal{N}(y_i|\mu,\tau^{-1}) \rangle_{q(\tau)} + \langle \ln \mathcal{N}(\mu|\mu_0,(\lambda_0\tau)^{-1}) \rangle_{q(\tau)} + \langle \ln Ga(\tau|a_0,b_0) \rangle_{q(\tau)} + c \\ &= \sum \left\langle -\frac{\tau}{2} (y_i - \mu)^2 \right\rangle_{q(\tau)} + \left\langle -\frac{\lambda_0\tau}{2} (\mu - \mu_0)^2 \right\rangle_{q(\tau)} + c \\ &= \sum -\frac{\langle \tau \rangle_{q(\tau)}}{2} y_i^2 + \langle \tau \rangle_{q(\tau)} n \bar{y} \mu - n \frac{\langle \tau \rangle_{q(\tau)}}{2} \mu^2 - \frac{\lambda_0 \langle \tau \rangle_{q(\tau)}}{2} \mu^2 + \lambda_0 \mu \mu_0 \langle \tau \rangle_{q(\tau)} - \frac{\lambda_0}{2} \mu_0^2 + c \\ &= -\frac{1}{2} \left\{ n \langle \tau \rangle_{q(\tau)} + \lambda_0 \langle \tau \rangle_{q(\tau)} \right\} \mu^2 + \left\{ n \bar{y} \langle \tau \rangle_{q(\tau)} + \lambda_0 \mu_0 \langle \tau \rangle_{q(\tau)} \right\} \mu + c \end{aligned}$$

Ч

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf

 $\mu_n = \frac{n \bar{y} \langle \tau \rangle_{q(\tau)} + \lambda_0 \mu_0 \langle \tau \rangle_{q(\tau)}}{\lambda_n} = \frac{\lambda_0 \mu_0 + n \bar{y}}{\lambda_0 + n}$

Variational density estimation: precision τ $\ln q^*(\tau) = \langle \ln p(y, \mu, \tau) \rangle_{q(\mu)} + c$

$$= \left\langle \ln \prod_{i=1}^{n} \mathcal{N}(y_{i}|\mu,\tau^{-1}) \right\rangle_{q(\mu)} + \left\langle \ln \mathcal{N}(\mu|\mu_{0},(\lambda_{0}\tau)^{-1}) \right\rangle_{q(\mu)} + \left\langle \ln \operatorname{Ga}(\tau|a_{0},b_{0}) \right\rangle_{q(\mu)} + c$$

$$= \sum_{i=1}^{n} \left\langle \frac{1}{2} \ln \tau - \frac{\tau}{2} (y_{i} - \mu)^{2} \right\rangle_{q(\mu)} + \left\langle \frac{1}{2} \ln(\lambda_{0}\tau) - \frac{\lambda_{0}\tau}{2} (\mu - \mu_{0})^{2} \right\rangle_{q(\mu)} + \left\langle (a_{0} - 1) \ln \tau - b_{0}\tau \right\rangle_{q(\mu)} + c$$

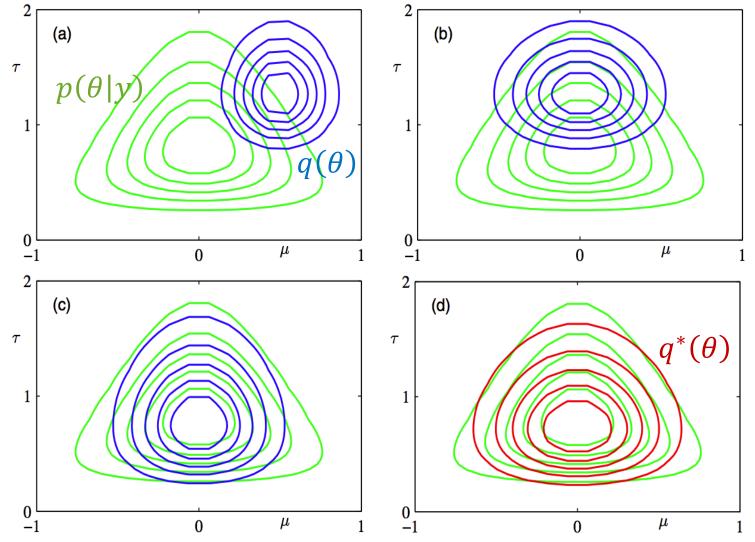
$$= \frac{n}{2} \ln \tau - \frac{\tau}{2} \langle \Sigma(y_{i} - \mu)^{2} \rangle_{q(\mu)} + \frac{1}{2} \ln \lambda_{0} + \frac{1}{2} \ln \tau - \frac{\lambda_{0}\tau}{2} \langle (\mu - \mu_{0})^{2} \rangle_{q(\mu)} + (a_{0} - 1) \ln \tau - b_{0}\tau + c$$

