Methods & Models for fMRI Analysis 2017

GROUP ANALYSIS

Sandra Iglesias iglesias @biomed.ee.ethz.ch

Translational Neuromodeling Unit (TNU)
Institute for Biomedical Engineering (IBT)
University and ETH Zürich

With many thanks for slides & images to Guillaume Flandin

Overview of SPM Steps

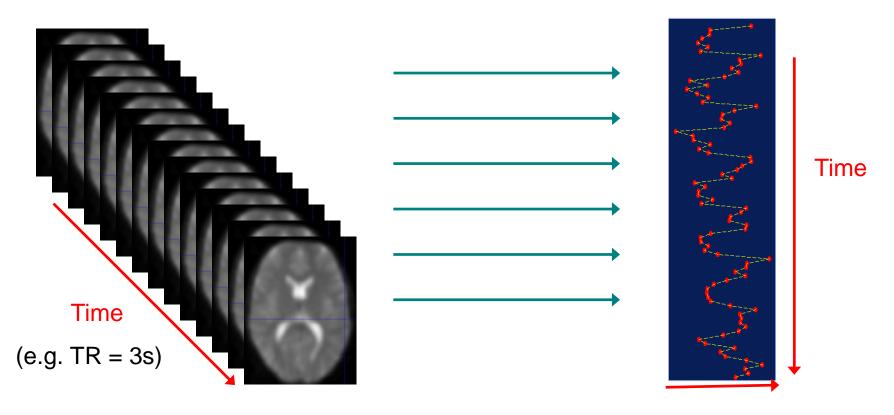
Image time-series Design matrix Statistical Parametric Map Spatial filter Realignment **Smoothing** General Linear Model — **Statistical RFT** Inference Normalisation p < 0.05Anatomical reference Parameter estimates

