

Signal, Noise and Preprocessing*

Methods and Models for fMRI Analysis

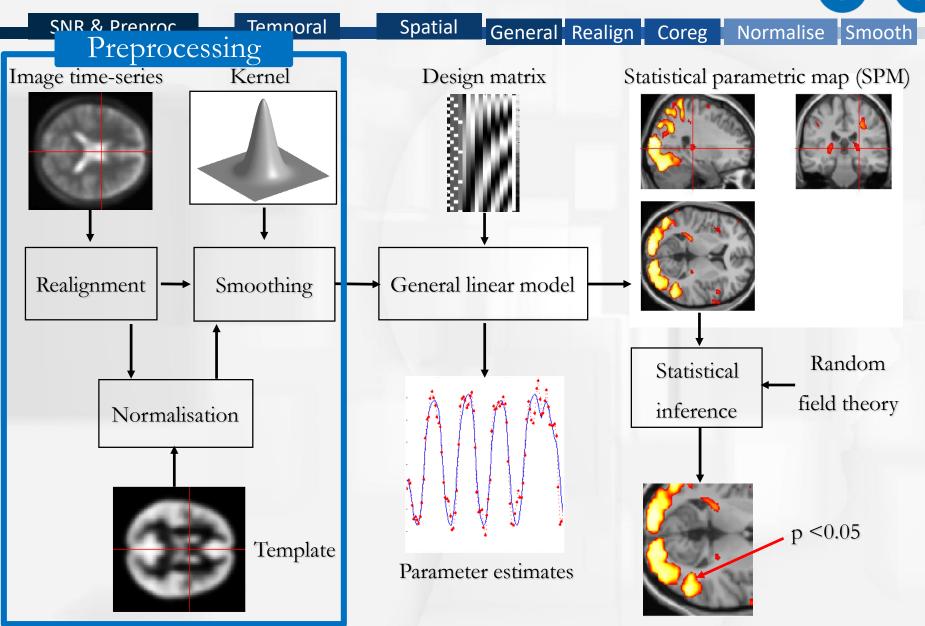
October 10th, 2017

Lars Kasper, PhD

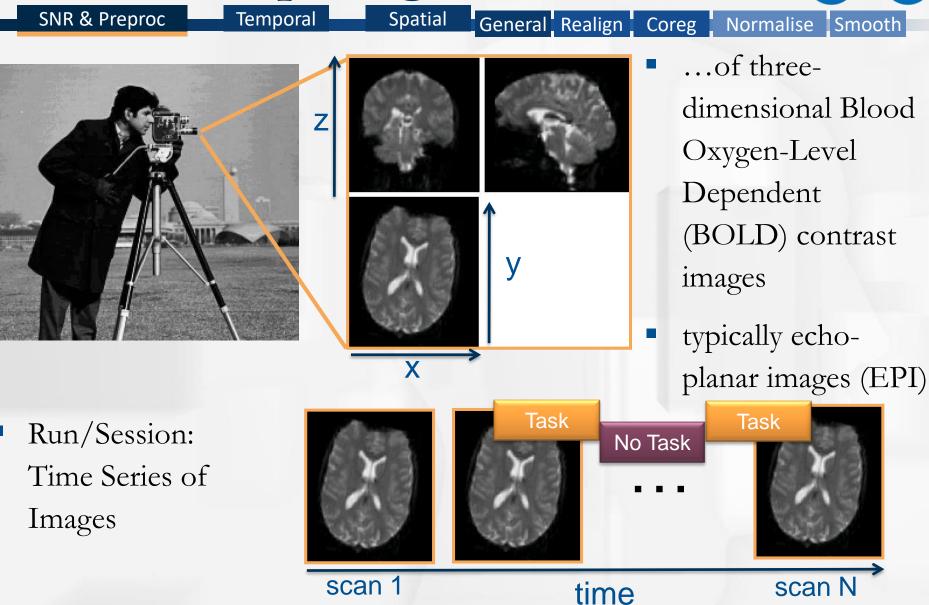
TNU & MR-Technology and Methods Group

Institute for Biomedical Engineering, UZH & ETHZ

Overview of SPM for fMRI



fMRI = Acquiring Movies



fMRI = Acquiring Movies

Temporal

Spatial

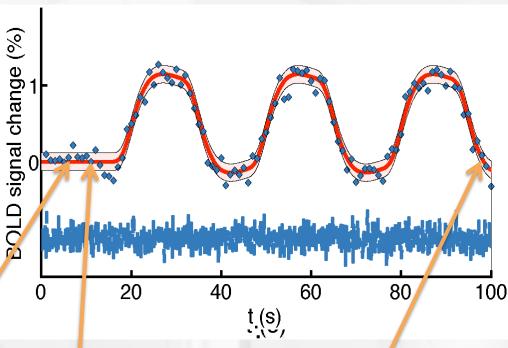
The Localized Time-series is
 the Fundamental Information
 Unit of fMRI

