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Overview

• DCM: basic concepts

• Evolution of DCM for fMRI

• Bayesian model selection (BMS) 

• Translational Neuromodeling



Dynamic causal modeling (DCM)
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Model inversion:

Estimating neuronal 

mechanisms

EEG, MEG fMRI

Forward model:

Predicting measured 

activity

dwMRI



Generative model
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1. enforces mechanistic thinking: how could the data have been caused?

2. generate synthetic data (observations) by sampling from the prior – can 

model explain certain phenomena at all? 

3. inference about model structure: formal approach to disambiguating

mechanisms → p(m|y) or p(y|m) 

4. inference about parameters → p(|y)



endogenous 

connectivity

direct inputs

modulation of

connectivity

Neuronal state equation
Modulatory input

t

u2(t)

t

Driving input

u1(t)

𝑨 =
𝝏  𝒙

𝝏𝒙

𝑩(𝒋) =
𝝏

𝝏𝒖𝒋

𝝏  𝒙

𝝏𝒙

𝑪 =
𝝏  𝒙

𝝏𝒖

 𝒙 = 𝑨 + 𝒖𝒋𝑩
𝒋 𝒙 + 𝑪𝒖

Hemodynamic model

𝝂𝒊(𝒕) and 𝒒𝒊(𝒕)

Neuronal states

𝒙𝒊(𝒕)

𝒙𝟏(𝒕)
𝒙𝟑(𝒕)

𝒙𝟐(𝒕)

BOLD signal change equation

𝒚 = 𝑽𝟎 𝒌𝟏 𝟏 − 𝒒 + 𝒌𝟐 𝟏 −
𝒒

𝝂
+ 𝒌𝟑 𝟏 − 𝝂 + 𝒆

with 𝒌𝟏 = 𝟒. 𝟑𝝑𝟎𝑬𝟎𝑻𝑬, 𝒌𝟐 = 𝜺𝒓𝟎𝑬𝟎𝑻𝑬, 𝒌𝟑 = 𝟏 − 𝜺

𝝉  𝝂 = 𝒇 − 𝝂𝟏/𝜶

𝝉  𝒒 = 𝒇𝑬(𝒇, 𝑬𝟎)/𝑬𝟎 − 𝝂𝟏/𝜶𝒒/𝝂

Local hemodynamic 

state equations

Changes in volume (𝝂) 

and dHb (𝒒) 

𝒇
Balloon model

 𝒔 = 𝒙 − 𝜿𝒔 − 𝜸 𝒇 − 𝟏

 𝒇 = 𝒔

vasodilatory 

signal and flow 

induction (rCBF)

BOLD signal

y(t)

Stephan et al. 2015, 

Neuron
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Invert model

Make inferences

Define likelihood model

Specify priors

Neural dynamics

Observer function

Design experimental inputs)(tu

Inference on model 

structure

Inference on parameters

Bayesian system 

identification 



Variational Bayes (VB)

best proxy

𝑞 𝜃

true
posterior

𝑝 𝜃 𝑦

hypothesis
class

divergence

KL 𝑞||𝑝

Idea: find an approximate density 𝑞(𝜃) that is maximally similar to the true 

posterior 𝑝 𝜃 𝑦 .

This is often done by assuming a particular form for 𝑞 (fixed form VB) and 

then optimizing its sufficient statistics.



Variational Bayes

𝐹 𝑞, 𝑦 is a functional wrt. the 

approximate posterior 𝑞 𝜃 .

Maximizing 𝐹 𝑞, 𝑦 is equivalent to:

• minimizing KL[𝑞| 𝑝

• tightening 𝐹 𝑞, 𝑦 as a lower

bound to the log model evidence

When 𝐹 𝑞, 𝑦 is maximized, 𝑞 𝜃 is 

our best estimate of the posterior.

ln𝑝(𝑦) = KL[𝑞| 𝑝 + 𝐹 𝑞, 𝑦

divergence 
≥ 0

(unknown)

neg. free 
energy

(easy to evaluate 
for a given 𝑞)

KL[𝑞| 𝑝

ln 𝑝 𝑦 ∗

𝐹 𝑞, 𝑦

KL[𝑞| 𝑝

ln 𝑝 𝑦

𝐹 𝑞, 𝑦

initialization 
…

… 
convergence



Mean field assumption

Factorize the approximate 

posterior 𝑞 𝜃 into independent 

partitions:

𝑞 𝜃 = 

𝑖

𝑞𝑖 𝜃𝑖

where 𝑞𝑖 𝜃𝑖 is the approximate 

posterior for the 𝑖th subset of 

parameters.