1st Level Analysis is within subject

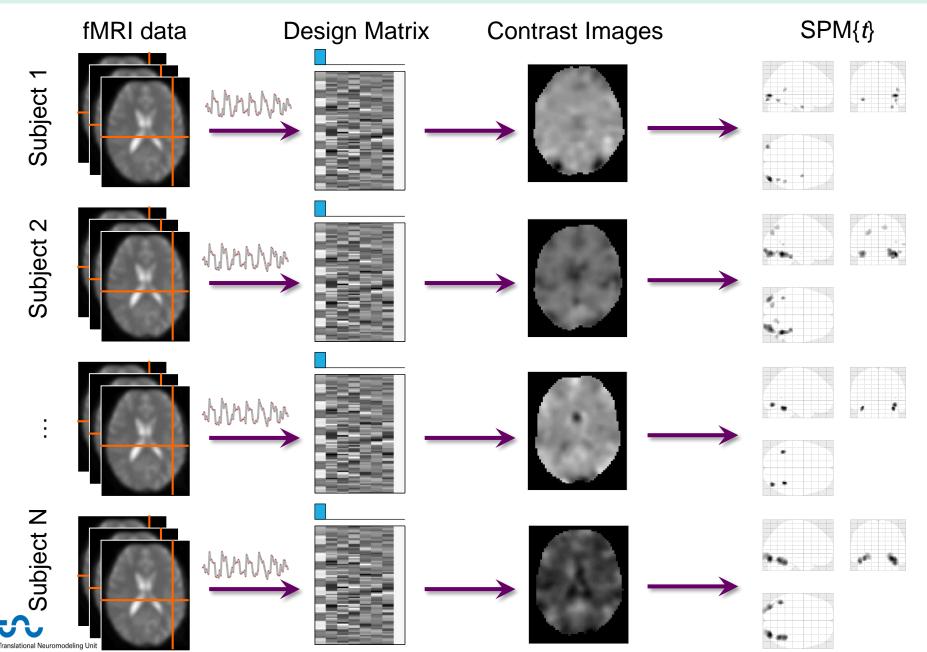
$$y = X\beta + e$$

fMRI scans

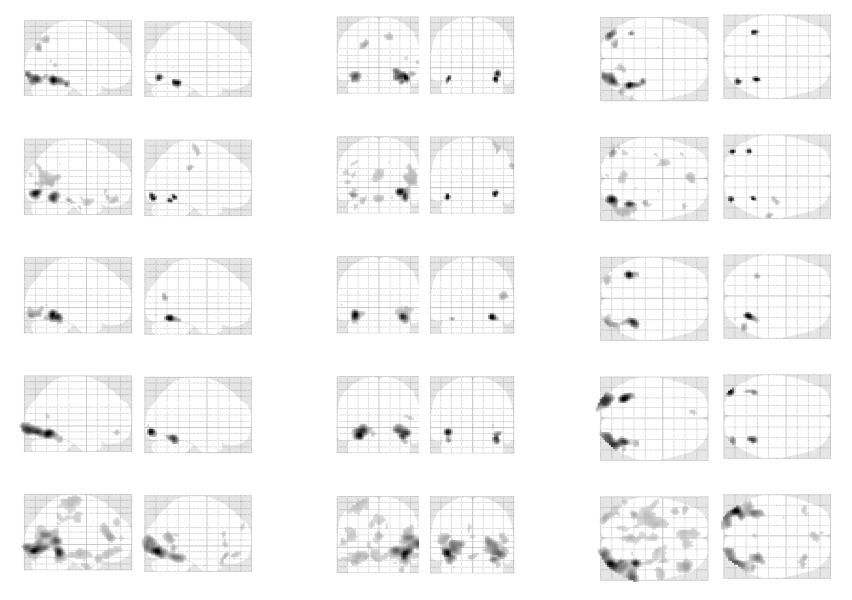
Voxel time course



GLM: repeat over subjects



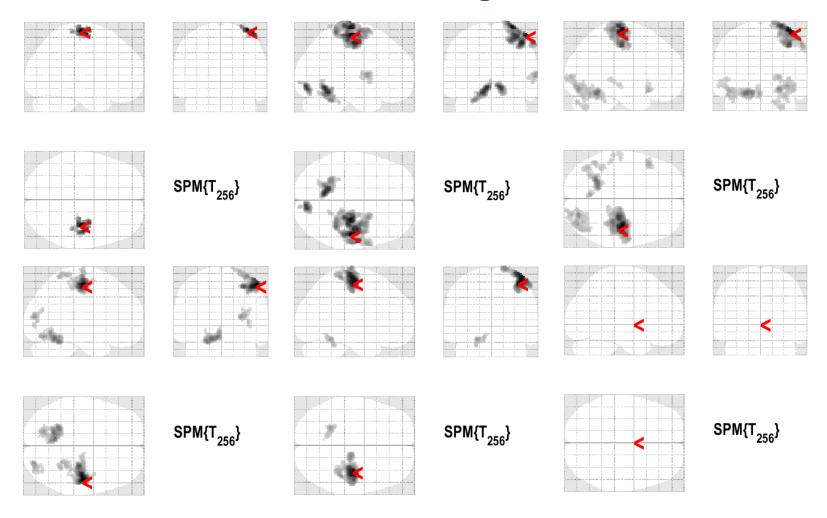
First level analyses (p<0.05 FWE):



Data from R. Henson

First level analyses (p<0.05 FWE at cluster-level, with CDT:p<0.001):

Left Arrow > Right Arrow



2nd level analysis – across subjects

- It isn't enough to look just at individuals.
- So, we need to look at which voxels are showing a significant activation difference between levels of X consistently within a group.
 - Average contrast effect across sample
 - 2. Variation of this contrast effect
 - 3. T-tests

Group Analysis: Fixed vs Random

Does the group activate on average?

Group s1 s2 s3 s4 s5 s6 s7

What group mean are we after?

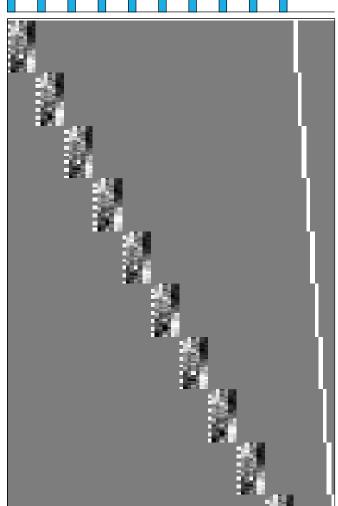
- The group mean for those exact 7 subjects?
 - → Fixed effects analysis (FFX)
- The group mean for the population from which these 7 subjects were drawn?
 - → Random effects analysis (RFX)

Fixed effects analysis (FFX)

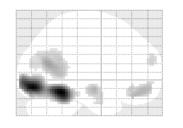
Subject 1

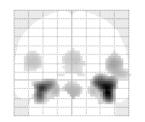
Subject 2

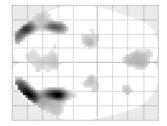
Subject 3



Modelling all subjects at once



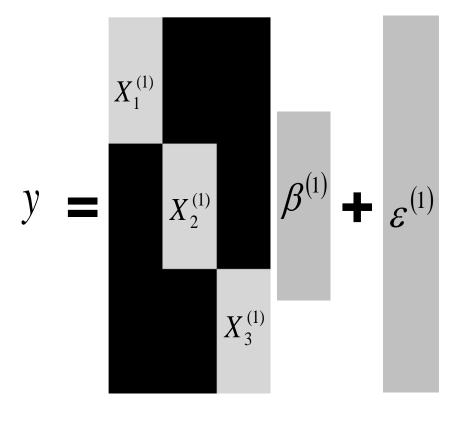




variance over subjects at each voxel

Fixed effects analysis (FFX)

$$y = X^{(1)}\beta^{(1)} + \varepsilon^{(1)}$$



Modelling all subjects at once

- ✓ Simple model
- ✓ Lots of degrees of freedom
- Large amount of data
- Assumes common variance over subjects at each voxel

