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1. enforces mechanistic thinking: how could the data have been caused?

2. generate synthetic data (observations) by sampling from the prior – can model explain 
certain phenomena at all? 

3. inference about model structure: formal approach to disambiguating mechanisms →
p(y|m) 

4. inference about parameters → p(q|y)

5. basis for predictions about interventions → control theory

GENERATIVE MODEL
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Model inversion:
Estimating neuronal 

mechanisms

fMRI

Forward model:
Predicting measured 

activity

dwMRI

Friston et al. 2003, NeuroImage
Stephan et al. 2009b, NeuroImage

DYNAMIC CAUSAL MODELING
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modulation	of
connectivity

Neuronal	state	equation
Modulatory input

t
u2(t)
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Driving input
u1(t)

𝑨 =
𝝏𝒙̇
𝝏𝒙

𝑩(𝒋) =
𝝏
𝝏𝒖𝒋

𝝏𝒙̇
𝝏𝒙

𝑪 =
𝝏𝒙̇
𝝏𝒖

𝒙̇ = 𝑨 +-𝒖𝒋𝑩 𝒋
�

�

𝒙 + 𝑪𝒖

Hemodynamic	model

𝝂𝒊(𝒕) and 𝒒𝒊(𝒕)

Neuronal	states
𝒙𝒊(𝒕)

𝒙𝟏(𝒕)
𝒙𝟑(𝒕)

𝒙𝟐(𝒕)

BOLD	signal	change	equation

𝒚 = 𝑽𝟎 𝒌𝟏 𝟏 − 𝒒 + 𝒌𝟐 𝟏 −
𝒒
𝝂 + 𝒌𝟑 𝟏 − 𝝂 + 𝒆

with 𝒌𝟏 = 𝟒. 𝟑𝝑𝟎𝑬𝟎𝑻𝑬,	𝒌𝟐 = 𝜺𝒓𝟎𝑬𝟎𝑻𝑬,	𝒌𝟑 = 𝟏 − 𝜺

𝝉𝝂̇ = 𝒇 − 𝝂𝟏/𝜶

𝝉𝒒̇ = 𝒇𝑬(𝒇, 𝑬𝟎)/𝑬𝟎 − 𝝂𝟏/𝜶𝒒/𝝂

Local	hemodynamic	
state	equations

Changes	in	volume	(𝝂)	
and	dHb (𝒒)	

𝒇 Balloon	model

𝒔̇ = 𝒙 − 𝜿𝒔 − 𝜸 𝒇 − 𝟏
𝒇̇ = 𝒔

vasodilatory	
signal	and	flow	
induction	(rCBF)

BOLD	signal

y(t)Stephan et al. 2015, Neuron

DCM FOR FMRI
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Make inferences

Define likelihood model

Specify priors

Neural dynamics

Observer function

Design experimental inputs)(tu

Inference on model 
structure

Inference on parameters

BAYESIAN SYSTEM IDENTIFICATION



VARIATIONAL BAYES (VB)

best proxy
𝑞 𝜃

true
posterior
𝑝 𝜃 𝑦

hypothesis
class

divergence
KL 𝑞||𝑝

Idea: find an approximate density 𝑞(𝜃) that is maximally similar to the true posterior 
𝑝 𝜃 𝑦 .

This is often done by assuming a particular form for 𝑞 (fixed form VB) and then optimizing 
its sufficient statistics.



VARIATIONAL BAYES (VB)

𝐹 𝑞, 𝑦 is a functional wrt. the 
approximate posterior 𝑞 𝜃 .

