

Noise Models and Correction for fMRI

11111

- an Introduction to the PhysIO Toolbox

Lars Kasper

Nov 21th, 2017

MR-Technology and Methods Group & Translational Neuromodeling Unit

Institute for Biomedical Engineering University of Zurich and ETH Zurich

The Goal of Noise Correction

Correction

The Goal of Noise Correction

Reminder: fMRI Data is noisy...

fMRI Data is noisy...

Interest in fluctuations only: Subtract the mean

Previously...

- How we ended 6 weeks ago (after preprocessing)
- After smoothing...still some fluctuation

Sources of Noise in fMRI

1	Acquisition Timing	Temporal Preproc	•	Slice-Timing
	Subject Motion	Spatial Preproc	•	Realignment
	Anatomical Identity	Spatial Preproc		Co-registration
	Inter-subject variability	Spatial Preproc	-	Segmentation
	Thermal Noise	Spatial Preproc	•	Smoothing
	Physiological Noise	Noise Modeling	•	PhysIO Toolbox

Previously....(continued)

- ResMS image (cf. GLM lecture)
- Indicates where model incomplete...
- limits sensitivity...

 $\widehat{\sigma^2} = \frac{(Y - X\beta)^2}{N - p}$

Outline – Noise Correction

- MRI Time Series Recap and Noise Sources
 - Why de-noising? Structured Noise; Noise Pathways
- Noise Correction Approaches
 - Target: Scanner Drift, Motion, Cardiac/Breathing Cycle
 - Method: Modeling VS Preprocessing
 - Input: fMRI Data VS Peripheral Measures
- Prospects for Improving Group Statistics
- Limitations
 - Degrees of Freedom; Task-related "noise"; Interoception

Outline – Noise Correction

- MRI Time Series Recap and Noise Sources
 - Why de-noising? Structured Noise; Noise Pathways
- Noise Correction Approaches
 - Target: Scanner Drift, Motion, Cardiac/Breathing Cycle
 - Method: Modeling VS Preprocessing
 - Input: fMRI Data VS Peripheral Measures
- Prospects for Improving Group Statistics
- Limitations
 - Degrees of Freedom; Task-related "noise"; Interoception

fMRI = Acquiring Movies

- The Localized Time-series is the Fundamental Information Unit of fMRI
- Signal: Fluctuation through Blood oxygen level dependent (BOLD) contrast

Noise: All other fluctuations

Run/Session: Time Series of Images

scan 1

time

••

Noise Categories & Reduction

- Thermal Noise
 - temporally uncorrelated
 - reduced SNR → risk of false negatives
 - Remedy: Spatial Smoothing
- Noise: All other fluctuations
- "Structured" Noise
 - temporally correlated
 - reduced SNR \rightarrow risk of false negatives
 - correlated with task \rightarrow risk of false positives
 - Remedy: Noise modeling (e.g. GLM)

Inference = Signal-To-Noise

$$t = \frac{\beta}{\sqrt{\sigma_{\varepsilon}^2 (X^T X)^{-1}}} = \frac{\beta \| \boldsymbol{x} \|}{\sigma_{\varepsilon}}$$

$$F = \frac{N - M}{M_1} \cdot \frac{(\sigma_s^2 + \sigma_N^2) - \sigma_N^2}{\sigma_N^2}$$

Recap: MR Image Encoding

Image Reconstruction & Noise

- Image reconstruction is also a huge GLM, ~10⁵-10⁶ rows
 - 3 mm slice, 8 chan: 64²*8 = 512k
 - 1 mm slice, 32 ch: $256^{2*}32 = 2M$
- Any change between volumes in encoding matrix (field), object magnetization and thermally induces image noise

$$\widehat{m} = \left(E^H E\right)^{-1} E^H s$$

What fluctuates?

Structured Noise in MRI

The Problem: Physiological Noise 57

The Problem: Physiological Noise **T**

Cardiac effects

- Systole:
 - Blood pumped into brain, vessel
 volume increases: pulsatile vessels
 - CSF pushed down: pulsatile CSF
- Diastole:
 - Vessel volume decreases
 - CSF flows back into "void" brain volume

A Cardiac Cycle in the Brain

The Problem: Physiological Noise 57

The Problem: Physiological Noise 57

Cardiac effects

Vessel Anatomy

Locations of Fluctuations

The Problem: Physiological Noise **T**

- Respiratory effects
 - Chest (&head) moves with respiratory cycle
 - Changes in lung volume change encoding magnetic field for MR
 - Geometric distortion/scaling
 - Respiratory-sinus arrythmia
 - Heart beats faster during inhalation