Fixed effects

$$y = X^{(1)}\beta^{(1)} + \varepsilon^{(1)}$$

- Only one source of random variation (over sessions):
 - → measurement error

Within-subject Variance

- True response magnitude is fixed.

Whole Group – FFX calculation

N subjects = 12 with each 50 scans = 600 scans

$$c = [4, 3, 2, 1, 1, 2, 3, 3, 3, 2, 4, 4]$$

Within subject variability:

$$\sigma_{\rm w}^2$$
 = [0.9, 1.2, 1.5, 0.5, 0.4, 0.7, 0.8, 2.1, 1.8, 0.8, 0.7, 1.1]

- Mean group effect = 2.67
- Mean $\sigma_{\rm w}^2 = 1.04$
- Standard Error Mean (SEM) = $\sigma_w^2/(\text{sqrt}(N))=0.04$

$$t=M/SEM = 62.7, p=10^{-51}$$

Random effects

$$y = X^{(1)}\beta^{(1)} + \varepsilon^{(1)}$$

$$\beta^{(1)} = X^{(2)}\beta^{(2)} + \varepsilon^{(2)}$$

- Two sources of random variation:
 - → measurement errors

Within-subject Variance

→ response magnitude (over subjects)

Between-subject Variance

- Response magnitude is random
 - → each subject/session has random magnitude

Random effects

$$y = X^{(1)}\beta^{(1)} + \varepsilon^{(1)}$$
$$\beta^{(1)} = X^{(2)}\beta^{(2)} + \varepsilon^{(2)}$$

- Two sources of random variation:
 - → measurement errors

Within-subject Variance

→ response magnitude (over subjects)

Between-subject Variance

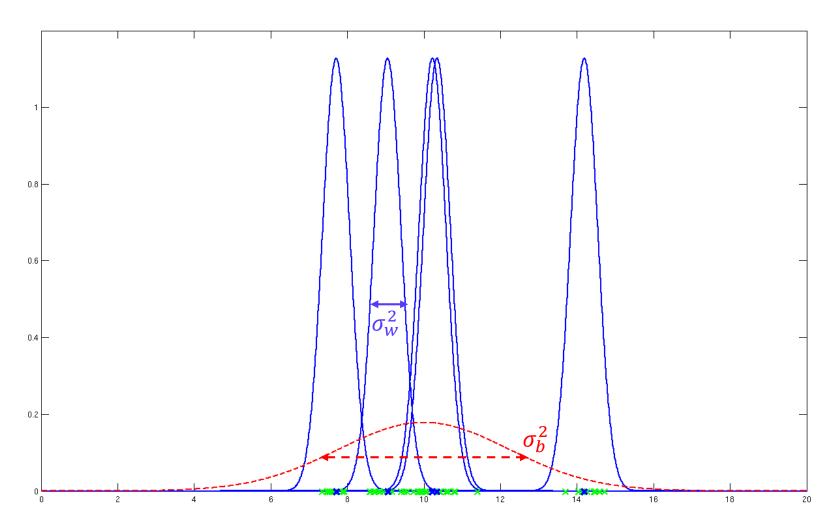
- Response magnitude is random
 - → each subject/session has random magnitude
 - → but population mean magnitude is *fixed*.

Whole Group – RFX calculation

- N subjects = 12
 c = [4, 3, 2, 1, 1, 2, 3, 3, 3, 2, 4, 4]
- Mean group effect = 2.67
- Mean σ_b^2 (SD) = 1.07
- Standard Error Mean (SEM) = $\sigma_b^2/(\text{sqrt}(N))=0.31$