For example, split parameters 

and hyperparameters:
𝜃1

𝜃2

𝑞 𝜃1 𝑞 𝜃2

Jean Daunizeau, www.fil.ion.ucl.ac.uk/ 
~jdaunize/presentations/Bayes2.pdf       , | ,p y q q q      



VB in a nutshell (mean-field approximation)
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 Iterative updating of sufficient statistics of approx. posteriors by 

gradient ascent.
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 Mean field approx.

 Neg. free-energy 

approx. to model 

evidence.

 Maximise neg. free 

energy  wrt. q = 

minimise divergence,

by maximising

variational energies



DCM: methodological developments

• Local extrema  global optimisation

schemes for model inversion

– MCMC

(Gupta et al. 2015, NeuroImage)

– Gaussian processes

(Lomakina et al. 2015, NeuroImage)

• Sampling-based estimates of model evidence

– Aponte et al. 2015, J. Neurosci. Meth.

– Raman et al., in preparation

• Choice of priors  empirical Bayes

– Friston et al., submitted

– Raman et al., submitted



mpdcm: massively parallel DCM

Aponte et al. 2015., J. Neurosci Meth.

 𝑥 = 𝑓 𝑥, 𝑢1, 𝜃1
 𝑥 = 𝑓 𝑥, 𝑢2, 𝜃2

⋮
 𝑥 = 𝑓 𝑥, 𝑢1, 𝜃1

mpdcm_integrate(dcms)

𝑦1
𝑦2
⋮
𝑦3

www.translationalneuromodeling.org/tapas
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The evolution of DCM in SPM

• DCM is not one specific model, but a framework for Bayesian inversion of 

dynamic system models

• The implementation in SPM has been evolving over time, e.g.

– improvements of numerical routines (e.g., optimisation scheme)

– change in priors to cover new variants (e.g., stochastic DCMs)

– changes of hemodynamic model

To enable replication of your results, you should ideally state 

which SPM version (release number) you are using when 

publishing papers.



Factorial structure of model specification

• Three dimensions of model specification:

– bilinear vs. nonlinear

– single-state vs. two-state (per region)

– deterministic vs. stochastic
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The classical DCM:

a deterministic, one-state, 

bilinear model



bilinear DCM
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Stephan et al. 2008, NeuroImage
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Estimates of hidden causes and states

(Generalised filtering)
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Li et al. 2011, NeuroImage

• all states are represented in generalised 

coordinates of motion

• random state fluctuations w(x) account for 

endogenous fluctuations,

have unknown precision and smoothness 

 two hyperparameters

• fluctuations w(v) induce uncertainty about 

how inputs influence neuronal activity

• can be fitted to resting state data



Spectral DCM

• deterministic model that generates predicted cross-spectra in a distributed 

neuronal network or graph

• finds the effective connectivity among hidden neuronal states that best 

explains the observed functional connectivity among hemodynamic

responses

• advantage:

– replaces an optimisation problem wrt. stochastic differential equations

with a deterministic approach from linear systems theory

→ computationally very efficient

• disadvantages:

– assumes stationarity

Friston et al. 2014, NeuroImage



Cross-correlation & convolution

• cross-correlation = 

measure of similarity of two 

waveforms as a function of 

the time-lag of one relative 

to the other

– slide two functions over

each other and measure

overlaps at all lags

• related to the pdf of the

difference beteween two

random variables

→ a general measure of

similarity between two time 

series Source: Wikipedia



Friston et al. 2014, NeuroImage

cross-spectra

= Fourier transform of 

cross-correlation

cross-correlation 

= generalized form of 

correlation (at zero 

lag, this is the 

conventional measure 

of functional 

connectivity)



“All models are wrong,

but some are useful.”

George E.P. Box  (1919-2013)



Hierarchical strategy for model validation

numerical analysis & 

simulation studies

clinical utility

experimentally controlled 

system perturbations

in silico

animals &

humans

patients

cognitive experimentshumans









For DCM:  >15 published

validation studies

(incl. 6 animal studies):

• infers site of seizure origin

(David et al. 2008)

• infers primary recipient of

vagal nerve stimulation (Reyt

et al. 2010)

• infers synaptic changes as

predicted by microdialysis

(Moran et al. 2008)

• infers fear conditioning

induced plasticity in 

amygdala (Moran et al. 