Outline – Noise Correction

- MRI Time Series Recap and Noise Sources
 - Why de-noising? Structured Noise; Noise Pathways
- Noise Correction Approaches
 - Target: Scanner Drift, Motion, Cardiac/Breathing Cycle
 - Method: Modeling VS Preprocessing
 - Input: fMRI Data VS Peripheral Measures
- Prospects for Improving Group Statistics
- Limitations
 - Degrees of Freedom; Task-related "noise"; Interoception

Noise Correction Targets

Drifts: High-Pass Filtering

S

- Discrete Cosine Model (last lecture) of slow oscillations (cycle ≥ 128 s)
- Was: Extra, non-task related columns in design matrix: nuisance regressors
- Now: Part of "hidden" preprocessing
 - Residual forming Matrix

$$K = 1 - X_0 (X_0^T X_0)^{-1} X_0^T$$

- With X_0 being the design matrix modeling the confounds
- In fact, GLM in SPM estimates $K \cdot \mathbf{y} = K \cdot X \cdot \mathbf{\beta} + K \cdot \varepsilon$

Modeling VS Preprocessing

- Modeling:
 - Filters, projections (e.g. to independent components) etc. are all linear operations
 - Combination in one design matrix, together with task
 - Simple test of correction efficacy: F-test on nuisance regressors
- Preprocessing:
 - The data y entering the GLM is altered $\Rightarrow y' = X\beta + \varepsilon$
 - For non-linear changes of y or inter-voxel dependencies, alteration outside GLM necessary

The Problem with Preprocessing 50

- Problem: No inherent measure of efficacy (F-test in GLM), correlation with task regressors undetected
- "Advantage": No loss of degrees of freedom (sensitivity of F-test)
 - But it it only a hidden loss, statistics for inference is biased, if performed modeling is not incorporated
- Modeling via GLM recommended, if possible
 - Drifts, Motion Regressors
 - RETROICOR, HRV, RVT
 - aCompCor, (ICA)

Motion: Preprocess & Modeling

- Correction for motion artifacts is actually a combination of Preprocessing and modeling
- Preprocessing cannot correct spin-history effects, intravolume movements (non-rigid!), small partial volume effects
- Preprocessing:
 - Realignment
 - Motion "Scrubbing"
- Modeling (from estimated realignment parameters)
 - Retrospective Modeling: Motion Regressors
 - Motion Censoring

Retrospective Motion Correction

- Best: Avoid subject motion in the first place
- Better: Use Prospective Motion Correction
- Standard: Perform rigid-body realignment, use parameters as nuisance regressors
 - 6 parameters: translation+rotation
 - 12 parameters: include derivatives (for temporal shifts)
 - 24 parameters: include squared regressors
- 24-parameter model known as Volterra expansion

Friston, MRM, 1996

Motion Censoring = "Scrubbing"

- Detect outlier volumes (strong movement, but also spikes, RF flip angle fluctuations)
- Inform the GLM of these bad volumes via stick regressors (zero everywhere else, 1 at volume)
 - Will absorb all variance of that volume
- Problem: Temporal filtering before GLM might create
 Gibbs ringing of outliers into neighbors
- Alternative: censoring during preprocessing
 - interpolate faulty volume by neighbors

Noise Correction Targets

Image-based Noise Correction

Model-based Phys Noise Correction

Noise Modeling

RETROspective
Image CORrectionCardiac Response
FunctionRespiratory
Response Function• Cardiac/respiratory
phase• Heart Rate
 φ_c • Resp. Volume
per Time

Fourier expansionconvolved withconvolved with(cosine/sine)CRFRRF

evaluated at 1 time point (slice) per volume =

regressor

Noise Modeling

Model: Fourier Phase Expansion

- Cosine and sine to allow for constant phase shifts per voxel
- Higher model orders to account for under-sampling of physiological frequencies with typical TR in fMRI