Maximizing 𝐹 𝑞, 𝑦 is equivalent to:

• minimizing KL[𝑞| 𝑝

• tightening 𝐹 𝑞, 𝑦 as a lower
bound to the log model evidence

When 𝐹 𝑞, 𝑦 is maximized, 𝑞 𝜃 is 
our best estimate of the posterior.

ln𝑝(𝑦) = KL[𝑞| 𝑝 	+ 	𝐹 𝑞, 𝑦

divergence
≥ 	0

(unknown)

neg. free 
energy

(easy to evaluate 
for a given 𝑞)

KL[𝑞| 𝑝

ln 𝑝 𝑦 ∗

𝐹 𝑞, 𝑦

initialization …

KL[𝑞| 𝑝

ln 𝑝 𝑦

𝐹 𝑞, 𝑦

… convergence



• Local extrema ® global optimization
schemes for model inversion
- MCMC

(Gupta et al. 2015, NeuroImage)
- Gaussian processes

(Lomakina et al. 2015, NeuroImage)

• Sampling-based estimates of model evidence
- Aponte et al. 2015, J. Neurosci. Meth.
- Raman et al., in preparation

• Choice of priors ® empirical Bayes
- Friston et al. 2016, NeuroImage
- Raman et al. 2016, J. Neurosci. Meth. 

DCM: METHODOLOGICAL DEVELOPMENTS



MPDCM: MASSIVELY PARALLEL DCM

𝑥̇ = 𝑓 𝑥, 𝑢], 𝜃]
𝑥̇ = 𝑓 𝑥, 𝑢^, 𝜃^

⋮
𝑥̇ = 𝑓 𝑥, 𝑢], 𝜃]

mpdcm_integrate(dcms)

𝑦]
𝑦^
⋮
𝑦`

www.translationalneuromodeling.org/tapasAponte et al. 2015, J. Neurosci. Meth.
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• DCM is not one specific model, but a framework for Bayesian inversion of 
dynamic system models

• The implementation in SPM has been evolving over time, e.g.
- improvements of numerical routines (e.g., optimization scheme)
- change in priors to cover new variants (e.g., stochastic DCMs)
- changes of hemodynamic model

To enable replication of your results, you should ideally 
state which SPM version (release number) you are using 
when publishing papers.

THE EVOLUTION OF DCM IN SPM



• Three dimensions of model specification:
- bilinear vs. nonlinear
- single-state vs. two-state (per region)
- deterministic vs. stochastic

FACTORIAL STRUCTURE OF MODEL SPECIFICATION
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CLASSICAL DCM
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Two-dimensional Taylor series (around x0=0, u0=0):

Nonlinear state equation:

NON-LINEAR DCM
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Nonlinear Dynamic Causal Model for fMRI
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NON-LINEAR DCM

Stephan et al. 2008, NeuroImage
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𝑑𝑥
𝑑𝑡 = 𝐴 +-𝑢d𝐵 d

f

dg]

𝑥 + 𝐶 𝑢 + 𝜔 j + 𝜔 k

STOCHASTIC DCM

• random state fluctuations w(x) account for 
endogenous fluctuations, and have 
unknown precision and smoothness 
® two hyperparameters

• fluctuations w(v) induce uncertainty about 
how inputs influence neuronal activity

• all states are represented in generalised 
coordinates of motion

• can be fitted to "resting state" data

Li et al. 2011, NeuroImage



SPECTRAL DCM

• deterministic model that generates predicted cross-spectra in a distributed 
neuronal network or graph

• finds the effective connectivity among hidden neuronal states that best 
explains the observed functional connectivity among hemodynamic 
responses

• advantage:
- replaces an optimization problem with respect to stochastic differential 

equations with a deterministic approach from linear systems theory →
computationally very efficient

• disadvantages:
- assumes stationarity

Friston et al. 2014, NeuroImage



CROSS-CORRELATION & CONVOLUTION

• cross-correlation = measure of 
similarity of two waveforms as a 
function of a time-lag applied 
to one of them (slide two 
functions over each other and 
measure overlaps at all lags)

