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Overview of SPM for fMRI

Lars Kasper 2fMRI Preprocessing
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fMRI = Acquiring Movies

 …of three-
dimensional Blood 
Oxygen-Level 
Dependent 
(BOLD) contrast 
images

 typically echo-
planar images (EPI)

Lars Kasper 3fMRI Preprocessing

 Run/Session: 
Time Series of  
Images

y

x

z

…
scan 1 time scan N

Task Task
No Task
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fMRI = Acquiring Movies

Lars Kasper 4fMRI Preprocessing

 Run/Session: 
Time Series of  
Images

…
scan 1 time scan N

 The Localized Time-series is 
the Fundamental Information 
Unit of  fMRI

Signal: Fluctuation through 
Blood oxygen level dependent 
(BOLD) contrast

Noise: All other fluctuations
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fMRI Movie: An example

Lars Kasper 5fMRI Preprocessing
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fMRI Movie: Subtract the Mean

Lars Kasper 6fMRI Preprocessing

 interest in fluctuations 
only
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The Goal of Preprocessing

Lars Kasper 8fMRI Preprocessing

Before After

Preprocessing
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Sources of Noise in fMRI

Lars Kasper 9fMRI Preprocessing

 Acquisition Timing

 Subject Motion

 Anatomical Identity

 Inter-subject variability

 Thermal Noise

 Physiological Noise

Spatial Preproc

Temporal Preproc

Noise Modeling

Spatial Preproc

Spatial Preproc

Spatial Preproc

 Slice-Timing

 Realignment

 Co-registration

 Segmentation

 Smoothing

 PhysIO Toolbox
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fMRI Movie: Noise Sources

Lars Kasper 10fMRI Preprocessing

 interest in fluctuations 
only
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The SPM Graphical User Interface

Lars Kasper 11fMRI Preprocessing

 Preprocessing

 Realignment

 Slice-Timing Correction

 Co-registration

 Unified Segmentation & 
Normalisation

 Smoothing…

 Noise Modeling

 Physiological Confound Regressors

1.

2.
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Sources of Noise in fMRI

Lars Kasper 12fMRI Preprocessing

 Acquisition Timing

 Subject Motion

 Anatomical Identity

 Inter-subject variability

 Thermal Noise

 Physiological Noise

Temporal Preproc  Slice-Timing

 Realignment

 Co-registration

 Segmentation

 Smoothing

 PhysIO Toolbox
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Slice-timing correction (STC)

 Slices of 1 scan volume are not acquired simultaneously 
(60 ms per slice)

 Creates shifts of up to 1 volume repetition time (TR), 
i.e. several seconds

 Reduces sensitivity for time-locked effects (smaller correlation)

Lars Kasper 13fMRI Preprocessing

z

time

True 2D Acquisition Same-Timepoint Assumption



SNR & Preproc Temporal Realign NormaliseGeneral Coreg SmoothSpatial

Slice-timing correction (STC)
 Slice-timing correction: All voxel 

time series are aligned to 
acquisition time of 1 slice

 Missing data is sinc-interpolated 
(band-limited signal)

Lars Kasper 14fMRI Preprocessing

Sladky et al, NeuroImage 2011
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 Interpolation: Estimate missing data between existing data via 
certain regularity assumptions

 Signal at missing point is weighted average of neighbors

 Weighting function = interpolation “kernel”

 Here: assumption of limited frequency range of signal: 
sinc-interpolation

Interpolation

Lars Kasper 15fMRI Preprocessing
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Slice-timing correction (STC)
 Slice-timing correction: All voxel 

time series are aligned to 
acquisition time of 1 slice

 Missing data is sinc-interpolated 
(band-limited signal)

 Before or after realignment?

 before: dominant through-slice motion

 after: dominant within-slice motion

 At all?

