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Overview

• Measuring brain activity - an ultrashort summary

• fMRI in a nutshell

• Neurology: clinical examples

• Psychiatry: can fMRI help?



The "human circulation balance"

Angelo Mosso

(1846-1910)

Sandrone et al. (2014) Brain



Electroencephalography (EEG)

Berger H. Über das Elektrenkephalogramm des Menchen. Archive für Psychiatrie. 1929; 87:527-70., Public 

Domain, https://commons.wikimedia.org/w/index.php?curid=2900591

Hans Berger (1873–1941)



EEG & MEG

• alignment of dendritic trees of pyramidal cell allow 
measurements of 

– electric potentials (EEG)

– magnetic fields (MEG)

• excellent temporal resolution 
(< 1 millisecond)

• limited spatial resolution (≈ 1 cm)

http://www.biosemi.com/pics/Praamstra_cap2_large.jpg
http://www.biosemi.com/pics/Praamstra_cap2_large.jpg


Clinical use of EEG & MEG

Childhood absence epilepsy

Reduced latency of a visual

evoked potential due to

demyelination in MS



Functional magnetic resonance imaging (fMRI)

• non-invasive, radioactivity-free technique

• hemodynamic signal (blood oxygen level dependent: BOLD signal) as an 

indirect index of neuronal activity

• temporal resolution in the sub-second range,

spatial resolution in the micrometer/millimeter range



Functional MRI (fMRI)

• Uses echo planar imaging (EPI) for fast 
acquisition of T2*-weighted images.

• Spatial resolution:

– 3 mm (standard 1.5 T scanner)

– < 200 μm (high-field systems)

• Sampling speed:

– 1 slice: 50-100 ms

• Problems:

– distortion and signal dropouts in certain regions

– sensitive to head motion of subjects during 
scanning

• Requires spatial pre-processing and statistical 
analysis.

EPI

(T2*)

T1

dropout

What is it that makes T2* 
weighted images “functional”?



The BOLD contrast

B0

BOLD (Blood Oxygenation Level Dependent) contrast =

measures inhomogeneities in the magnetic field due to 

changes in the level of O2 in the blood

Oxygenated hemoglobine:

Diamagnetic (non-magnetic)

 No signal loss…

Deoxygenated hemoglobine:

Paramagnetic (magnetic)

 signal loss !

Images: Huettel, Song & McCarthy 2004, Functional Magnetic Resonance Imaging



The BOLD contrast

Source: Jorge Jovicich, fMRIB Brief Introduction to fMRI

neural activity   blood flow   oxyhemoglobin   T2*   MR signal 

REST

ACTIVITY

http://www.fmrib.ox.ac.uk/fmri_intro/


The temporal properties of the BOLD signal

• sometimes shows 

initial undershoot

• peaks after 4-6 secs

• back to baseline 

after approx. 30 

secs

• can vary between 

regions and 

subjects

Brief

Stimulus
Undershoot

Initial

Undershoot

Peak



Where do you think is functional MRI used in neurology?



Clinical case: Preoperative lanuage mapping in epilepsy

• 8-minute auditory 

semantic decision 

task 

• 5 patients who had 

focal epilepsy and 

electrocortical

stimulation

• excellent 

fMRI/ECS 

agreement

Genetti et al. 2013, Neurosurgery



Clinical case: Detecting awareness in disorders of 

consciousness

• coma, vegetative state, minimally 

conscious state

• vegetative state: patients who 

emerge from coma appear to be 

awake but show no signs of 

awareness

• single patient, severe traumatic brain

injury, five months unresponsive, 

preserved sleep-wake cycles

• imagery fMRI paradigm:

– "imagine playing tennis"

– "imagine visiting all of the rooms of 

your house, starting from the front 

door"
Owen et al. 2006, Science



DSM/ICD



DSM-IV:  Schizophrenia

delusions

hallucinations

formal thought disorder

negative symptoms

different symptoms, 

same diagnosis

delusions

hallucinations

delusions

hallucinations

same symptoms, 

different outcome

• Delusions

• Hallucinations

• Formal thought disorder

• Grossly disorganized or catatonic behavior

• Negative symptoms: flat affect, anhedonia, avolition, alogia, asociality

+ social or occupational dysfunction

+ continuous signs of the disturbance persist for at least six months

 2 symptoms

over  1 month



Psychiatric disorders = spectrum diseases

polygenetic basis

gene-environment interactions

environmental variation

variability in clinical

trajectory and treatment

response

multiple disease mechanisms



Tansey et al. 2012, PLoS Med. 9: e1001326



Using neuroimaging to predict treatment response

• local differences in activity?

• differences in patterns of activity?

• differences in functional connectivity?



Local differences in activity?

