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Why should I know about Bayesian inference?

Because Bayesian principles are fundamental for 

• statistical inference in general

• system identification

• translational neuromodeling ("computational assays")

– computational psychiatry

– computational neurology

• contemporary theories of brain function (the "Bayesian brain")

– predictive coding

– free energy principle

– active inference
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Bayes‘ Theorem

Reverend Thomas Bayes

1702 - 1761

“Bayes‘ Theorem describes, how an ideally rational person 

processes information."

Wikipedia
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Bayesian inference: an animation



Generative models

• specify a joint probability distribution over all variables (observations and 

parameters)

• require a likelihood function and a prior:

• can be used to randomly generate synthetic data (observations) by sampling 

from the prior

– we can check in advance whether the model can explain certain 

phenomena at all

• model comparison based on the model evidence
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 Observation of data

 Formulation of a generative model

 Model inversion – updating one's beliefs
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Model

likelihood function   p(y|)

prior distribution p()

Measurement data y

maximum a posteriori 

(MAP) estimates

model evidence

Principles of Bayesian inference



Priors

Priors can be of different sorts, e.g.

• empirical (previous data)

• empirical (estimated from 

current data using a hierarchical 

model → "empirical Bayes")

• uninformed

• principled (e.g., positivity 

constraints)

• shrinkage

Example of a shrinkage prior



Advantages of generative models

• describe how observed data were generated 

by hidden mechanisms

• we can check in advance whether a model 

can explain certain phenomena at all

• force us to think mechanistically and be

explicit about pathophysiological theories

• formal framework for differential 

diagnosis: 

statistical comparison of competing 

generative models, each of which provides a 

different explanation of measured brain 

activity or clinical symptoms

mechanism 1 mechanism N...

data y



A generative modelling framework for fMRI & EEG: 

Dynamic causal modeling (DCM)

Friston et al. 2003, NeuroImage
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dx

f x u
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Model inversion:

Estimating neuronal 

mechanisms

EEG, MEG fMRI

Forward model:

Predicting measured 

activity

dwMRI

Stephan et al. 2009, NeuroImage
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Neuronal state equation
Modulatory input

t

u2(t)

t

Driving input

u1(t)

𝑨 =
𝝏  𝒙

𝝏𝒙

𝑩(𝒋) =
𝝏

𝝏𝒖𝒋

𝝏  𝒙

𝝏𝒙

𝑪 =
𝝏  𝒙

𝝏𝒖

 𝒙 = 𝑨 + 𝒖𝒋𝑩
𝒋 𝒙 + 𝑪𝒖

Hemodynamic model

𝝂𝒊(𝒕) and 𝒒𝒊(𝒕)

Neuronal states

𝒙𝒊(𝒕)

𝒙𝟏(𝒕)
𝒙𝟑(𝒕)

𝒙𝟐(𝒕)

BOLD signal change equation

𝒚 = 𝑽𝟎 𝒌𝟏 𝟏 − 𝒒 + 𝒌𝟐 𝟏 −
𝒒

𝝂
+ 𝒌𝟑 𝟏 − 𝝂 + 𝒆

with 𝒌𝟏 = 𝟒. 𝟑𝝑𝟎𝑬𝟎𝑻𝑬, 𝒌𝟐 = 𝜺𝒓𝟎𝑬𝟎𝑻𝑬, 𝒌𝟑 = 𝟏 − 𝜺

𝝉  𝝂 = 𝒇 − 𝝂𝟏/𝜶

𝝉  𝒒 = 𝒇𝑬(𝒇, 𝑬𝟎)/𝑬𝟎 − 𝝂𝟏/𝜶𝒒/𝝂

Local hemodynamic 

state equations

Changes in volume (𝝂) 

and dHb (𝒒) 

𝒇
Balloon model

 𝒔 = 𝒙 − 𝜿𝒔 − 𝜸 𝒇 − 𝟏

 𝒇 = 𝒔

vasodilatory 

signal and flow 

induction (rCBF)

BOLD signal

y(t)
Stephan et al. 2015, 

Neuron
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Nonlinear Dynamic Causal Model for fMRI

Stephan et al. 2008, NeuroImage
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Why should I know about Bayesian inference?