2009)

• tracks anaesthesia levels

(Moran et al. 2011)

• predicts sensory stimulation

(Brodersen et al. 2010)
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Generative models & model selection

• any DCM = a particular generative model of how the data (may) 

have been caused

• generative modelling:  comparing competing hypotheses about 

the mechanisms underlying observed data

a priori definition of hypothesis set (model space) is crucial

determine the most plausible hypothesis (model), given the

data

• model selection  model validation!

model validation requires external criteria (external to the 

measured data)



Model comparison and selection

Given competing hypotheses 

on structure & functional 

mechanisms of a system, which 

model is the best?

For which model m does p(y|m)

become maximal?

Which model represents the

best balance between model 

fit and model complexity?

Pitt & Miyung (2002) TICS
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Model evidence (marginal likelihood):

Various approximations, e.g.:

- negative free energy, AIC, BIC

Bayesian model selection (BMS)

accounts for both accuracy 

and complexity of the model

“If I randomly sampled from my 

prior and plugged the resulting 

value into the likelihood 

function, how close would the 

predicted data be – on average 

– to my observed data?”

all possible datasets

y

p
(y
|
m
)

Gharamani, 2004

McKay 1992, Neural Comput.

Penny et al. 2004a, NeuroImage



Model space M is defined by prior on models. 

Usual choice: flat prior over a small set of models.

Model space (hypothesis set) M

1 1

( | ) ( ) ( | )
( | )

( | ) ( ) ( | )

i i i
i M M

j j j

j j

p y m p m p y m
p m y

p y m p m p y m
 

 

 

1/  if 
( )

0 if  

M m M
p m

m M

 
 



In this case, the posterior probability of model i is:
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Logarithm is a 

monotonic function

Maximizing log model evidence

= Maximizing model evidence

)(),|(log                    
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Akaike Information Criterion:

Bayesian Information Criterion:

Log model evidence = balance between fit and complexity

Penny et al. 2004a, NeuroImage

Approximations to the model evidence in DCM

No. of 

parameters

No. of

data points



The (negative) free energy approximation F

   log ( | , ) , |

accuracy complexity
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Like AIC/BIC, F is an accuracy/complexity tradeoff:

F is a lower bound on the log model evidence, where 

the bound is determined by the KL divergence between 

an approximate posterior q and the true posterior::



The complexity term in F

• In contrast to AIC & BIC, the complexity term of the negative free energy F
accounts for parameter interdependencies.

• determinant = measure of “volume” (space spanned by the eigenvectors of 
the matrix)

• The complexity term of F is higher

– the more independent the prior parameters ( effective DFs)

– the more dependent the posterior parameters

– the more the posterior mean deviates from the prior mean
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Bayes factors
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But: the log evidence is just some number – not very intuitive!

A more intuitive interpretation of model comparisons is made 

possible by Bayes factors:

To compare two models, we could just compare their log 

evidences.

B12 p(m1|y) Evidence

1 to 3 50-75% weak

3 to 20 75-95% positive

20 to 150 95-99% strong

 150  99% Very strong

Kass & Raftery classification:

Kass & Raftery 1995, J. Am. Stat. Assoc.



Fixed effects BMS at group level

Group Bayes factor (GBF) for 1...K subjects:

Average Bayes factor (ABF):

Problems:

- blind with regard to group heterogeneity

- sensitive to outliers


k

k

ijij BFGBF )(

( )k
Kij ij

k

ABF BF 



)|(~ 111 mypy
)|(~ 111 mypy

)|(~ 222 mypy
)|(~ 111 mypy

)|(~ pmpm kk

);(~ rDirr



)|(~ pmpm kk )|(~ pmpm kk
),1;(~1 rmMultm

Random effects BMS for heterogeneous groups

Stephan et al. 2009a,  NeuroImage

Penny et al. 2010,  PLoS Comp. Biol.

Dirichlet parameters 
= “occurrences” of models in the population

Dirichlet distribution of model probabilities r

Multinomial distribution of model labels m

Measured data y

Model inversion 

by Variational

Bayes (VB) or 

MCMC



Random effects BMS for heterogeneous groups

Dirichlet parameters 
= “occurrences” of models in the population

Dirichlet distribution of model probabilities r

Multinomial distribution of model labels m

Measured data y

Model inversion 

by Variational

Bayes (VB) or 

MCMC

Stephan et al. 2009a,  NeuroImage

Penny et al. 2010,  PLoS Comp. Biol.


k = 1...K

n = 1...N

mnk

yn

rk
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How can we report the results of random effects BMS?

