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1st Level Analysis is within subject

𝑦 = 𝑋𝛽 + 𝑒
fMRI scans

Time

(e.g. TR = 3s)

Time

Voxel time course
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GLM: repeat over subjects

fMRI data Design Matrix Contrast Images SPM{t}
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Data from R. Henson

First level analyses (p<0.05 FWE):
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First level analyses (p<0.05 FWE at cluster-level, with CDT:p<0.001):

Data from Methods & Models Course 2017

Left Arrow > Right Arrow
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• It isn’t enough to look just at individuals.

• So, we need to look at which voxels are showing a 

significant activation difference between levels of X 

consistently within a group.

1. Average contrast effect across sample

2. Variation of this contrast effect

3. T-tests

2nd level analysis – across subjects
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Group Analysis: Fixed vs Random

Does the group activate on average?

Group

s1 s2 s3 s4 s5 s6 s7

What group mean are we after?

• The group mean for those exact 7 subjects?

 Fixed effects analysis (FFX)

• The group mean for the population from which these 7 
subjects were drawn?

 Random effects analysis (RFX)
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Subject 1

Subject 2

Subject 3

Subject N

…
Modelling all 

subjects at once

 Simple model

 Lots of degrees of 

freedom

 Large amount of 

data

 Assumes common 

variance over 

subjects at each 

voxel

Fixed effects analysis (FFX)
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- Only one source of random variation (over sessions):

 measurement error

- True response magnitude is fixed.

     111   Xy

Within-subject Variance

Fixed effects
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• N subjects = 12 with each 50 scans = 600 scans

c = [4, 3, 2, 1, 1, 2, 3, 3, 3, 2, 4, 4]

Within subject variability:

σw
2 = [0.9, 1.2, 1.5, 0.5, 0.4, 0.7, 0.8, 2.1, 1.8, 0.8, 0.7, 1.1]

• Mean group effect = 2.67

• Mean σw
2 = 1.04

• Standard Error Mean (SEM) = σw
2 /(sqrt(N))=0.04

t=M/SEM = 62.7, p=10-51

Whole Group – FFX calculation
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- Two sources of random variation:

 measurement errors

 response magnitude (over subjects)

- Response magnitude is random

 each subject/session has random magnitude

Random effects
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- Two sources of random variation:

 measurement errors

 response magnitude (over subjects)

- Response magnitude is random

 each subject/session has random magnitude

 but population mean magnitude is fixed.
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Between-subject Variance

Random effects
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• N subjects  = 12

c = [4, 3, 2, 1, 1, 2, 3, 3, 3, 2, 4, 4]

• Mean group effect = 2.67

• Mean σb
2 (SD) = 1.07

• Standard Error Mean (SEM) = σb
2 /(sqrt(N))=0.31

t=M/SEM = 8.61, p=10-6

Whole Group – RFX calculation
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Probability model underlying random effects analysis

𝜎𝑏
2

𝜎𝑤
2

Random effects
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With Fixed Effects Analysis (FFX) we compare

the group effect to the within-subject variability. It is

not an inference about the population from which

the subjects were drawn.

With Random Effects Analysis (RFX) we compare

the group effect to the between-subject variability. It

is an inference about the population from which the

subjects were drawn. If you had a new subject from

that population, you could be confident they would

also show the effect.

Fixed vs random effects
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Handbook of functional MRI data analysis. Poldrack, R. A., Mumford, J. A., & Nichols, T. E. Cambridge 

University Press, 2011

Random effects

Fixed vs random effects
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Fixed-effects
• Is not of interest across a population

• Used for a case study 

• Only source of variation is measurement error 
(Response magnitude is fixed) 

Random-effects
• If I have to take another sample from the 

population, I would get the same result

• Two sources of variation 
• Measurement error 

• Response magnitude is random (population mean 
magnitude is fixed) 

Fixed vs random effects
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Hierarchical linear models:

• Random effects models

• Mixed effects models

• Nested models

• Variance components models

… all the same

… all alluding to multiple sources of variation

(in contrast to fixed effects)

Terminology
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Linear hierarchical models

21

Hierarchical Model Multiple variance 

components at each level
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• Restricted Maximum Likelihood (ReML)

• Parametric Empirical Bayes

• Expectation-Maximisation Algorithm

spm_mfx.m

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

Hierarchical models
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Practical problems
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Summary Statistics RFX Approach

Contrast ImagesfMRI data Design Matrix
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Generalisability, Random Effects & Population 
Inference. Holmes & Friston, NeuroImage,1998.

