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Overview of SPM

Image time-series Kernel Design matrix Statistical parametric map (SPM)
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What is the problem we want to solve?

* We have an experimental paradigm and
want to test whether brain activity is
(linearly) related to the paradigm.

* We will try to solve the problem by
modeling the data.
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Modelling the measured data

Why? Make inferences about effects of interest

1. Decompose data into effects and
How? error

2. Form statistic using estimates of
effects and error
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A very simple experiment

time
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What is the brain‘s response

« One session _ )
to such a stimulation?

» 7 cycles of rest and listening

 Blocks of 6 scans with 7 sec
TR
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How is brain data related to the input?

What we measure.

single voxel
time series

0 100 200 300 400 500 600

time {seconds}

What we know.

time

Question: Is there a change in the BOLD response between listening and rest?
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A linear model of the data

Explain your data...

as a combination of experimental manipulation,confounds and errors
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Single voxel regression model: y — XIIBI —|— XZIBZ _|_ e regressors
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Writing everything in matrix notation

:
g

BOLD signal

awil|

Single voxel regression model:
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Xy Xy

y=Xpg+¢e

error
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The way it looks in SPM
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.. to specify the design matrix.

- ... specify a noise model, e.g.|e ~ N(0,0°1)

* ... and then, estimate the parameters b
that minimize the error Za

— Minimization of the error depends on
assumptions about the noise.

GLM for fMRI | 10



Summary: Mass-univariate GLM

y=Xf+¢€
e ~N(0,0°1)

Model is specified by
1. Design matrix X
2. Assumptions about e

<
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D

M number of scans
\g! N ¢ N{ p. number of regressors

The design matrix embodies all available knowledge about
experimentally controlled factors and potential confounds.
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How to fit the model parameters.

OLS (Ordinary Least Squares)

i:_; § J=Xp Data

s M § e=y-y predicted by

f: = | le—y-xj our model

o I = min(e'e) = min((y- XB)" (Y- X))
y X e

Goal is to determine the
betas that minimize the
guadratic error

e = error between
predicted and actual data
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OLS - Ordinary least squares

e'e=(y—Xp) (Y- Xp)

We want to
minimize the
quadratic
error
between
data and
model
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OLS - Ordinary least squares

e'e=(y—Xp) (y—Xp)
e'e=(y' =" XT)(y - Xp)
e'e=y'y -y XB- "X y+fTXTXp

ele = yTy—2ﬁTXTy+ﬁTXTXﬁ\

T
€ Xy +2XTXf G
op

0=—2XTy+2X X3 < \

B=(X"X)'XTy OLS estimate for 3
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Summary: OLS solution

Objective: N )
— - estimate parameters E et
181 to minimize t=1

< WENRRNN
[

X Ordinary least squares
estimation (OLS)
(assuming i.i.d. error):
y=Xp+e B=(XTX)'XTy
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Geometric perspective

Residual
forming matrix R
OLS estimates e =Ry
B=(X"X)"XTy R=1-P

Projection matrix P
Design space § =Py
defined by X

P=X(X"X)'XT"
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Correlated and orthogonalized regressors

defined by X

Design space

Xo

y = XuBl + Xzﬁz +€

ﬂlzﬂzzll

y= X1ﬁ1 + X;ﬂz* +€

B >1;132*:1

Correlated regressors =

explained variance is shared
between regressors

When X, is orthogonalized with
regard to x,, only the parameter
estimate for x, changes, not that
for x,!
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We are nearly there ...

linear model

effects

—T estimate

\ error

estimate

> statistic
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Problems of this model

HRF

1. BOLD responses have a delayed
and dispersed form (cf. Lecture 1).

time [s]

2. The BOLD signal includes substantial amounts of low-
frequency noise.

3. The data are serially correlated (temporally autocorrelated)

— this violates the assumptions of the noise model in the
GLM
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Summary: Mass-univariate GLM

N N

N+

Model is specified by
1. Design matrix X
2. Assumptions about e

N number of scans
p. number of regressors

The design matrix embodies all available knowledge about
experimentally controlled factors and potential confounds.
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Problem 1: The BOLD response

time (seconds)

f ®g(t) =j f(r)g(t—-7)dr

The response of a linear time-invariant (LTI) system is the convolution of the input
with the system's response to an impulse (delta function).
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Basic math: What is a convolution?

t

f@®g(t) = f(r)g(t-r)dz

0
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Solution: Convolution with the HRF

expected BOLD response 120

= input function ® impulse

- t
response function (HRF) nep f @ Qg(t) = j f(r)g(t—7)dr
| 0

114

118
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£110
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Scans
blue = data
green =  predicted response, taking convolved with HRF
red = predicted response, NOT taking into account the HRF
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Problem 2: Low frequency noise

MRI Scanner Cutaway 113

112

Patient M1

=z
S110f
109}
Scanner
108}
107 10 20 30 c}lo 50 60 70 80
blue = data
black = mean + low-frequency drift
green =  predicted response, taking into account
low-frequency drift
red = predicted response, NOT taking into

account low-frequency drift
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Solution 2: High-pass filtering

Frequency domain
128 second High-pass filter
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Solution 2: High-pass filtering