Signal: Fluctuation through Blood oxygen level dependent (BOLD) contrast

Noise: All other fluctuations

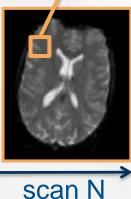
Run/Session: Time Series of Images

SNR & Preproc



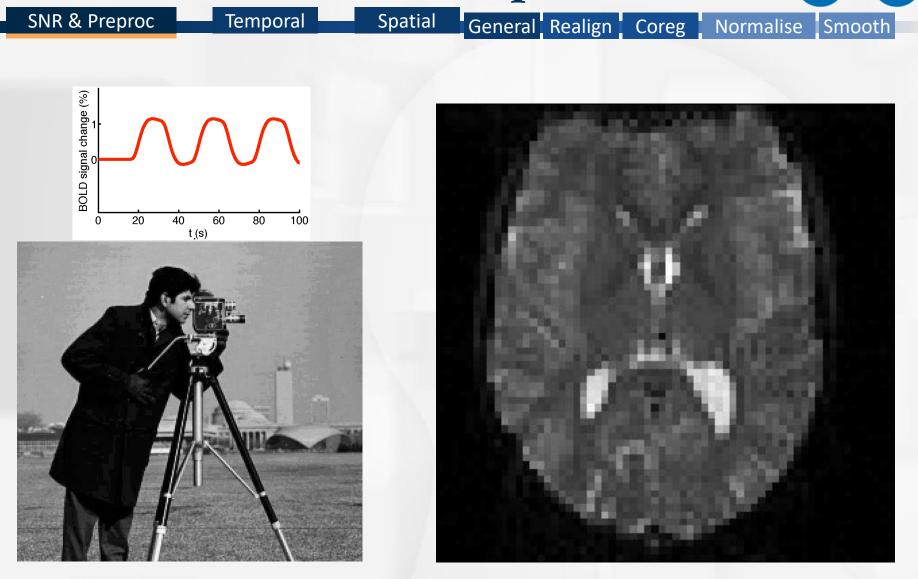
General Realign Coreg Normalise Smooth

scan 1

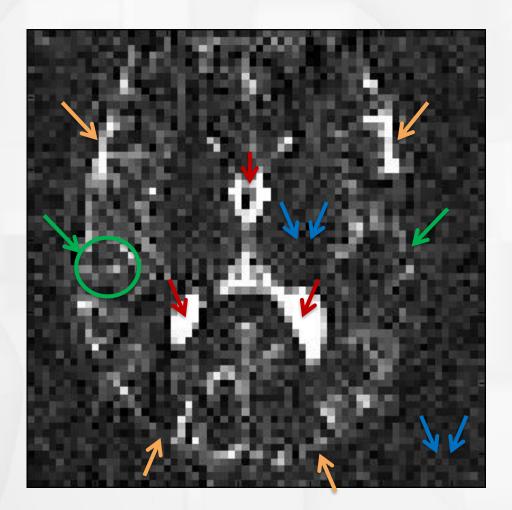


time

fMRI Movie: An example

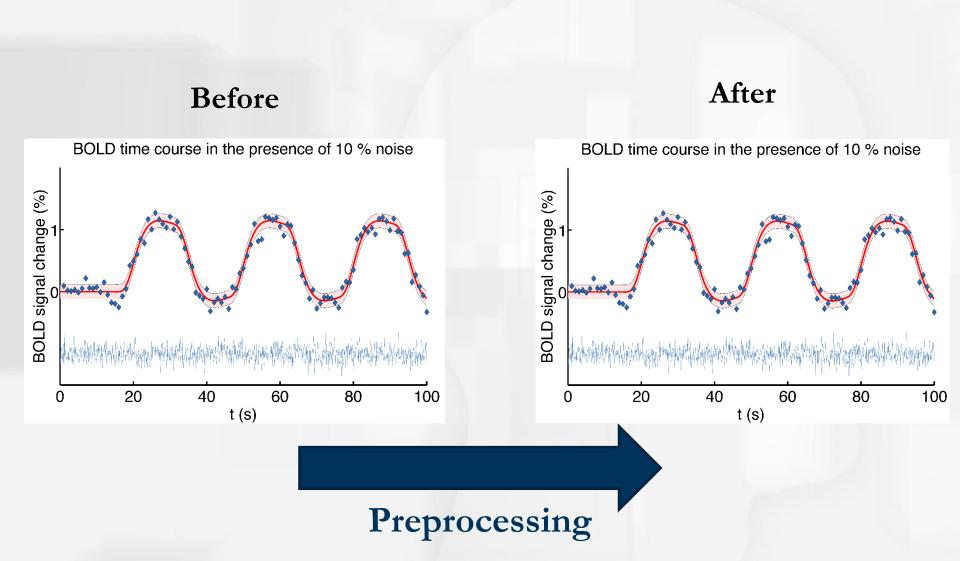


interest in fluctuations only



The Goal of Preprocessing

Temporal

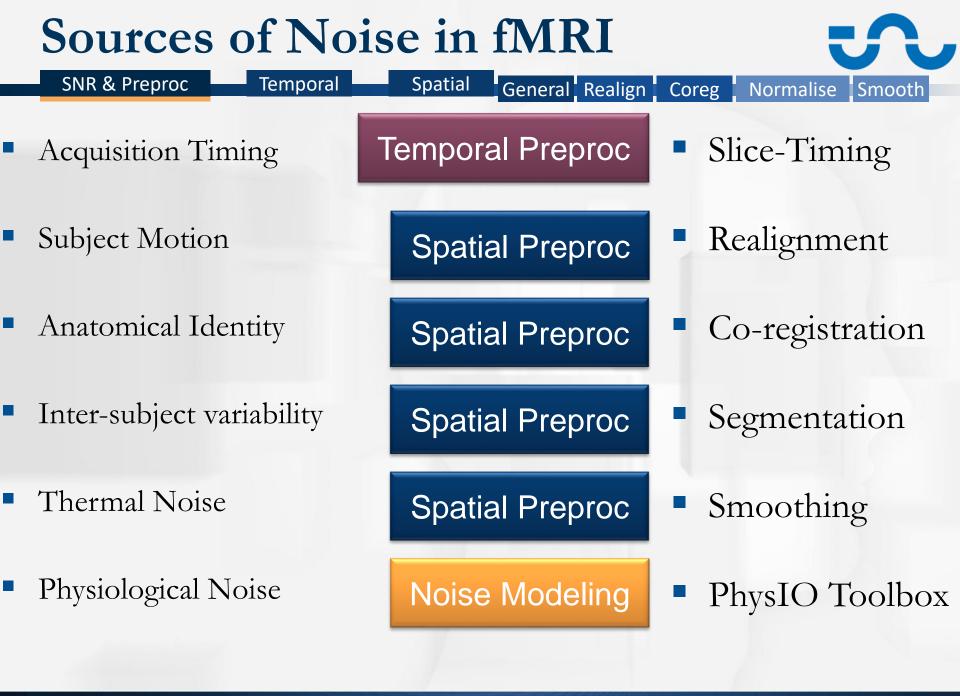


Spatial

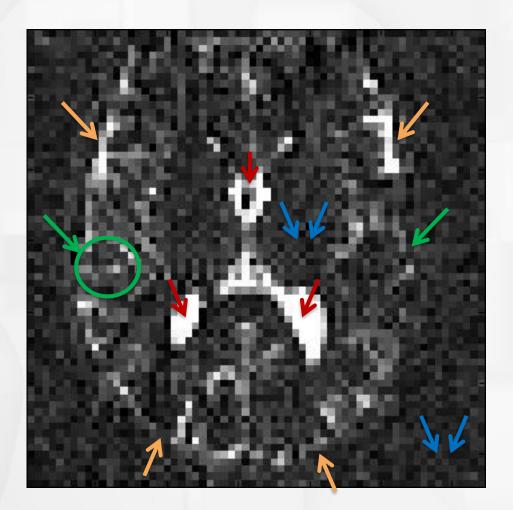
General Realign Coreg Normalise Smooth

Lars Kasper

SNR & Preproc

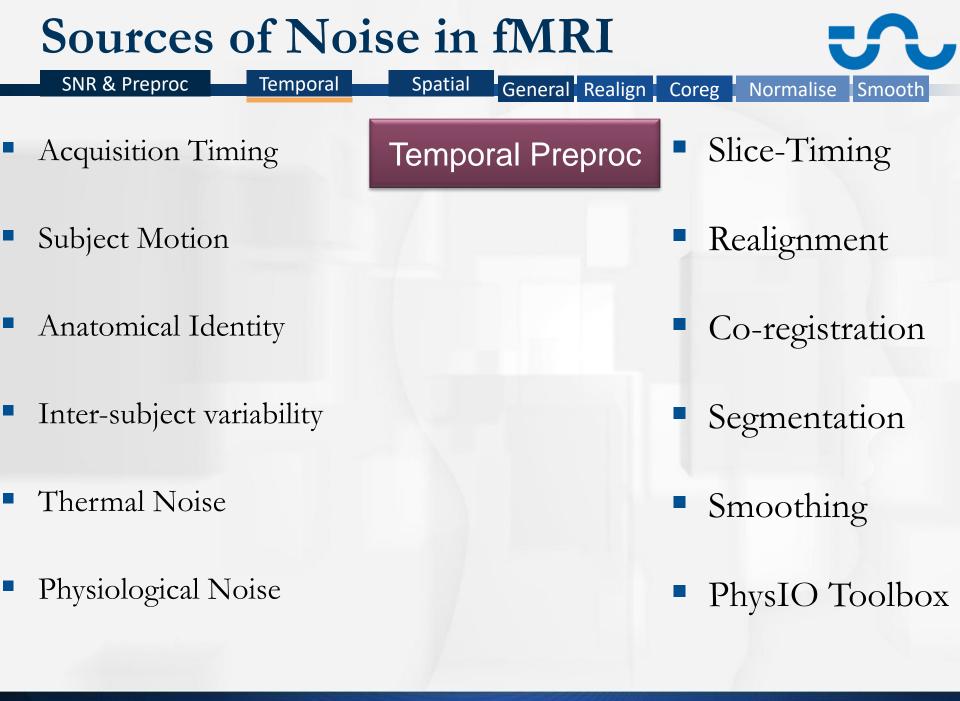


interest in fluctuations only



The SPM Graphical User Interface

	SNR & Preproc Temporal Spatial	General Realign Coreg Normalise Smooth
•	Student Version> : SPM12 (6225): Menu	 Preprocessing
1	Realign Slice timing Smooth	 Realignment
	Coregis Normali Segment	 Slice-Timing Correction
2.	Specify 1st-level Review	 Co-registration
	Specify 2nd-level Estimate	 Unified Segmentation &
	Results	Normalisation
	Dynamic Causal Modelling	 Smoothing
	SPM for functional MRI	 Noise Modeling
	Display Check Reg Rend FMRI	Physiological Confound Regressors
	Tool ‡ PPIs ImCalc DICOM Import Help Utils ‡ Batch Quit	
	Copyright (c) 1991,1994-2014	



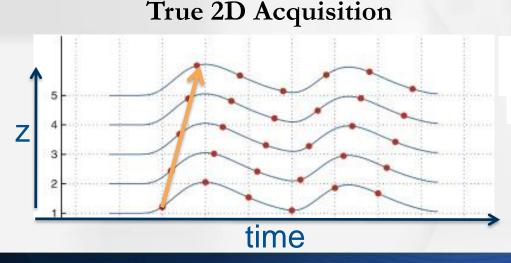
Slice-timing correction (STC)

Temporal

 Slices of 1 scan volume are not acquired simultaneously (60 ms per slice)

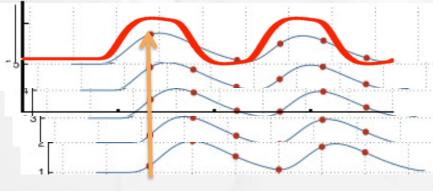
Spatial

- Creates shifts of up to 1 volume repetition time (TR),
 i.e. several seconds
- Reduces sensitivity for time-locked effects (smaller correlation)



Same-Timepoint Assumption

General Realign Coreg Normalise Smooth



SNR & Preproc

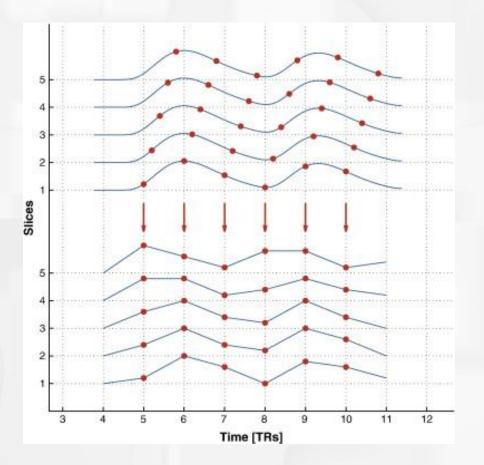
Slice-timing correction (STC)

SNR & Preproc

Temporal Spatial

ial General Realign Coreg Normalise Smooth

- Slice-timing correction: All voxel time series are aligned to acquisition time of 1 slice
- Missing data is sinc-interpolated (band-limited signal)



Sladky et al, Neurolmage 2011

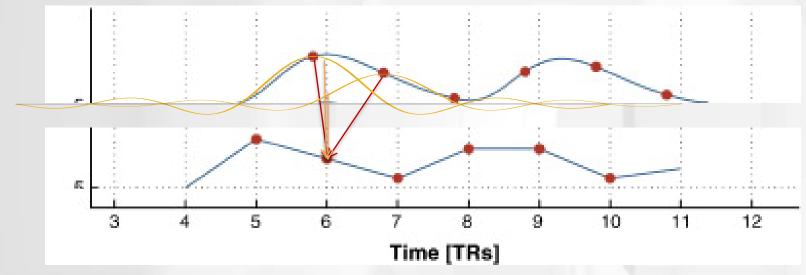
Interpolation

SNR & Preproc

Temporal

Spatial General Realign Coreg Normalise Smooth

Interpolation: Estimate missing data between existing data via certain regularity assumptions



- Signal at missing point is weighted average of neighbors
- Weighting function = interpolation "kernel"
- Here: assumption of limited frequency range of signal: *sinc*-interpolation

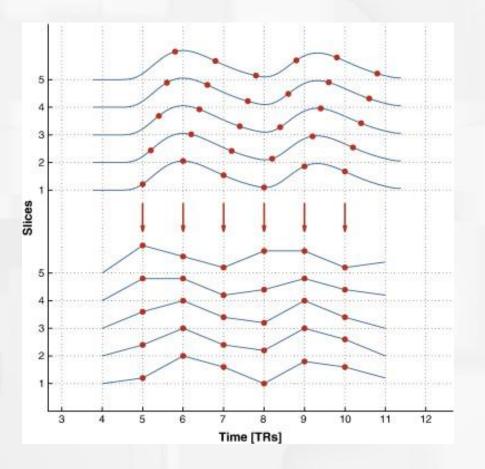
Slice-timing correction (STC)

SNR & Preproc

Temporal ______S

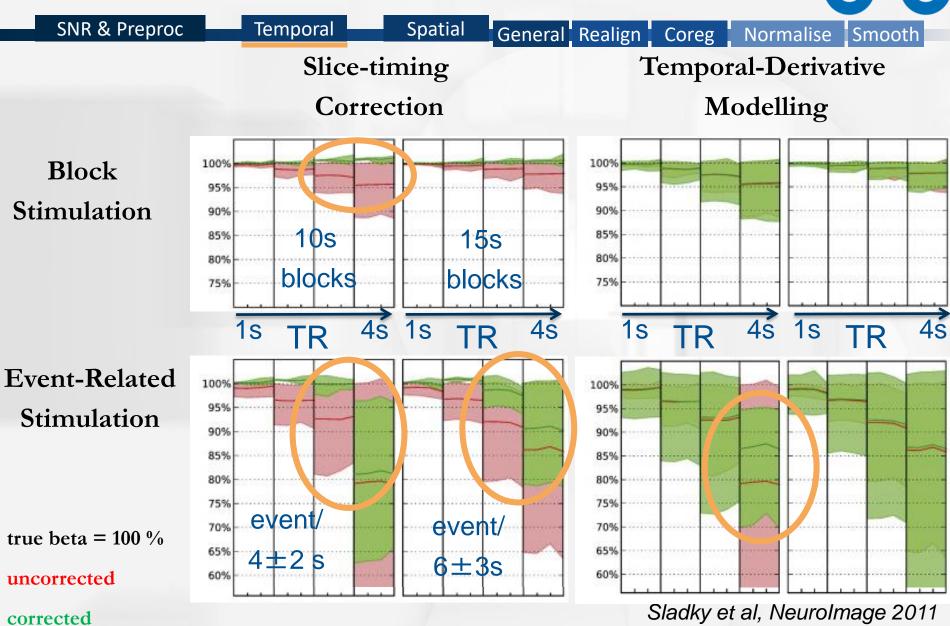
Spatial General Realign Coreg Normalise Smooth

- Slice-timing correction: All voxel time series are aligned to acquisition time of 1 slice
- Missing data is sinc-interpolated (band-limited signal)
- Before or after realignment?
 - before: dominant through-slice motion
 - after: dominant within-slice motion
- At all?