$$= \left\{ \frac{n}{2} + \frac{1}{2} + (a_{0} - 1) \right\} \ln \tau - \left\{ \frac{1}{2} \langle \Sigma(y_{i} - \mu)^{2} \rangle_{q(\mu)} + \frac{\lambda_{0}}{2} \langle (\mu - \mu_{0})^{2} \rangle_{q(\mu)} + b_{0} \right\} \tau + c$$

$$\Rightarrow q^*(\tau) = \operatorname{Ga}(\tau | a_n, b_n) \text{ with } a_n = a_0 + \frac{n+1}{2}$$
$$b_n = b_0 + \frac{\lambda_0}{2} \langle (\mu - \mu_0)^2 \rangle_{q(\mu)} + \frac{1}{2} \langle \sum (y_i - \mu)^2 \rangle_{q(\mu)}$$

Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf

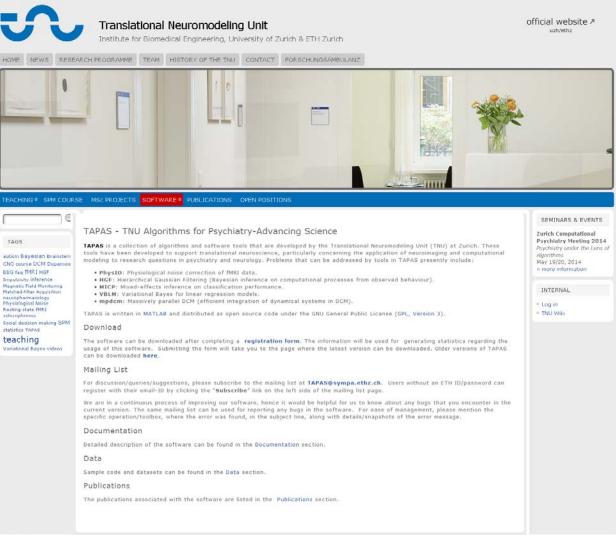
Variational density estimation: illustration



Source: Kay H. Brodersen, 2013, http://people.inf.ethz.ch/bkay/talks/Brodersen_2013_03_22.pdf

