

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ET

DYNAMIC CAUSAL MODELING (DCM):

Advanced Topics

Stefan Frässle

Translational Neuromodeling Unit (TNU), Zurich

With many thanks for slides & images to: Klaas Enno Stephan, Jakob Heinzle, TNU & FIL

OVERVIEW

- DCM basic concepts
- Evolution of DCM for fMRI
- Bayesian model selection (BMS)
- Embedding computational models in DCMs
- Integrating tractography and DCM
- Translational Neuromodeling

GENERATIVE MODEL

- 1. enforces mechanistic thinking: how could the data have been caused?
- 2. generate synthetic data (observations) by sampling from the prior can model explain certain phenomena at all?
- 3. inference about model structure: formal approach to disambiguating mechanisms $\rightarrow p(y|m)$
- 4. inference about parameters $\rightarrow p(\theta|y)$
- 5. basis for predictions about interventions \rightarrow control theory

DYNAMIC CAUSAL MODELING

Friston et al. 2003, *NeuroImage* Stephan et al. 2009b, *NeuroImage*

DCM FOR FMRI

Stephan et al. 2015, Neuron

BAYESIAN SYSTEM IDENTIFICATION

VARIATIONAL BAYES (VB)

Idea: find an approximate density $q(\theta)$ that is maximally similar to the true posterior $p(\theta|y)$.

This is often done by assuming a particular form for q (fixed form VB) and then optimizing its sufficient statistics.

VARIATIONAL BAYES (VB)

F(q, y) is a functional wrt. the approximate posterior $q(\theta)$.

Maximizing F(q, y) is equivalent to:

- minimizing KL[q||p]
- tightening F(q, y) as a lower bound to the log model evidence

When F(q, y) is maximized, $q(\theta)$ is our best estimate of the posterior.

DCM: METHODOLOGICAL DEVELOPMENTS

- Local extrema \rightarrow global optimization schemes for model inversion
 - MCMC
 - (Gupta et al. 2015, NeuroImage)
 - Gaussian processes
 (Lomakina et al. 2015, NeuroImage)

• Sampling-based estimates of model evidence

- Aponte et al. 2015, J. Neurosci. Meth.
- Raman et al., in preparation

• Choice of priors \rightarrow empirical Bayes

- Friston et al. 2016, NeuroImage
- Raman et al. 2016, J. Neurosci. Meth.

MPDCM: MASSIVELY PARALLEL DCM

www.translationalneuromodeling.org/tapas

Aponte et al. 2015, J. Neurosci. Meth.

- DCM basic concepts
- Evolution of DCM for fMRI
- Bayesian model selection (BMS)
- Embedding computational models in DCMs
- Integrating tractography and DCM
- Translational Neuromodeling

THE EVOLUTION OF DCM IN SPM

- DCM is not one specific model, but a framework for Bayesian inversion of dynamic system models
- The implementation in SPM has been evolving over time, e.g.
 - improvements of numerical routines (e.g., optimization scheme)
 - change in priors to cover new variants (e.g., stochastic DCMs)
 - changes of hemodynamic model

To enable replication of your results, you should ideally state which SPM version (release number) you are using when publishing papers.

FACTORIAL STRUCTURE OF MODEL SPECIFICATION

- Three dimensions of model specification:
 - bilinear vs. nonlinear
 - single-state vs. two-state (per region)
 - deterministic vs. stochastic

🚽 Dynamic Causal Modelling 📃 🗆 🗶				
Мос	del options:			
	mo	odulatory effects	bilinear	nonlinear
📣 Dynamic Caus	al Modelling			
Model options:				
m	odulatory effects	biline	ear	
	states per region	one	two	
Ovnamic Causal Modelling				
del ontions:				
modulatory effects	biline	ar		
states per region	one			
stochastic effects	no	yes		

-

CLASSICAL DCM

NON-LINEAR DCM

Two-dimensional Taylor series (around $x_0=0$, $u_0=0$):

$$\frac{dx}{dt} = f(x,u) \approx f(x_0,0) + \frac{\partial f}{\partial x}x + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial x \partial u}ux + \frac{\partial^2 f}{\partial x^2}\frac{x^2}{2} + \dots$$

Bilinear state equation:

Nonlinear state equation:

$$\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)}\right) x + Cu$$

$$\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)} + \sum_{j=1}^{n} x_j D^{(j)}\right) x + Cu$$

NON-LINEAR DCM

Nonlinear Dynamic Causal Model for fMRI

$$\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)} + \sum_{j=1}^{n} x_j D^{(j)}\right) x + Cu$$

Stephan et al. 2008, *NeuroImage*

TWO-STATE DCM

Marreiros et al. 2008, NeuroImage

STOCHASTIC DCM

$$\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)}\right) x + C\left(u + \omega^{(v)}\right) + \omega^{(x)}$$

- random state fluctuations w^(x) account for endogenous fluctuations, and have unknown precision and smoothness → two hyperparameters
- fluctuations w^(v) induce uncertainty about how inputs influence neuronal activity
- all states are represented in generalised coordinates of motion
- can be fitted to "resting state" data

Li et al. 2011, NeuroImage

Estimates of hidden causes and states (Generalised filtering)

SPECTRAL DCM

- <u>deterministic</u> model that generates predicted cross-spectra in a distributed neuronal network or graph
- finds the effective connectivity among hidden neuronal states that best explains the observed functional connectivity among hemodynamic responses
- advantage:
 - replaces an optimization problem with respect to stochastic differential equations with a deterministic approach from linear systems theory → computationally very efficient
- disadvantages:
 - assumes stationarity

CROSS-CORRELATION & CONVOLUTION

- cross-correlation = measure of similarity of two waveforms as a function of a time-lag applied to one of them (slide two functions over each other and measure overlaps at all lags)
- related to the pdf of the difference between two random variables
- → a general measure of similarity between two time series

$$(f \star g)(\tau) \stackrel{\text{\tiny def}}{=} \int_{-\infty}^{\infty} f^*(t)g(t+\tau) dt$$

CROSS-SPECTRA AND CROSS-CORRELATION

cross-spectra

= Fourier transform of cross-correlation function

cross-correlation

= generalized form of correlation (at zero lag, this is the conventional measure of functional connectivity)

Measures of (second-order) functional connectivity or statistical dependence among observed responses

disadvantage :

computationally expensive

LAYERED DCM

- Recent advances in MR imaging made highresolution fMRI at the sub-millimeter scale feasible
- spatial layout of cortical blood supply becomes an important confound at such high spatial resolution
- extension to hemodynamic model that accounts for these effects by coupling local hemodynamics across layers
- advantage:
 - allows to estimate layer-specific connections in cortex

 $\tau_l \frac{dq_l}{dt} = f_l \frac{1 - (1 - E_0)^{1/f_l}}{E} - \nu_l^{1/\alpha} \frac{q_l}{v_l}$

REGRESSION DCM

- translates a linear DCM in the time domain into a general linear model (GLM) in the frequency domain using Fourier transformation
- this essentially reformulates model inversion as a special case of Bayesian linear regression with unknown variance
- advantage:
 - computationally very efficient, enables effective connectivity analyses in large (whole-brain) networks
- disadvantages:
 - assumes stationarity, fixed HRF, partial independence among parameters

All Models are Wrong

BUT SOME ARE USEFUL

George Edward Pelham Box (1919-2013)

HIERARCHICAL STRATEGY FOR MODEL VALIDATION

0	in silico	numerical analysis & simulation studies
2	humans	cognitive experiments
3	animals & humans	experimentally controlled system perturbations
4	patients	clinical utility

For DCM: >15 published validation studies (incl. 6 animal studies):

- infers site of seizure origin (David et al. 2008)
- infers primary recipient of vagal nerve stimulation (Reyt et al. 2010)
- infers synaptic changes as predicted by microdialysis (Moran et al. 2008)
- infers fear conditioning induced plasticity in amygdala (Moran et al. 2009)
- tracks anesthesia levels (Moran et al. 2011)
- predicts sensory stimulation (Brodersen et al. 2010)

RELIABILITY OF MODEL ESTIMATES

- test-retest reliability refers to the withinsubject stability of parameter estimates obtained when applying a method to multiple datasets acquired under the same condition in the same subject
- necessary condition for the use of DCM as a tool for translational neuromodeling.
- local extrema in the objective function and the choice of prior distributions become limiting factors for test-retest reliability.
- global optimization schemes (MCMC, Gaussian processes) and empirical Bayes might come to the rescue

