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Why multivariate?

Univariate approaches are excellent for localizing 
activations in individual voxels.
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Why multivariate?

Multivariate approaches can be used to examine 
responses that are jointly encoded in multiple voxels.
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A bit of history – Multidymensional scaling
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Edelman et al, Psychobiology, 1998

Psychophysical rating fMRI

Two-dimensional projection of similarity measure for both
psychophysical rating and fMRI response.



A bit of history – Classification Studies
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Haxby et al, Science, 2001



A bit of history – Classification Studies
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Kamitani and Tong, Nat Neurosci, 2005



Representational similarity analysis
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Idea: Compare the similarity of representations (correlation between
activation patterns) between different stimuli. 
Allows for a comparison between monkey
(neural firing pattern) and human (fMRI activation patterns).

Kriegeskorte et al, Neuron, 2008
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Analysis steps

Feature 
Extraction

Modelling

Classification

Clustering

Regression

Prediction

Model Selection

Cross validation

Performance

Inference



Feature space

F1 F2 . . . FP

S1 1 0.5

S2 0 5.7

. 1 4

. 1 5.3
SN 1 6.6

• Discrete
• Continuous

Data 
Points

Features



Feature selection for fMRI
multivariate analysis
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Different features answer different questions.
Reducing the dimensionality might reduce noise,
but could also reduce relevant information.

Model parameters
Mean values
Raw data

Model 
Parameters,
e.g. DCM

Correlations
between
regions



Model selection - Generalizability
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Model 
Fit

Model 
Complexity

Bishop (2006), Pitt & Miyung (2002), TICS



Encoding and decoding models
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context (cause or consequence)
𝑋𝑋𝑡𝑡 ∈ ℝ𝑑𝑑

BOLD signal
𝑌𝑌𝑡𝑡 ∈ ℝ𝑣𝑣

condition
stimulus

response
prediction error

encoding model

decoding model

𝑔𝑔:𝑋𝑋𝑡𝑡 → 𝑌𝑌𝑡𝑡

ℎ:𝑌𝑌𝑡𝑡 → 𝑋𝑋𝑡𝑡



Modelling goals

• Prediction 

hY X

Predictive Density



Modelling goals

• Model Selection

Sparse Coding Distributed Coding

Model Evidence
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Learning from data

Reinforcement 
Learning

Semi-supervised 
Learning

Supervised
Learning

Unsupervised 
Learning

Labels for training
data are known!

Labels for training
data are NOT known!



Supervised learning

Function - f

Independent variables
X

dependent variable
Y CategoricalContinuous



Classification

Support Vector Machines

• Kernel Function – K 𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋 = 𝝓𝝓 𝒙𝒙𝒊𝒊 .𝝓𝝓 𝒙𝒙𝒋𝒋

𝝓𝝓

Function - fX Y

Kernel Methods

Kernel methods for pattern analysis, Taylor , Cristianini, 2004



Other popular classifiers
• Gaussian Processes

• Deep Belief networks

G.E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief 
nets”, Neural Computation, vol 18, 2006

http://deeplearning.net/tutorial/DBN.html

C. E. Rasmussen & C. K. I. 
Williams, Gaussian Processes 
for Machine Learning, the MIT 
Press, 2006,



Generative and Discriminative classifiers
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• Generative classifiers
• Learn the parameters for the functions p(Y) and 

p(X|Y), e.g. Naïve Bayes Classifier
• Discriminative classifiers

• Learn the parameters for p(Y|X), e.g. logistic 
regression, SVM



Cross-validation

The generalization ability of a classifier can be estimated using a resampling 
procedure known as cross-validation. One example is 2-fold cross-validation:

examples
1
2
3

99
100

?
training example
test examples

folds
?
?

1

...

?
?
?

2

...
performance evaluation
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• Model Selection
• Performance evaluation

• Balanced Accuracy
• F1 Score



Cross-validation

Another commonly used variant is leave-one-out cross-validation.

examples
1
2
3

99
100

?
training example
test example

?...
98

?

...
99

?

...

100

...

folds
?
1

...

?

2

...
performance evaluation

In fMRI often leave one-run-out
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Performance – Single Subject
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𝑝𝑝 = 𝑃𝑃 𝑋𝑋 ≥ 𝑘𝑘 𝐻𝐻0 = 1 − 𝐵𝐵 𝑘𝑘|𝑛𝑛,𝜋𝜋0

Brodersen et al. 2013,  NeuroImage

Binomial Test

k=30

!!! Cross-validated data are not necessarily
binomially distributed Permutation tests are better!!!



