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fMRI = Acquiring Movies

 …of three-

dimensional Blood 

Oxygen-Level 

Dependent 

(BOLD) contrast 

images

 typically echo-

planar images (EPI)

Lars Kasper 3fMRI Preprocessing
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fMRI = Acquiring Movies

Lars Kasper 4fMRI Preprocessing

 Run/Session: 

Time Series of  

Images
…

scan 1 time scan N

 The Localized Time-series is 

the Fundamental Information 

Unit of  fMRI

Signal: Fluctuation through 

Blood oxygen level dependent 

(BOLD) contrast

Noise: All other fluctuations
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fMRI Movie: An example

Lars Kasper 5fMRI Preprocessing
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fMRI Movie: Subtract the Mean

Lars Kasper 6fMRI Preprocessing

 interest in fluctuations 

only
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The Goal of Preprocessing

Lars Kasper 8fMRI Preprocessing

Before After

Preprocessing
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Sources of Noise in fMRI

Lars Kasper 9fMRI Preprocessing
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fMRI Movie: Noise Sources

Lars Kasper 10fMRI Preprocessing

 interest in fluctuations 

only
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The SPM Graphical User Interface

Lars Kasper 11fMRI Preprocessing

 Preprocessing

 Realignment

 Slice-Timing Correction

 Co-registration

 Unified Segmentation & 

Normalisation

 Smoothing…

 Noise Modeling

 Physiological Confound Regressors

1.

2.
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Sources of Noise in fMRI

Lars Kasper 12fMRI Preprocessing

 Acquisition Timing

 Subject Motion

 Anatomical Identity

 Inter-subject variability

 Thermal Noise

 Physiological Noise

Temporal Preproc  Slice-Timing
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Slice-timing correction (STC)

 Slices of 1 scan volume are not acquired simultaneously 

(60 ms per slice)

 Creates shifts of up to 1 volume repetition time (TR), 

i.e. several seconds

 Reduces sensitivity for time-locked effects (smaller correlation)

Lars Kasper 13fMRI Preprocessing

z

time

True 2D Acquisition Same-Timepoint Assumption
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Slice-timing correction (STC)

 Slice-timing correction: All voxel 

time series are aligned to 

acquisition time of 1 slice

 Missing data is sinc-interpolated 

(band-limited signal)

Lars Kasper 14fMRI Preprocessing

Sladky et al, NeuroImage 2011
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 Interpolation: Estimate missing data between existing data via 

certain regularity assumptions

 Signal at missing point is weighted average of neighbors

 Weighting function = interpolation “kernel”

 Here: assumption of limited frequency range of signal: 

sinc-interpolation

Interpolation

Lars Kasper 15fMRI Preprocessing
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Slice-timing correction (STC)

 Slice-timing correction: All voxel 

time series are aligned to 

acquisition time of 1 slice

 Missing data is sinc-interpolated 

(band-limited signal)

 Before or after realignment?

 before: dominant through-slice motion

 after: dominant within-slice motion

 At all?

Lars Kasper 16fMRI Preprocessing

Sladky et al, NeuroImage 2011
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STC Results: Simulation

Lars Kasper 17fMRI Preprocessing

Sladky et al, NeuroImage 2011

Slice-timing 
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Block
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Slice-timing correction (STC)

 Slice-timing correction: All voxel 

time series are aligned to 

acquisition time of 1 slice

 Missing data is sinc-interpolated 

(band-limited signal)

 Before or after realignment?

 before: dominant through-slice motion

 after: dominant within-slice motion

 At all?

 block design: for long TR (3s+) & short 

blocks (10s) improves estimates > 5 %

 event-related: for normal TRs (2s+)  

improves estimates > 5 %

Lars Kasper 18fMRI Preprocessing

Sladky et al, NeuroImage 2011
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STC Results: Experiment

Lars Kasper 19fMRI Preprocessing

Sladky et al, NeuroImage 2011
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Sources of Noise in fMRI

Lars Kasper 20fMRI Preprocessing
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Finite Resolution and Voxel Identity

Lars Kasper 21fMRI Preprocessing

 voxel = volume 

element (3D pixel)
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Preproc = Correct Voxel Mismatch

Lars Kasper 22fMRI Preprocessing

Voxel Mismatch Between

Functional 

Scans/Runs

Functional/Structural 

Images 
Subjects

Realignment
Inter-Modal 

Coregistration

Normalisation/

Segmentation

Smoothing
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REALIGN COREG SEGMENT NORM 