• related to the pdf of the 
difference between two 
random variables

• → a general measure of 
similarity between two time 
series

Friston et al. 2014, NeuroImage

𝑓					𝑔 𝜏 ≝ o 𝑓∗ 𝑡 𝑔 𝑡 + 𝜏
p

qp
𝑑𝑡



CROSS-SPECTRA AND CROSS-CORRELATION

Friston et al. 2014, NeuroImage

cross-spectra 
= Fourier transform 
of cross-correlation 
function

cross-correlation 
= generalized form 
of correlation (at zero 
lag, this is the 
conventional 
measure of functional 
connectivity)



LAYERED DCM

• Recent advances in MR imaging made high-
resolution fMRI at the sub-millimeter scale feasible

• spatial layout of cortical blood supply becomes an 
important confound at such high spatial resolution

• extension to hemodynamic model that accounts 
for these effects by coupling local hemodynamics 
across layers

• advantage:
- allows to estimate layer-specific connections in 

cortex

• disadvantage :
- computationally expensive

Heinzle et al. 2016, NeuroImage



REGRESSION DCM

Frässle et al., under review

• translates a linear DCM in the time domain into a general 
linear model (GLM) in the frequency domain using Fourier 
transformation

• this essentially reformulates model inversion as a special 
case of Bayesian linear regression with unknown variance

• advantage:
- computationally very efficient, enables effective 

connectivity analyses in large (whole-brain) networks

• disadvantages:
- assumes stationarity, fixed HRF, partial independence 

among parameters



ALL MODELS ARE WRONG

BUT SOME ARE USEFUL

George Edward Pelham Box
(1919-2013)



HIERARCHICAL STRATEGY FOR MODEL VALIDATION

numerical analysis & simulation 
studies

clinical utility

experimentally controlled 
system perturbations

in silico

animals &
humans

patients

cognitive experimentshumans

�

�

�

�

For DCM:  >15 published 
validation studies 
(incl. 6 animal studies):
• infers site of seizure origin 

(David et al. 2008)
• infers primary recipient of 

vagal nerve stimulation 
(Reyt et al. 2010)

• infers synaptic changes as 
predicted by microdialysis 
(Moran et al. 2008)

• infers fear conditioning 
induced plasticity in amygdala 
(Moran et al. 2009)

• tracks anesthesia levels 
(Moran et al. 2011)

• predicts sensory stimulation 
(Brodersen et al. 2010)



RELIABILITY OF MODEL ESTIMATES

Frässle et al. 2015, NeuroImage

• test-retest reliability refers to the within-
subject stability of parameter estimates 
obtained when applying a method to 
multiple datasets acquired under the same 
condition in the same subject

• necessary condition for the use of DCM as a 
tool for translational neuromodeling.

• local extrema in the objective function and 
the choice of prior distributions become 
limiting factors for test-retest reliability.

• global optimization schemes (MCMC, 
Gaussian processes) and empirical Bayes 
might come to the rescue 
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Stephan et al. 2010, NeuroImage

ROADMAP FOR DCM ANALYSES



Bayes factor to compare two models:

Group Bayes factor (GBF) for 1...K subjects:

Problems:
- blind with regard to group heterogeneity
- sensitive to outliers
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FIXED-EFFECTS BAYESIAN MODEL SELECTION

B12 p(m1|y) Evidence
1 to 3 50-75% weak
3 to 20 75-95% positive

20 to 150 95-99% strong
³ 150 ³ 99% Very strong

Kass & Raftery 1995, J. Am. Stat. Assoc.



RANDOM-EFFECTS BAYESIAN MODEL SELECTION

)|(~ 111 mypy
)|(~ 111 mypy
)|(~ 222 mypy
)|(~ 111 mypy

)|(~ pmpm kk )|(~ pmpm kk )|(~ pmpm kk ),1;(~1 rmMultm

Dirichlet parameters a
= “occurrences” of models in the population

Dirichlet distribution of model probabilities r

Multinomial distribution of model labels m

Measured data y

Model inversion 
by Variational 
Bayes (VB) or 
MCMC

);(~ arDirr

Stephan et al. 2009a, NeuroImage
Penny et al. 2010, PloS Comp. Biol.

a



FAMILY-LEVEL BAYESIAN MODEL SELECTION

• partitioning model space into K subsets or families 
and pooling information over all models in these 
subsets allows one to compute the probability of a 
model family, given the data.