Lars Kasper 16fMRI Preprocessing

Sladky et al, NeuroImage 2011
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STC Results: Simulation

Lars Kasper 17fMRI Preprocessing

Sladky et al, NeuroImage 2011

Slice-timing 
Correction

Block
Stimulation

Temporal-Derivative 
Modelling

TR1s 4s TR1s 4sTR1s 4s TR1s 4s

10s 
blocks

15s 
blocks

Event-Related
Stimulation

event/
4±2 s

event/
6±3s

true beta = 100 %

uncorrected

corrected
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Slice-timing correction (STC)
 Slice-timing correction: All voxel 

time series are aligned to 
acquisition time of 1 slice

 Missing data is sinc-interpolated 
(band-limited signal)

 Before or after realignment?

 before: dominant through-slice motion

 after: dominant within-slice motion

 At all?

 block design: for long TR (3s+) & short 
blocks (10s) improves estimates > 5 %

 event-related: for normal TRs (2s+)  
improves estimates > 5 %

Lars Kasper 18fMRI Preprocessing

Sladky et al, NeuroImage 2011
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STC Results: Experiment

Lars Kasper 19fMRI Preprocessing

Sladky et al, NeuroImage 2011
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Sources of Noise in fMRI

Lars Kasper 20fMRI Preprocessing

 Acquisition Timing

 Subject Motion

 Anatomical Identity

 Inter-subject variability

 Thermal Noise

 Physiological Noise

Spatial Preproc

Spatial Preproc

Spatial Preproc

Spatial Preproc

 Slice-Timing

 Realignment

 Co-registration

 Segmentation

 Smoothing

 PhysIO Toolbox
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Finite Resolution and Voxel Identity

Lars Kasper 21fMRI Preprocessing

 voxel = volume 
element (3D pixel)
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Preproc = Correct Voxel Mismatch

Lars Kasper 22fMRI Preprocessing

Voxel Mismatch Between

Functional 
Scans/Runs

Functional/Structural 
Images Subjects

Realignment Inter-Modal 
Coregistration

Normalisation/
Segmentation

Smoothing
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REALIGN COREG SEGMENT NORM 
WRITE SMOOTH

GLM

Spatial Preprocessing

Lars Kasper 23fMRI Preprocessing
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fMRI time-series

Motion corrected Mean functional

REALIGN COREG

Structural MRI

SEGMENT NORM 
WRITE SMOOTH

TPMs
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Spatial Preprocessing
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General Remarks: Image Registration

 Realignment, Co-Registration and Normalisation (via Unified 
Segmentation) are all image registration methods

 Goal: Manipulate one set of images to arrive in same coordinate 
system as a reference image

 Key ingredients for image registration

A. Voxel-to-world mapping

B. Transformation

C. Similarity Measure

D. Optimisation

E. Interpolation

Lars Kasper 25fMRI Preprocessing
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A. Voxel-to-World Mapping

 3D images are made up of voxels.

 Voxel intensities are stored on disk as lists of numbers.

 Meta-information about the data:

 image dimensions 

 conversion from list to 3D array

 “voxel-to-world mapping”

 Spatial transformation that maps 

 from: data coordinates (voxel column i, row j, slice k) 

 to: a real-world position (x,y,z mm) in a coordinate system e.g.:

 Scanner coordinates

 T&T/MNI coordinates

Lars Kasper 26fMRI Preprocessing
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A. Voxel-to-World: Standard Spaces

Lars Kasper 27fMRI Preprocessing

Talairach Atlas MNI/ICBM AVG152 Template

 Definition of coordinate system:

 Origin (0,0,0): anterior commissure

 Right = +X; Anterior = +Y; Superior = +Z

 Actual brain dimensions 

 European brains, 
a bit dilated (bug)

y

z

x
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B. Transformations

 Transformations describe the 
mapping of all image voxels from 
one coordinate system into 
another

 Types of transformations

 rigid body = translation + rotation

 affine = rigid body + scaling + shear

 non-linear = any mapping

 (x,y,z) to new values (x’,y’, z’) 

 described by deformation fields

Lars Kasper 28fMRI Preprocessing

Translation Rotation

Scaling Shear

non-linear

deformation
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Spatial Preproc: SPM vocabulary

Lars Kasper 29fMRI Preprocessing

 SPM uses different names for different modes of image 
registration

 depending on input images and allowed transformations

 Intra-modal image 
registration
 e.g. functional images

 rigid body transformations
 translation/rotation

Realignment Co-Registration

 Inter-modal registration 
 e.g. T1/T2 contrast
 functional to structural 

image

 affine transformations 
 rigid body
 stretching/shearing

Normalisation

Multi-modal registration 
 e.g. T1 and/or T2
 structural image(s) to 

template

 non-linear transformations
 voxel-wise mapping 

(deformation fields)