Performance – Mulitple subjects
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Brodersen et al. 2013,  NeuroImage

Fixed effects

Random effects

http://www.translationalneuromodeling.org/tapas/



Confounds – GLM vs. MVPA
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Todd et al. 2013, NeuroImage



Second level t-tests for accuracies?
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True β-Values are normally
distributed. 

True accuracies are not 
normal and truncated at chance. 

A possible solution is given
by Allefeld et al. 

Allefeld et al. Neuroimage, 2016



Statistical testing with classification

• Within subjects:
– Permutation statistics

– Parametric tests ar not valid (assumptions not met), e.g. Biomial-
or t-test (c.f. Schreiber and Krekelberg, 2013). 

• Across subjects:
– Assumptions for t-tests are not met

– Full Bayesian model (Bordersen et al. 2013, but assumptions are
not met for CV)

– Use prevalence statistic proposed in Allefeld et al., 2016
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Research questions for classification

Temporal evolution of discriminability Model-based classification
accuracy

50 %

100 %

within-trial time

Accuracy rises above 
chance

Participant indicates 
decision

Overall classification accuracy Spatial deployment of discriminative regions

80%

55%

accuracy

50 %

100 %

classification task

Truth
or

lie?

Left or 
right 

button?

Healthy or 
ill?

Pereira et al. (2009) NeuroImage, Brodersen et al. (2009) The New Collection

{ group 1, 
group 2 }
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Decoding «hidden» intentions –
searchlight approach
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Haynes et al., Current Biology, 2007



Decoding of free decisions
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Soon et al., Nat Neurosci, 2008

Decoding of fingerpresses (red line). Participants freely choose timing
and hand.

Earliest information about left-right
long before execution – free will?



Decoding task preparation –
connectitivy based decoding
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Heinzle et al., J Neurosci, 2012

SV-Classifier on connectivity graph (correlation)

Discriminative maps



Unsupervised learning
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Building a representation of 
data

Dimensionality 
Reduction Time seriesClustering

K-means Mixture models



K-means clustering
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• Cost function

• Algorithm
1. Initialize
2. Estimate assignments
3. Estimate cluster centroids
4. Repeat 2,3 until 

convergence

Bishop PRML (2006)



Clustering – Mixture of Gaussians
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Bishop PRML (2006)



Interpretation
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• Cluster parameters

• Internal Criterion – Model Evidence
• External Criterion - Purity

Inferred 
Labels

External 
Labels

Subjects

Cluster 1 Cluster 2
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Encoding vs. Decoding models
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Encoding vs. Decoding models
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Coding Hypotheses

fMRI Analysis and Classifcation 41

Spatial vectors Smooth vectors

Sparse vectors

Singular vectors 
of data Support vectors

Distributed vectors

𝑈𝑈 = 𝑅𝑅𝑌𝑌𝑇𝑇𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇 = 𝑅𝑅𝑌𝑌𝑇𝑇



Coding Hypotheses
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Friston et al. 2008 NeuroImage



Solved with variational Bayes
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Friston et al. 2008 NeuroImage



Example – Decoding of motion.
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Experimental factors:
1. Photic
2. Motion
3. Attention

Attention to motion dataset - Büchel & 
Friston 1999 Cerebral Cortex

Friston et al. 2008 NeuroImage
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Friston et al. 2008 NeuroImage



Results
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Friston et al. 2008 NeuroImage



Multivariate Bayes in SPM
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Laminar activity related to novelty and
episodic memory
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Maas et al. 2014 Nature Communications
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Classifying Groups of Subjects
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Subject 1

Subject 2

Subject N

Voxel activity

Subject 1

Subject 2

Subject N

Connectivity

Dynamic causal 
model (DCM)

Classification
Clustering

Group 1 Group 2

...
...

• High dimensionality
• Unusual cluster distributions
• Lack of  interpretation



Generative Embedding

fMRI Analysis and Classifcation 51

Brodersen et al. PLOS computation biology 2011.



DCM for speech processing
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Working memory in Schizophrenia
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• 41 Schizophrenia patients (DSM IV,ICD 10), 42 controls

• Visual numeric n-back working  memory task

Deserno et al (2012) The Journal of Neuroscience

1 5

4 2
9 8

9

3 5900ms

500ms



Model based clustering
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Brodersen et al 2014 Neuroimage



Results healthy vs. schizophrenia patients
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Brodersen et al 2014 Neuroimage



Within patients clustering
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Brodersen et al 2014 Neuroimage



Be aware

• Interpretation of decoding or classification
results is difficult. 

• The decoded information must be in the
data, but in what features exactly is often
hard to find out …
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Summary
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