• family-level inference is possible for both fixed 
effects and random effects BMS.

• for family level FFX-BMS, the probability of each 
family is obtained by summing the posterior 
probabilities of the models it includes.

• when families are of equal size, for family level 
RFX-BMS the posterior model probabilities within 
families are also simply summed up, exploiting the 
agglomerative property of the Dirichlet distribution:

𝑀 = 𝑓],… , 𝑓t

𝑝 𝑓u 𝑦]..v = - 𝑝 𝑚 𝑦]..v

�

f∈yz

Stephan et al. 2009a, NeuroImage
Penny et al. 2010, PloS Comp. Biol.
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BAYESIAN MODEL AVERAGING

• abandons dependence of parameter 
inference on a single model and takes 
into account model uncertainty

• represents a particularly useful 
alternative
- when none of the models (or model 

subspaces) considered clearly 
outperforms all others

- when comparing groups for which 
the optimal model differs
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NB: p(m|y1..N) can be obtained by either 
FFX or RFX BMS

single-subject BMA:

group-level BMA:

Penny et al. 2010, PLoS Comput. Biol.
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PREDICTION ERRORS DRIVE SYNAPTIC PLASTICITY

McLaren 1989
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synaptic plasticity during learning = f (prediction error)
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LEARNING OF DYNAMIC AUDIO-VISUAL ASSOCIATIONS

CS Response

Time	(ms)

0 200 400 600 800 2000	±
650

or

Target StimulusConditioning Stimulus

or

TS

0 200 400 600 800 10000

0.2

0.4

0.6

0.8

1

p(
fa

ce
)

trial

CS 1

CS 2

den Ouden et al. 2010, J. Neurosci.



HIERARCHICAL BAYESIAN LEARNING MODEL

Behrens et al. 2007, Nat. Neurosci.

observed events

probabilistic association

volatility
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EXPLAINING RTS BY DIFFERENT LEARNING MODELS

den Ouden et al. 2010, J. Neurosci.
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Bayesian model selection: 

hierarchical Bayesian model 
performs best

5 alternative learning models: 

• categorical probabilities

• hierarchical Bayesian learner

• Rescorla-Wagner

• Hidden Markov models 
(2 variants)
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STIMULUS- INDEPENDENT PREDICTION ERROR

den Ouden et al. 2010, J. Neurosci.

p < 0.05 
(cluster-level whole-
brain corrected)

p < 0.05 
(small volume 
correction SVM)



PREDICTION ERROR (PE)  ACTIVITY IN THE PUTAMEN

PE during
reinforcement learning

PE during incidental
sensory learning

O'Doherty et al. 2004, 
Science

den Ouden et al.  2009, 
Cerebral Cortex

Could the putamen be regulating trial-by-trial changes of 
task-relevant connections?

PE = “teaching signal” for 
synaptic plasticity during 

learning 

p	<	0.05	(SVC)

PE during active
sensory learning



PREDICTION ERRORS CONTROL PLASTICITY DURING AVL

den Ouden et al. 2010, J. Neurosci.

PPA FFA

PMd

 

 

Hierarchical 
Bayesian learning 
model

PUT

p = 0.010 p = 0.017

• Prediction error activity in the 
putamen exerts non-linear 
modulatory influences on the 
connections from visual areas to 
premotor cortex.