OVERVIEW

- DCM basic concepts
- Evolution of DCM for fMRI
- Bayesian model selection (BMS)
- Embedding computational models in DCMs
- Integrating tractography and DCM
- Translational Neuromodeling

ROADMAP FOR DCM ANALYSES

Stephan et al. 2010, *NeuroImage*

FIXED-EFFECTS BAYESIAN MODEL SELECTION

Bayes factor to compare two models:

$$B_{12} = \frac{p(y \mid m_1)}{p(y \mid m_2)}$$

Group Bayes factor (GBF) for 1...K subjects:

$$GBF_{ij} = \prod_{k} BF_{ij}^{(k)}$$

Problems:

- blind with regard to group heterogeneity
- sensitive to outliers

B ₁₂	$p(m_1 y)$	Evidence
1 to 3	50-75%	weak
3 to 20	75-95%	positive
20 to 150	95-99%	strong
≥ 150	≥ 99%	Very strong

Kass & Raftery 1995, J. Am. Stat. Assoc.

RANDOM-EFFECTS BAYESIAN MODEL SELECTION

Penny et al. 2010, PloS Comp. Biol.

FAMILY-LEVEL BAYESIAN MODEL SELECTION

- partitioning model space into K subsets or families and pooling information over all models in these subsets allows one to compute the probability of a model family, given the data.
- family-level inference is possible for both fixed effects and random effects BMS.
- for family level FFX-BMS, the probability of each family is obtained by summing the posterior probabilities of the models it includes.
- when families are of equal size, for family level RFX-BMS the posterior model probabilities within families are also simply summed up, exploiting the agglomerative property of the Dirichlet distribution:

Stephan et al. 2009a, *NeuroImage* Penny et al. 2010, *PloS Comp. Biol.* $M = \{f_1, \dots, f_K\}$

$$p(f_k|y_{1..N}) = \sum_{m \in f_k} p(m|y_{1..N})$$

$$r_1^* = \sum_{k \in N_1} r_k, \dots, r_j^* = \sum_{k \in N_j} r_k$$

BAYESIAN MODEL AVERAGING

- abandons dependence of parameter inference on a single model and takes into account model uncertainty
- represents a particularly useful alternative
 - when none of the models (or model subspaces) considered clearly outperforms all others
 - when comparing groups for which the optimal model differs

single-subject BMA:

$$p(\theta | y) = \sum_{m} p(\theta | y, m) p(m | y)$$

group-level BMA:

$$p(\theta_n | y_{1..N})$$

= $\sum_m p(\theta_n | y_n, m) p(m | y_{1..N})$

NB: $p(m|y_{1..N})$ can be obtained by either FFX or RFX BMS

Penny et al. 2010, PLoS Comput. Biol.

OVERVIEW

- DCM basic concepts
- Evolution of DCM for fMRI
- Bayesian model selection (BMS)
- Embedding computational models in DCMs
- Integrating tractography and DCM
- Translational Neuromodeling

PREDICTION ERRORS DRIVE SYNAPTIC PLASTICITY

LEARNING OF DYNAMIC AUDIO-VISUAL ASSOCIATIONS

den Ouden et al. 2010, J. Neurosci.

HIERARCHICAL BAYESIAN LEARNING MODEL

prior on volatility

volatility

probabilistic association

observed events

 $p(k) \propto 1$ $p(v_{t+1} | v_t, k) \sim N(v_t, \exp(k))$ $p(r_{t+1} | r_t, v_t) \sim Dir(r_t, \exp(v_t))$

Behrens et al. 2007, Nat. Neurosci.

EXPLAINING RTS BY DIFFERENT LEARNING MODELS

5 alternative learning models:

- categorical probabilities
- hierarchical Bayesian learner
- Rescorla-Wagner
- Hidden Markov models (2 variants)

den Ouden et al. 2010, J. Neurosci.

STIMULUS-INDEPENDENT PREDICTION ERROR

p < 0.05 (cluster-level wholebrain corrected)

den Ouden et al. 2010, J. Neurosci.