Aliasing of Physiology

Courtesy: R. Birn, HBM 2015

Noise Modeling

Noise Modeling

Exploratory Phys Noise Correction

Noise Component Modeling

- Use priors about physiological noise to identify noise components (time series)
 - Spatial Priors: Mechanisms of physiological noise implicate physiological noise in CSF, blood vessels
 - Temporal Priors: Knowledge about typical physiological frequency contents (heart ~ 1Hz, breathing 0.2-0.4 Hz)
 - Note that simple filtering is impossible (cf. aliasing)
 - Population Priors: Use dictionary learning from manually labelled training set of subjects (FIX)

v		¥			
Spatial ICA	FIX	CORSICA	aCompCor		
(Thomas et al.,	(Salimi-Khorshidi	(Perlbarg et	(Behzadi et al.,		
2002)	et al., 2014)	al., 2007)	2007)		
Breathing &	Multi-subject	CSF Pools (Flow)			
Cardiac Frequency	dictionary	Vessels (Pulsation)			
(~0.25 Hz, ~1 Hz)	(hierarchical	White Matter (non-BOLD)			
	classifier)				
	J = /				

PCA VS ICA

- Methods to extract components (i.e. summarize ROIs/spectra) differ:
 - Maximum variance time series: Principal Component Analysis (PCA) from region of interest (aCompCor, Behzadi 2007)
 - Maximally independent time courses/sites: spatial/temporal ICA, FSL MELODIC, FIX
- aCompCor is basically identical to a seed-based correlation analysis in resting-state fMRI
 - Here: seed is in region-of-no-interest and correlated time series regressed out
 - See previous talk (resting state analysis) for more details

Preprocessing Techniques

Other Physiological Corrections

- Non-linear models
 - DRIFTER: Kalman Filter, Bayesian, *Joint* Stochastic State-space model of peripheral physiology and BOLD
- Identify noise via task test-retest reproducibility
 - PHYCAA: e.g. via high-freq. autocorrelation, anatomy
 - GLMDenoise: PCA of noise regressors
- MEICA: Multi-Echo ICA
 - Use diff. TE-images to decompose proton density from T2* changes

Särkkä, Neurolmage, 2012 Churchill, Neurolmage, 2012/13 Kay, Front. Neurosc., 2013 Olafsson, Neurolmage, 2015

Outline – Noise Correction

- MRI Time Series Recap and Noise Sources
 - Why de-noising? Structured Noise; Noise Pathways
- Noise Correction Approaches
 - Target: Scanner Drift, Motion, Cardiac/Breathing Cycle
 - Method: Modeling VS Preprocessing
 - Input: fMRI Data VS Peripheral Measures
- Prospects for Improving Group Statistics
- Limitations
 - Degrees of Freedom; Task-related "noise"; Interoception

When? – Literature Evidence

Resting-state:

- Birn, R. M. "The Role of Physiological Noise in Resting-state Functional Connectivity." *NeuroImage 62*, 2012
- Birn, R. M., et al. "Separating Respiratory-variation-related
 Fluctuations from Neuronal-activityrelated Fluctuations in fMRI." *NeuroImage 31*, 2006

C Resting-state correlation

D Rest-state corr – after RVTcor

Task-based:

Hutton, C., et al. "The Impact of Physiological Noise Correction on fMRI at 7 T." *NeuroImage 57*, 2011:

All these methods, but...

 Physiological noise correction not a default preprocessing step in task-based fMRI

Reasons

Impact on group level fMRI

no reports for non-trivial paradigms

- Existing Toolboxes lack...
 - robust, automatic implementation
 - dealing with variable peripheral data quality

Paradigm: Learning from Advice

- Hierarchical learning of trustworthyness of advisor over time
- Contrasts: Prediction and Prediction Error about advice

recommendations of adviser were **veridical** (pre-recorded videos from behavioural study)

volatility of advice (changing intentions of adviser through incentive structure)

interactive, gender-matched (**40** male subjects)

fMRI design: Philips Achieva 3T TR/TE 2500/36ms, 2 x 2 x 3 mm³

Diaconescu et al, 2014, PLoS Comp. Biol.

Group Level Impact PhysIO

- Andreea Diaconescu (TNU): Social Learning Experiment 2012-2014, (N=35)
- F-contrast: Where does physiological noise model explain significant variance?

Relevance for Neuromodulation

cardiac (red), respiratory (blue), cardXresp (green)

Relevance for Neuromodulation

VTA (DA)

Raphe Nuclei (5-HT)

J

Locus coeruleus (NA)

Effects on Group Contrasts

2017-11-21

Outline – Noise Correction

- MRI Time Series Recap and Noise Sources
 - Why de-noising? Structured Noise; Noise Pathways
- Noise Correction Approaches
 - Target: Scanner Drift, Motion, Cardiac/Breathing Cycle
 - Method: Modeling VS Preprocessing
 - Input: fMRI Data VS Peripheral Measures
- Prospects for Improving Group Statistics