Sladky et al, Neurolmage 2011

STC Results: Simulation



Lars Kasper

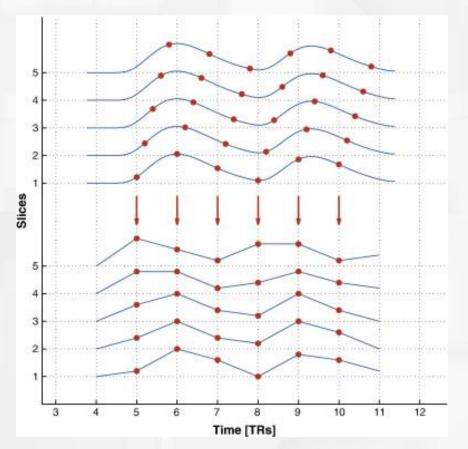
Slice-timing correction (STC)

SNR & Preproc

Temporal Sp

Spatial General Realign Coreg Normalise Smooth

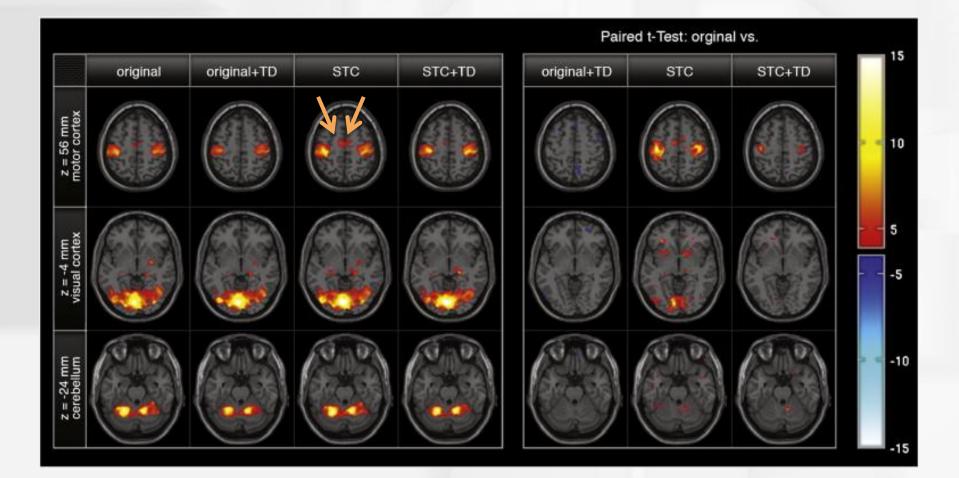
- Slice-timing correction: All voxel time series are aligned to acquisition time of 1 slice
- Missing data is sinc-interpolated (band-limited signal)
- Before or after realignment?
 - before: dominant through-slice motion
 - after: dominant within-slice motion
- At all?
 - block design: for long TR (3s+) & short blocks (10s) improves estimates > 5 %
 - event-related: for normal TRs (2s+) improves estimates > 5 %



Sladky et al, Neurolmage 2011

STC Results: Experiment

Temporal

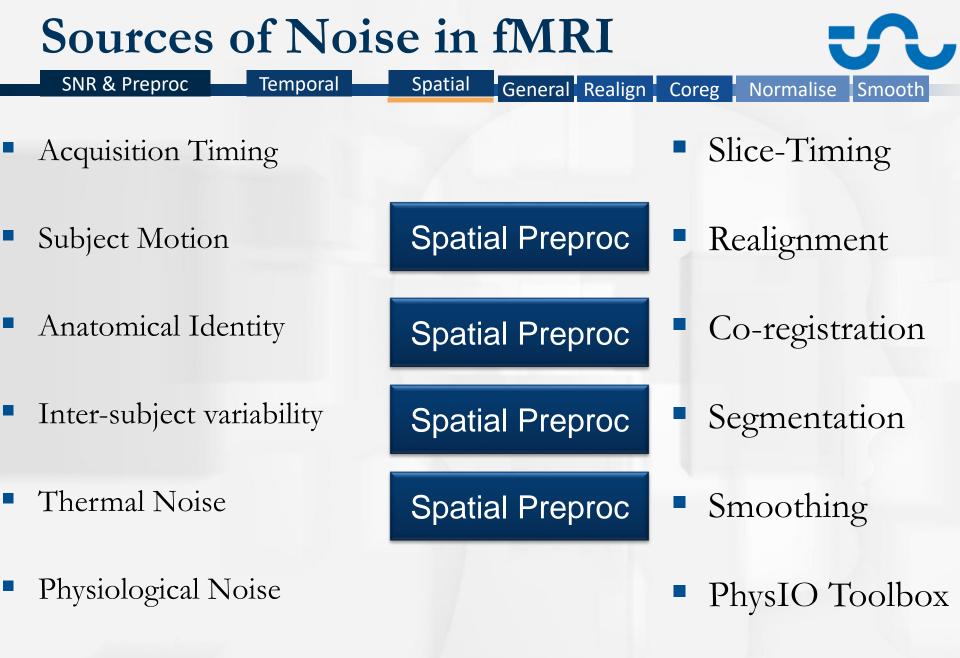


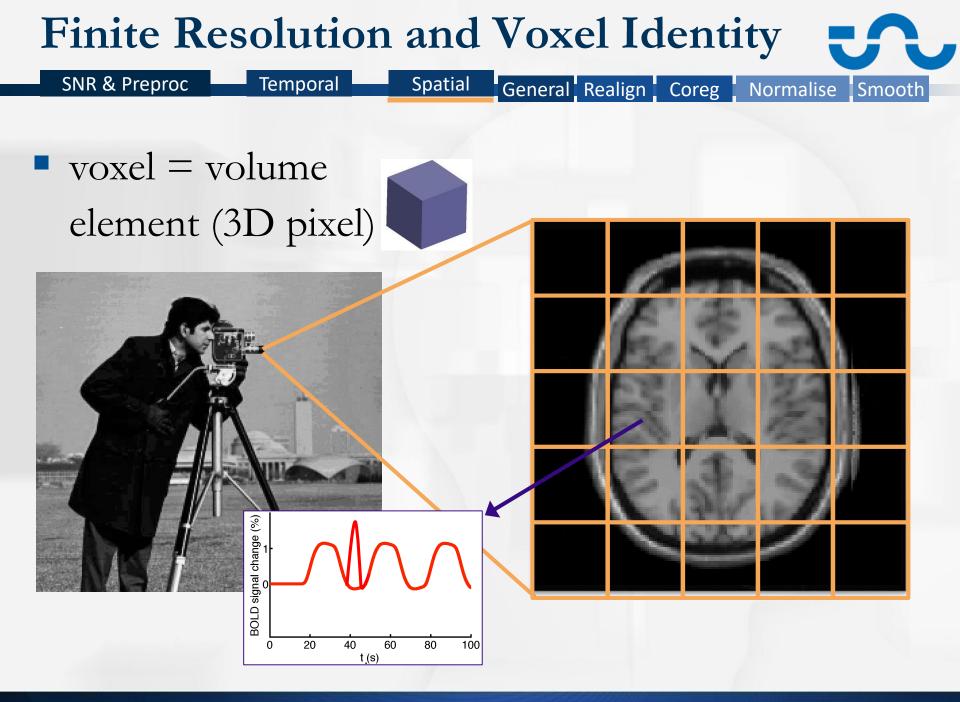
Spatial

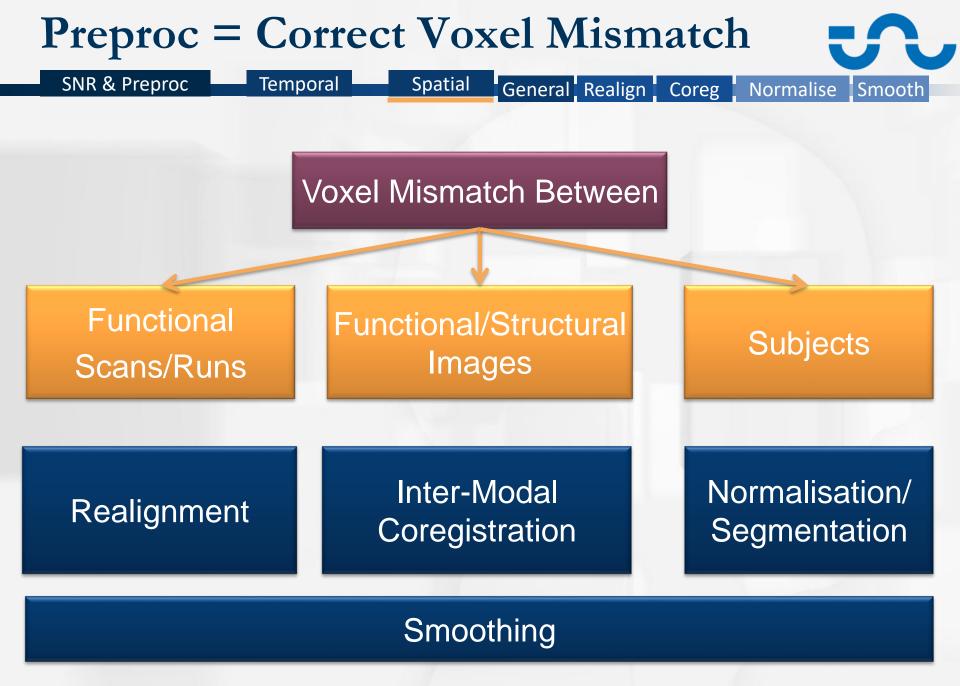
Sladky et al, Neurolmage 2011

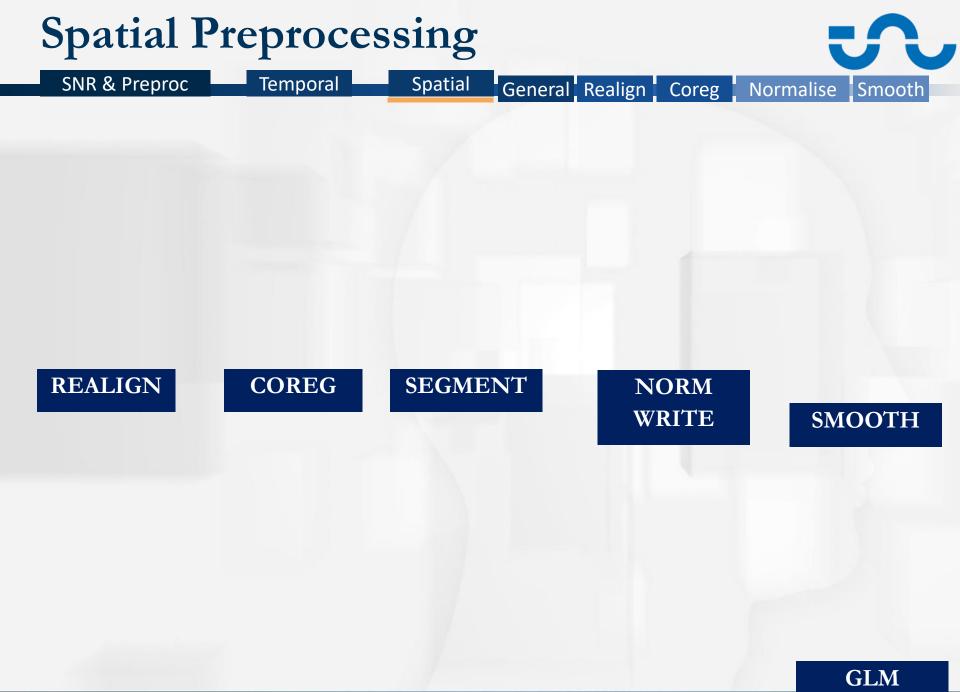
General Realign Coreg Normalise Smooth

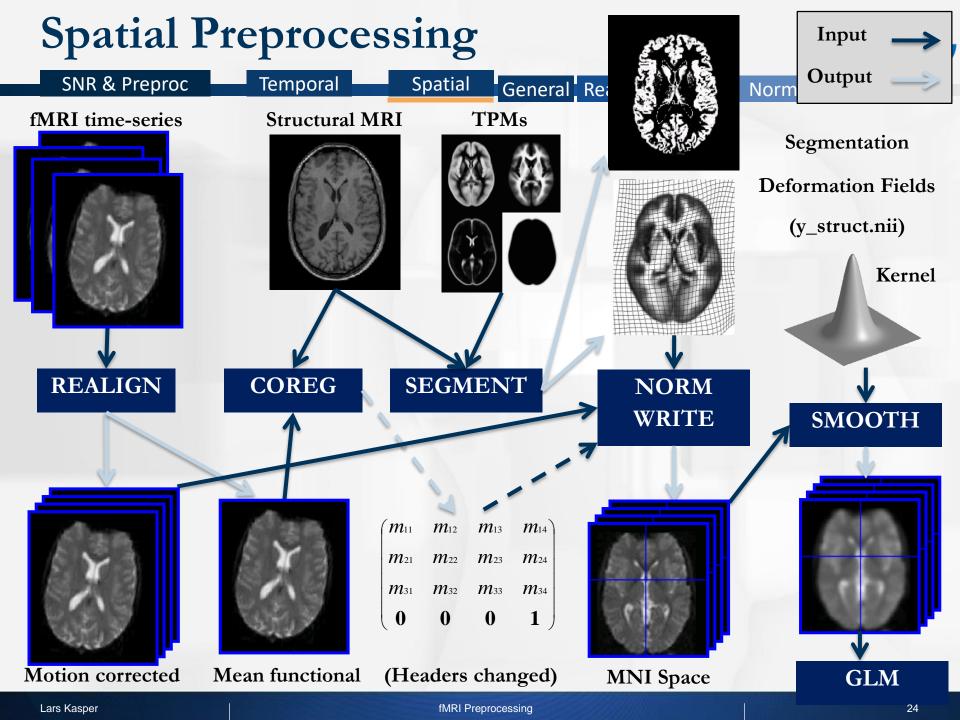
SNR & Preproc











General Remarks: Image Registration

SNR & Preproc

Temporal

Spati<u>al</u>

General Realign Coreg Normalise Smooth

- Realignment, Co-Registration and Normalisation (via Unified Segmentation) are all *image registration methods*
- Goal: Manipulate one set of images to arrive in same coordinate system as a reference image
- Key ingredients for image registration
 - A. Voxel-to-world mapping
 - Transformation В.
 - Similarity Measure С.
 - Optimisation D.
 - Interpolation E.