Because Bayesian principles are fundamental for 

• statistical inference in general

• system identification

• translational neuromodeling ("computational assays")

– computational psychiatry

– computational neurology

• contemporary theories of brain function (the "Bayesian brain")

– predictive coding

– free energy principle

– active inference



Generative models as "computational assays"
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Differential diagnosis based on generative models of 

disease symptoms

SYMPTOM

(behaviour

or physiology)

HYPOTHETICAL

MECHANISM
...
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Stephan et al. 2016, NeuroImage



Application to brain activity and 

behaviour of individual patients

Computational assays:

Models of disease mechanisms




Detecting physiological subgroups 

(based on inferred mechanisms)


Translational Neuromodeling

Individual treatment prediction

 disease mechanism A

 disease mechanism B

 disease mechanism C

( , , )
dx

f x u
dt

  

Stephan et al. 2015, Neuron



Perception = inversion of a hierarchical generative model

environm. states

others' mental states

bodily states

( | , )p x y m

( | , ) ( | )p y x m p x m
forward model

perception

neuronal states



Example: free-energy principle and active inference

Change 

sensory input

sensations – predictions

Prediction error

Change 

predictions

Action Perception

Maximizing the evidence (of the brain's generative model) 

= minimizing the surprise about the data (sensory inputs).
Friston et al. 2006, 

J Physiol Paris
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How is the posterior computed = 

how is a generative model inverted?

Bayesian Inference

Approximate Inference

Variational 
Bayes

MCMC 
Sampling

Analytical solutions



How is the posterior computed = 

how is a generative model inverted?

• compute the posterior analytically

– requires conjugate priors

– even then often difficult to derive an analytical solution

• variational Bayes (VB)

– often hard work to derive, but fast to compute

– cave: local minima, potentially inaccurate approximations

• sampling methods (MCMC)

– guaranteed to be accurate in theory (for infinite computation time)

– but may require very long run time in practice

– convergence difficult to prove



Conjugate priors

If the posterior p(θ|x) is in the same family as the prior p(θ), the prior and 

posterior are called "conjugate distributions", and the prior is called a "conjugate 

prior" for the likelihood function.
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same form
 analytical expression for posterior

 examples (likelihood-prior):  

• Normal-Normal

• Normal-inverse Gamma

• Binomial-Beta

• Multinomial-Dirichlet



Likelihood & Prior

Posterior:

Posterior mean = 

variance-weighted combination of 

prior mean and data mean

Prior

Likelihood

Posterior

   y

Posterior mean & variance of univariate Gaussians
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Likelihood & prior

Posterior:

Prior

Likelihood

Posterior

Same thing – but expressed as precision weighting

p
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Variational Bayes (VB)

best proxy

𝑞 𝜃

true
posterior

𝑝 𝜃 𝑦

hypothesis
class

divergence

KL 𝑞||𝑝

Idea: find an approximate density 𝑞(𝜃) that is maximally similar to the true 

posterior 𝑝 𝜃 𝑦 .

This is often done by assuming a particular form for 𝑞 (fixed form VB) and 

then optimizing its sufficient statistics.



Kullback–Leibler (KL) divergence

• non-symmetric measure 

of the difference 

between two probability 

distributions P and Q

• DKL(P‖Q) = a measure of 

the information lost when 

Q is used to approximate 

P: the expected number 

of extra bits required to 

code samples from P 

when using a code 

optimized for Q, rather 

than using the true code 

optimized for P.



Variational calculus

Standard calculus
Newton, Leibniz, and 

others

• functions

𝑓: 𝑥 ↦ 𝑓 𝑥

• derivatives  
d𝑓
d𝑥

Example: maximize 

the likelihood 

expression 𝑝 𝑦 𝜃
w.r.t. 𝜃

Variational 

calculus
Euler, Lagrange, and 

others

• functionals

𝐹: 𝑓 ↦ 𝐹 𝑓

• derivatives  
d𝐹
d𝑓

Example: maximize 

the entropy 𝐻 𝑝
w.r.t. a probability 

distribution 𝑝 𝑥

Leonhard Euler
(1707 – 1783)

Swiss mathematician, 
‘Elementa Calculi 

Variationum’



Variational Bayes

𝐹 𝑞 is a functional wrt. the 

approximate posterior 𝑞 𝜃 .