Limitations

Degrees of Freedom; Task-related "noise"; Interoception

Limitations of Noise Modeling

- Degrees of freedom, sensitivity reduced by too many ineffective regressors
 - F-test informative
- Intrinsic correlations of functional areas of interoception and peripheral physiology
 - E.g. Amygdala, Insula, ACC
 - Controversial reading:
 <u>fMRI of the Amygdala: All In Vein? Neuroskeptic</u>
 - Alternative: Masking, Pure anatomical priors removing CSF, angiography (vessels)

Conclusion

- MRI Time Series and Physiological Noise
- Image-Based Correction in the GLM
- Noise Modeling Prospects: Group FX

The PhysIO Toolbox

- Structured noise through cardiac/resp cycle (70%)
- Nuisance regressors from
 Fourier expansion, response functions
- Increase group sensitivity (low inter-subject variability), fewer false positives
- Correction in SPM/Matlab in practice => NOW!

- Demo: The PhysIO Toolbox for Physiological Noise
 Correction in fMRI
 - Features and Workflow
 - Image-based physiological noise correction in the GLM
 - RETROICOR, HRV, RVT
 - Noise-ROIs
 - Practical Demo (SPM Batch)
 - Estimating different Models
 - Understanding the Preprocessing Plots
 - Automatic Model Assessment, Diagnostics on Contrast

Image-based Noise Correction

The PhysIO Toolbox

- Developed at the Translational Neuromodeling Unit (TNU) since 2008
 - Lead programmer: Lars Kasper (TNU)
 - Contributors: Jakob Heinzle (TNU), Steffen Bollmann (KiSpi Zurich)
- Part of the TNU «TAPAS» software suite
- Used at the TNU, in Zurich and beyond by ~50 researchers
 - Iglesias 2013, Neuron; Kasper 2014, NeuroImage; Bollmann 2014, PhDThesis; Sulzer 2013, NeuroImage; Hauser 2014, NeuroImage; Grueschow 2015, Neuron
- Download & Example Data:
 - <u>https://www.tnu.ethz.ch/en/software/tapas.html</u>
 - https://www.tnu.ethz.ch/en/software/tapas/data.html

Workflow of the PhysIO Toolbox **T**

Flowchart of Noise Correction

Scan Sync with Philips Gradients

Data Preprocessing Overview

Preprocessing: Peak Detection

Peak Detection: Robustness

Noise Modeling

Diagnostics: Model Assessment

Model Check: SPM F-contrasts

Finally: No

Check Influence of Physiological Noise (Correction) on Data

- SPM
- F-contrast on 1st and second level

Flexibility: Scanner vendors

References

Birn, Rasmus M., Jason B. Diamond, Monica A. Smith, and Peter A. Bandettini. 2006. "Separating Respiratory-variation-related Fluctuations from Neuronal-activity-related Fluctuations in fMRI." NeuroImage 31 (4) (July 15): 1536–1548. doi:10.1016/j.neuroimage.2006.02.048.

Glover, G H, T Q Li, and D Ress. 2000. "Image-based Method for Retrospective Correction of Physiological Motion Effects in fMRI: RETROICOR." Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 44 (1) (July): 162–7.

Harvey, Ann K., Kyle T.S. Pattinson, Jonathan C.W. Brooks, Stephen D. Mayhew, Mark Jenkinson, and Richard G. Wise. 2008. "Brainstem Functional Magnetic Resonance Imaging: Disentangling Signal from Physiological Noise." Journal of Magnetic Resonance Imaging 28 (6): 1337–1344. doi:10.1002/jmri.21623.

Hutton, C., O. Josephs, J. Stadler, E. Featherstone, A. Reid, O. Speck, J. Bernarding, and N. Weiskopf. 2011. "The Impact of Physiological Noise Correction on fMRI at 7 T." NeuroImage 57 (1) (July 1): 101–112. doi:10.1016/j.neuroimage.2011.04.018.

Josephs, O., Howseman, A.M., Friston, K., Turner, R., 1997. "Physiological noise modelling for multi-slice EPI fMRI using SPM." Proceedings of the 5th Annual Meeting of ISMRM, Vancouver, Canada, p. 1682

Kasper, L., Bollmann, S., Diaconescu, A.O., Hutton, C., Heinzle, J., Iglesias, S., Hauser, T.U., Sebold, M., Manjaly, Z.-M., Pruessmann, K.P., Stephan, K.E., 2016. The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data. Journal of Neuroscience Methods *accepted*. doi:10.1016/j.jneumeth.2016.10.019

fMRI = Acquiring Movies