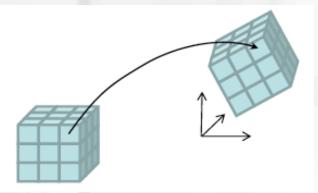
A. Voxel-to-World Mapping

SNR & Preproc

Temporal

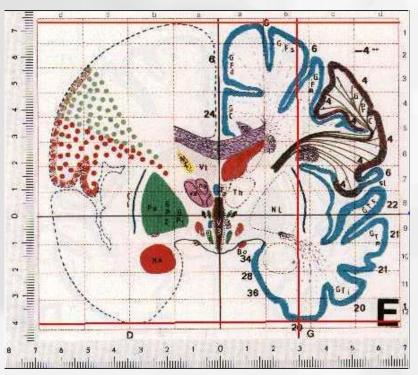
Spatial General Realign Coreg Normalise Smooth

- 3D images are made up of voxels.
- Voxel intensities are stored on disk as lists of numbers.
- Meta-information about the data:
 - image dimensions
 - conversion from list to 3D array
 - "voxel-to-world mapping"
 - Spatial transformation that maps
 - from: data coordinates (voxel column i, row j, slice k)
 - to: a real-world position (x,y,z mm) in a coordinate system e.g.:
 - Scanner coordinates
 - T&T/MNI coordinates



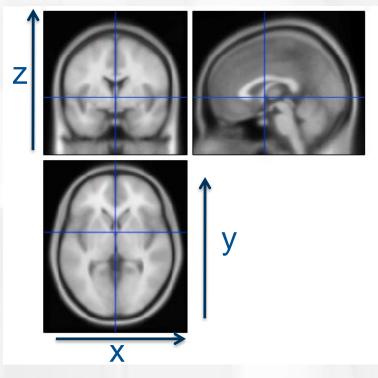
A. Voxel-to-World: Standard Spaces

Talairach Atlas



- Definition of coordinate system:
 - Origin (0,0,0): anterior commissure
 - Right = +X; Anterior = +Y; Superior = +Z

MNI/ICBM AVG152 Template



- Actual brain dimensions
 - European brains,
 - a bit dilated (bug)

B. Transformations

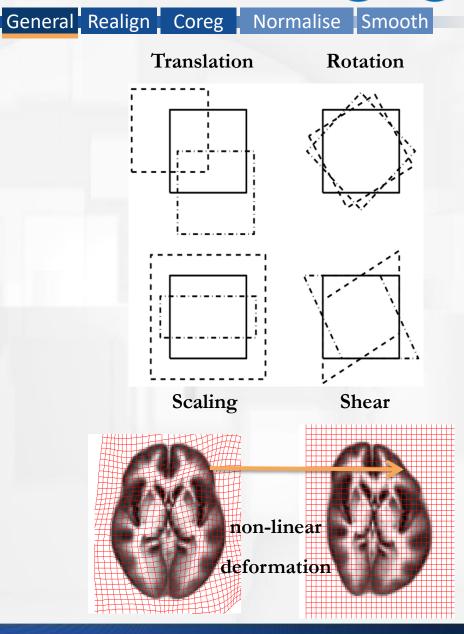
Temporal

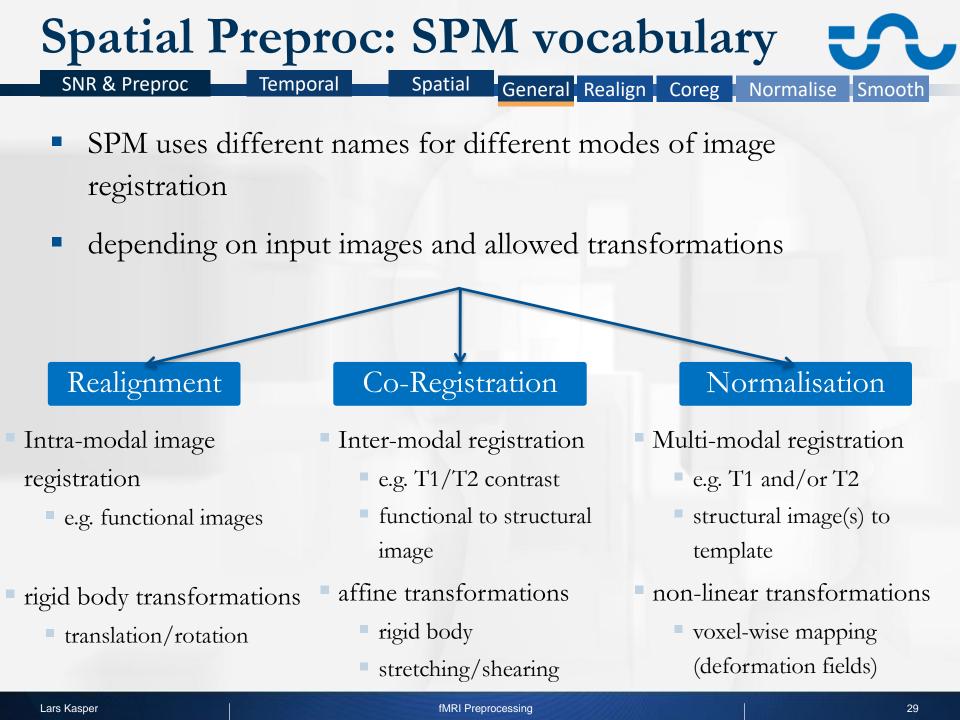
Spatial

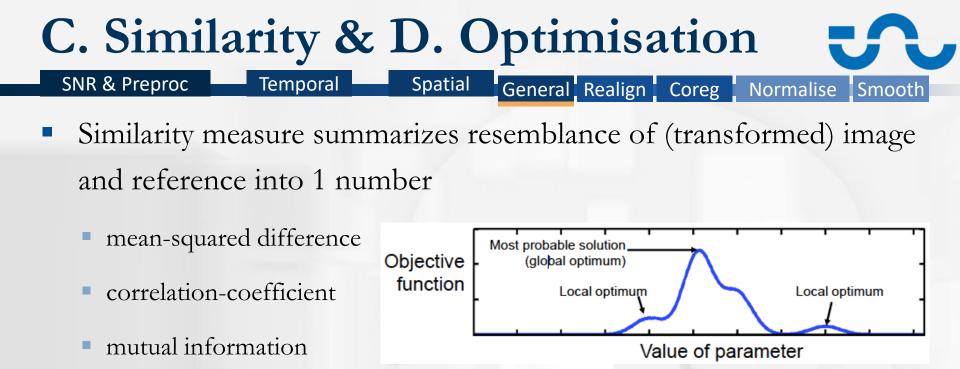
- Transformations describe the mapping of all image voxels from one coordinate system into another
- Types of transformations

SNR & Preproc

- rigid body = translation + rotation
- affine = rigid body + scaling + shear
- non-linear = any mapping
 - (x,y,z) to new values (x',y', z')
 - described by deformation fields