$$t=M/SEM = 8.61, p=10^{-6}$$

Random effects



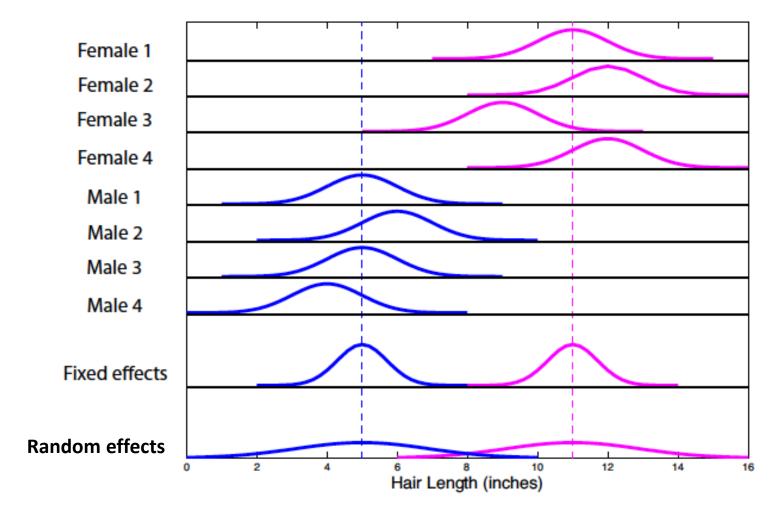
Probability model underlying random effects analysis

Fixed vs random effects

With **Fixed Effects Analysis (FFX)** we compare the group effect to the *within-subject variability*. It is not an inference about the population from which the subjects were drawn.

With Random Effects Analysis (RFX) we compare the group effect to the *between-subject variability*. It is an inference about the population from which the subjects were drawn. If you had a new subject from that population, you could be confident they would also show the effect.

Fixed vs random effects



Handbook of functional MRI data analysis. Poldrack, R. A., Mumford, J. A., & Nichols, T. E. Cambridge University Press, 2011

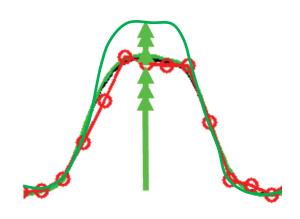
Fixed vs random effects

Fixed-effects

- Is not of interest across a population
- Used for a case study
- Only source of variation is measurement error (Response magnitude is **fixed**)

Random-effects

- If I have to take another sample from the population, I would get the same result
- Two sources of variation
 - Measurement error
 - Response magnitude is random (population mean magnitude is fixed)



Terminology

Hierarchical linear models:

- Random effects models
- Mixed effects models
- Nested models
- Variance components models
 - ... all the same
 - ... all alluding to multiple sources of variation (in contrast to fixed effects)

Linear hierarchical models

Hierarchical Model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$
$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$
$$\vdots$$

$$\theta^{(n-1)} = X^{(n)}\theta^{(n)} + \varepsilon^{(n)}$$

Multiple variance components at each level

$$C_{\varepsilon}^{(i)} = \sum_{k} \lambda_{k}^{(i)} Q_{k}^{(i)}$$

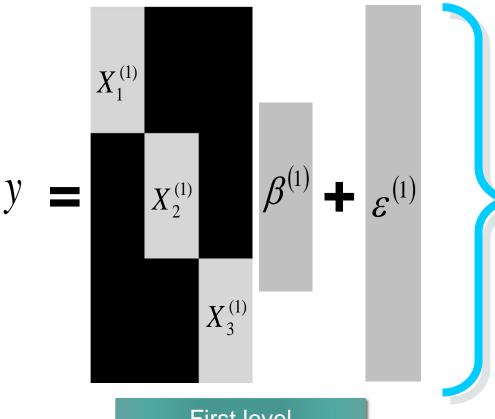
At each level, distribution of parameters is given by level above.

What we don't know: distribution of parameters and variance parameters (hyperparameters).

Hierarchical models

Example: Two level model

$$y = X^{(1)}\beta^{(1)} + \varepsilon^{(1)}$$
$$\beta^{(1)} = X^{(2)}\beta^{(2)} + \varepsilon^{(2)}$$

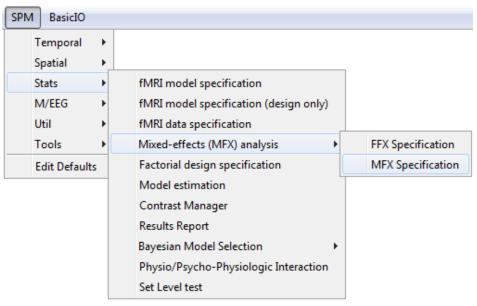


Second level

First level

Hierarchical models

- Restricted Maximum Likelihood (ReML)
- Parametric Empirical Bayes
- Expectation-Maximisation Algorithm