PREDICTION ERROR (PE) ACTIVITY IN THE PUTAMEN

PE during active sensory learning

PE during incidental sensory learning

den Ouden et al. 2009, *Cerebral Cortex*

PE = "teaching signal" for synaptic plasticity during learning

PE during reinforcement learning

O'Doherty et al. 2004, Science

Could the putamen be regulating trial-by-trial changes of task-relevant connections?

PREDICTION ERRORS CONTROL PLASTICITY DURING AVL

- Prediction error activity in the putamen exerts non-linear modulatory influences on the connections from visual areas to premotor cortex.
- Influence of visual areas on premotor cortex is:
 - stronger for surprising stimuli
 - weaker for expected stimuli

den Ouden et al. 2010, J. Neurosci.

OVERVIEW

- DCM basic concepts
- Evolution of DCM for fMRI
- Bayesian model selection (BMS)
- Embedding computational models in DCMs
- Integrating tractography and DCM
- Translational Neuromodeling

DIFFUSION-WEIGHTED IMAGING

Parker & Alexander 2005, Phil. Trans. B

PROBABILISTIC TRACTOGRAPHY

- computes local fibre orientation density by spherical deconvolution of the diffusionweighted signal
- estimates the spatial probability distribution of connectivity from given seed regions
- anatomical connectivity = proportion of fibre pathways originating in a specific source region that intersect a target region
- If the area or volume of the source region approaches a point, this measure reduces to method by Behrens et al. (2003)

INTEGRATION OF TRACTOGRAPHY AND DCM

How to integrate information from probabilistic tractography in DCM?

MODELS WITH ANATOMICALLY INFORMED PRIORS (OF AN INTUITIVE FORM) WERE SUPERIOR TO ANATOMICALLY UNINFORMED ONES

Stephan et al. 2009b, Neuroimage

OVERVIEW

- DCM basic concepts
- Evolution of DCM for fMRI
- Bayesian model selection (BMS)
- Embedding computational models in DCMs
- Integrating tractography and DCM
- Translational Neuromodeling

Translational Neuromodeling

Individual treatment prediction

 Detecting mechanistic subgroups (based on inferred mechanisms)

• disease mechanism C

 $\frac{dx}{dt} = f(x, u, \theta) + \omega$

Application to brain activity and behaviour of individual patients

COMPUTATIONAL ASSAYS

Symptoms

(behaviour or physiological data)

Mechanisms (computational, physiological)

Causes

(aetiology)

differential diagnosis of alternative disease mechanisms

spectrum dissection into mechanistically distinct subgroups

prediction of clinical trajectories and treatment response

DIFFERENTIAL DIAGNOSIS BY MODEL SELECTION

Stephan et al. 2016, NeuroImage

BAYESIAN MODEL SELECTION: SYNAESTHESIA

- "projectors" experience colour externally co-localized with a presented grapheme
- "associators" report an internally evoked association
- across all subjects: no evidence for either model
- but BMS results map precisely onto projectors (bottom-up) and associators (top-down)

BAYESIAN MODEL SELECTION: PARKINSON'S DISEASE

Selection of action modulates connections between PFC and SMA

DA-dependent functional disconnection of the SMA

GENERATIVE EMBEDDING (SUPERVISED): CLASSIFICATION

DISCOVERING REMOTE OR "HIDDEN" BRAIN LESIONS

DISCOVERING REMOTE OR "HIDDEN" BRAIN LESIONS

CONNECTIONAL FINGERPRINTS:

APHASIC PATIENTS (N = 11) VS. CONTROLS (N = 26)

6-region DCM of auditory areas during passive speech listening

Schofield et al. 2012, J. Neurosci. (fMRI data from speech recognition task)

PREDICTING PRESENCE/ABSENCE OF "HIDDEN" LESION

Classification accuracy

Brodersen et al. 2011, PLoS Comput. Biol.

Schofield et al. 2012, J. Neurosci. (fMRI data from speech recognition task)

PREDICTING PRESENCE/ABSENCE OF "HIDDEN" LESION

Brodersen et al. 2011, PLoS Comput. Biol.