Bishop (2006) PRML, p. 472

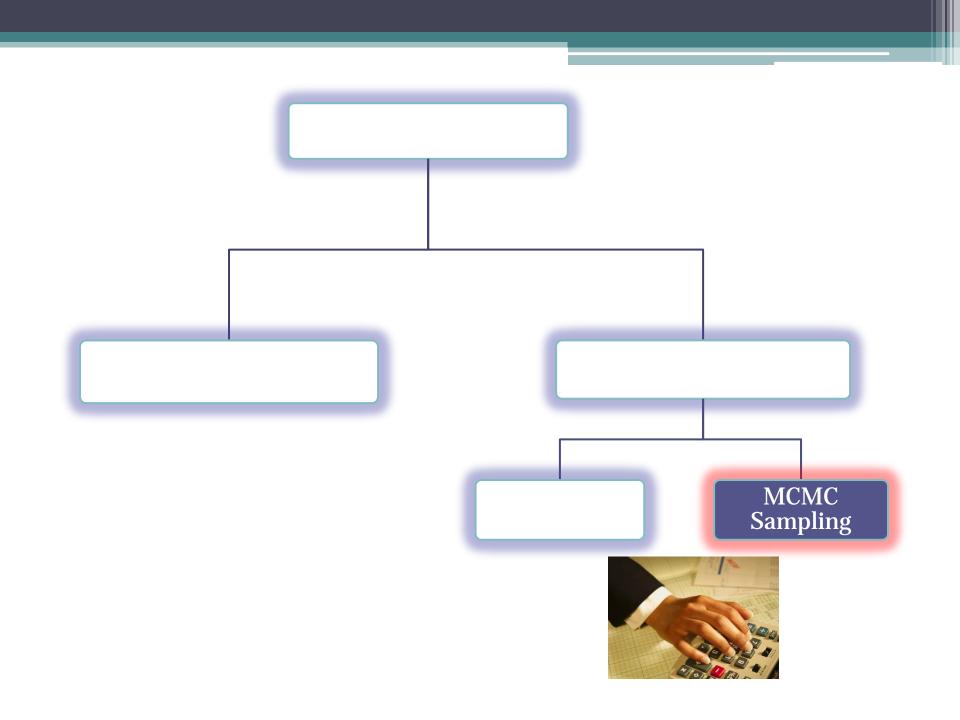
TAPAS ゼ



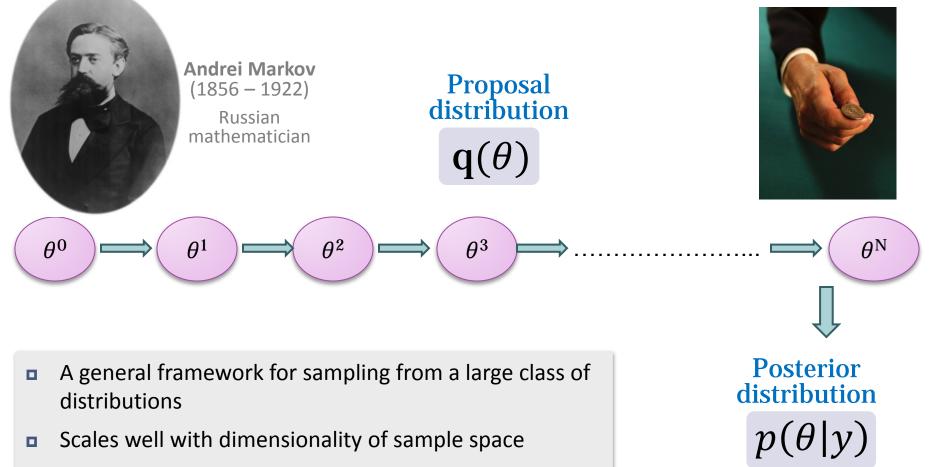
- Variational Bayes Linear Regression
 - http://www.translationalneuromodeling.org/tapas/

Demo VB

• Linear Regression



Markov Chain Monte Carlo(MCMC) sampling



Asymptotically convergent

Markov chain properties

Transition probabilities – homogeneous

$$p(\theta^{t+1} \mid \theta^1, \dots, \theta^t) = p(\theta^{t+1} \mid \theta^t) = T_t(\theta^{t+1}, \theta^t)$$

Invariance

$$p^{*}(\theta) = \sum_{\theta'} T(\theta', \theta) p^{*}(\theta')$$

• Detailed Balance

$$T(\theta, \theta') p^{*}(\theta) = T(\theta', \theta) p^{*}(\theta')$$

• Ergodicity

$$p^{*}(\theta) = \lim_{n \to \infty} (p(\theta^{n})) \forall p(\theta^{0})$$

Metropolis-Hastings Algorithm

- Initialize θ at step 1 for example, sample from prior
- At step t, sample from the proposal distribution:

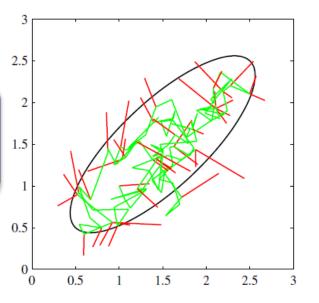
 $\theta^* \sim q(\theta^*|\theta^t)$

Accept with probability:

$$A(\theta^*, \theta^t) \sim min\left(1, \frac{p(\theta^*|y) q(\theta^t|\theta^*)}{p(\theta^t|y)q(\theta^*|\theta^t)}\right)$$