spm mfx.m

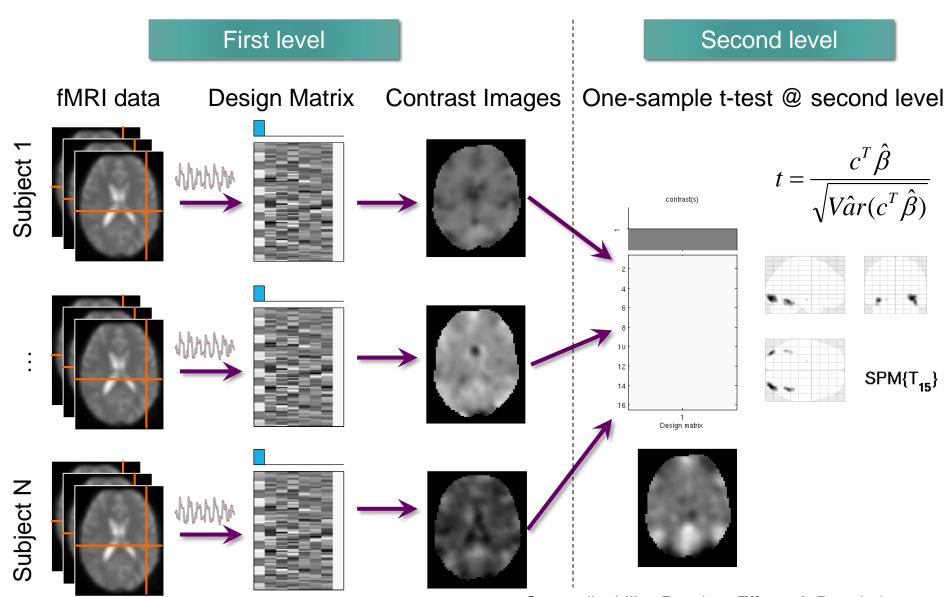
Mixed-effects and fMRI studies. Friston et al., Neurolmage, 2005.

Practical problems

- Full MFX inference using REML or EM for a wholebrain 2-level model has enormous computational costs
 - for many subjects and scans, covariance matrices become extremely large
 - nonlinear optimisation problem for each voxel
- Moreover, sometimes we are only interested in one specific effect and do not want to model all the data.
- Is there a fast approximation?

Summary Statistics RFX Approach

Translational Neuromodeling Unit



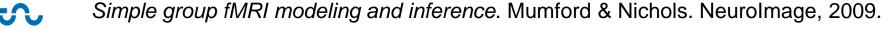
Summary Statistics RFX Approach

Assumptions

- The summary statistics approach is exact if for each session/subject:
 - Within-subjects variances the same
 - First level design the same (e.g. number of trials)
- Other cases: summary statistics approach is robust against typical violations.

Mixed-effects and fMRI studies. Friston et al., Neurolmage, 2005.

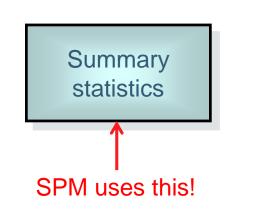
Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.

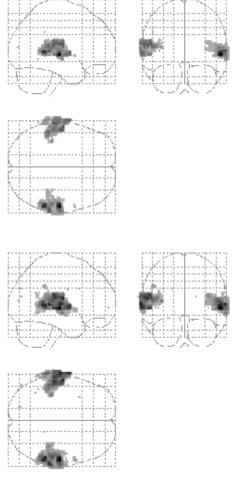


26

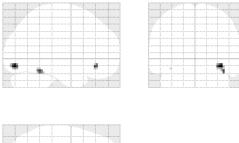
Summary Statistics RFX Approach

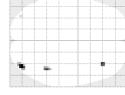
Robustness

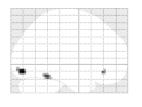


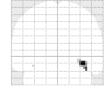


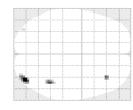
Listening to words











Viewing faces

ANOVA & non-sphericity

- One effect per subject:
 - Summary statistics approach
 - One-sample t-test at the second level
- More than one effect per subject or multiple groups:
 - Non-sphericity modelling
 - Covariance components and ReML

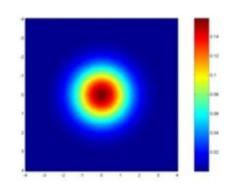
Reminder: sphericity

$$y = X\theta + \varepsilon$$

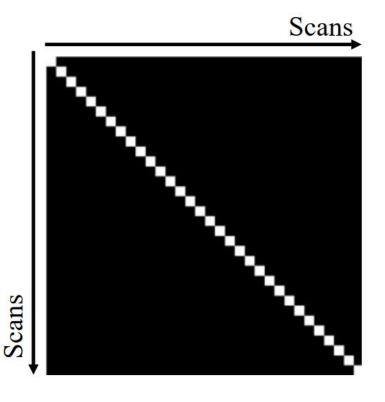
$$C_{\varepsilon} = Cov(\varepsilon) = E(\varepsilon \varepsilon^{T})$$