Schofield et al. 2012, J. Neurosci. (fMRI data from speech recognition task)

BEST-PRACTICE GUIDELINES FOR GENERATIVE EMBEDDING

GENERATIVE EMBEDDING (UNSUPERVISED): CLUSTERING

Brodersen et al. 2014, Neuroimage: Clinical

GENERATIVE EMBEDDING OF VARIATIONAL GAUSSIAN MIXTURE MODELS

Schizophrenic patients (N=41) vs. controls (N=42)

Brodersen et al. 2014, NeuroImage: Clinical

Deserno et al. 2012, J. Neurosci. (fMRI data from working memory task)

DETECTING SUBGROUPS OF PATIENTS IN SCHIZOPHRENIA

- three distinct subgroups (total N = 41)
- subgroups differ (p < 0.05) wrt. negative symptoms on the positive and negative symptom scale (PANSS)

Brodersen et al. 2014, Neuroimage: Clinical

Deserno et al. 2012, J. Neurosci. (fMRI data from working memory task)

ROADMAP FOR TRANSLATIONAL NEUROMODELING

Stephan & Mathys 2014, Curr. Opin. Neurobiol.

METHODS PAPERS: DCM FOR FMRI - PART 1

- Brodersen KH, Schofield TM, Leff AP, Ong CS, Lomakina EI, Buhmann JM, Stephan KE (2011) Generative embedding for model-based classification of fMRI data. PLoS Computational Biology 7: e1002079.
- Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE (2014) Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage: Clinical 4: 98-111
- Daunizeau J, David, O, Stephan KE (2011) Dynamic Causal Modelling: A critical review of the biophysical and statistical foundations. NeuroImage 58: 312-322.
- Daunizeau J, Stephan KE, Friston KJ (2012) Stochastic Dynamic Causal Modelling of fMRI data: Should we care about neural noise? NeuroImage 62: 464-481.
- Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273-1302.
- Friston K, Stephan KE, Li B, Daunizeau J (2010) Generalised filtering. Mathematical Problems in Engineering 2010: 621670.
- Friston KJ, Li B, Daunizeau J, Stephan KE (2011) Network discovery with DCM. NeuroImage 56: 1202-1221.
- Friston K, Penny W (2011) Post hoc Bayesian model selection. Neuroimage 56: 2089-2099.
- Friston KJ, Kahan J, Biswal B, Razi A (2014) A DCM for resting state fMRI. Neuroimage 94:396-407.
- Kiebel SJ, Kloppel S, Weiskopf N, Friston KJ (2007) Dynamic causal modeling: a generative model of slice timing in fMRI. NeuroImage 34:1487-1496.
- Li B, Daunizeau J, Stephan KE, Penny WD, Friston KJ (2011). Stochastic DCM and generalised filtering. NeuroImage 58: 442-457
- Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: a two-state model. NeuroImage 39:269-278.
- Penny WD, Stephan KE, Mechelli A, Friston KJ (2004a) Comparing dynamic causal models. NeuroImage 22:1157-1172.
- Penny WD, Stephan KE, Mechelli A, Friston KJ (2004b) Modelling functional integration: a comparison of structural equation and dynamic causal models. NeuroImage 23 Suppl 1:S264-274.

METHODS PAPERS: DCM FOR FMRI - PART 2

- Penny WD, Stephan KE, Daunizeau J, Joao M, Friston K, Schofield T, Leff AP (2010) Comparing Families of Dynamic Causal Models. PLoS Computational Biology 6: e1000709.
- Penny WD (2012) Comparing dynamic causal models using AIC, BIC and free energy. Neuroimage 59: 319-330.
- Rigoux L, Stephan KE, Friston KJ, Daunizeau J (2014). Bayesian model selection for group studies revisited. NeuroImage 84: 971-985.
- Stephan KE, Harrison LM, Penny WD, Friston KJ (2004) Biophysical models of fMRI responses. Curr Opin Neurobiol 14:629-635.
- Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38:387-401.
- Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics: current state and future extensions. J Biosci 32:129-144.
- Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38:387-401.
- Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HE, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. NeuroImage 42:649-662.
- Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009a) Bayesian model selection for group studies. NeuroImage 46:1004-1017.
- Stephan KE, Tittgemeyer M, Knösche TR, Moran RJ, Friston KJ (2009b) Tractography-based priors for dynamic causal models. NeuroImage 47: 1628-1638.
- Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten simple rules for Dynamic Causal Modelling. NeuroImage 49: 3099-3109.
- Stephan KE, Mathys C (2014). Computational approaches to psychiatry. Current Opinion in Neurobiology 25: 85-92.