1. Dirichlet parameter estimates

2. expected posterior probability of 

obtaining the k-th model for any 

randomly selected subject

3. exceedance probability that a 

particular model k is more likely than 

any other model (of the K models 

tested), given the group data

4. protected exceedance probability: 

see below
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Overfitting at the level of models

•  #models   risk of overfitting

• solutions: 

– regularisation: definition of model

space = choosing priors p(m)

– family-level BMS

– Bayesian model averaging (BMA)
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posterior model probability:

BMA:



Model space partitioning or: Comparing model families

• partitioning model space into K subsets 

or families:

• pooling information over all models in 

these subsets allows one to compute 

the probability of a model family, given 

the data

• effectively removes uncertainty about 

any aspect of model structure, other 

than the attribute of interest (which 

defines the partition)

Stephan et al. 2009, NeuroImage

Penny et al. 2010, PLoS Comput. Biol.
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Family-level inference: fixed effects

• We wish to have a uniform prior at the 

family level:

• This is related to the model level via 

the sum of the priors on models:

• Hence the uniform prior at the family 

level is:

• The probability of each family is then 

obtained by summing the posterior 

probabilities of the models it includes: 

Penny et al. 2010, PLoS Comput. Biol.
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Family-level inference: random effects

• The frequency of a family in the 

population is given by: 

• In RFX-BMS, this follows a Dirichlet

distribution, with a uniform prior on the 

parameters  (see above). 

• A uniform prior over family 

probabilities can be obtained by 

setting:

Stephan et al. 2009, NeuroImage

Penny et al. 2010, PLoS Comput. Biol.
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Family-level inference: random effects – a special case

• When the families are of equal size, one can simply sum the posterior model 

probabilities within families by exploiting the agglomerative property of the 

Dirichlet distribution:

Stephan et al. 2009, NeuroImage
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Bayesian Model Averaging (BMA)

• abandons dependence of parameter 

inference on a single model and takes 

into account model uncertainty

• represents a particularly useful 

alternative

– when none of the models (or model 

subspaces) considered clearly 

outperforms all others

– when comparing groups for which 

the optimal model differs

 
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|
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p y m p m y





Penny et al. 2010, PLoS Comput. Biol.
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NB: p(m|y1..N) can be obtained 

by either FFX or RFX BMS

single-subject BMA:

group-level BMA:



Protected exceedance probability:

Using BMA to protect against chance findings

• EPs express our confidence that the posterior probabilities of models are

different – under the hypothesis H1 that models differ in probability: rk1/K

• does not account for possibility "null hypothesis" H0: rk=1/K

• Bayesian omnibus risk (BOR) of wrongly accepting H1 over H0:

• protected EP: Bayesian model averaging over H0 and H1:

Rigoux et al. 2014, NeuroImage



inference on model structure   or   inference on model parameters?

inference on 

individual models or   model space partition?

comparison of model 

families using 

FFX or RFX BMS

optimal model structure assumed 

to be identical across subjects?

FFX BMS RFX BMS

yes no

inference on 

parameters of an optimal model   or   parameters of all models?

BMA

definition of model space

FFX analysis of 

parameter estimates

(e.g. BPA)

RFX analysis of 

parameter estimates

(e.g. t-test, ANOVA)

optimal model structure assumed 

to be identical across subjects?

FFX BMS

yes no

RFX BMS

Stephan et al. 2010, NeuroImage



Two empirical example applications

Schmidt et al. 2013, 

JAMA Psychiatry

Breakspear et al. 2015, 

Brain



Go/No-Go task to emotional faces

(bipolar patients, at-risk individuals, controls)

Breakspear et al. 2015, Brain

• Hypoactivation of left 

IFG in the at-risk 

group during fearful 

distractor trials

• DCM used to explain 

interaction of motor 

inhibition and fear 

perception

• That is: what is the 

most likely circuit 

mechanism 

explaining the fear x 

inhibition interaction 

in IFG?