• Influence of visual areas on 
premotor cortex is:
- stronger for surprising stimuli
- weaker for expected stimuli
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Parker & Alexander 2005, Phil. Trans. B

DIFFUSION-WEIGHTED IMAGING



Kaden et al. 2007, Neuroimage

PROBABILISTIC TRACTOGRAPHY

• computes local fibre orientation density by 
spherical deconvolution of the diffusion-
weighted signal

• estimates the spatial probability distribution 
of connectivity from given seed regions

• anatomical connectivity = proportion of fibre 
pathways originating in a specific source 
region that intersect a target region 

• If the area or volume of the source region 
approaches a point, this measure reduces to 
method by Behrens et al. (2003)



Stephan et al. 2009b, Neuroimage

INTEGRATION OF TRACTOGRAPHY AND DCM

How to integrate information from 
probabilistic tractography in DCM?
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MODELS WITH ANATOMICALLY INFORMED PRIORS (OF AN INTUITIVE
FORM)  WERE SUPERIOR TO ANATOMICALLY UNINFORMED ONES

• 64 different mappings 
by systematic search 
across hyperparameters 
a and b

• yields anatomically 
informed (intuitive and 
counterintuitive) and 
uninformed priors
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• DCM – basic concepts

• Evolution of DCM for fMRI

• Bayesian model selection (BMS)

• Embedding computational models in DCMs

• Integrating tractography and DCM

• Translational Neuromodeling

OVERVIEW



Computational assays:
Models of disease mechanisms

� Translational Neuromodeling

( , , )dx f x u
dt

q w= +

Application to brain activity and 
behaviour of individual patients

�

Detecting mechanistic subgroups 
(based on inferred mechanisms)

�

• disease	mechanism	A
• disease	mechanism	B
• disease	mechanism	C

Individual treatment prediction�



COMPUTATIONAL ASSAYS

Symptoms
(behaviour or 
physiological data)

Mechanisms
(computational, 
physiological)

Causes
(aetiology)

differential diagnosis 
of alternative disease 

mechanisms

spectrum dissection 
into mechanistically 
distinct subgroups

prediction of clinical 
trajectories and 

treatment response

... ...

...



DIFFERENTIAL DIAGNOSIS BY MODEL SELECTION

Symptoms
(behaviour or 
physiological data)

Hypothetical 
mechanisms
(computational, 
physiological)

y

m1 mk mK... ...

𝑝 𝑚u 𝑦𝑝 𝑦 𝜃,𝑚u

𝑝 𝑚u 𝑦 =
𝑝 𝑦 𝑚u 𝑝 𝑚u

∑ 𝑝 𝑦 𝑚u 𝑝 𝑚u
�
u

Stephan et al. 2016, NeuroImage

Posterior model probability 



BAYESIAN MODEL SELECTION:  SYNAESTHESIA

Van Leeuwen et al. 2011, J. Neurosci.

• “projectors” experience colour 
externally co-localized with a presented 
grapheme

• ”associators” report an internally 
evoked association 

• across all subjects: no evidence for 
either model 

• but BMS results map precisely onto 
projectors (bottom-up) and associators
(top-down)



BAYESIAN MODEL SELECTION:  PARKINSON’S DISEASE

Age-matched 
controls

PD patients
on medication

PD patients
off medication

DA-dependent functional 
disconnection of the SMA

Selection of action modulates 
connections between PFC and SMA

Rowe et al. 2010, NeuroImage



GENERATIVE EMBEDDING (SUPERVISED):  CLASSIFICATION

measurements from 
an individual subject

step 1 —
model inversion

subject-specific
inverted generative model

A

C
B

step 2 —
kernel construction

subject representation in the 
generative score space

A → B
A → C
B → B
B → C

step 3 —
support vector classification

separating hyperplane fitted to 
discriminate between groups

A

C
B

jointly discriminative
model parameters

step 4 —
interpretation

Brodersen et al. 2011, PLoS Comput. Biol.



DISCOVERING REMOTE OR “HIDDEN”  BRAIN LESIONS

Brodersen et al. 2011, PLoS Comput. Biol.



DISCOVERING REMOTE OR “HIDDEN”  BRAIN LESIONS

Brodersen et al. 2011, PLoS Comput. Biol.