Maximizing 𝐹 𝑞, 𝑦 is equivalent to:

• minimizing KL[𝑞| 𝑝

• tightening 𝐹 𝑞, 𝑦 as a lower

bound to the log model evidence

When 𝐹 𝑞, 𝑦 is maximized, 𝑞 𝜃 is 

our best estimate of the posterior.

ln𝑝(𝑦) = KL[𝑞| 𝑝 + 𝐹 𝑞, 𝑦

divergence 
≥ 0

(unknown)

neg. free 
energy

(easy to evaluate 
for a given 𝑞)

KL[𝑞| 𝑝

ln 𝑝 𝑦 ∗

𝐹 𝑞, 𝑦

KL[𝑞| 𝑝

ln 𝑝 𝑦

𝐹 𝑞, 𝑦

initialization 
…

… 
convergence



Derivation of the (negative) free energy approximation

• See whiteboard!

• (or Appendix to Stephan et al. 2007, NeuroImage 38: 387-401)



Mean field assumption

Factorize the approximate 

posterior 𝑞 𝜃 into independent 

partitions:

𝑞 𝜃 = 

𝑖

𝑞𝑖 𝜃𝑖

where 𝑞𝑖 𝜃𝑖 is the approximate 

posterior for the 𝑖th subset of 

parameters.

For example, split parameters 

and hyperparameters:
𝜃1

𝜃2

𝑞 𝜃1 𝑞 𝜃2

Jean Daunizeau, www.fil.ion.ucl.ac.uk/ 
~jdaunize/presentations/Bayes2.pdf       , | ,p y q q q      



VB in a nutshell (under mean-field approximation)
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 Iterative updating of sufficient statistics of approx. posteriors by 

gradient ascent.

     

     

ln | , , , |
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q

p y m F KL q p y

F p y KL q p m

   

     

    

    

 Mean field approx.

 Neg. free-energy 

approx. to model 

evidence.

 Maximise neg. free 

energy  wrt. q = 

minimise divergence,

by maximising

variational energies



VB (under mean-field assumption) in more detail



VB (under mean-field assumption) in more detail



Model comparison and selection

Given competing hypotheses 

on structure & functional 

mechanisms of a system, which 

model is the best?

For which model m does p(y|m)

become maximal?

Which model represents the

best balance between model 

fit and model complexity?

Pitt & Miyung (2002) TICS
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Model evidence (marginal likelihood):

Various approximations, e.g.:

- negative free energy, AIC, BIC

Bayesian model selection (BMS)

accounts for both accuracy 

and complexity of the model

“If I randomly sampled from my 

prior and plugged the resulting 

value into the likelihood 

function, how close would the 

predicted data be – on average 

– to my observed data?”

all possible datasets

y

p
(y
|
m
)

Gharamani, 2004

McKay 1992, Neural Comput.

Penny et al. 2004a, NeuroImage



Model space M is defined by prior on models. 

Usual choice: flat prior over a small set of models.

Model space (hypothesis set) M

1 1
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In this case, the posterior probability of model i is:



Differential diagnosis based on generative models of 

disease symptoms

SYMPTOM

(behaviour

or physiology)

HYPOTHETICAL

MECHANISM
...
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Stephan et al. 2016, NeuroImage



pmypAIC  ),|(log 

Logarithm is a 

monotonic function

Maximizing log model evidence

= Maximizing model evidence

)(),|(log                    
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N
p

mypBIC log
2

),|(log  

Akaike Information Criterion:

Bayesian Information Criterion:

Log model evidence = balance between fit and complexity

Approximations to the model evidence 

No. of 

parameters

No. of

data points



The (negative) free energy approximation F

   log ( | , ) , |

accuracy complexity

F p y m KL q p m      

KL[𝑞| 𝑝

ln 𝑝 𝑦|𝑚

𝐹 𝑞, 𝑦   log ( | ) , | ,p y m F KL q p y m     

Like AIC/BIC, F is an accuracy/complexity tradeoff:

F is a lower bound on the log model evidence:



The (negative) free energy approximation

• Log evidence is thus expected log likelihood (wrt. q) plus 2 KL's:

       

log ( | )

log ( | , ) , | , | ,

p y m

p y m KL q p m KL q p y m            

   

   

log ( | ) , | ,

log ( | , ) , |

accuracy complexity

F p y m KL q p y m

p y m KL q p m

 

  

    

    



The complexity term in F

• In contrast to AIC & BIC, the complexity term of the negative 
free energy F accounts for parameter interdependencies. Under
Gaussian assumptions about the posterior (Laplace 
approximation):

• The complexity term of F is higher

– the more independent the prior parameters ( effective DFs)

– the more dependent the posterior parameters

– the more the posterior mean deviates from the prior mean
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Bayes factors

)|(

)|(

2

1
12

myp

myp
B 

positive value, [0;[

But: the log evidence is just some number – not very intuitive!

A more intuitive interpretation of model comparisons is made 

possible by Bayes factors:

To compare two models, we could just compare their log 

evidences.

B12 p(m1|y) Evidence

1 to 3 50-75% weak

3 to 20 75-95% positive

20 to 150 95-99% strong

 150  99% Very strong

Kass & Raftery classification:

Kass & Raftery 1995, J. Am. Stat. Assoc.



Fixed effects BMS at group level

Group Bayes factor (GBF) for 1...K subjects:

Average Bayes factor (ABF):

Problems:

- blind with regard to group heterogeneity

- sensitive to outliers


k

k

ijij BFGBF )(
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Kij ij
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ABF BF 
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Random effects BMS for heterogeneous groups

Dirichlet parameters 

= “occurrences” of models in the population

Dirichlet distribution of model probabilities r

Multinomial distribution of model labels m

Measured data y

Model inversion 

by Variational

Bayes or MCMC

Stephan et al. 2009, NeuroImage
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Random effects BMS

Stephan et al. 2009, NeuroImage
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 Write down joint probability

and take the log

         0 0ln , , ln 1 ln log | lnk k nk n nk k

n k

p y r m Z r m p y m r      



 Maximise neg. free 

energy  wrt. q = 

minimise divergence,

by maximising

variational energies

 Mean field approx. ( , ) ( ) ( )q r m q r q m
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( ) exp

( ) exp

log , ,

log , ,

q m

q r

q r I r

q m I m

I r p y r m

I m p y r m











 Iterative updating of sufficient statistics of approx. 

posteriors

Until convergence

end

0 
0 [1, ,1] 
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( 1)nk nkg q m  our (normalized) 

posterior belief that 

model k generated the 

data from subject n

k nk

n

g  expected number of 

subjects whose data we 

believe were generated 

by model k



Four equivalent options for reporting model ranking by

random effects BMS

1. Dirichlet parameter estimates

2. expected posterior probability of 

obtaining the k-th model for any 

randomly selected subject

3. exceedance probability that a 

particular model k is more likely than 

any other model (of the K models 

tested), given the group data

4. protected exceedance probability: 

see below
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Data: Stephan et al. 2003, Science

Models: Stephan et al. 2007, J. Neurosci.

Example: Hemispheric interactions during vision
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Stephan et al. 2009a, NeuroImage



Example: Synaesthesia

• “projectors” experience 

color externally colocalized

with a presented grapheme

• “associators” report an 

internally evoked 

association

• across all subjects: no

evidence for either model

• but BMS results map

precisely onto projectors

(bottom-up mechanisms) 

and associators (top-down)

van Leeuwen et al. 2011, J. Neurosci.



Overfitting at the level of models

•  #models   risk of overfitting

• solutions: 

– regularisation: definition of model

space = choosing priors p(m)

– family-level BMS

– Bayesian model averaging (BMA)
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posterior model probability:

BMA:



Model space partitioning: comparing model families

• partitioning model space into K subsets 

or families:

• pooling information over all models in 

these subsets allows one to compute 

the probability of a model family, given 

the data

• effectively removes uncertainty about 

any aspect of model structure, other 

than the attribute of interest (which 

defines the partition)

Stephan et al. 2009, NeuroImage

Penny et al. 2010, PLoS Comput. Biol.
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Family-level inference: fixed effects

• We wish to have a uniform prior at the 

family level:

• This is related to the model level via 

the sum of the priors on models:

• Hence the uniform prior at the family 

level is:

• The probability of each family is then 

obtained by summing the posterior 

probabilities of the models it includes: 

Penny et al. 2010, PLoS Comput. Biol.
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Family-level inference: random effects

• The frequency of a family in the 

population is given by: 

• In RFX-BMS, this follows a Dirichlet

distribution, with a uniform prior on the 

parameters  (see above). 