Model space

Breakspear et al. 2015, Brain

• models of 

serial (1-3), 

parallel (4) and 

hierarchical (5-8) 

processes



Family-level BMS

Breakspear et al. 2015, Brain

• family-level 

comparison:

nonlinear models

more likely than

bilinear ones in both

healthy controls and

bipolar patients

• at-risk group: bilinear 

models more likely

• significant group

difference in ACC 

modulation of

DLPFC→IFG 

interaction



Schmidt et al. 2013, JAMA Psychiatry

Prefrontal-parietal connectivity during 

working memory in schizophrenia

• 17 at-risk mental 

state (ARMS) 

individuals

• 21 first-episode 

patients

(13 non-treated)

• 20 controls



Schmidt et al. 2013, JAMA Psychiatry

BMS results for all groups



BMA results:  PFC  PPC connectivity

Schmidt et al. 2013, JAMA Psychiatry

17 ARMS, 21 first-episode (13 non-treated), 

20 controls



Overview

• DCM: basic concepts

• Evolution of DCM for fMRI

• Bayesian model selection (BMS) 

• Translational Neuromodeling



Application to brain activity and 

behaviour of individual patients

Computational assays:

Models of disease mechanisms




Detecting physiological subgroups 

(based on inferred mechanisms)


Translational Neuromodeling

Individual treatment prediction

 disease mechanism A

 disease mechanism B

 disease mechanism C

( , , )
dx

f x u
dt

  

Stephan et al. 2015, Neuron



model 

structure 

Model-based predictions for single patients

parameter estimates

DA

BMS

model-based decoding
(generative embedding)



Synaesthesia

• “projectors” experience 

color externally colocalized

with a presented grapheme

• “associators” report an 

internally evoked 

association

• across all subjects: no

evidence for either model

• but BMS results map

precisely onto projectors

(bottom-up mechanisms) 

and associators (top-down)

van Leeuwen et al. 2011, J. Neurosci.



Generative embedding (supervised): classification

Brodersen et al. 2011, PLoS Comput. Biol.

step 2 —

kernel construction

step 1 —

model inversion

measurements from 

an individual subject

subject-specific

inverted generative model

subject representation in the 

generative score space

A → B

A → C

B → B

B → C

A

C
B

step 3 —

support vector classification

separating hyperplane fitted to 

discriminate between groups

A

C
B

jointly discriminative

model parameters

step 4 —

interpretation



Discovering remote or “hidden” brain lesions



Discovering remote or “hidden” brain lesions



Connectional fingerprints : 

aphasic patients (N=11) vs. controls (N=26)

6-region DCM of auditory 

areas during passive speech 

listening

Brodersen et al. 2011, PLoS Comput. Biol.
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Can we predict presence/absence of the "hidden" lesion?

Classification accuracy

Brodersen et al. 2011, PLoS Comput. Biol.
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F

D

EC

B

A

Definition of ROIs

Are regions of interest defined

anatomically or functionally?

anatomically functionally

Functional contrasts

Are the functional contrasts defined

across all subjects or between groups?

1 ROI definition

and n model inversions

unbiased estimate

Repeat n times:

1 ROI definition and n model inversions

unbiased estimate

1 ROI definition and n model inversions

slightly optimistic estimate:

voxel selection for training set and test set 
based on test data

Repeat n times:

1 ROI definition and 1 model inversion

slightly optimistic estimate:
voxel selection for training set based on test 

data and test labels

Repeat n times:

1 ROI definition and n model inversions

unbiased estimate

1 ROI definition and n model inversions

highly optimistic estimate:

voxel selection for training set and test set 
based on test data and test labels

across 

subjects

between 

groups

Brodersen et al. 2011, PLoS Comput. Biol.

 





Generative embedding (unsupervised): detecting patient

subgroups

Brodersen et al. 2014, NeuroImage: Clinical



Generative embedding of variational

Gaussian Mixture Models

Brodersen et al. (2014) NeuroImage: Clinical

• 42 controls vs. 41 schizophrenic patients

• fMRI data from working memory task (Deserno et al. 2012, J. Neurosci)

Supervised:

SVM classification

Unsupervised:

GMM clustering

number of clusters number of clusters

71%



Detecting subgroups of patients in 

schizophrenia

• three distinct subgroups (total N=41)

• subgroups differ (p < 0.05) wrt. negative symptoms 

on the positive and negative symptom scale (PANSS)

Optimal 

cluster 

solution

Brodersen et al. (2014) NeuroImage: Clinical



Computational

assays

Generative  models of

behaviour & brain activity

Dissecting spectrum

disorders
Differential diagnosis

optimized experimental paradigms

(simple, robust, patient-friendly)

initial model validation

(basic science studies)

BMS

Generative 

embedding

(unsupervised)

BMS

Generative 

embedding

(supervised)

model validation

(longitudinal patient studies)

Stephan & Mathys 2014, Curr. Opin. Neurobiol.
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