Metropolis – Symmetric proposal distribution

$$A(\theta^*, \theta^t) \sim min\left(1, \frac{p(\theta^*|y)}{p(\theta^t|y)}\right)$$



Bishop (2006) PRML, p. 539

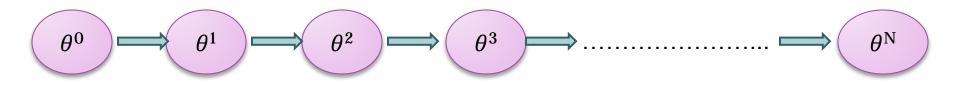
Gibbs Sampling Algorithm

- Special case of Metropolis Hastings
- At step **t**, sample from the conditional distribution:

$$\begin{array}{cccc} \theta_1^{t+1} & \sim & p(\theta_1 | \theta_2^{t}, \dots, \theta_n^{t}) \\ \theta_2^{t+1} & \sim & p(\theta_2 | \theta_1^{t+1}, \dots, \theta_n^{t}) \\ & \vdots \\ & \vdots \\ & \theta_n \end{array}$$

- Acceptance probability = 1
- Blocked Sampling

Posterior analysis from MCMC



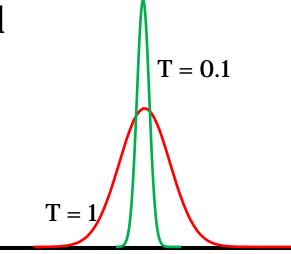
Obtain independent samples:

- Generate samples based on MCMC sampling.
- Discard initial "burn-in" period samples to remove dependence on initialization.
- Thinning- select every mth sample to reduce correlation .
- Inspect sample statistics (e.g., histogram, sample quantiles, ...)

MAP estimate via Simulated Annealing

Add a temperature parameter and schedule to update it

- Algorithm
 - Set T = 1
 - Until convergence
 - For every K iterations sample from:
 - Reduce T



 $p^{1/T}(\theta|y)$

- Single chain methods
 - Geweke (1992)
 - Raftery-Lewis (1992)

- Multi-chain methods
 - Gelman-Rubin (1992)
 - Potential Scale Reduction factor

Model evidence using MCMC

Importance Sampling

$$p(D \mid M) = \frac{E_g \left[\frac{p(D|\theta, M) p(\theta \mid M)}{g(\theta)} \right]}{E_g \left[\frac{p(\theta \mid M)}{g(\theta)} \right]},$$

Prior arithmetic mean

$$\widehat{f(Y)} = \frac{1}{M} \sum_{m=1}^{M} p(Y|\theta_m)$$

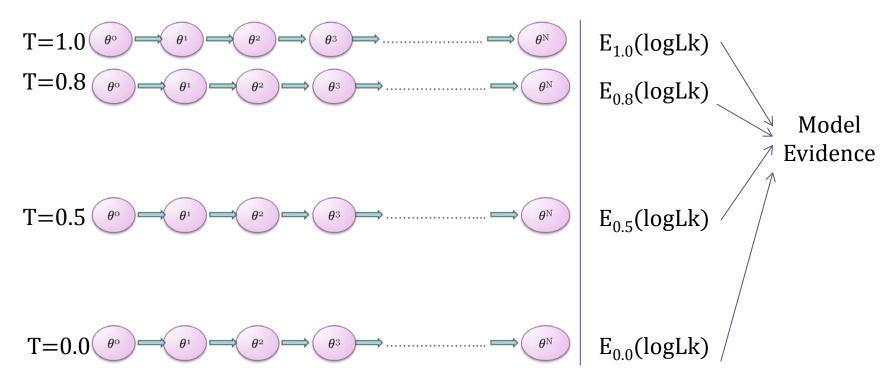
Posterior harmonic mean

$$\widehat{f(Y)} = \frac{1}{\frac{1}{\frac{1}{M} \sum_{m=1}^{M} \frac{1}{p(Y|\bullet)}}},$$