• A uniform prior over family 

probabilities can be obtained by 

setting:

Stephan et al. 2009, NeuroImage

Penny et al. 2010, PLoS Comput. Biol.
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Family-level inference: random effects – a special case

• When the families are of equal size, one can simply sum the posterior model 

probabilities within families by exploiting the agglomerative property of the 

Dirichlet distribution:

Stephan et al. 2009, NeuroImage
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Model space partitioning:

comparing model families
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MMN

A1 A1

STG

input

STG

IFG

prediction

prediction 

error

input

standards
deviants

Mismatch negativity (MMN)

Garrido et al. 2009, Clin. Neurophysiol.

• elicited by surprising stimuli 

(scales with unpredictability)

•  in schizophrenic patients

• classical interpretations:

– pre-attentive change

detection

– neuronal adaptation

• current theories:

– reflection of (hierarchical) 

Bayesian inference



•  in schizophrenic patients

• Highly relevant for

computational assays of 

glutamatergic and cholinergic

transmission:

+ NMDAR

+ ACh (nicotinic & 

muscarinic)

– 5HT

– DA

standards

deviantsMismatch negativity 

(MMN)

placebo

ketamine

MMN

Schmidt, Diaconescu et al. 2013, Cereb. Cortex

ERPs

MMN



Lieder et al. 2013, PLoS Comput. Biol.

Modelling Trial-by-Trial Changes of the Mismatch 

Negativity (MMN)



Lieder et al. 2013, PLoS Comput. Biol.

MMN model comparison 

at multiple levels

 Comparing 

individual 

models

 Comparing 

MMN 

theories

 Comparing 

modeling 

frameworks



Bayesian Model Averaging (BMA)

• abandons dependence of parameter 

inference on a single model and takes into 

account model uncertainty

• uses the entire model space considered (or 

an optimal family of models) 

• averages parameter estimates, weighted 

by posterior model probabilities

• represents a particularly useful alternative

– when none of the models (or model 

subspaces) considered clearly 

outperforms all others

– when comparing groups for which the 

optimal model differs
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NB: p(m|y1..N) can be obtained 

by either FFX or RFX BMS

single-subject BMA:

group-level BMA:



Schmidt et al. 2013, JAMA Psychiatry

Prefrontal-parietal connectivity during 

working memory in schizophrenia

• 17 at-risk mental 

state (ARMS) 

individuals

• 21 first-episode 

patients

(13 non-treated)

• 20 controls



Schmidt et al. 2013, JAMA Psychiatry

BMS results for all groups



BMA results:  PFC  PPC connectivity

Schmidt et al. 2013, JAMA Psychiatry

17 ARMS, 21 first-episode (13 non-treated), 

20 controls



Protected exceedance probability:

Using BMA to protect against chance findings

• EPs express our confidence that the posterior probabilities of models are

different – under the hypothesis H1 that models differ in probability: rk1/K

• does not account for possibility "null hypothesis" H0: rk=1/K

• Bayesian omnibus risk (BOR) of wrongly accepting H1 over H0:

• protected EP: Bayesian model averaging over H0 and H1:

Rigoux et al. 2014, NeuroImage



inference on model structure   or   inference on model parameters?

inference on 

individual models or   model space partition?

comparison of model 

families using 

FFX or RFX BMS

optimal model structure assumed 

to be identical across subjects?

FFX BMS RFX BMS

yes no

inference on 

parameters of an optimal model   or   parameters of all models?

BMA

definition of model space

FFX analysis of 

parameter estimates

(e.g. BPA)

RFX analysis of 

parameter estimates

(e.g. t-test, ANOVA)

optimal model structure assumed 

to be identical across subjects?

FFX BMS

yes no

RFX BMS

Stephan et al. 2010, NeuroImage
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