• 49 patients with depression in 

two groups

• subgenual ACC activity in 

response to visually presented 

negative words 

• predicts residual severity after 

cognitive therapy (CT)

• predicts remission under CT:

– Sensitivity 38%

– Specificity 95%

Siegle et al. 2012, Arch. Gen. Psychiatry



Differences in patterns of activity?

• visual presentation of 

sad facial expressions

• 16 medication-free 

patients in an acute 

episode of major 

depression, before 

beginning treatment 

with CBT

• PCA of whole-brain 

activity predicts clinical 

response to CBT 

(SVM, sensitivity 71%, 

specificity 86%)

Costafreda et al. 2009, Neuroreport



Differences in functional connectivity?

• 22 patients with 

paranoid 

schizophrenia

• treatment with CBT

• clinical follow-up 

over 8 years

• prefrontal and 

amygdala 

connections predict 

long-term positive 

and affective 

symptoms, 

respectively

Mason et al. 2017, Transl. Psychiatry

p=0.03

p=0.032



But...

• predictions far from perfect

• no mechanistic interpretability

• no view of an emerging nosology that maps onto(patho)physiology

• how would one derive a new therapy from a demonstrated prediction of 

treatment response?



Application to brain activity and 

behaviour of individual patients

Computational assays:

Models of disease mechanisms




Detecting physiological subgroups 

(based on inferred mechanisms)


Translational Neuromodeling

Individual treatment prediction

 disease mechanism A

 disease mechanism B

 disease mechanism C

( , , )
dx

f x u
dt

  

Stephan et al. 2015, Neuron



Generative models as "computational assays"

( | , )p y m

( | , )p y m ( | )p m

( | , )p y m

( | , )p y m ( | )p m



Anatomically

physiologically

genetically

informed priors

Computational

models

Physiological / 

biophysical

models

Predictions about

individual patients

Computational priors

(traits / high-order 

beliefs)

INDEPENDENT

CONSTRAINTS

MODELING

INFERENCE & PREDICTION

BMS

generative embedding

NCMs



Anatomically

physiologically

genetically

informed priors

Computational

models

Physiological / 

biophysical

models

Predictions about

individual patients

Computational priors

(belief structure)

INDEPENDENT

CONSTRAINTS

MODELING

INFERENCE & PREDICTION

BMS

generative embedding

NCMs



Dynamic causal modeling (DCM)

Friston et al. 2003, NeuroImage

( , , )
dx

f x u
dt

    ),(xgy

Model inversion:

Estimating neuronal 

mechanisms

EEG, MEG fMRI

Forward model:

Predicting measured 

activity

dwMRI

Stephan et al. 2009, NeuroImage



endogenous 

connectivity

direct inputs

modulation of

connectivity

Neuronal state equation
Modulatory input

t

u2(t)

t

Driving input

u1(t)

𝑨 =
𝝏  𝒙

𝝏𝒙

𝑩(𝒋) =
𝝏

𝝏𝒖𝒋

𝝏  𝒙

𝝏𝒙

𝑪 =
𝝏  𝒙

𝝏𝒖

 𝒙 = 𝑨 + 𝒖𝒋𝑩
𝒋 𝒙 + 𝑪𝒖

Hemodynamic model

𝝂𝒊(𝒕) and 𝒒𝒊(𝒕)

Neuronal states

𝒙𝒊(𝒕)

𝒙𝟏(𝒕)
𝒙𝟑(𝒕)

𝒙𝟐(𝒕)

BOLD signal change equation

𝒚 = 𝑽𝟎 𝒌𝟏 𝟏 − 𝒒 + 𝒌𝟐 𝟏 −
𝒒

𝝂
+ 𝒌𝟑 𝟏 − 𝝂 + 𝒆

with 𝒌𝟏 = 𝟒. 𝟑𝝑𝟎𝑬𝟎𝑻𝑬, 𝒌𝟐 = 𝜺𝒓𝟎𝑬𝟎𝑻𝑬, 𝒌𝟑 = 𝟏 − 𝜺

𝝉  𝝂 = 𝒇 − 𝝂𝟏/𝜶

𝝉  𝒒 = 𝒇𝑬(𝒇, 𝑬𝟎)/𝑬𝟎 − 𝝂𝟏/𝜶𝒒/𝝂

Local hemodynamic 

state equations

Changes in volume (𝝂) 

and dHb (𝒒) 

𝒇
Balloon model

 𝒔 = 𝒙 − 𝜿𝒔 − 𝜸 𝒇 − 𝟏

 𝒇 = 𝒔

vasodilatory 

signal and flow 

induction (rCBF)

BOLD signal

y(t)
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Nonlinear Dynamic Causal Model for fMRI