Second level

One-sample t-test @ second level
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Summary Statistics RFX Approach

Assumptions

 The summary statistics approach is exact if for 

each session/subject:

• Within-subjects variances the same

• First level design the same (e.g. number of trials)

 Other cases: summary statistics approach is 

robust against typical violations.

Simple group fMRI modeling and inference. Mumford & Nichols. NeuroImage, 2009.

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.
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Summary Statistics RFX Approach

Robustness

Summary

statistics

Hierarchical

Model

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

Listening to words Viewing faces

SPM uses this!
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 One effect per subject:

• Summary statistics approach

• One-sample t-test at the second level

 More than one effect per subject or 

multiple groups:

• Non-sphericity modelling

• Covariance components and ReML

ANOVA & non-sphericity
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Reminder: sphericity
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sphericity = iid:

error covariance is 

scalar multiple of 

identity matrix:

Cov(e) = 2I
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Examples for non-sphericity:

non-identically
distributed

non-independent

GLM assumes Gaussian “spherical” (i.i.d.) errors
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Errors are independent 

but not identical

(e.g. different groups (patients, controls))

Errors are not independent 

and not identical

(e.g. repeated measures for each subject 

(multiple basis functions, multiple 

conditions, etc.))

Error covariance matrix

2nd level: Non-sphericity
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Error covariance matrix

Qk’s:

Qk’s:

Cov(𝜀) =෍
𝑘

𝜆𝑘𝑄𝑘

2nd level: Variance components

32



 Stimuli:

• Auditory presentation (SOA = 4 sec)

• 250 scans per subject, block design

• 2 conditions

 Words, e.g. “book”

 Words spoken backwards, e.g. “koob”

 Subjects:

• 12 controls

• 11 blind people

Data from Noppeney et al.

Example 1: between-subjects ANOVA

33



Error covariance matrix

 Two-sample t-test:

• Errors are independent    

but not identical.

• 2 covariance components

Qk’s:

Example 1: Covariance components
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Example 1: Group differences
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 Stimuli:

• Auditory presentation (SOA = 4 sec)

• 250 scans per subject, block design

• Words:

 Subjects:

• 12 controls

 Question:

• What regions are generally affected by the 

semantic content of the words?

“turn”“pink”“click”“jump”

ActionVisualSoundMotion

Noppeney et al., Brain, 2003.

Example 2: within-subjects ANOVA

36



 Errors are not independent 

and not identical

Qk’s:

Error covariance matrix

Example 2: Covariance components
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Example 2: Repeated measures ANOVA
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Mean centering continuous covariates for a group fMRI analysis, by J. Mumford:

http://mumford.fmripower.org/mean_centering/

ANCOVA model
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Analysis mask: logical AND

defines the search 

space for the 

statistical analysis.

40



Options:

• One-sample t-test

• Two-sample t-test

• Paired t-test

• Multiple regression

• One-way ANOVA

• One-way ANOVA – within subject

• Full factorial

• Flexible factorial

SPM interface: factorial design specification
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 Group inference usually proceeds with RFX analysis, not 

FFX. Group effects are compared to between rather than 

within subject variability. 

 Hierarchical models provide a gold-standard for RFX 

analysis but are computationally intensive.

 Summary statistics approach is a robust method for RFX 

group analysis.

 Can also use ‘ANOVA’ or ‘ANOVA within subject’ at 

second level for inference about multiple experimental 

conditions or multiple groups.

Summary
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Statistical Parametric Mapping: 
The Analysis of Functional Brain Images. 

Elsevier, 2007.

 Generalisability, Random Effects & Population Inference.                    
Holmes & Friston, NeuroImage,1998.
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 Classical and Bayesian inference in neuroimaging:  variance 
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