SNR & Preproc Temporal Realign NormaliseGeneral Coreg SmoothSpatial

C. Similarity & D. Optimisation

 Similarity measure summarizes resemblance of (transformed) image 
and reference into 1 number

 mean-squared difference

 correlation-coefficient

 mutual information

 Automatic image registration uses an optimisation algorithm to 
maximise/minimise an “objective function”

 Similarity measure is part of objective function

 Algorithm searches for transformation that maximises similarity of 
transformed image to reference

 Also includes constraints on allowed transformations (priors)

Lars Kasper 30fMRI Preprocessing

intra-modality (same contrast)

inter-modality (different contrasts possible)



SNR & Preproc Temporal Realign NormaliseGeneral Coreg SmoothSpatial

REALIGN COREG SEGMENT NORM 
WRITE

Preprocessing Step Categorisation

Lars Kasper 31fMRI Preprocessing

B. Allowed Transformations

Rigid-Body Affine Non-linear

C. Similarity Measure

Mean-squared 
Difference

Mutual 
Information

Tissue Class 
Probability

D. Optimisation

Exact Linearized 
Solution

Conjugate Direction 
Line Search

Iterated Conditional Modes 
(EM/Levenberg-Marquardt)
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1x1x3 mm
voxel size

2x2x2 mm
voxel size 

E. Reslicing/Interpolation

 Finally, images have to be saved as voxel intensity list on disk again

 After applying transformation parameters, data is re-sampled onto 
same grid of voxels as reference image

Lars Kasper 32fMRI Preprocessing

Reoriented Resliced
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E. B-spline Interpolation

Lars Kasper 33fMRI Preprocessing
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fMRI time-series

Motion corrected Mean functional

REALIGN COREG

Structural MRI

SEGMENT NORM 
WRITE SMOOTH
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fMRI time-series

Motion corrected Mean functional

REALIGN

Realignment

 Aligns all volumes of all runs 
spatially

 Rigid-body transformation: three 
translations, three rotations

 Objective function: mean squared 
error of corresponding voxel 
intensities

 Voxel correspondence via 
Interpolation

Lars Kasper 35fMRI Preprocessing



SNR & Preproc Temporal Realign NormaliseGeneral Coreg SmoothSpatial

Realignment Output: Parameters

Lars Kasper 36fMRI Preprocessing
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fMRI Run after Realignment

Lars Kasper 37fMRI Preprocessing
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Motion corrected Mean functional

COREG

Structural MRI
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(Headers changed)

Co-Registration

 Aligns structural image to 
mean functional image

 Affine transformation: 
translations, rotations, 
scaling, shearing

 Objective function: mutual 
information (diff. contrast!)

 Optimisation via Powell’s 
method: conjugate directions, 
line seach along parameters

 Typically only trafo matrix 
(“header”) changed

Lars Kasper 38fMRI Preprocessing
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intensity bins 
structural

Marginal Histogram

intensity bins 
functional

Joint Histogram

Anatomical MRI

Co-Registration: Mutual Information

 Voxels of same tissue identity have 
same intensity in an MR-contrast

 In a 2nd MR contrast, intensity might 
be different, but still the same among 
all voxels of the same tissue type

 Therefore, aligned voxels in 2 images 
induce crisp peaks in joint histogram

Lars Kasper 39fMRI Preprocessing

Mean functional

Joint Histogram: 
h(if,is)

Count of  voxels who 
have intensity if in 
functional and is in 

structural image
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Co-Registration: Output

 Aligned voxels in 2 images 
induce crisp peaks in joint 
histogram

 Optimization criterion: 

 Joint histogam: Quantify how well 
voxel intensity in one image predicts 
the intensity in the other

 how much shared (=mutual) 
information

 Joint histogram: proxy to joint 
probability distribution 

Lars Kasper 40fMRI Preprocessing
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Sources of Noise in fMRI

Lars Kasper 41fMRI Preprocessing

 Acquisition Timing

 Subject Motion

 Anatomical Identity

 Inter-subject variability

 Thermal Noise

 Physiological Noise

Spatial Preproc

 Slice-Timing

 Realignment

 Co-registration

 Segmentation

 Smoothing

 PhysIO Toolbox
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Spatial Normalisation: Reasons