"sphericity" means:

$$Cov(\varepsilon) = \sigma^2 I$$
i.e. $Var(\varepsilon_i) = \sigma^2$



$$Cov(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 Supplies $Cov(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$



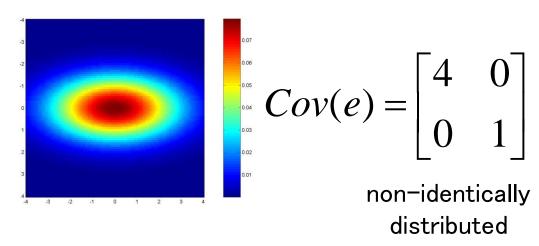
GLM assumes Gaussian "spherical" (i.i.d.) errors

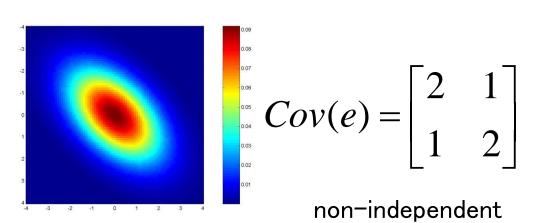
sphericity = iid:
error covariance is
scalar multiple of
identity matrix:
Cov(e) = σ²I

-4 -3 -0.12 -1 -0.08 -0.08 -0.08 -0.04 -0.09

$$Cov(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Examples for non-sphericity:

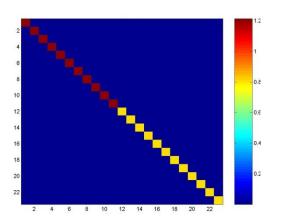




2nd level: Non-sphericity

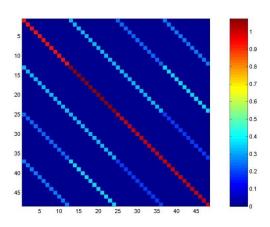
Errors are independent
but not identical
(e.g. different groups (patients, controls))

Error covariance matrix

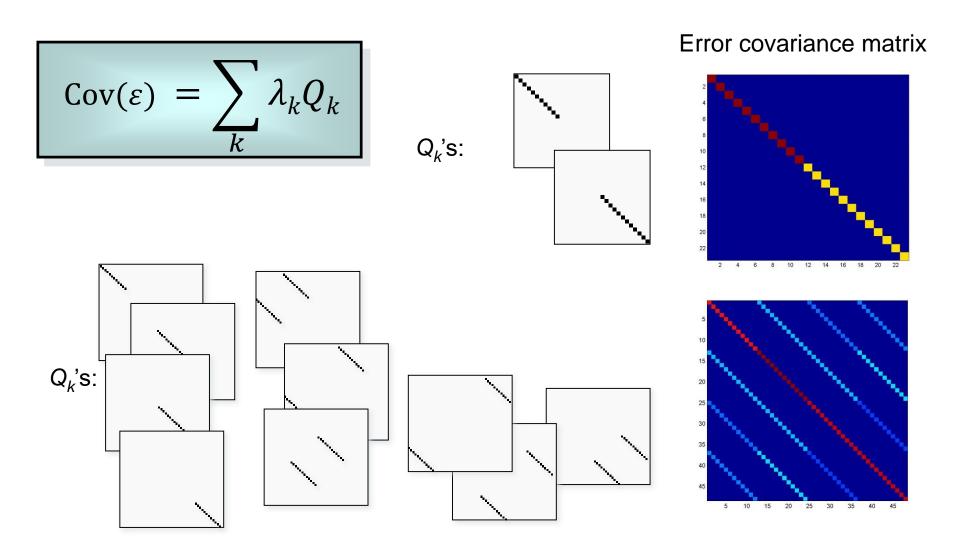


Errors are not independent and not identical

(e.g. repeated measures for each subject (multiple basis functions, multiple conditions, etc.))