113

Linear model
112

111

z
S110f
100}
108}
107 10 20 30 c}lo 50 60 70 80
blue = data
black = mean + low-frequency drift
green =  predicted response, taking into account
low-frequency drift
red = predicted response, NOT taking into

account low-frequency drift
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Problem 3: Serial correlations

sphericity = i.i.d.
error covariance is a
scalar multiple of the

identity matrix:

Cov(e) = ¢7I

Examples for non-sphericity:

7

non-identity

Cov(e) j

non-independence
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Problem 3: Serial correlations

e =ae_, +& with & ~N(0,07)

1st order autoregressive process: AR(1)

autocovariance
function
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Solution 3: Pre-whitening

* Pre-whitening:

1. Use an enhanced noise model with multiple error covariance
components, i.e. e ~ N(0, ¢?V) instead of e ~ N(0, &°l).

2. Use estimated serial correlation to specify filter matrix W for
whitening the data.

This is i.1.d
e
Wy = WX +We
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How to define W?

 Enhanced noise model e ~ N (09 GZV )

« Remember linear transform X ~ N (/u, 0-2), y = ax
for Gaussians

=y~ N(au,a’c?)

e Choose W such that error

covariance becomes spherical We ~ N (O, 02W 2V)

2
=WV =|
» Conclusion: W is a simple function of V
= so how do we estimate V ? —W =V —1/2

Wy =WX 3 +We
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Find W — multiple covariance components.

2V V o« Cov(e)
e ~ N(O,G ) vV=Y10Q
enhanced noise model error covariance components Q

and hyperparameters 4

Estimation of hyperparameters A with EM (expectation maximisation) or
ReML (restricted maximum likelihood). For more details see (Friston et al,
Neuroimage, 16:465; 2002)
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c=10000000000

— - o
— - offects Null hypothesis: 161 =0
I . —T estimate
n statistic
< ~ \ error
I m estimate =
— '3

S )

—> Lecture: Classical (frequentist) inference
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Outlook: Contrasts and statistical maps

H Q: activation during

B listening ?

B

B Null hypothesis: 3, = ()
M

m

: (¢4

. Std(c" B)
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Summary of GLM

Wy = WX 5 +We A

c'p
t = —|
. . std(c" B) J&2ET (WX ) (WX) ¢
f = (WX) Wﬂ;% ;
W=V |—— Swy-wxsf

c=10000000000

sfd(c" B) =

|
& —
o’V = Cov(e) IR

1 R = | —WX (WX)'

For brevity:
WX)" =(X"WX) "' X"

ReML-
estimates
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Physiological confounds

* head movements

« arterial pulsations (particularly bad in brain stem)
* breathing

 eye blinks (visual cortex)

« adaptation effects, fatigue, fluctuations in
concentration, etc.

- Lecture: Noise models in fMRI and noise correction
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Outlook — further challenges

« correction for multiple comparisons
« variability in the HRF across voxels
* slice timing

* limitations of frequentist statistics
— Bayesian analyses

« GLM ignores interactions among voxels
— models of effective connectivity

These issues are discussed in future lectures.
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Correction for multiple comparison

« Mass-univariate approach:
We apply the GLM to each of a huge number of voxels
(usually > 100,000).

* Threshold of p<0.05 — more than 5000 voxels significant
by chance!

« Massive problem with multiple comparisons!

« Solution: Gaussian random field theory

-> Lecture: Multiple comparison correction
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Variability in the BOLD response

HRF varies substantially across voxels and subjects

For example, latency can differ by = 1 second

Solution: use multiple basis functions

See talk on event-related fMRI

0 5 10 15 20 PST(s)

GLM for fMRI | 38



« Mass-univariate approach: same GLM for each voxel

 GLM includes all known experimental effects and
confounds

* Convolution with a canonical HRF

» High-pass filtering to account for low-frequency drifts,
implemented by a set of cosine functions.

« Estimation of multiple variance components (e.g. to
account for serial correlations)

GLM for fMRI | 39



Bibliography

Statistical
Parametric Mapping
" Jrain Images

Friston, Ashburner, Kiebel, Nichols, Penny (2007)
Statistical Parametric Mapplng The Analysis of
Functional Brain Images. Elsevier.

* Christensen R (1996) Plane Answers to Complex Questions: The
Theory of Linear Models. Springer.

« Friston KJ et al. (1995) Statistical parametric maps in functional
imaging: a general linear approach. Human Brain Mapping 2: 189-
210.

GLM for fMRI | 40



Supplementary slides



Convolution step-by-step;(from Wikipedia):

1. Express each function in 0

git)
terms of a dummy variable 7.
1 2 3 4 5 5} t 2
2. Reflect one of the functions:
g(t)—g( - 7). ftx) gt
1 2 3 4 5 [ T -4 -3 -2 -1
3. Add a time-offset, t, which ___________________
allows g(t — 1) to slide along | gt L ft)
the t-axis.
3 -4 -3 -2 t-1 : 1 2

4.Start t at -~ and slide it all the way to +~. Wherever the .
two functions intersect, find the integral of their product. In |
other words, compute a sliding, weighted-average of :
function f(t), where the weighting function is g( - 7). '

The resulting waveform (not shown here) is the convolution
of functions f and g. If f(t) is a unit impulse, the result of
this process is simply g(t), which is therefore called the
impulse response.