 Inter-Subject Variability  Inter-Subject Averaging

 Increase sensitivity with more 
subjects (fixed-effects)

 Generalise findings to population 
as a whole (mixed-effects)

 Ensure Comparability between 
studies (alignment to standard 
space)

 Talairach and Tournoux (T&T) 
convention using the Montreal 
Neurological Institute (MNI) space

 Templates from 152/305 subjects

Lars Kasper 42fMRI Preprocessing
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 Warps structural 
image to standard 
space (MNI)

 Non-linear 
transformation: 
discrete cosine 
transforms 
(~1000)

 Objective 
function: Bayes 
probability of 
voxel intensity

Motion corrected

Structural MRI

SEGMENT
NORM 
WRITE

TPMs
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Segmented 
Images

Deformation 
Fields

(Headers changed) MNI Space

Unified Segmentation

Lars Kasper 43fMRI Preprocessing

Motion corrected
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Theory: Segmentation/Normalisation

 Why is normalisation difficult?

 No simple similarity measure, a lot of possible transformations…

 Different Imaging Sequences (Contrasts, geometry distortion)

 Noise, artefacts, partial volume effects

 Intensity inhomogeneity (bias field)

 Normalisation of segmented tissues is more robust and precise 
than of original image

 Tissue segmentation benefits from spatially aligned tissue 
probability maps (of prior segmentation data)

 Motivates a unified model of segmentation/normalisation

Lars Kasper 44fMRI Preprocessing
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Summary of the unified model

 SPM12 implements a generative model of voxel intensity from 
tissue class probabilities

 Principled Bayesian probabilistic formulation

 Gaussian mixture model: segmentation by tissue-class dependent Gaussian 
intensity distributions

 voxel-wise prior mixture proportions given by tissue probability maps

 Deformations of prior tissue probability maps also modelled

 Non-linear deformations are constrained by regularisation factors

 inverse of estimated transformation for TPMs normalises the original image

 Bias field correction is included within the model

Lars Kasper 45fMRI Preprocessing
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Theory: Unified Model Segmentation

 Bayesian generative model1 of voxel intensities 𝑦𝑦𝑖𝑖 from tissue class 
probabilities, deformation fields and bias fields

 Objective function: log joint probability of all voxel intensities 𝒚𝒚
ℰ = log𝑃𝑃(𝒚𝒚|𝝁𝝁,𝝈𝝈,𝜸𝜸,𝒃𝒃𝟏𝟏…𝑲𝑲,𝜶𝜶,𝜷𝜷)

Lars Kasper 46fMRI Preprocessing

[1] Ashburner & Friston
(2005), Neuroimage

Bias Field

Raw Bias Field Corrected

coil 
inhomo-
geneities

𝝆𝝆(𝜷𝜷)

Deformation Fields 
~1000

discrete 
cosine 

transforms

𝒃𝒃𝑘𝑘(𝜶𝜶)

Prior: Tissue probability maps 

TPMs
in MNI 
space

𝒃𝒃𝟏𝟏 𝒃𝒃𝟐𝟐 𝒃𝒃𝟑𝟑

pixel 

count 

Gaussian Mixture Model
probability of  

intensity in 
given voxel for

tissue class
image Intensity 𝑦𝑦

CSF WM

�
𝑘𝑘=1

𝐾𝐾

𝛾𝛾𝑘𝑘⋅ ⋅ 𝑃𝑃 𝑦𝑦𝑖𝑖 𝑐𝑐𝑖𝑖 = 𝑘𝑘

𝝁𝝁𝑘𝑘

𝝈𝝈𝑘𝑘
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 segmentation works irrespective of image contrast

Estimated 
Tissue 

probability 
maps (TPMs)

Spatially 
normalised 
BrainWeb
phantoms

Cocosco, Kollokian, Kwan & 

Evans. “BrainWeb: Online Interface 

to a 3D MRI Simulated Brain 

Database”. NeuroImage 

5(4):S425 (1997)

Segmentation results

Lars Kasper 47fMRI Preprocessing

T1 T2 PD
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Benefits of Unified Segmentation

Lars Kasper 48fMRI Preprocessing

Affine registration Non-linear registration
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Spatial normalisation – Limitations

 Seek to match functionally homologous regions, but...