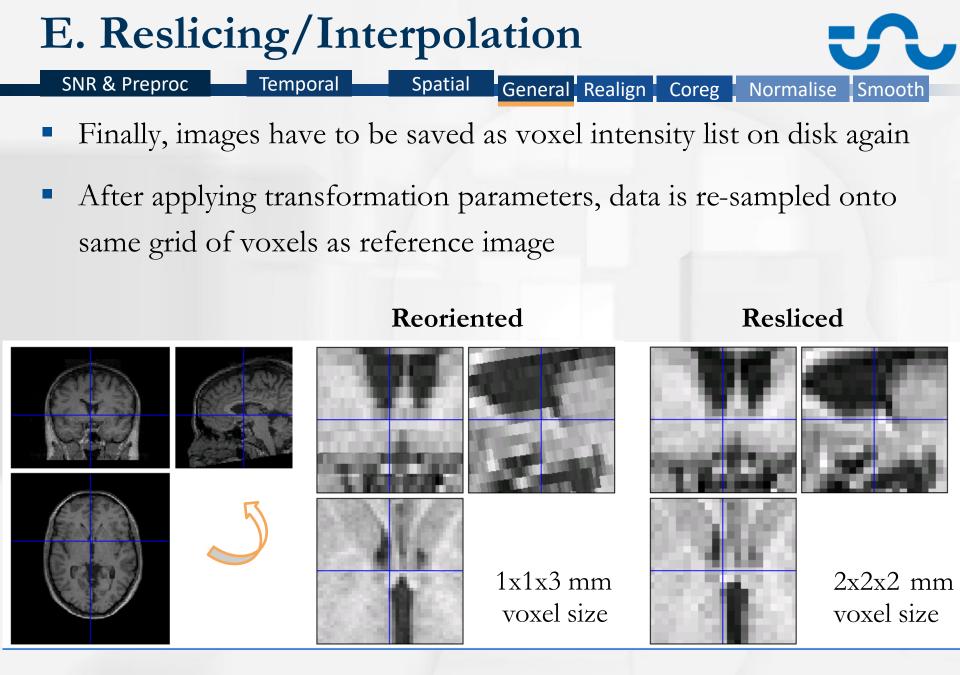


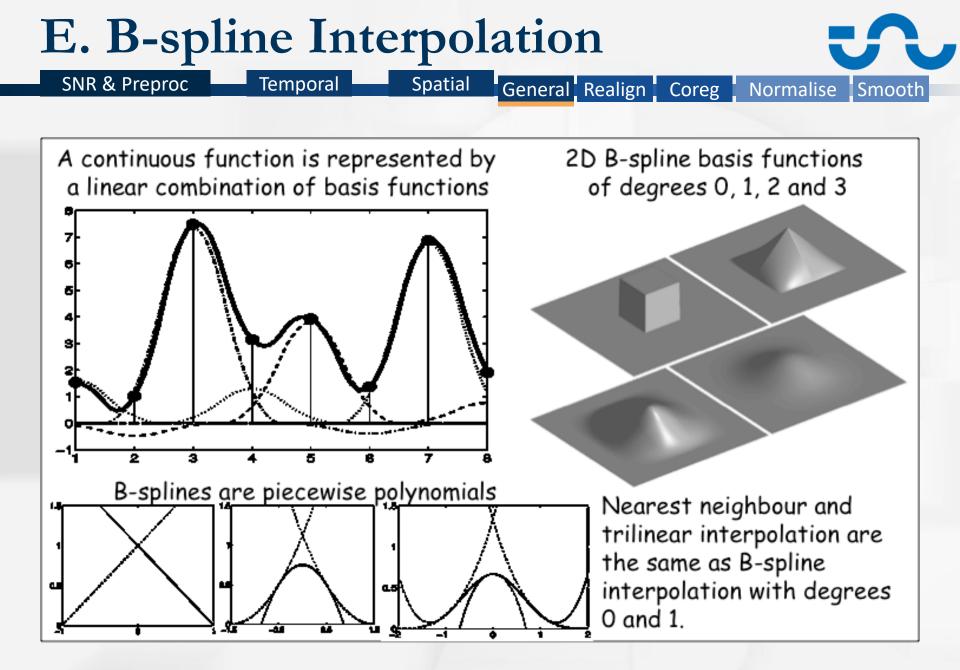


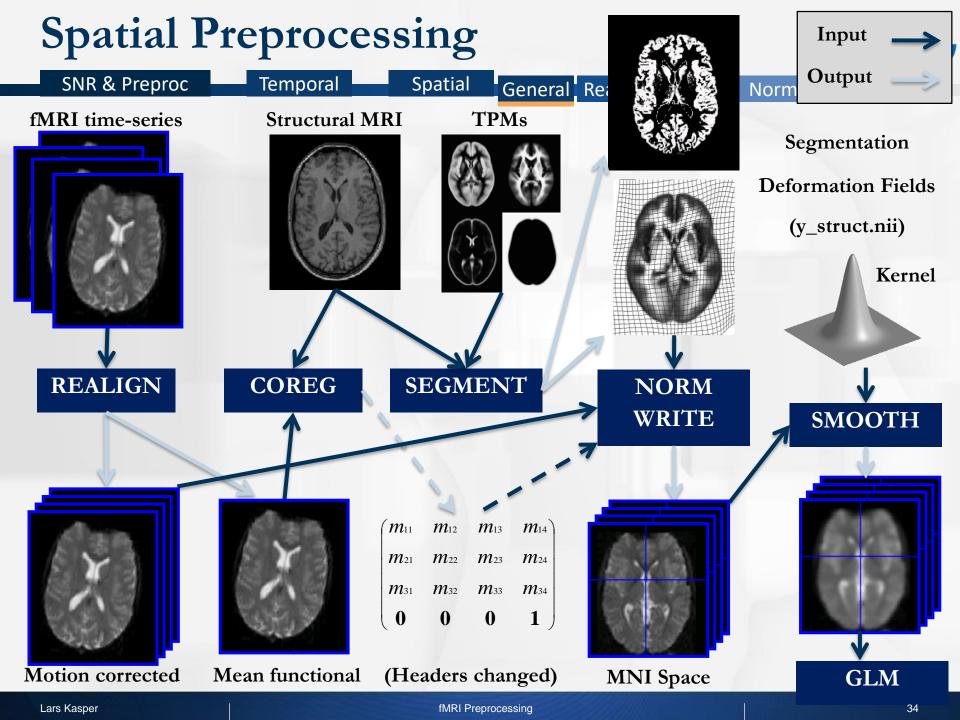


- Automatic image registration uses an optimisation algorithm to maximise/minimise an "objective function"
 - Similarity measure is part of objective function
 - Algorithm searches for transformation that maximises similarity of transformed image to reference
 - Also includes constraints on allowed transformations (priors)

Preprocessing Step Categorisation				
SNR & Preproc	Temporal Spatial G	eneral Realign Coreg Normalise Smooth		
B. Allowed Transformations				
Rigid-Body	Affine	Non-linear		
REALIGN	COREG	SEGMENT NORM WRITE		
C. Similarity Measure				
Mean-squared	Mutual	Tissue Class		
Difference	Information	Probability		
	D. Optimi	isation		
Exact Linearized Solution	Conjugate Direction Line Search	Iterated Conditional Modes (EM/Levenberg-Marquardt)		

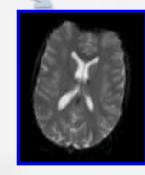






Realignment

SNR & Preproc

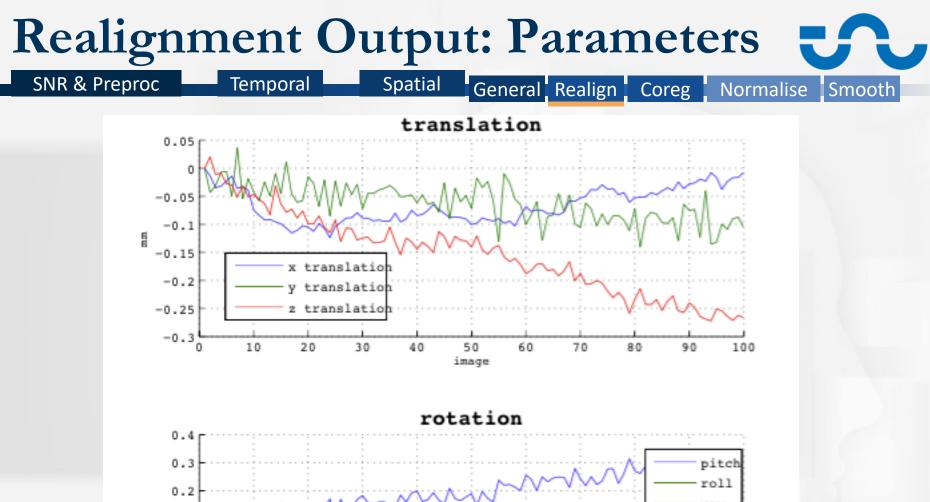


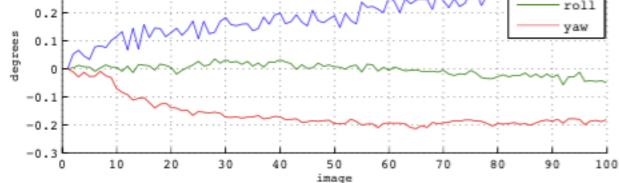
Temporal

Motion corrected

- Rigid-body transformation: three translations, three rotations
- Objective function: mean squared error of corresponding voxel intensities
- Voxel correspondence via Interpolation

Mean functional





fMRI Run after Realignment

Spatial

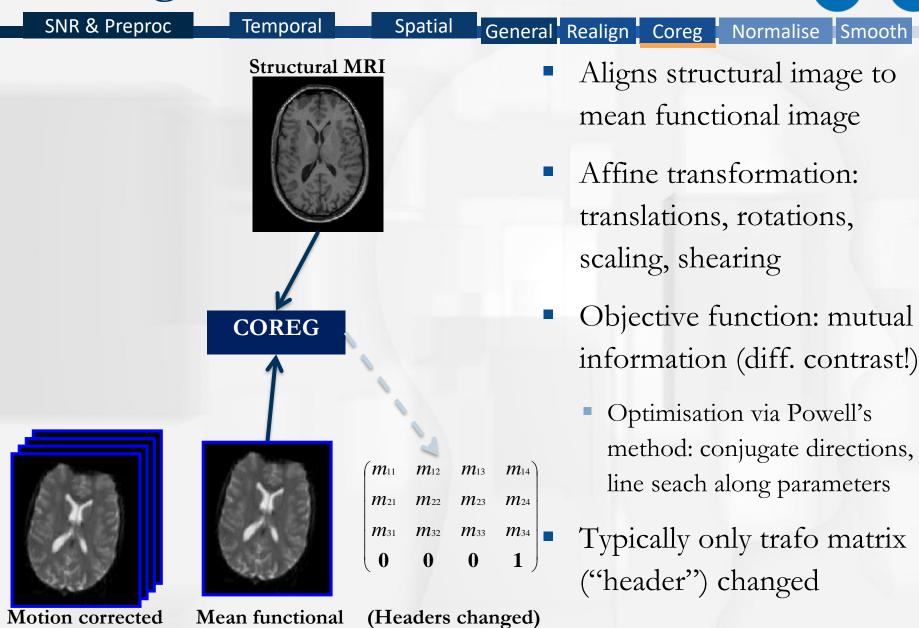
Temporal

SNR & Preproc

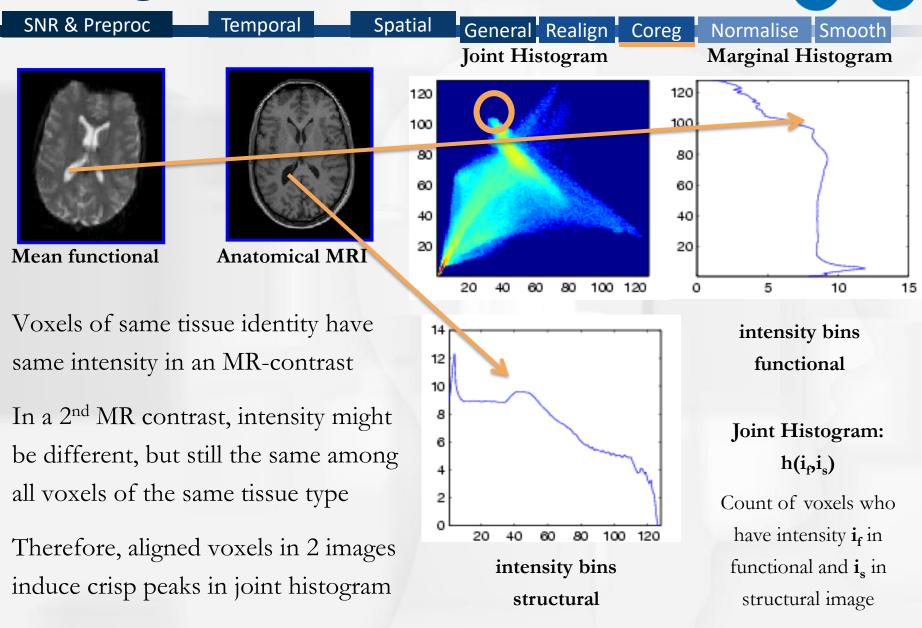


General Realign Coreg Normalise Smooth

Co-Registration



Co-Registration: Mutual Information



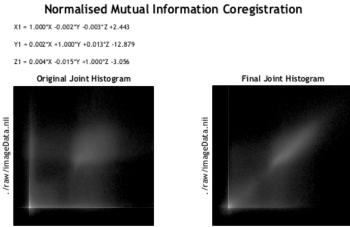
Co-Registration: Output

SNR & Preproc

Temporal

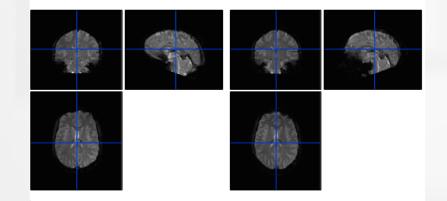
Spatial General Realign Coreg Normalise Smooth

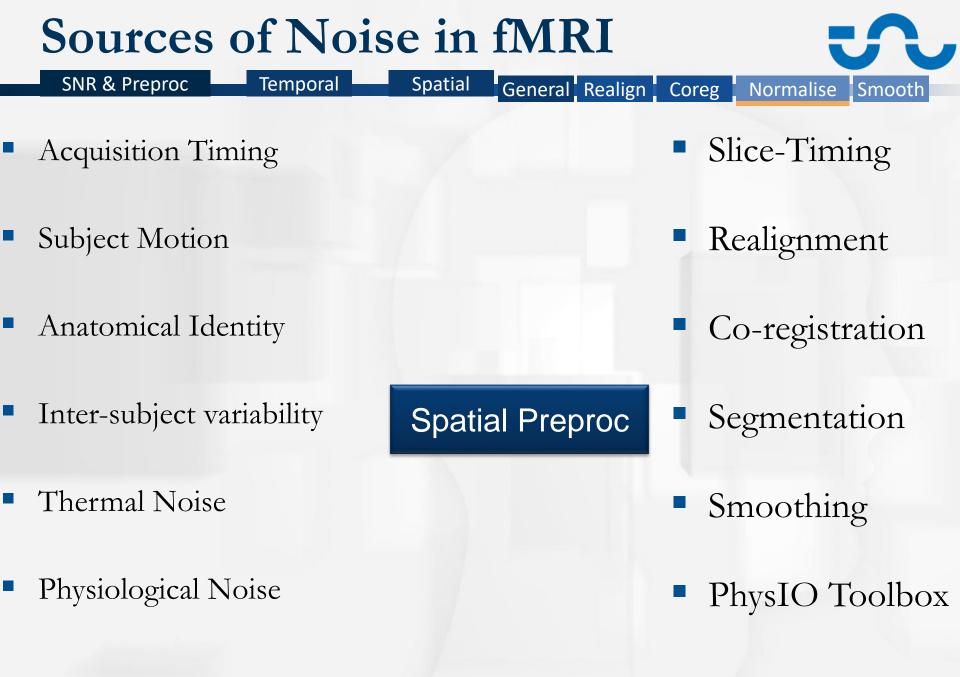
- Aligned voxels in 2 images
 induce crisp peaks in joint
 histogram
- Optimization criterion:
 - Joint histogam: Quantify how well voxel intensity in one image predicts the intensity in the other
 - how much shared (=mutual) information
 - Joint histogram: proxy to joint probability distribution