WRITE SMOOTH

GLM

Spatial Preprocessing
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fMRI time-series

Motion corrected Mean functional

REALIGN COREG
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General Remarks: Image Registration

 Realignment, Co-Registration and Normalisation (via Unified 

Segmentation) are all image registration methods

 Goal: Manipulate one set of images to arrive in same coordinate 

system as a reference image

 Key ingredients for image registration

A. Voxel-to-world mapping

B. Transformation

C. Similarity Measure

D. Optimisation

E. Interpolation

Lars Kasper 25fMRI Preprocessing



SNR & Preproc Temporal Realign NormaliseGeneral Coreg SmoothSpatial

A. Voxel-to-World Mapping

 3D images are made up of voxels.

 Voxel intensities are stored on disk as lists of numbers.

 Meta-information about the data:

 image dimensions 

 conversion from list to 3D array

 “voxel-to-world mapping”

 Spatial transformation that maps 

 from: data coordinates (voxel column i, row j, slice k) 

 to: a real-world position (x,y,z mm) in a coordinate system e.g.:

 Scanner coordinates

 T&T/MNI coordinates

Lars Kasper 26fMRI Preprocessing
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A. Voxel-to-World: Standard Spaces

Lars Kasper 27fMRI Preprocessing

Talairach Atlas MNI/ICBM AVG152 Template

 Definition of coordinate system:

 Origin (0,0,0): anterior commissure

 Right = +X; Anterior = +Y; Superior = +Z

 Actual brain dimensions 

 European brains, 

a bit dilated (bug)

y

z

x
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B. Transformations

 Transformations describe the 

mapping of all image voxels from 

one coordinate system into 

another

 Types of transformations

 rigid body = translation + rotation

 affine = rigid body + scaling + shear

 non-linear = any mapping

 (x,y,z) to new values (x’,y’, z’) 

 described by deformation fields

Lars Kasper 28fMRI Preprocessing

Translation Rotation

Scaling Shear

non-linear

deformation



SNR & Preproc Temporal Realign NormaliseGeneral Coreg SmoothSpatial

Spatial Preproc: SPM vocabulary

Lars Kasper 29fMRI Preprocessing

 SPM uses different names for different modes of image 

registration

 depending on input images and allowed transformations

 Intra-modal image 

registration

 e.g. functional images

 rigid body transformations

 translation/rotation

Realignment Co-Registration

 Inter-modal registration 

 e.g. T1/T2 contrast

 functional to structural 

image

 affine transformations 

 rigid body

 stretching/shearing

Normalisation

 Multi-modal registration 

 e.g. T1 and/or T2

 structural image(s) to 

template

 non-linear transformations

 voxel-wise mapping 

(deformation fields)
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C. Similarity & D. Optimisation

 Similarity measure summarizes resemblance of (transformed) image 

and reference into 1 number

 mean-squared difference

 correlation-coefficient

 mutual information

 Automatic image registration uses an optimisation algorithm to 

maximise/minimise an “objective function”

 Similarity measure is part of objective function

 Algorithm searches for transformation that maximises similarity of 

transformed image to reference

 Also includes constraints on allowed transformations (priors)

Lars Kasper 30fMRI Preprocessing

intra-modality (same contrast)

inter-modality (different contrasts possible)
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REALIGN COREG SEGMENT NORM 

WRITE

Preprocessing Step Categorisation

Lars Kasper 31fMRI Preprocessing

B. Allowed Transformations

Rigid-Body Affine Non-linear

C. Similarity Measure

Mean-squared 

Difference

Mutual 

Information

Tissue Class 

Probability

D. Optimisation

Exact Linearized 
Solution

Conjugate Direction 

Line Search

Iterated Conditional Modes 

(EM/Levenberg-Marquardt)
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1x1x3 mm
voxel size

2x2x2 mm
voxel size 

E. Reslicing/Interpolation

 Finally, images have to be saved as voxel intensity list on disk again

 After applying transformation parameters, data is re-sampled onto 

same grid of voxels as reference image

Lars Kasper 32fMRI Preprocessing

Reoriented Resliced
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E. B-spline Interpolation

Lars Kasper 33fMRI Preprocessing
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fMRI time-series

Motion corrected Mean functional
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fMRI time-series

Motion corrected Mean functional

REALIGN

Realignment

 Aligns all volumes of all runs 

spatially

 Rigid-body transformation: three 

translations, three rotations

 Objective function: mean squared 

error of corresponding voxel 

intensities

 Voxel correspondence via 

Interpolation

Lars Kasper 35fMRI Preprocessing
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Realignment Output: Parameters

Lars Kasper 36fMRI Preprocessing
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fMRI Run after Realignment

Lars Kasper 37fMRI Preprocessing
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Motion corrected Mean functional

COREG

Structural MRI
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Co-Registration

 Aligns structural image to 

mean functional image

 Affine transformation: 

translations, rotations, 

scaling, shearing

 Objective function: mutual 

information (diff. contrast!)