 Challenging high-dimensional optimisation

 many local optima

 Different cortices can have different folding patterns

 No exact match between structure and function

 Interesting recent paper Amiez et al. (2013), PMID:23365257

 Compromise

 Correct relatively large-scale variability 

 Smooth over finer-scale residual differences

Lars Kasper 49fMRI Preprocessing
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SMOOTH

GLM

Kernel

MNI Space

Smoothing – Why blurring the data?

 Intra-subject signal quality

 Suppresses thermal noise (averaging)

 Increases sensitivity to effects of similar scale to kernel 
(matched filter theorem)

 Single-subject statistical analysis

 Makes data more Gaussian (central limit theorem)

 Reduces the number of multiple comparisons

 Second-level statistical analysis

 Improves spatial overlap by blurring 
anatomical differences

Lars Kasper 50fMRI Preprocessing
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Smoothing – How is it implemented?

 Convolution with a 3D Gaussian kernel, of specified full-width at 
half-maximum (FWHM) in mm

 mathematically equivalent to slice-timing operation or reslicing, but different 
kernels there (Sinc, b-spline)

 Gaussian kernel is separable, and we can smooth 2D data with 2 
separate 1D convolutions

Lars Kasper 51fMRI Preprocessing
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fMRI Run after Smoothing

Lars Kasper 52fMRI Preprocessing
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fMRI time-series

Motion corrected Mean functional

REALIGN COREG

Structural MRI
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Sources of Noise in fMRI

Lars Kasper 54fMRI Preprocessing

 Acquisition Timing

 Subject Motion

 Anatomical Identity

 Inter-subject variability

 Thermal Noise

 Physiological Noise

Spatial Preproc

Temporal Preproc

Noise Modeling

Spatial Preproc

Spatial Preproc

Spatial Preproc

 Slice-Timing

 Realignment

 Co-registration

 Segmentation

 Smoothing

 PhysIO Toolbox
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Teaser: PhysIO Noise Modelling

 We can model time series of non-BOLD physiological fluctuations 
from prior knowledge (locations, dominant frequencies) or 
peripheral recordings (ECG, breathing belt)

 “Filter” these out via incorporation into general linear model

 See next talk!

 Result:

 Cardiac (red), respiratory (blue) 
physiological time courses, and their 
interaction (green) contribute severely to 
remaining non-Gaussian voxel fluctuations

 For more details: See you again on Nov. 8…

Lars Kasper 55fMRI Preprocessing
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Thank you…

 …and:

 TNU Zurich, 

in particular: Klaas

 MR-technology Group IBT, 

in particular: Klaas

 Everyone I borrowed slides from 

Lars Kasper 56fMRI Preprocessing
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Further Reading

 Good Textbook: Karl Friston, J.A., William Penny (Eds.), Statistical 
Parametric Mapping, Academic Press, London, in particular

 Ashburner, J., Friston, K., 2007a. Chapter 4 - Rigid Body Registration, pp. 49–
62.

 Ashburner, J., Friston, K., 2007b. Chapter 5 - Non-linear Registration, pp. 63–
80.

 Ashburner, J., Friston, K., 2007c. Chapter 6 - Segmentation, pp. 81–91.

 For mathematical/engineering connoisseurs: (see also extra slides 
here):

 Ashburner, J., Friston, K.J., 2005. Unified segmentation. NeuroImage 26, 
839–851. doi:10.1016/j.neuroimage.2005.02.018
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Mixture of Gaussians

 Classification is based on a Mixture of Gaussians model, which 
represents the intensity probability density by a number of 
Gaussian distributions.