./rawStationary.nii

./rawStationary.nii



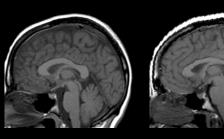


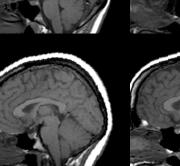
Spatial Normalisation: Reasons

SNR & Preproc

Spatial

Inter-Subject Variability





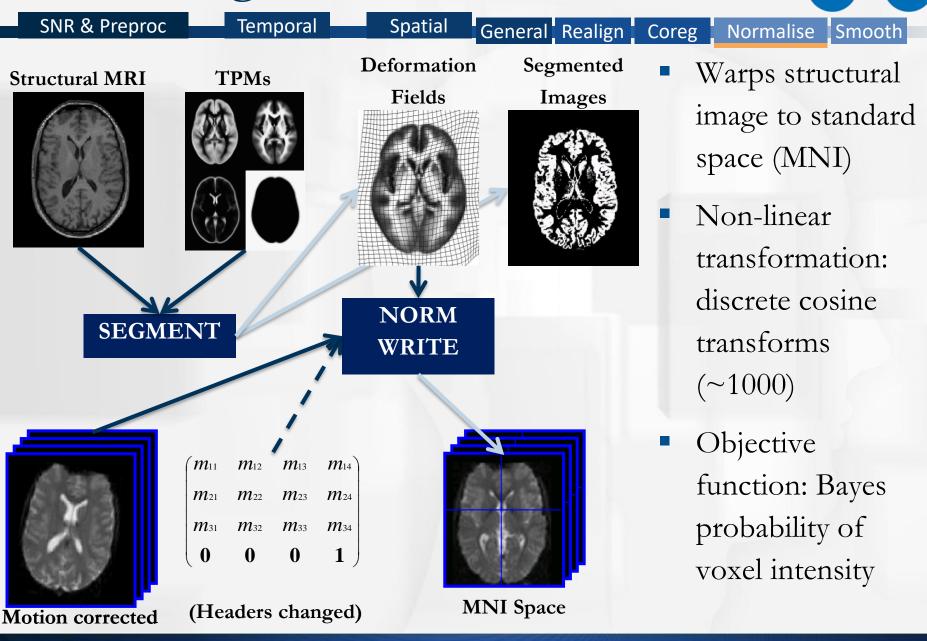
Temporal

 Increase sensitivity with more subjects (fixed-effects)

General Realign Coreg Normalise Smooth

- Generalise findings to population as a whole (mixed-effects)
- Ensure Comparability between studies (alignment to standard space)
 - Talairach and Tournoux (T&T) convention using the Montreal Neurological Institute (MNI) space
 - Templates from 152/305 subjects

Unified Segmentation



Lars Kasper

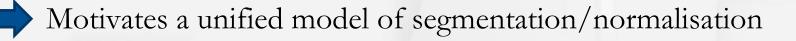
Theory: Segmentation/Normalisation

SNR & Preproc

Temporal

Spatial General Realign Coreg Normalise Smooth

- Why is normalisation difficult?
 - No simple similarity measure, a lot of possible transformations...
 - Different Imaging Sequences (Contrasts, geometry distortion)
 - Noise, artefacts, partial volume effects
 - Intensity inhomogeneity (bias field)
- Normalisation of segmented tissues is more robust and precise than of original image
- Tissue segmentation benefits from spatially aligned tissue probability maps (of prior segmentation data)



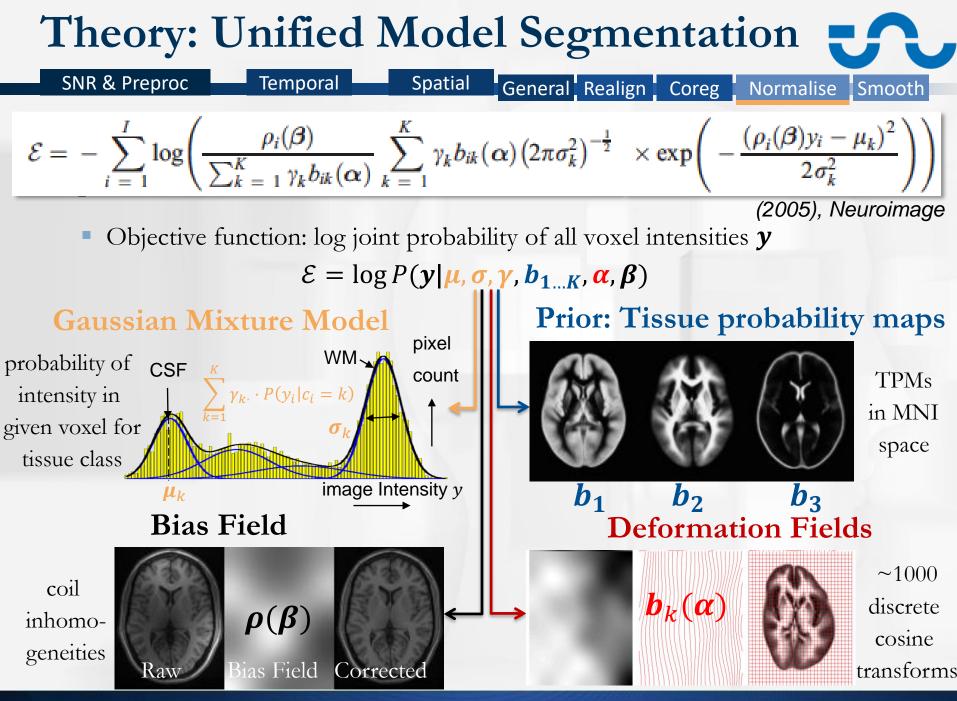
Summary of the unified model

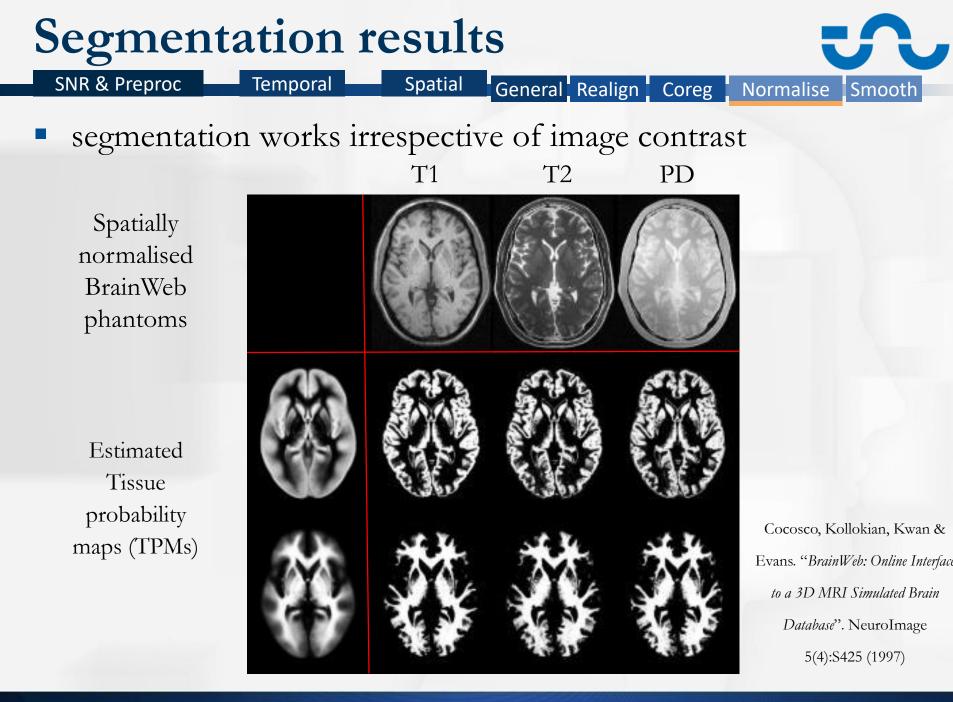
SNR & Preproc

Temporal

Spatial General Realign Coreg Normalise Smooth

- SPM12 implements a generative model of voxel intensity from tissue class probabilities
 - Principled Bayesian probabilistic formulation
 - Gaussian mixture model: segmentation by tissue-class dependent Gaussian intensity distributions
 - voxel-wise prior mixture proportions given by tissue probability maps
- Deformations of prior tissue probability maps also modelled
 - Non-linear deformations are constrained by regularisation factors
 - inverse of estimated transformation for TPMs normalises the original image
- Bias field correction is included within the model

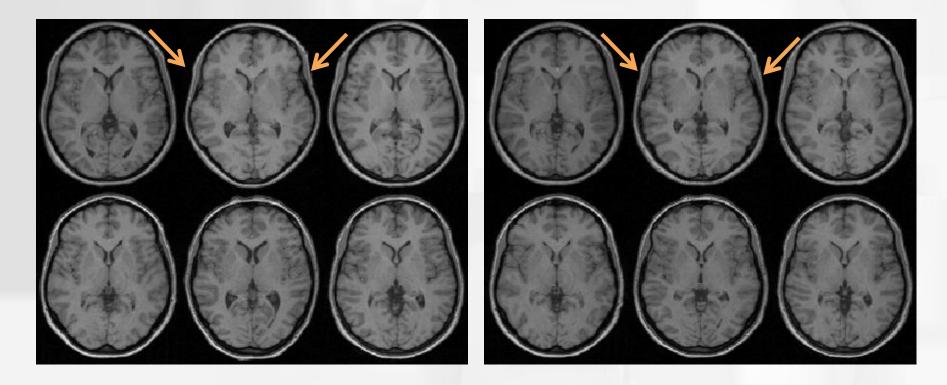




Benefits of Unified Segmentation Image: Solution SNR & Preproc Temporal Spatial General Realign Coreg Normalise Smooth