Thermodynamic Integration

Path Sampling (Thermodynamic Integration)

 $q_{\beta}(\theta) = p(D \mid \theta, M)^{\beta} p(\theta \mid M).$



Ogata ,Y. 1989. Num.Math.55:137-157, Gelman,A.1998. . Stat . Sci . 13:163 — 185

Derivation - Extra

$$q_{\beta}(\theta) = p(D \mid \theta, M)^{\beta} p(\theta \mid M)$$

$$p_{\beta}(\theta) = \frac{1}{Z_{\beta}} q_{\beta}(\theta), \qquad (15)$$

$$Z_{\beta} = \int_{\Theta} q_{\beta}(\theta) d\theta.$$
 (16)

When β tends to 0 (resp. 1), p_{β} converges pointwise to p_0 (resp. p_1), and Z_{β} to Z_0 (resp. Z_1). Taking the derivative of ln Z_{β} with respect to β :

$$\frac{\partial \ln Z_{\beta}}{\partial \beta} = \frac{1}{Z_{\beta}} \frac{\partial Z_{\beta}}{\partial \beta}$$
(17)

$$=\frac{1}{Z_{\beta}}\frac{\partial}{\partial\beta}\int_{\Theta}q_{\beta}(\theta)d\theta \tag{18}$$

$$=\frac{1}{Z_{\beta}}\int_{\Theta}\frac{\partial q_{\beta}(\theta)}{\partial\beta}d\theta \tag{19}$$

$$= \int_{\Theta} \frac{1}{q_{\beta}(\theta)} \frac{\partial q_{\beta}(\theta)}{\partial \beta} \frac{q_{\beta}(\theta)}{Z_{\beta}} d\theta \qquad (20)$$

$$= \int_{\Theta} \frac{\partial \ln q_{\beta}(\theta)}{\partial \beta} p_{\beta}(\theta) d\theta$$
 (21)

$$= E_{\beta} \left[\frac{\partial \ln q_{\beta}(\theta)}{\partial \beta} \right], \tag{22}$$

 p_{β} . Defining the *potential*

$$U(\theta) = \frac{\partial \ln q_{\beta}(\theta)}{\partial \beta},$$
 (23)

one has thus the first moment identity:

$$\frac{\partial \ln Z_{\beta}}{\partial \beta} = E_{\beta}[U]. \tag{24}$$

Integrating over [0, 1] yields the log-ratio one is looking for:

$$\mu = \ln Z_1 - \ln Z_0 \tag{25}$$

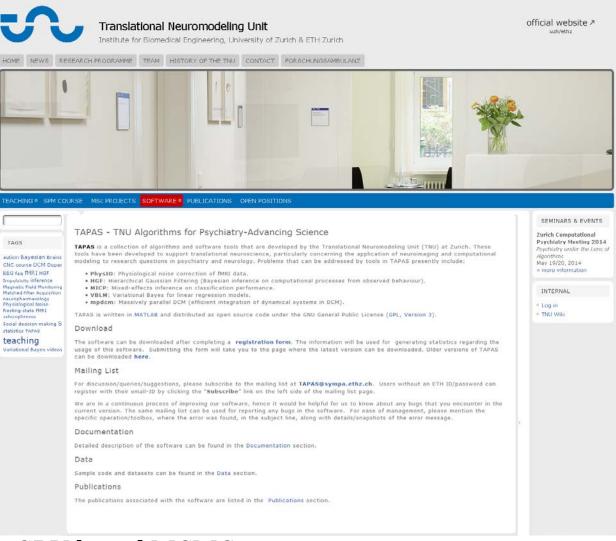
$$= \int_0^1 \frac{\partial \ln Z_\beta}{\partial \beta} d\beta$$
 (26)

$$=\int_0^1 E_\beta[U]d\beta.$$
 (27)

