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Overview of SPM

Statistical parametric map (SPM)
Image time-series Kernel Design matrix

0 WL A

>

Realignment|—| Smoothing |—General linear model

l ‘ . l Statistical | Gaussian

Normalisation inference field theory

Template

Parameter estimates




Research Question:

Where 1n the brain do we represent listening to sounds?



Image a very simple experiment...
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SINGLE VOXEL TIME SERIES...




Image a very simple experiment...

Question: Is there a change in the BOLD response between
listening and rest?
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Image a very simple experiment...

Question: Is there a change in the BOLD response between
listening and rest?
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You need a model of your data...

linear model
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Explain your data...

as a combination of experimental manipulation, confounds and errors
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BOLD signal X1 X2 \e

regressor
Single voxel regression lijlel: y = xl ﬁl + X2 ﬁz + €




Explain your data...

as a combination of experimental manipulation,confounds and errors
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BOLD signal X1 X2

Single voxel regression model:

Yy=Xf+ete




The black and white version in SPM
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n: number of scans — X _I_ e
p: number of regressors



Model assumptions

. . The design matrix embodies all available knowledge about
DeSIgnmatHX experimentally controlled factors and potential confounds.

You want to estimate your parameters such that you minimize:
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This can be done using an Ordinary least squares estimation
(OLS) assuming an 1.1.d. error



error

GLM assumes identical and
independently distributed errors
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How to fit the model and estimate the parameters?
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How to fit the model and estimate the parameters?

OLS (Ordinary Least Squares)

= X [)) Data predicted by our model

A
e = y — y Error between predicted and
actual data
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e=V-— X [)’ Goal is to determine the betas
y such that we minimize the

quadratic ermr

min(e’ e) =min((y - XB)" (y - Xﬁ))




OLS (Ordinary Least Squares)

The goal is to minimize

T ONT 0 -
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OLS (Ordinary Least Squares)

The goal is to minimize

ee=(Q-Xp) (y-Xp) the quadaticeror
oo — (yT B /§TXT)(y _ XB)



OLS (Ordinary Least Squares)

T A T A The goal is to minimize
—_— _ _ the quadratic error
€ € (y Xﬁ) (y X[)’) between data and model
This is a scalar and the

eTe = (yT — [;)TXT )(y — X[;)) ’;I::\arlwzfge of a scalar is a
ele=y"y-y'Xp-B' X" y+ B X"XPB



OLS (Ordinary Least Squares)

T A T A The goal is to minimize
—_— _ _ the quadratic error
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OLS (Ordinary Least Squares)

T A T A The goal is to minimize
—_— _ _ the quadratic error
€ € (y Xﬁ) (y X[)’) between data and model
This is a scalar and the

eTe — (yT . /:'))TXT )(y _ X[)’) ’;?ar;zfge of a scalaris a
ee=y y-y Xp-p X y+p X XP
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You find the extremum of
aeTe a function by taking its

= _2XTy + ZXTX[)) Soe;i;/fotive and setting it
p

0==2X"y+2X"XP




OLS (Ordinary Least Squares)

T A T A The goal is to minimize
—_— _ _ the quadratic error
€ € (y Xﬁ) (y X[)’) between data and model
This is a scalar and the

ele=(" =B X )(y-XPB) oo s
e'e=y"y—y'Xp-B'X"y+B X" XP

ele=y"y- 2[;’TXTy + /3’TXTX/3’

del e function by kg e

= _2XTy + ZXTX[)) foe;i;/fotive and setting it
p

0=-2X"y+2X"XP

_ SOLUTION: OLS of the Parameters




A geometric perspective on the GLM

OLS estimates

p=X"X)"X"y

Design space
defined by X



Correlated and orthogonal regressors

Correlated regressors = When x, is orthogonalized with
explained variance is shared regard to x,, only the parameter
between regressors estimate for x; changes, not that for

X2!



We are nearly there...

linear model

effects

/ estimate \
\l error estimate |/

statistic
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...but we are dealing with fMRI data



What are the problems?
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Problem 1: Shape of BOLD response
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The response of a linear time-invariant (LTT) system is the convolution of the input with the
system's response to an impulse (delta function).
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Solution: Convolution model of the BOLD response
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expected BOLD response
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= input function x impulse
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Problem 2: Low frequency noise

MRI Scanner Cutaway 113
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blue = data
black = mean + low-frequency drift
green =  predicted response, taking into account low-frequency
drift
red = predicted response, NOT taking into account low-

frequency drift



Problem 2: Low frequency noise

Linear model
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blue = data
black = mean + low-frequency drift
= predicted response, taking into account low-frequency
drift
red =

predicted response, NOT taking into account low-
frequency drift



Solution 2: High pass filtering

Frequency domain
128 second High-pass filter
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Problem 3: Serial correlations

Cov(e) =

1.1.d
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n: number of scans




Problem 3: Serial correlations

e Transform the signal into a space where the error is iid

This is i.i.d

——
Wy =WXpB+We

® Pre-whitening:

1. Use an enhanced noise model with multiple error covariance
components, i.e. e ~ N(0,0%V) instead of e ~ N(O, &?J).

2. Use estimated serial correlation to specify filter matrix W for whitening the
data.



Problem 3: How to find W = Model the noise

e, =ae,  + & with & ~ N(0,5°)

15t order autoregressive process: AR(1)
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Model the noise: Multiple covariance components

) V oc Cov(e)
e~NO,0V) -y
enhanced noise model error covariance components QO

and hyperparameters
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Estimation of hyperparameters with EM (expectation maximisation) or
ReML (restricted maximum likelihood).



How do we define W ?

 Enhanced noise model

e Remember linear transform
for Gaussians

e Choose W such that error
covariance becomes spherical

 Conclusion: /'is a simple function of

e~ N(0,0°V)

X~ N(lLl,Uz),y = ax
= y~ N(au,a’c”)

We ~ N(0,6°W?V)
=>WV =1

>W=r""

Wy =WXp+We
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We are there...

» the GLM models the effect of your experimental manipulation on the acquired data
* GLM includes all known experimental effects and confounds

» estimates effects an errors on a voxel-by-voxel basis

Because we are dealing with fMRI data there are a number of problems we need to take care
of:

* Convolution with a canonical HRF
* High-pass filtering to account for low-frequency drifts

 Estimation of multiple variance components (e.g. to account for serial correlations)



We are there...

c=10000000000
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So far we have looked at a single voxel...

e Mass-univariate

single voxel .

approach: ) ) Massive problem with
GLM applied to > time series multiple comparisons!
100,000 voxels

» Solution: Gaussian random

* Threshold of p<0.05 field theory

more than 5000
voxels significant by
chance!



Outlook: further challenges

e correction for multiple comparisons

» variability in the HRF across voxels

e limitations of frequentist statistics

* GLM 1gnores interactions among voxels



Thank you for listening!

* Friston, Ashburner, Kiebel, Nichols, Penny (2007)
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