 Optimisation via Powell’s 

method: conjugate directions, 

line seach along parameters

 Typically only trafo matrix 

(“header”) changed

Lars Kasper 38fMRI Preprocessing
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intensity bins 

structural

Marginal Histogram

intensity bins 

functional

Joint Histogram

Anatomical MRI

Co-Registration: Mutual Information

 Voxels of same tissue identity have 

same intensity in an MR-contrast

 In a 2nd MR contrast, intensity might 

be different, but still the same among 

all voxels of the same tissue type

 Therefore, aligned voxels in 2 images 

induce crisp peaks in joint histogram

Lars Kasper 39fMRI Preprocessing

Mean functional

Joint Histogram: 

h(if,is)

Count of  voxels who 

have intensity if in 

functional and is in 

structural image
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Co-Registration: Output

 Aligned voxels in 2 images 

induce crisp peaks in joint 

histogram

 Optimization criterion: 

 Joint histogam: Quantify how well 

voxel intensity in one image predicts 

the intensity in the other

 how much shared (=mutual) 

information

 Joint histogram: proxy to joint 

probability distribution 

Lars Kasper 40fMRI Preprocessing
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Sources of Noise in fMRI

Lars Kasper 41fMRI Preprocessing
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Spatial Normalisation: Reasons

 Inter-Subject Variability  Inter-Subject Averaging

 Increase sensitivity with more 

subjects (fixed-effects)

 Generalise findings to population 

as a whole (mixed-effects)

 Ensure Comparability between 

studies (alignment to standard 

space)

 Talairach and Tournoux (T&T) 

convention using the Montreal 

Neurological Institute (MNI) space

 Templates from 152/305 subjects

Lars Kasper 42fMRI Preprocessing
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 Warps structural 

image to standard 

space (MNI)

 Non-linear 

transformation: 

discrete cosine 

transforms 

(~1000)

 Objective 

function: Bayes 

probability of 

voxel intensity

Motion corrected

Structural MRI

SEGMENT
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TPMs
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Motion corrected
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Theory: Segmentation/Normalisation

 Why is normalisation difficult?

 No simple similarity measure, a lot of possible transformations…

 Different Imaging Sequences (Contrasts, geometry distortion)

 Noise, artefacts, partial volume effects

 Intensity inhomogeneity (bias field)

 Normalisation of segmented tissues is more robust and precise 

than of original image

 Tissue segmentation benefits from spatially aligned tissue 

probability maps (of prior segmentation data)

 Motivates a unified model of segmentation/normalisation

Lars Kasper 44fMRI Preprocessing
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Summary of the unified model

 SPM12 implements a generative model of voxel intensity from 

tissue class probabilities

 Principled Bayesian probabilistic formulation

 Gaussian mixture model: segmentation by tissue-class dependent Gaussian 

intensity distributions

 voxel-wise prior mixture proportions given by tissue probability maps

 Deformations of prior tissue probability maps also modelled

 Non-linear deformations are constrained by regularisation factors

 inverse of estimated transformation for TPMs normalises the original image

 Bias field correction is included within the model

Lars Kasper 45fMRI Preprocessing



SNR & Preproc Temporal Realign NormaliseGeneral Coreg SmoothSpatial

Theory: Unified Model Segmentation

 Bayesian generative model1 of voxel intensities 𝑦𝑖 from tissue class 

probabilities, deformation fields and bias fields

 Objective function: log joint probability of all voxel intensities 𝒚

ℰ = log𝑃(𝒚|𝝁, 𝝈, 𝜸, 𝒃𝟏…𝑲, 𝜶, 𝜷)

Lars Kasper 46fMRI Preprocessing

[1] Ashburner & Friston

(2005), Neuroimage

Bias Field

Raw Bias Field Corrected

coil 

inhomo-

geneities

𝝆(𝜷)

Deformation Fields 

~1000

discrete 

cosine 

transforms

𝒃𝑘(𝜶)