Other MCMC variants

- Slice Sampling
- Adaptive MH
- Hamiltonian Monte Carlo
- Population MCMC

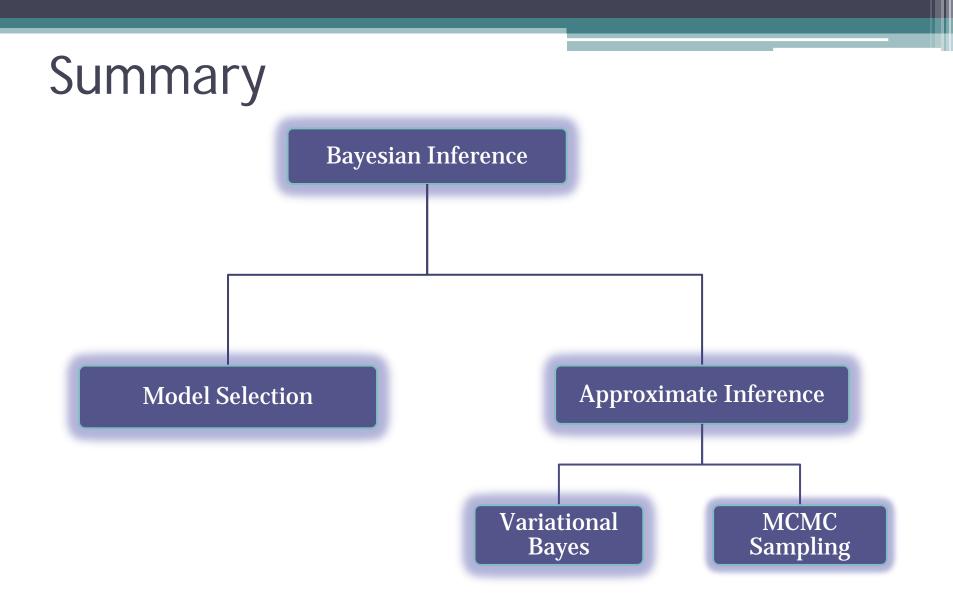
TAPAS 🥑



- mpdcm GPU based MCMC
 - http://www.translationalneuromodeling.org/tapas/

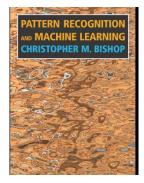
Demo MCMC

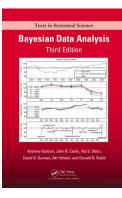
• Linear Regression

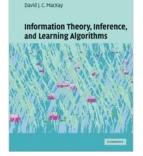


References

- Pattern Recognition and Machine Learning (2006). Christopher M. Bishop
- Bayesian reasoning and machine learning. David Barber
- Information theory, pattern recognition and learning algorithms. David McKay
- Conjugate Bayesian analysis of the Gaussian distribution. Kevin P. Murphy.
- Videolectures.net Bayesian inference, MCMC, Variational Bayes
- Akaike, H (1974). A new look at statistical model identification. IEEE transactions on Automatic Control 19, 716-723.
- Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461-464.
- Kass, R.E. and Raftery, A.E. (1995). Bayes factors Journal of the American Statistical Association, 90, 773-795.
- Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition (Chapman & Hall/CRC Texts in Statistical Science) Dani Gamerman, Hedibert F. Lopes.
- Statistical Parametric Mapping: The Analysis of Functional Brain Images.
- N. Lartillot and H. Philippe, "Computing bayes factors using thermodynamic integration," Systematic Biology, vol. 55, no. 2, pp. 195–207, 2006.
- Andrew Gelman, Donald B. Rubin. Inference from iterative simulation using multiple sequences Stat. Sci., 7 (4) (1992), pp. 457–472
- J. Geweke. Evaluating the accuracy of sampling-based approaches to calculating posterior moments Bayesian Statistics 4, (1992), pp. 169–193
- Adrian E. Raftery, Steven LewisHow many iterations in the Gibbs sampler? Bayesian Statistics 4, Oxford University Press (1992), pp. 763–773







Thank You

http://www.translationalneuromodeling.org/tapas/