2nd level: Variance components

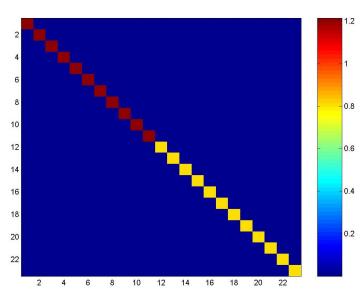


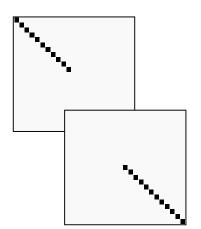
Example 1: between-subjects ANOVA

- Stimuli:
 - Auditory presentation (SOA = 4 sec)
 - 250 scans per subject, block design
 - 2 conditions
 - Words, e.g. "book"
 - Words spoken backwards, e.g. "koob"
- Subjects:
 - 12 controls
 - 11 blind people

Example 1: Covariance components

- Two-sample t-test:
 - Errors are independent but not identical.
 - 2 covariance components



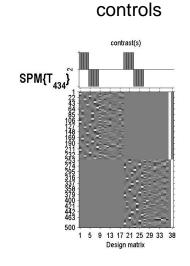


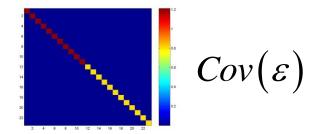
 Q_k 's:

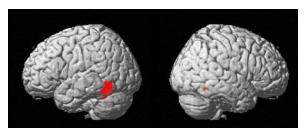
Example 1: Group differences

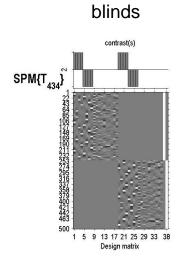
First Level

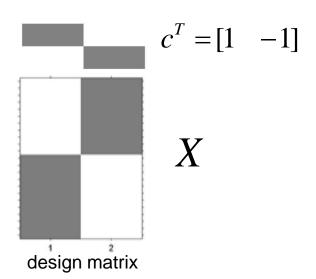
Second Level











Example 2: within-subjects ANOVA

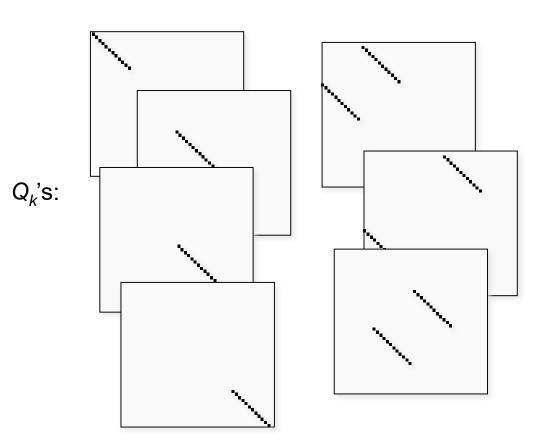
- Stimuli:
 - Auditory presentation (SOA = 4 sec)
 - 250 scans per subject, block design
 - Words:

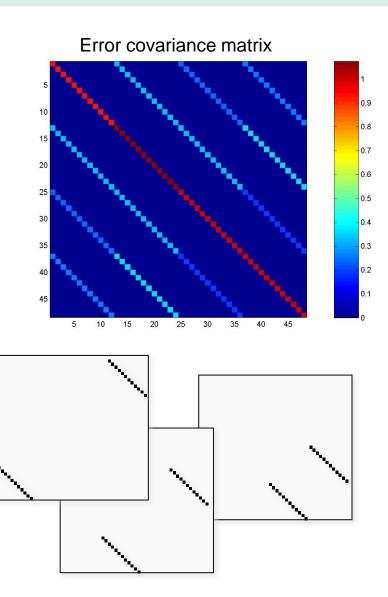
Motion	Sound	Visual	Action
"jump"	"click"	"pink"	"turn"

- Subjects:
 - 12 controls
- Question:
 - What regions are generally affected by the semantic content of the words?