Stephan et al. 2008, NeuroImage
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Perception = inversion of a hierarchical generative model

environm. states

others' mental states

bodily states

( | , )p x y m

( | , ) ( | )p y x m p x m
forward model

perception

neuronal states



Anatomical hierarchies and predictive coding

Felleman & Van Essen 1991, Cerebral Cortex

.

xi-1

xi

xi+1

PE predictions

precision

precision

PE predictions



events in the world

association

volatility

Hierarchical Gaussian Filter (HGF)

sensory stimuli

1
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1ku  ku

Mathys et al. 2014, Front. Hum. Neurosci. Marshall, Mathys et al. 2016, PLoS Biology

belief  precision × PE



Hierarchical prediction errors (PEs) in sensory learning
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Iglesias et al. 2013, Neuron



Sensory precision-weighted PEs (pwPEs)

A B C

first fMRI study
(N=45)

second fMRI study
(N=27)

conjunction across studies

p<0.05 FWE whole-brain corrected

Iglesias et al. 2013, Neuron



Hierarchical precision-weighted PEs in sensory learning

Study 2: N=27

Study 1: N=48

Iglesias et al. 2013, Neuron

p<0.05, whole brain FWE corrected

p<0.05, SVC FWE corrected

p<0.05, SVC FWE corrected

p<0.001, uncorrected

Outcome PEs in VTA/SN Probability PEs in basal forebrain



Hierarchical PEs during social learning

Diaconescu et al., in preparation



Precision-weighted advice PEs (2)

first fMRI study (N=35) second fMRI study (N=47) conjunction

Diaconescu et al., in preparation

p<0.05, FWE 

corrected for 

joint 

midbrain/BF 

mask

3 4 4



Precision-weighted PEs about adviser fidelity (3)

first fMRI study (N=35)

second fMRI study (N=47)

conjunction

Diaconescu et al., in preparation

p<0.05, FWE corrected for 

joint midbrain/BF mask



At-risk mental state (ARMS)

• construct pertaining to the pre-psychotic phase, before a formal diagnosis

• presence of either 

– attenuated psychotic symptoms, 

– brief and self-limiting psychotic symptoms (BLIPS), or 

– significant reduction of function under a family history of schizophrenia

• of major interest for clinical management ("prodromal schizophrenia")

– early detection

– possible prevention by early treatment?



Prefrontal-parietal connectivity during working memory in 

schizophrenia

Schmidt et al. 2013, JAMA Psychiatry

17 ARMS, 21 first-episode (13 non-treated), 

20 controls



Aberrant salience

• Kapur (2003): attribution of “aberrant salience” to irrelevant events as the 

starting point of delusion formation

• linked to abnormal phasic dopamine (DA) release

– "chaotic" or "mistimed" PE signals that triggers maladaptive (NMDAR) 

dependent plasticity and shifts high-order beliefs

– prediction: abnormal PE responses to irrelevant/neutral events in midbrain 

and/or dopaminoceptive regions



Aberrant salience in schizophrenia

A. B. C.

Murray et al. 2008, Mol. Psychiatry Gradin et al. 2011, Brain Romaniuk et al. 2008, Archiv. Gen. Psychiatry



Aberrant salience

• several limitations of previous studies: 

– vague concept of “salience”, should be defined in terms of precision of 

PEs

– studies restricted to patients with fully developed disease (not at 

beginning of delusion formation)

– "(ir)relevance" of events defined in a static experimental frame of 

reference

1
1

ˆ
i

i i

i

PE






 



Aberrant salience and hierarchical inference in ARMS

Cole et al., in preparation

z = 57

z = 47



Aberrant salience (enhanced 𝜺𝟐) in prodromal schizophrenia

z = 57

z = 47

Enhanced 𝛆𝟐 in ARMS

p<0.05, FWE cluster-level 

corrected within orthogonal 

functional mask

Outcome pwPE (𝛆𝟐) pooled 

across groups

p<0.05, FWE cluster-level 

whole-brain corrected

Cole et al., in preparation



Anatomically

physiologically

genetically

informed priors

Computational

models

Physiological / 

biophysical

models

Predictions about

individual patients

"Trait" priors

INDEPENDENT
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Synaesthesia

• “projectors” experience 

color externally colocalized

with a presented grapheme

• “associators” report an 

internally evoked 

association

• across all subjects: no

evidence for either model

• but BMS results map

precisely onto projectors

(bottom-up mechanisms) 

and associators (top-down)

van Leeuwen et al. 2011, J. Neurosci.