CONNECTIONAL FINGERPRINTS:
A P H A S I C PAT I E N T S ( N = 1 1 )  V S .  C O N T R O L S ( N = 2 6 )

Brodersen et al. 2011, PLoS Comput. Biol.

6-region DCM of auditory areas 
during passive speech listening

MGB

PT

HG 
(A1)

S

MGB

PT

HG 
(A1)

S

Schofield et al. 2012, J. Neurosci. (fMRI data from speech recognition task)



PREDICTING PRESENCE/ABSENCE OF “HIDDEN”  LESION

Brodersen et al. 2011, PLoS Comput. Biol.

Classification accuracy

MGB

PT

HG
(A1)

MGB

PT

HG
(A1)

auditory stimuli

Schofield et al. 2012, J. Neurosci. (fMRI data from speech recognition task)



PREDICTING PRESENCE/ABSENCE OF “HIDDEN”  LESION

Brodersen et al. 2011, PLoS Comput. Biol.
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Schofield et al. 2012, J. Neurosci. (fMRI data from speech recognition task)



BEST-PRACTICE GUIDELINES FOR GENERATIVE EMBEDDING

Brodersen et al. 2011, PLoS Comput. Biol.

F

D

EC

B

A

Definition of ROIs
Are regions of interest defined
anatomically or functionally?

anatomically functionally

Functional contrasts
Are the functional contrasts defined

across all subjects or between groups?

1 ROI definition
and nmodel inversions
unbiased estimate

Repeat n times:
1 ROI definition and nmodel inversions
unbiased estimate

1 ROI definition and nmodel inversions
slightly optimistic estimate:
voxel selection for training set and test set 
based on test data

Repeat n times:
1 ROI definition and 1 model inversion
slightly optimistic estimate:
voxel selection for training set based on test 
data and test labels

Repeat n times:
1 ROI definition and nmodel inversions
unbiased estimate

1 ROI definition and nmodel inversions
highly optimistic estimate:
voxel selection for training set and test set 
based on test data and test labels

across 
subjects

between 
groups

´ ´

´



GENERATIVE EMBEDDING (UNSUPERVISED):  CLUSTERING

measurements from 
an individual subject

step 1 —
model inversion

subject-specific
inverted generative model

A

C
B

step 2 —
kernel construction

subject representation in the 
generative score space

A → B
A → C
B → B
B → C

A

C
B

jointly discriminative
model parameters

step 5 —
interpretation

Brodersen et al. 2014, Neuroimage: Clinical

step 3 —
clustering

emerging groups of similar
subjects?

step 4 —
validation

agreement with
aetiology or clinical facts?

1

0

b
al

an
ce

d
 p

ur
ity



GENERATIVE EMBEDDING OF VARIATIONAL GAUSSIAN
MIXTURE MODELS
S C H I ZO P H R E N I C PAT I E N T S ( N = 4 1 )  V S .  C O N T R O L S ( N = 4 2 )

Brodersen et al. 2014, NeuroImage: Clinical

Supervised:
SVM classification

Unsupervised:
GMM clustering

Deserno et al. 2012, J. Neurosci. (fMRI data from working memory task)



DETECTING SUBGROUPS OF PATIENTS IN SCHIZOPHRENIA

Brodersen et al. 2014, Neuroimage: Clinical

• three distinct subgroups (total N = 41)
• subgroups differ (p < 0.05) wrt. negative symptoms on the positive and 

negative symptom scale (PANSS)

Deserno et al. 2012, J. Neurosci. (fMRI data from working memory task)



ROADMAP FOR TRANSLATIONAL NEUROMODELING

Stephan & Mathys 2014, Curr. Opin. Neurobiol.

Computational assays

Generative  models of 
behavior & brain 

activity

Dissecting spectrum 
disorders

Differential diagnosis

optimized experimental paradigms
(simple, robust, patient-friendly)

initial model validation
(basic science studies)

BMS

Generative 
embedding
(unsupervised)

BMS

Generative
embedding
(supervised)

model validation
(longitudinal patient studies)
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