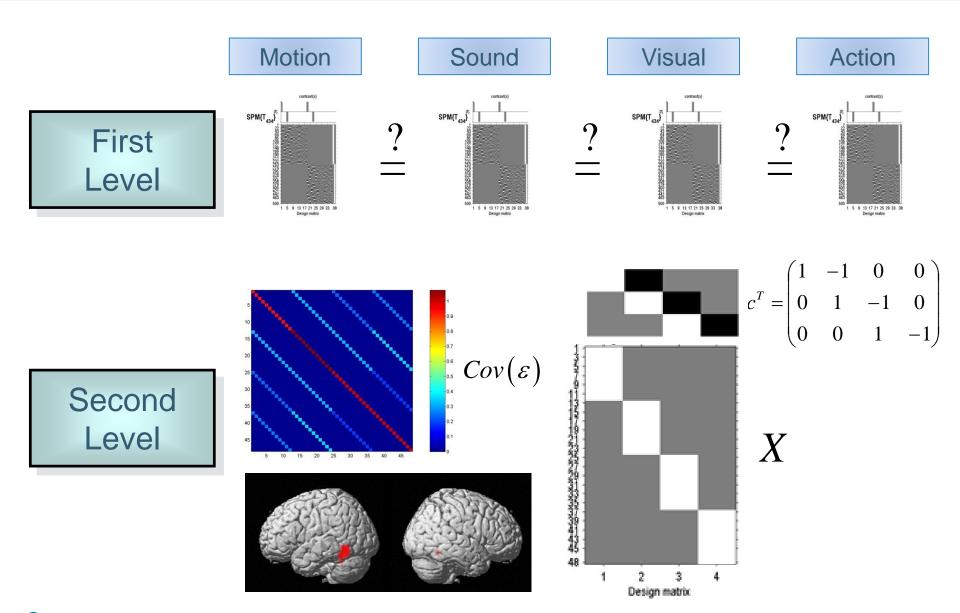
Example 2: Covariance components

Errors are not independent and not identical

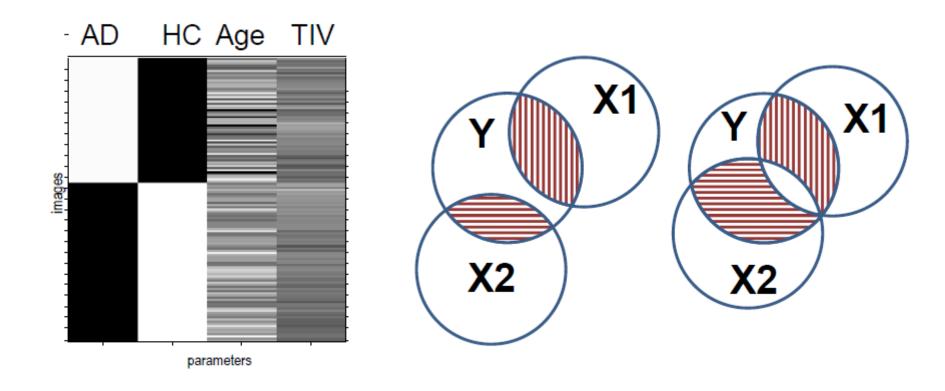




Example 2: Repeated measures ANOVA

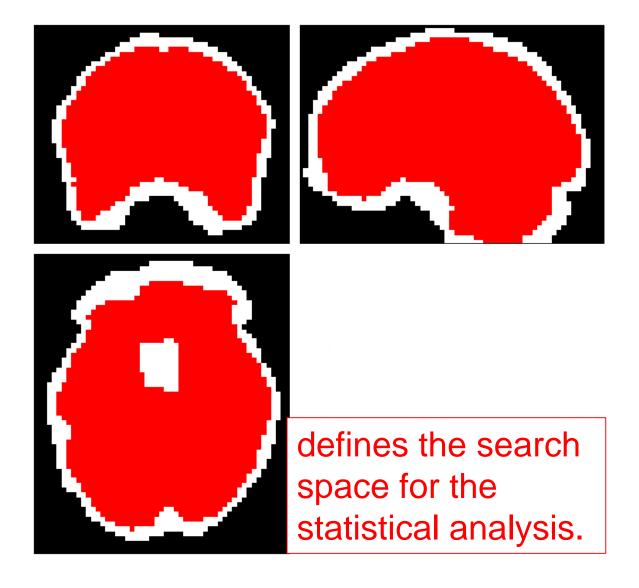


ANCOVA model



Mean centering continuous covariates for a group fMRI analysis, by J. Mumford: http://mumford.fmripower.org/mean_centering/

Analysis mask: logical AND



SPM interface: factorial design specification

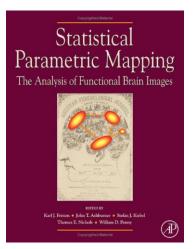
Options:

- One-sample t-test
- Two-sample t-test
- Paired t-test
- Multiple regression
- One-way ANOVA
- One-way ANOVA within subject
- Full factorial
- Flexible factorial

Summary

- Group inference usually proceeds with RFX analysis, not FFX. Group effects are compared to between rather than within subject variability.
- Hierarchical models provide a gold-standard for RFX analysis but are computationally intensive.
- Summary statistics approach is a robust method for RFX group analysis.
- Can also use 'ANOVA' or 'ANOVA within subject' at second level for inference about multiple experimental conditions or multiple groups.

Bibliography:



Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.

- Generalisability, Random Effects & Population Inference.
 Holmes & Friston, Neurolmage, 1998.
- Classical and Bayesian inference in neuroimaging: theory.
 Friston et al., NeuroImage, 2002.
- Classical and Bayesian inference in neuroimaging: variance component estimation in fMRI. Friston et al., NeuroImage, 2002.
- Mixed-effects and fMRI studies. Friston et al., Neurolmage, 2005.
- Simple group fMRI modeling and inference. Mumford & Nichols, Neurolmage, 2009.