 Multiple Gaussians per tissue class allow non-Gaussian intensity 
distributions to be modelled 

 e.g. partial volume effects
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Tissue Probability Maps

 Tissue probability maps (TPMs) are used as the prior, instead of the 
proportion of voxels in each class
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ICBM Tissue Probabilistic Atlases. These tissue probability maps were 
kindly provided by the International Consortium for Brain Mapping
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Deforming the Tissue Probability Maps

 Tissue probability maps 
images are warped to 
match the subject

 The inverse transform 
warps to the TPMs
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Template
image

Affine 
registration

(error = 
472.1)

Non-linear
registration

without
regularisation

(error  = 
287.3)

Non-linear
registration

using
regularisation

(error = 302.7)

Why regularisation? – Overfitting

 Regularisation
constrains 
deformations to 
realistic range 
(implemented as 
priors)
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Modelling inhomogeneity

 A multiplicative bias field is modelled as a linear 
combination of basis functions.
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Unified segmentation: The maths

 Mixture of Gaussians: probability of voxel i having intensity yi, 
given it is from a specific cluster k (e.g. tissue class gray matter)

 Prior probability of voxel’s tissue class (e.g. voxel proportion) 𝛾𝛾𝑘𝑘

 Joint Probability: 

 Marginal probability of voxel intensity:

 Joint probability all voxels’ intensity:
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US Maths: Bias Field

 Implemented by adjusting the Means and Variances of the 
Gaussians on a pixel-by-pixel basis by a function smoothly varying 
in space, 𝜌𝜌𝑖𝑖 𝜷𝜷 :

 𝜇𝜇𝑘𝑘 ↦
𝜇𝜇𝑘𝑘

𝜌𝜌𝑖𝑖 𝜷𝜷
, 𝜎𝜎𝑘𝑘2 ↦

𝜎𝜎𝑘𝑘
𝜌𝜌𝑖𝑖 𝜷𝜷

2

 𝜌𝜌𝑖𝑖 is the exponential of a linear combination of low frequency basis functions

 Parameters to be estimated: vector 𝜷𝜷

 intensity probability
conditioned on cluster 
identity:
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US Maths: Spatial Priors by TPMs

 Replacing stationary mixing proportions 𝛾𝛾𝑘𝑘 by voxel-dependent 
proportions which are informed by the prior tissue probabilities 𝑏𝑏𝑖𝑖𝑖𝑖
for this voxel 𝑖𝑖 and different tissue types 𝑘𝑘

 𝛾𝛾𝑘𝑘 ↦ 𝛾𝛾𝑘𝑘 𝑖𝑖 = 𝛾𝛾𝑘𝑘 ⋅
𝑏𝑏𝑖𝑖𝑖𝑖

∑𝑗𝑗=1
𝐾𝐾 𝛾𝛾𝑗𝑗𝑏𝑏𝑖𝑖𝑖𝑖

 Note: 𝐾𝐾 can be larger than the number of tissue classes, since each 
class can be reflected by a mixture of Gaussians, e.g. 3 Gaussians 
for gray matter (to allow for non-Gaussian distributions per tissue 
class)

 E.g. partial volume effects
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US Maths: Deformation Fields

 Deformation (and thereby normalisation) is implemented by 
allowing the prior TPMs (which are in MNI-space) to be spatially 
transformed by a parameterised mapping

 b𝑖𝑖𝑖𝑖 ↦ b𝑖𝑖𝑖𝑖 𝛼𝛼 ⇒ 𝑃𝑃 𝑐𝑐𝑖𝑖 = 𝑘𝑘 𝛾𝛾,𝛼𝛼 = 𝛾𝛾𝑘𝑘𝑏𝑏𝑖𝑖𝑖𝑖(𝛼𝛼)
∑𝑗𝑗=0
𝐾𝐾 𝛾𝛾𝑗𝑗𝑏𝑏𝑖𝑖𝑖𝑖(𝛼𝛼)

 Parameter vector to be estimated: 𝜶𝜶

 about 1000 discrete cosine transforms
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US Maths: Regularisation

 Linear Regularisation of Bias Field and Deformation Field Estimates

 By including prior distributions for 𝛼𝛼 and 𝛽𝛽 as zero-mean multivariate Gaussians

 Covariance: 𝛼𝛼𝑇𝑇𝐶𝐶𝛼𝛼𝛼𝛼 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒;𝜌𝜌 𝛽𝛽 = exp(𝐾𝐾70𝑚𝑚𝑚𝑚 ∗ 𝑁𝑁(0,𝛽𝛽))

 Thus, the final objective function to be maximised is the log-joint 
probability of intensity, bias and deformation field parameters:

 Equivalently, the negative free energy is minimised:
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