Affine registration

Non-linear registration



Spatial normalisation – Limitations

SNR & Preproc

Temporal

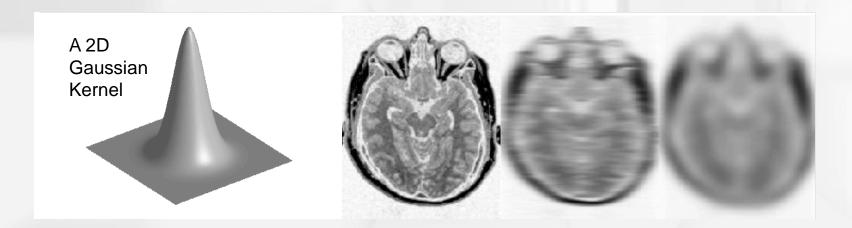
Spatial

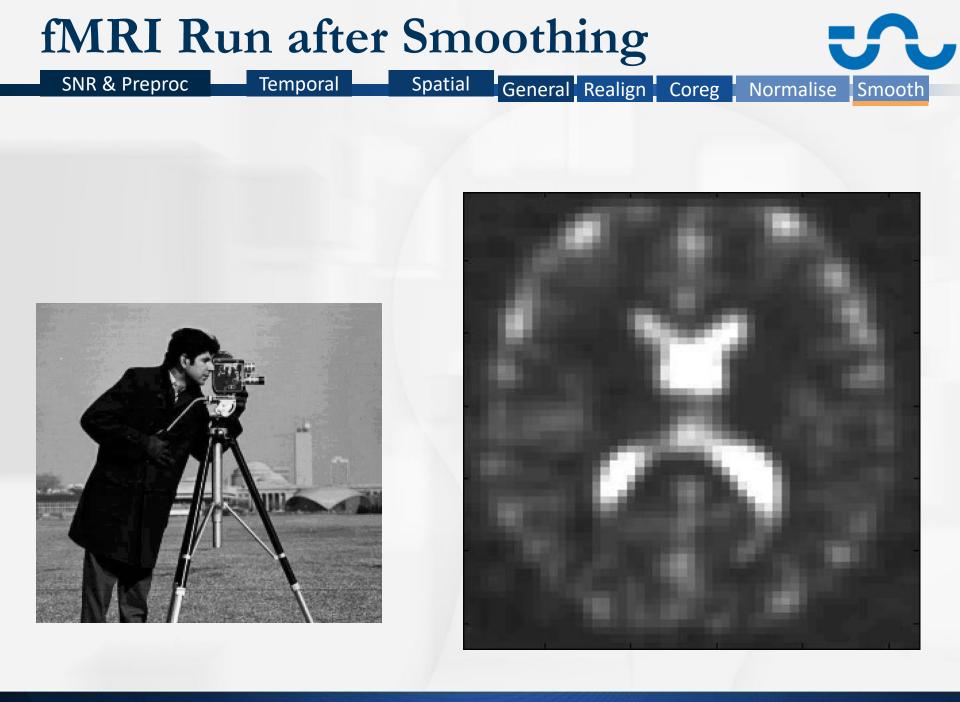
General Realign Coreg Normalise Smooth

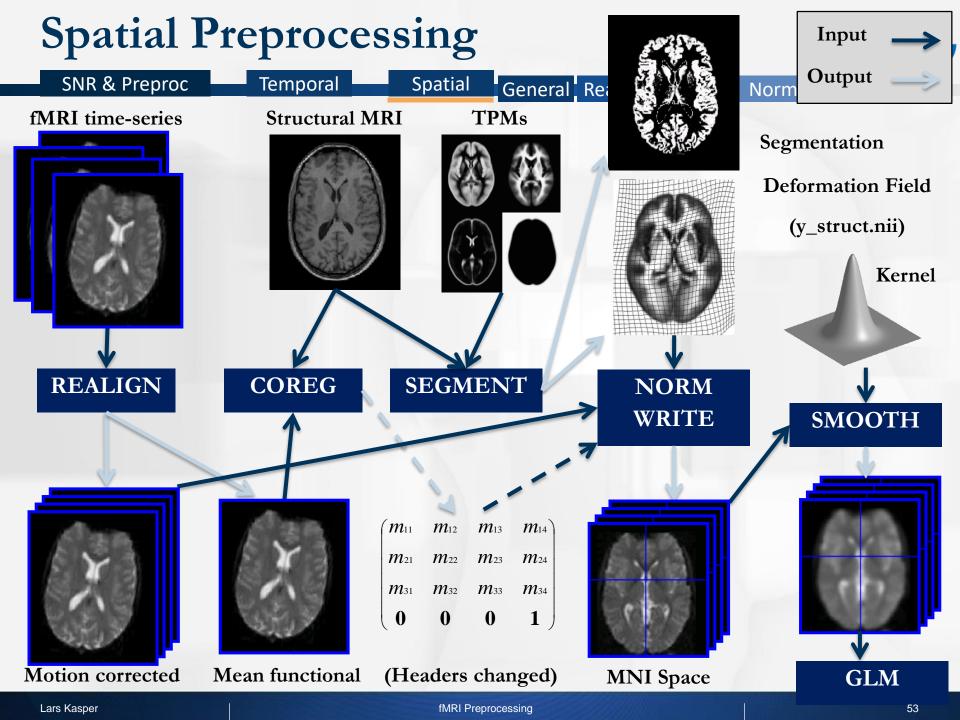
- Seek to match functionally homologous regions, but...
 - Challenging high-dimensional optimisation
 - many local optima
 - Different cortices can have different folding patterns
 - No exact match between structure and function
 - Interesting recent paper Amiez et al. (2013), PMID:23365257
- Compromise
 - Correct relatively large-scale variability
 - Smooth over finer-scale residual differences

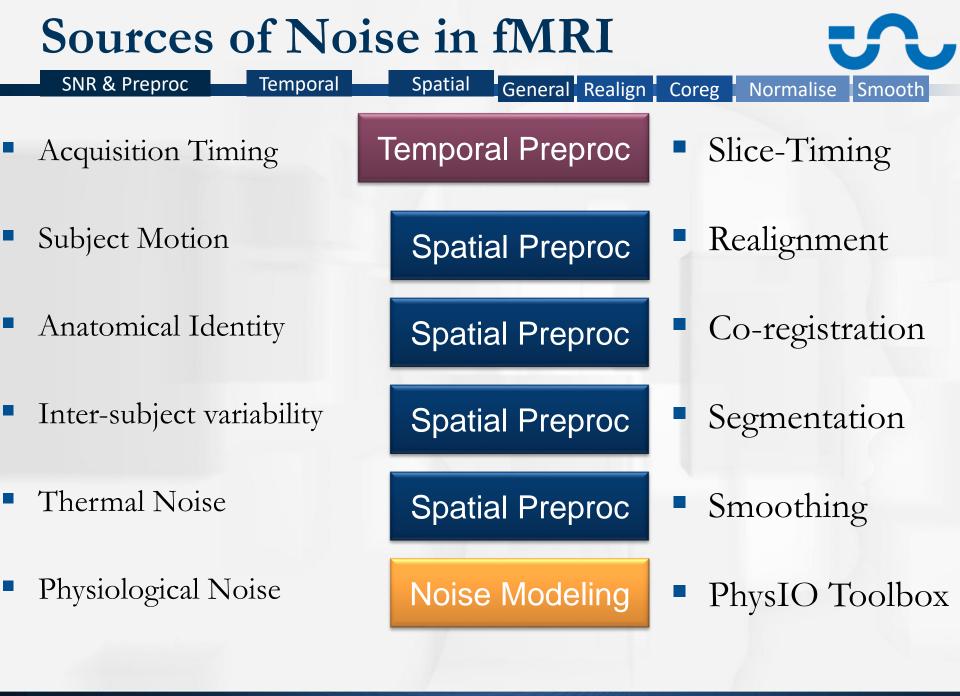
Smoothing – Why blurring the data? Spatial SNR & Preproc Temporal General Realign Coreg Normalise Smooth Intra-subject signal quality Suppresses thermal noise (averaging) Increases sensitivity to effects of similar scale to kernel Kernel (matched filter theorem) Single-subject statistical analysis **SMOOTH** Makes data more Gaussian (central limit theorem) Reduces the number of multiple comparisons Second-level statistical analysis Improves spatial overlap by blurring anatomical differences **MNI** Space **GLM**

- Convolution with a 3D Gaussian kernel, of specified full-width at half-maximum (FWHM) in mm
 - mathematically equivalent to slice-timing operation or reslicing, but different kernels there (Sinc, b-spline)
- Gaussian kernel is separable, and we can smooth 2D data with 2 separate 1D convolutions









Teaser: Physio Noise Modelling SNR & Preproc Temporal Spatial General Realign Coreg Normalise Smooth We can model time series of non-BOLD physiological fluctuations from prior knowledge (locations, dominant frequencies) or peripheral recordings (ECG, breathing belt)

- "Filter" these out via incorporation into general linear model
 - See next talk!
- Result:
 - Cardiac (red), respiratory (blue)
 physiological time courses, and their
 interaction (green) contribute severely to
 remaining non-Gaussian voxel fluctuations
- $\begin{array}{c} x = 3 \\ x = 0 \\ x = 0 \\ x = 0 \\ x = -3 \\$
- For more details: See you again on **Nov. 21**...

Subjects with Significant Noise Reduction

SNR & Preproc

Temporal Spatial

...and:

- TNU Zurich,
 - in particular: Klaas E
- MR-Technology & Methods Group,
 in particular: Klaas P
- Everyone I borrowed slides from ⁽²⁾

General Realign Coreg Normalise Smooth

Further Reading

Temporal

SNR & Preproc

 Good Textbook: Karl Friston, J.A., William Penny (Eds.), Statistical Parametric Mapping, Academic Press, London, in particular

Spatial

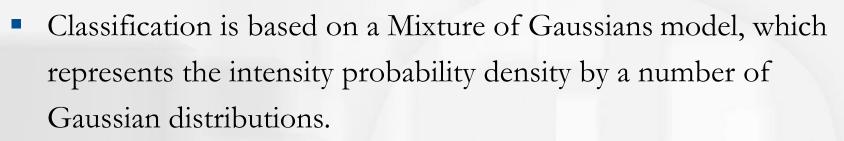
- Ashburner, J., Friston, K., 2007a. Chapter 4 Rigid Body Registration, pp. 49– 62.
- Ashburner, J., Friston, K., 2007b. Chapter 5 Non-linear Registration, pp. 63– 80.
- Ashburner, J., Friston, K., 2007c. Chapter 6 Segmentation, pp. 81–91.
- For mathematical/engineering connoisseurs: (see also extra slides here):
 - Ashburner, J., Friston, K.J., 2005. Unified segmentation. NeuroImage 26, 839–851. doi:10.1016/j.neuroimage.2005.02.018

Mixture of Gaussians

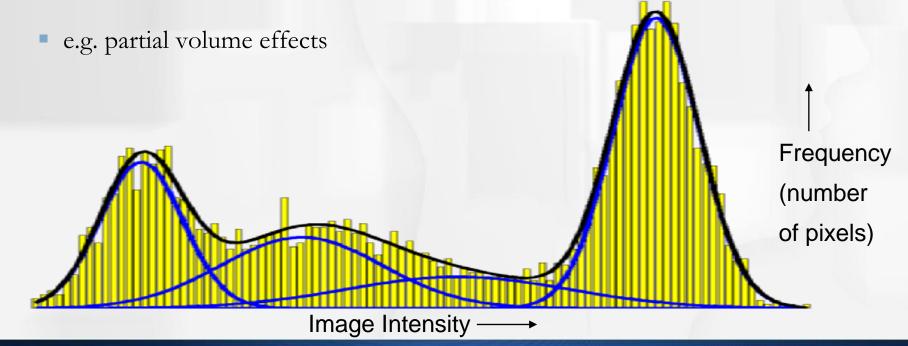
SNR & Preproc

Temporal

Spatial General Realign Coreg Normalise Smooth

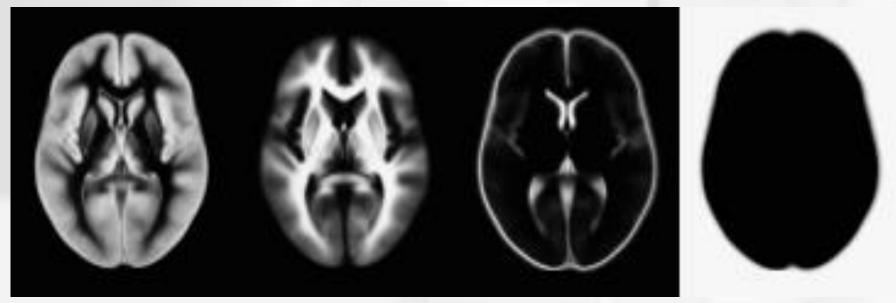


 Multiple Gaussians per tissue class allow non-Gaussian intensity distributions to be modelled