Generative embedding (supervised)

Brodersen et al. 2011, PLoS Comput. Biol.

step 2 —

kernel construction

step 1 —

model inversion

measurements from 

an individual subject

subject-specific

inverted generative model

subject representation in the 

generative score space

A → B

A → C

B → B

B → C

A

C
B

step 3 —

support vector classification

separating hyperplane fitted to 

discriminate between groups

A

C
B

jointly discriminative

model parameters

step 4 —

interpretation



Discovering remote or “hidden” brain lesions



Discovering remote or “hidden” brain lesions
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Brodersen et al. 2011, PLoS Comput. Biol.



Connectional fingerprints : 

aphasic patients (N=11) vs. controls (N=26)

6-region DCM of auditory 

areas during passive speech 

listening

Brodersen et al. 2011, PLoS Comput. Biol.

Data from Schofield et al.
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Classification accuracy

Brodersen et al. 2011, PLoS Comput. Biol.

MGB
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HG
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MGB
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auditory stimuli
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Generative embedding (unsupervised)

Brodersen et al. 2014, NeuroImage Clinical



Detecting subgroups of patients in 

schizophrenia

• three distinct subgroups (total N=41)

• subgroups differ (p < 0.05) wrt. negative symptoms 

on the positive and negative symptom scale (PANSS)

Optimal 

cluster 

solution

Brodersen et al. 2014, NeuroImage Clinical



Prospective patients studies: https://tnu-studien.ethz.ch

NMDA DA ACh

difference 

responders vs. 

non-responders?

individual 

treatment 

response ?

cross-sectional prospective

Ongoing studies at TNU Zurich:

• schizophrenia (COMPASS)

• depression (AIDA)

• autism (BIASD)

• pathological gambling

• multiple sclerosis



Multimodal

measurements
Research clinic for 

patient  studies

Prospective studies for 

model validation & translation

Development of

mathematical

models & software

TNU Zurich

www.tnu.ethz.ch Twitter: @tnuzurich



Open source software TAPAS

www.translationalneuromodeling.org/tapas



Computational Psychiatry Course (CPC) Zurich

www.translationalneuromodeling.org/cpcourse



Further reading

Brodersen KH, Schofield TM, Leff AP, Ong CS, Lomakina EI, Buhmann M, Stephan KE (2011) Generative 

Embedding for Model-Based Classification of fMRI Data.  PLoS Computational Biology 7: e1002079.

Brodersen  KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE (2014) Dissecting

psychiatric spectrum disorders by generative embedding.  NeuroImage Clinical 4: 98-111.

Iglesias S, Mathys C, Brodersen KH, Kasper L, Piccirelli M, den Ouden HEM, Stephan KE (2013) Hierarchical

prediction errors in midbrain and basal forebrain during sensory learning.  Neuron 80: 519-530.

Lieder F, Daunizeau J, Garrido MI, Friston KJ, Stephan KE (2013) Modelling Trial-by-Trial Changes in the Mismatch

Negativity.  PLoS Computational Biology 9: e1002911.

Mathys C, Daunizeau J, Friston KJ, Stephan KE (2011) A Bayesian foundation for individual learning under 

uncertainty. Frontiers in Human Neuroscience 5: 39.

Stephan KE, Baldeweg T, Friston KJ (2006) Synaptic plasticity and dysconnection in schizophrenia.  Biological 

Psychiatry 59: 929-939.

Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouen HEM, Breakspear M, Friston KJ (2008) Nonlinear

dynamic causal models for fMRI.  NeuroImage 42: 649-662.

Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies.  

NeuroImage 46: 1004-1017.

Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: From abnormal synaptic plasticity to

failures of self-monitoring. Schizophrenia Bulletin 35: 509-527.

Stephan KE, Mathys C (2014) Computational Approaches to Psychiatry. Current Opinion in Neurobiology 25:85-92.

Stephan KE, Iglesias S, Heinzle J, Diaconescu AO (2015) Translational Perspectives for Computational

Neuroimaging. Neuron 87: 716-732.



E. Aponte

N. Araya

I. Berwian

M. Bischoff

H. Brunner

D. Cole

A. Diaconescu

H.C.T. Do

S. Frässle

S. Grässli

H. Haker

J. Heinzle

Q. Huys

S. Iglesias

L. Kasper

C. Mathys

S. Paliwal

G. Paolini

F. Petzschner

D. Renz

L. Rigoux

M. Schneebeli

I. Schnürer

D. Schöbi

J. Siemerkus

G. Stefanics

K.E. Stephan

S. Tomiello

L. Weber

K. Wellstein

Y. Yao

The TNU – 15 nationalities, 

from mathematics to medicine



Thank you – UZH & ETH partnership

Medical Faculty

Faculty of Science

Dept. of Information Technology 

& Electrical Engineering



Thank you

www.tnu.ethz.ch

@tnuzurich

@CompPsychiatry