Prior: Tissue probability maps 

TPMs

in MNI 

space

𝒃𝟏 𝒃𝟐 𝒃𝟑

pixel 

count 

Gaussian Mixture Model

probability of  

intensity in 

given voxel for

tissue class

image Intensity 𝑦

CSF
WM



𝑘=1

𝐾

𝛾𝑘⋅ ⋅ 𝑃 𝑦𝑖 𝑐𝑖 = 𝑘

𝝁𝑘

𝝈𝑘
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 segmentation works irrespective of image contrast

Estimated 

Tissue 

probability 

maps (TPMs)

Spatially 

normalised 

BrainWeb

phantoms

Cocosco, Kollokian, Kwan & 

Evans. “BrainWeb: Online Interface 

to a 3D MRI Simulated Brain 

Database”. NeuroImage 

5(4):S425 (1997)

Segmentation results

Lars Kasper 47fMRI Preprocessing

T1 T2 PD
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Benefits of Unified Segmentation

Lars Kasper 48fMRI Preprocessing

Affine registration Non-linear registration
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Spatial normalisation – Limitations

 Seek to match functionally homologous regions, but...

 Challenging high-dimensional optimisation

 many local optima

 Different cortices can have different folding patterns

 No exact match between structure and function

 Interesting recent paper Amiez et al. (2013), PMID:23365257

 Compromise

 Correct relatively large-scale variability 

 Smooth over finer-scale residual differences

Lars Kasper 49fMRI Preprocessing
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SMOOTH

GLM

Kernel

MNI Space

Smoothing – Why blurring the data?

 Intra-subject signal quality

 Suppresses thermal noise (averaging)

 Increases sensitivity to effects of similar scale to kernel 

(matched filter theorem)

 Single-subject statistical analysis

 Makes data more Gaussian (central limit theorem)

 Reduces the number of multiple comparisons

 Second-level statistical analysis

 Improves spatial overlap by blurring 

anatomical differences

Lars Kasper 50fMRI Preprocessing
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Smoothing – How is it implemented?

 Convolution with a 3D Gaussian kernel, of specified full-width at 

half-maximum (FWHM) in mm

 mathematically equivalent to slice-timing operation or reslicing, but different 

kernels there (Sinc, b-spline)

 Gaussian kernel is separable, and we can smooth 2D data with 2 

separate 1D convolutions

Lars Kasper 51fMRI Preprocessing

Example of 

Gaussian smoothing in 

one-dimension 

A 2D 

Gaussian 

Kernel 

The Gaussian kernel is 

separable we can smooth 

2D data with two 1D 

convolutions. 

Generalisation to 3D is 

simple and efficient 
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fMRI Run after Smoothing

Lars Kasper 52fMRI Preprocessing
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fMRI time-series

Motion corrected Mean functional
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Sources of Noise in fMRI

Lars Kasper 54fMRI Preprocessing
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Teaser: PhysIO Noise Modelling

 We can model time series of non-BOLD physiological fluctuations 

from prior knowledge (locations, dominant frequencies) or 

peripheral recordings (ECG, breathing belt)

 “Filter” these out via incorporation into general linear model

 See next talk!

 Result:

 Cardiac (red), respiratory (blue) 

physiological time courses, and their 

interaction (green) contribute severely to 

remaining non-Gaussian voxel fluctuations

 For more details: See you again on Nov. 21…

Lars Kasper 55fMRI Preprocessing
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Thank you…

 …and:

 TNU Zurich, 

in particular: Klaas E

 MR-Technology &Methods Group, 

in particular: Klaas P

 Everyone I borrowed slides from 

Lars Kasper 56fMRI Preprocessing
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Further Reading

 Good Textbook: Karl Friston, J.A., William Penny (Eds.), Statistical 

Parametric Mapping, Academic Press, London, in particular

 Ashburner, J., Friston, K., 2007a. Chapter 4 - Rigid Body Registration, pp. 49–

62.

 Ashburner, J., Friston, K., 2007b. Chapter 5 - Non-linear Registration, pp. 63–

80.

 Ashburner, J., Friston, K., 2007c. Chapter 6 - Segmentation, pp. 81–91.

 For mathematical/engineering connoisseurs: (see also extra slides 

here):

 Ashburner, J., Friston, K.J., 2005. Unified segmentation. NeuroImage 26, 

839–851. doi:10.1016/j.neuroimage.2005.02.018

Lars Kasper 57fMRI Preprocessing
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Mixture of Gaussians

 Classification is based on a Mixture of Gaussians model, which 

represents the intensity probability density by a number of 

Gaussian distributions.