Tissue Probability Maps

- SNR & Preproc Temporal Spatial General Realign Coreg Normalise Smooth
- Tissue probability maps (TPMs) are used as the prior, instead of the proportion of voxels in each class



ICBM Tissue Probabilistic Atlases. These tissue probability maps were kindly provided by the **International Consortium for Brain Mapping**

Deforming the Tissue Probability Maps

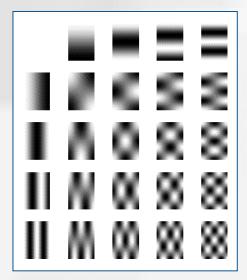
Spatial

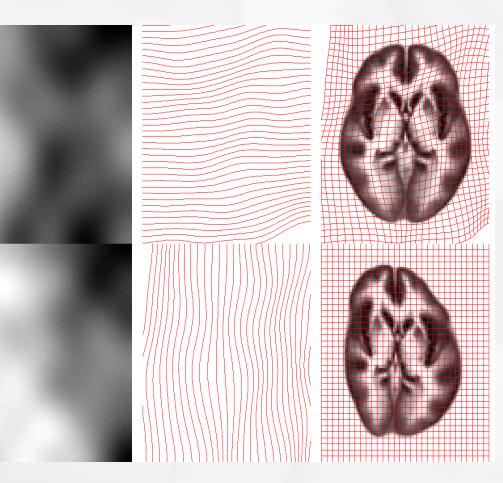
Temporal



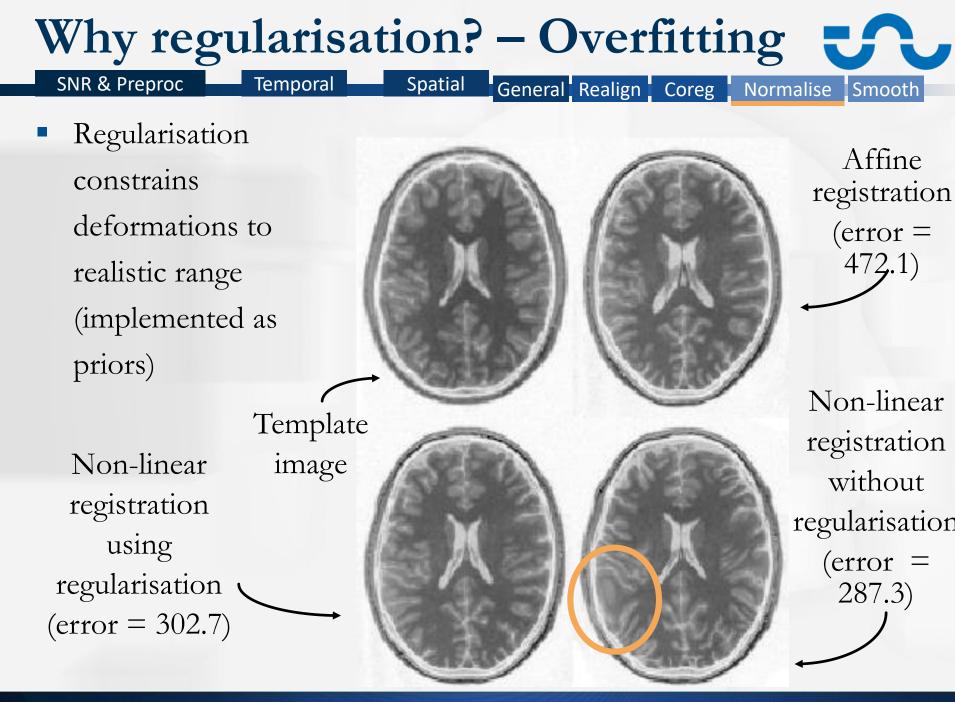
SNR & Preproc

The inverse transform warps to the TPMs





General Realign Coreg Normalise Smooth

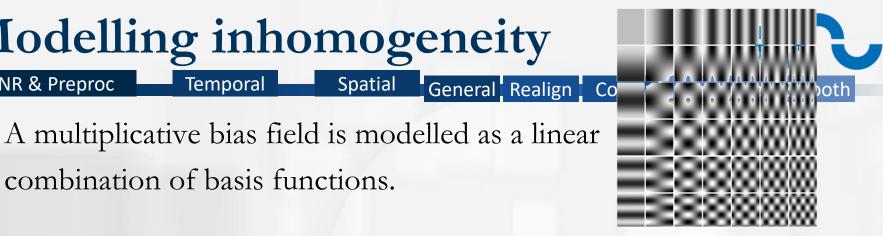


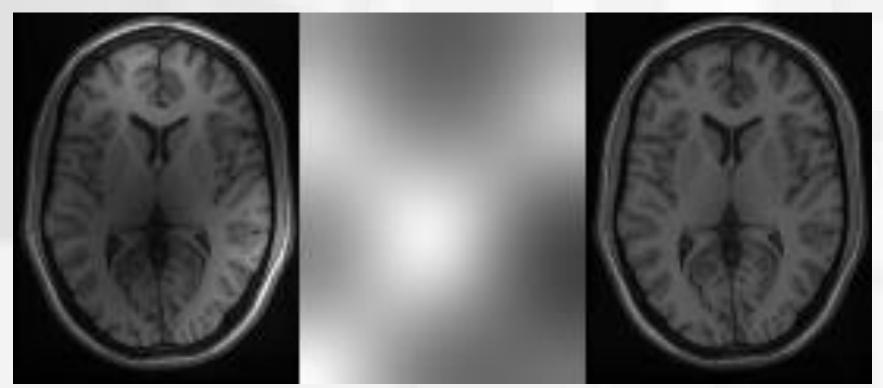
Modelling inhomogeneity

SNR & Preproc

Temporal

combination of basis functions.





Spatial

Corrupted image

Bias Field

Corrected image

Unified segmentation: The maths SNR & Preproc Temporal Spatial General Realign Coreg Normalise Smooth • Mixture of Gaussians: probability of voxel *i* having intensity *y_i*

given it is from a specific cluster k (e.g. tissue class gray matter)

$$P(y_i|c_i = k, \mu_k, \sigma_k) = \frac{1}{(2\pi\sigma_k^2)^{\frac{1}{2}}} \exp\left(-\frac{(y_i - \mu_k)^2}{2\sigma_k^2}\right)$$
(1)

• Prior probability of voxel's tissue class (e.g. voxel proportion) γ_k

$$P(c_i = k | \gamma_k) = \gamma_k$$

- Joint Probability: $P(y_i, c_i = k | \mu_k, \sigma_k, \gamma_k) = P(y_i | c_i = k, \mu_k, \sigma_k) P(c_i = k | \gamma_k)$
- Marginal probability of voxel intensity:

$$P(y_i|\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\gamma}) = \sum_{k=1}^{K} P(y_i, c_i = k|\mu_k, \sigma_k, \gamma_k)$$

Joint probability all voxels' intensity:

$$P(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\sigma},\boldsymbol{\gamma}) = \prod_{i=1}^{I} P(y_i|\boldsymbol{\mu},\boldsymbol{\sigma},\boldsymbol{\gamma}) = \prod_{i=1}^{I} \left(\sum_{k=1}^{K} \frac{\gamma_k}{\left(2\pi\sigma_k^2\right)^{\frac{1}{2}}} \exp\left(-\frac{\left(y_i - \mu_k\right)^2}{2\sigma_k^2}\right) \right)$$
(5)

US Maths: Bias Field

Temporal

Implemented by adjusting the Means and Variances of the Gaussians on a pixel-by-pixel basis by a function smoothly varying in space, ρ_i(β):

Spatial

•
$$\mu_k \mapsto \frac{\mu_k}{\rho_i(\boldsymbol{\beta})}, \sigma_k^2 \mapsto \left(\frac{\sigma_k}{\rho_i(\boldsymbol{\beta})}\right)^2$$

SNR & Preproc

- ρ_i is the exponential of a linear combination of low frequency basis functions
- Parameters to be estimated: vector $\boldsymbol{\beta}$
- intensity probability conditioned on cluster identity:

$$P(y_i|c_i = k, \mu_k, \sigma_k, \beta) = \frac{1}{\left(2\pi(\sigma_k/\rho_i(\beta))^2\right)^{\frac{1}{2}}} \exp\left(-\frac{(y_i - \mu_k/\rho_i(\beta))^2}{2(\sigma_k/\rho_i(\beta))^2}\right)$$
$$= \rho_i(\beta) \frac{1}{(2\pi\sigma_k^2)^{\frac{1}{2}}} \exp\left(-\frac{(\rho_i(\beta)y_i - \mu_k)^2}{2\sigma_k^2}\right)$$

for this voxel i and different tissue types k

$$\gamma_k \mapsto \gamma_k(i) = \gamma_k \cdot \frac{b_{ik}}{\sum_{j=1}^K \gamma_j b_{ij}}$$

- Note: K can be larger than the number of tissue classes, since each class can be reflected by a mixture of Gaussians, e.g. 3 Gaussians for gray matter (to allow for non-Gaussian distributions per tissue class)
 - E.g. partial volume effects

US Maths: Deformation Fields

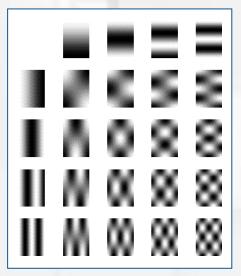
 Deformation (and thereby normalisation) is implemented by allowing the prior TPMs (which are in MNI-space) to be spatially transformed by a parameterised mapping

•
$$\mathbf{b}_{ik} \mapsto \mathbf{b}_{ik}(\alpha) \Rightarrow P(c_i = k | \gamma, \alpha) = \frac{\gamma_k b_{ik}(\alpha)}{\sum_{j=0}^K \gamma_j b_{ij}(\alpha)}$$

Parameter vector to be estimated: *α*

about 1000 discrete cosine transforms

Temporal



Spatial General Realign Coreg Normalise Smooth

SNR & Preproc

US Maths: Regularisation

Temporal

- SNR & Preproc
- Linear Regularisation of Bias Field and Deformation Field Estimates
 - By including prior distributions for α and β as zero-mean multivariate Gaussians

Spatial General Realign Coreg Normalise Smooth

- Covariance: $\alpha^T C_{\alpha} \alpha = bending \ energy; \ \rho(\beta) = \exp(K_{70mm} * N(0, \beta))$
- Thus, the final objective function to be maximised is the log-joint probability of intensity, bias and deformation field parameters:

$$P(\mathbf{y},\boldsymbol{\beta},\boldsymbol{\alpha}|\boldsymbol{\gamma},\boldsymbol{\mu},\boldsymbol{\sigma}^2) = P(\mathbf{y}|\boldsymbol{\beta},\boldsymbol{\alpha},\boldsymbol{\gamma},\boldsymbol{\mu},\boldsymbol{\sigma}^2)P(\boldsymbol{\beta})P(\boldsymbol{\alpha})$$

• Equivalently, the negative free energy is minimised:

 $\times \exp\left(-\frac{(\rho_i(\beta)y_i-\mu_k)^2}{2\sigma_i^2}\right)$

$$\mathcal{F} = -\log P(\mathbf{y}, \boldsymbol{\beta}, \boldsymbol{\alpha} | \boldsymbol{\gamma}, \boldsymbol{\mu}, \boldsymbol{\sigma}^2) = \mathcal{E} - \log P(\boldsymbol{\beta}) - \log P(\boldsymbol{\alpha})$$
$$\mathcal{E} = -\sum_{i=1}^{I} \log \left(\frac{\rho_i(\boldsymbol{\beta})}{\sum_{k=1}^{K} \gamma_k b_{ik}(\boldsymbol{\alpha})} \sum_{k=1}^{K} \gamma_k b_{ik}(\boldsymbol{\alpha}) (2\pi\sigma_k^2)^{-\frac{1}{2}} \right)$$