 Multiple Gaussians per tissue class allow non-Gaussian intensity 

distributions to be modelled 

 e.g. partial volume effects

Lars Kasper 58fMRI Preprocessing

Image Intensity

Frequency

(number 

of pixels) 
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Tissue Probability Maps

 Tissue probability maps (TPMs) are used as the prior, instead of the 

proportion of voxels in each class

Lars Kasper 59fMRI Preprocessing

ICBM Tissue Probabilistic Atlases. These tissue probability maps were 

kindly provided by the International Consortium for Brain Mapping
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Deforming the Tissue Probability Maps

 Tissue probability maps 

images are warped to 

match the subject

 The inverse transform 

warps to the TPMs

Lars Kasper 60fMRI Preprocessing
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Template

image

Affine 
registration

(error = 
472.1)

Non-linear

registration

without

regularisation

(error  = 
287.3)

Non-linear

registration

using

regularisation

(error = 302.7)

Why regularisation? – Overfitting

 Regularisation

constrains 

deformations to 

realistic range 

(implemented as 

priors)

Lars Kasper 61fMRI Preprocessing
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Modelling inhomogeneity

 A multiplicative bias field is modelled as a linear 

combination of basis functions.

Lars Kasper 62fMRI Preprocessing

Corrupted image Corrected imageBias Field
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Unified segmentation: The maths

 Mixture of Gaussians: probability of voxel i having intensity yi, 

given it is from a specific cluster k (e.g. tissue class gray matter)

 Prior probability of voxel’s tissue class (e.g. voxel proportion) 𝛾𝑘

 Joint Probability: 

 Marginal probability of voxel intensity:

 Joint probability all voxels’ intensity:

Lars Kasper 63fMRI Preprocessing



SNR & Preproc Temporal Realign NormaliseGeneral Coreg SmoothSpatial

US Maths: Bias Field

 Implemented by adjusting the Means and Variances of the 

Gaussians on a pixel-by-pixel basis by a function smoothly varying 

in space, 𝜌𝑖 𝜷 :

 𝜇𝑘 ↦
𝜇𝑘

𝜌𝑖 𝜷
, 𝜎𝑘

2 ↦
𝜎𝑘

𝜌𝑖 𝜷

2

 𝜌𝑖 is the exponential of a linear combination of low frequency basis functions

 Parameters to be estimated: vector 𝜷

 intensity probability

conditioned on cluster 

identity:

Lars Kasper 64fMRI Preprocessing
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US Maths: Spatial Priors by TPMs

 Replacing stationary mixing proportions 𝛾𝑘 by voxel-dependent 

proportions which are informed by the prior tissue probabilities 𝑏𝑖𝑘
for this voxel 𝑖 and different tissue types 𝑘

 𝛾𝑘 ↦ 𝛾𝑘 𝑖 = 𝛾𝑘 ⋅
𝑏𝑖𝑘

σ𝑗=1
𝐾 𝛾𝑗𝑏𝑖𝑗

 Note: 𝐾 can be larger than the number of tissue classes, since each 

class can be reflected by a mixture of Gaussians, e.g. 3 Gaussians 

for gray matter (to allow for non-Gaussian distributions per tissue 

class)

 E.g. partial volume effects

Lars Kasper 65fMRI Preprocessing
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US Maths: Deformation Fields

 Deformation (and thereby normalisation) is implemented by 

allowing the prior TPMs (which are in MNI-space) to be spatially 

transformed by a parameterised mapping

 b𝑖𝑘 ↦ b𝑖𝑘 𝛼 ⇒ 𝑃 𝑐𝑖 = 𝑘 𝛾, 𝛼 =
𝛾𝑘𝑏𝑖𝑘(𝛼)

σ𝑗=0
𝐾 𝛾𝑗𝑏𝑖𝑗(𝛼)

 Parameter vector to be estimated: 𝜶

 about 1000 discrete cosine transforms
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US Maths: Regularisation

 Linear Regularisation of Bias Field and Deformation Field Estimates

 By including prior distributions for 𝛼 and 𝛽 as zero-mean multivariate Gaussians

 Covariance: 𝛼𝑇𝐶𝛼𝛼 = 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦; 𝜌 𝛽 = exp(𝐾70𝑚𝑚 ∗ 𝑁(0, 𝛽))

 Thus, the final objective function to be maximised is the log-joint 

probability of intensity, bias and deformation field parameters:

 Equivalently, the negative free energy is minimised:
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