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Overview of SPM

Statistical parametric map (SPM)
Image time-series Kernel Design matrix

Realignment —| Smoothing General linear model .
l . : Statistical Gaussian

Normalisation inference field theory

Template

Parameter estimates




Research Question:

Where in the brain do we represent listening to sounds?



Image a very simple experiment...
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SINGLE VOXEL TIME SERIES...




Image a very simple experiment...
Question: Is there a change in the BOLD response between listening and rest?
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Image a very simple experiment...
Question: Is there a change in the BOLD response between listening and rest?
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You need a model of your data...
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Explain your data...

as a combination of experimental manipulation, confounds and errors
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Explain your data...

as a combination of experimental manipulation,confounds and errors
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The black and white version in SPM
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GLM: mass-univariate parametric analysis

* One sample t-test

* Two sample t-test

* Paired t-test

* Analysis of Variance (ANOVA)
* Factorial designs

* Correlation

* Linear regression

* Multiple regression

* F-tests

« fMRI time series models
* Etc...



Model assumptions

Nec] . The design matrix embodies all available knowledge about experimentally
ESlgﬂ matrix controlled factors and potential confounds.

You want to estimate your parameters such that you minimize:
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This can be done using an Ordinary least squares estimation (OLS)
assuming an i.i.d. error
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GLM assumes identical and
independently distributed errors
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i.i.d. = error covariance is a scalar multiple of the identity matrix € = N(0,0’ I)

Cov(e) =
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How to fit the model and estimate the parameters?

»Option 1“: Per hand




How to fit the model and estimate the parameters?

OLS (Ordinary Least Squares)
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OLS (Ordinary Least Squares)

The goal is to minimize

T N\T 0 -
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OLS (Ordinary Least Squares)

The goal is to minimize
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OLS (Ordinary Least Squares)

T A T A The goal is to minimize
—_ — — the quadratic error
€ € (y X/j’) (y Xﬁ) between data and model
This is a scalar and the
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OLS (Ordinary Least Squares)
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OLS (Ordinary Least Squares)

T A T A The goal is to minimize
—_ — — the quadratic error
€ € (y X/j’) (y Xﬁ) between data and model
This is a scalar and the
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OLS (Ordinary Least Squares)

T A T A The goal is to minimize
—_ — — the quadratic error
€ € (y X/3) (y Xﬁ) between data and model
This is a scalar and the
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dele  function by kg o
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_ SOLUTION: OLS of the Parameters




A geometric perspective on the GLM

OLS estimates

f=(X"X)"'XTy

Design space
defined by X



Correlated and orthogonal regressors

y=xp+x,p0,+e

b=p=1
Correlated regressors = When x, is orthogonalized with regard to x;,
explained variance is shared between only the parameter estimate for x; changes,

[egressors not that for x;!



We are nearly there...

linear mode|

effects estimate
statistic
error estimate

...but we are dealing with fMRI data
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What are the problems?
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Problem 1: Shape of BOLD response
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The response of a linear time-invariant (LTI) system is the convolution of the input with the system's response to an
impulse (delta function).
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Solution: Convolution model of the BOLD response

120
expected BOLD response

= input function x impulse response
function (HRF)
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Problem 2: Low frequency noise

MRI Scanner Cutaway
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Problem 2: Low frequency noise
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Solution 2: High pass filtering

Frequency domain
128 second High-pass filter

relative spectral density
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Problem 3: Serial correlations

Cov(e)=
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Problem 3: Serial correlations

e Transform the signal into a space where the error is iid

This is i.i.d

—
Wy =WXp(+We

® Pre-whitening:

1. Use an enhanced noise model with multiple error covariance
components, i.e. e ~ N(0,0%V) instead of e ~ N(O, &?J).

2. Use estimated serial correlation to specify filter matrix W for whitening the
data.



Problem 3: How to find W > Model the noise

e,=ae,  +¢& with & ~N(0,0%)

1storder autoregressive process: AR(1)
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Model the noise: Multiple covariance components

) V oc Cov(e)
e~N@O,0V) -0
enhanced noise model error covariance components ¢

and hyperparameters
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Estimation of hyperparameters with EM (expectation maximisation) or ReML (restricted
maximum likelihood).



How do we define W?

Enhanced noise model

Remember linear transform
for Gaussians

Choose IWsuch that error
covariance becomes spherical

Conclusion: I/ is a simple function of /

e~ N(0,0°V)

x~N(u,0°),y =ax
= y~ N(au,a’c?)

We ~ N(0,c°W?V)
=WV =1
—>W=y""

Wy =WXp+We
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We are there...

* the GLM models the effect of your experimental manipulation on the acquired data
* GLM includes all known experimental effects and confounds

* estimates effects an errors on a voxel-by-voxel basis

Because we are dealing with fMRI data there are a number of problems we need to take care of:
» Convolution with a canonical HRF
* High-pass filtering to account for low-frequency drifts

» Estimation of multiple variance components (e.g. to account for serial correlations)



We are there...

c=10000000000

effects estimate

Null hypothesis: 181 = ()

error estimate

statistic

MEErrne
N

- Lecture: Classical (frequentist) inference

t = 'p
Std(c" 3)
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We are there...

c=10000000000

Q: activation during
listening ?

Null hypothesis: 181 =0
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- Lecture: Classical (frequentist) inference



So far we have looked at a single voxel...

« Mass-univariate

. single voxel « Massive problem with multiple
opproach: time series P | g
GLM applied to > 100,000 comparisons!
voxels

« Solution; Gaussian random field

« Threshold of p<0.05 more theory

than 5000 voxels
significant by chance!



How to build in physiological confounds?

- Head movements

- Aterial pulsations (particularly in the brain stem)

- Breathing

- Eye blinks

- Adaptation effects, fatigue, fluctuations in concentration etc.

- = Lecture: Noise models on fMRI and noise correction



Outlook: further challenges

* correction for multiple comparisons
* variability in the HRF across voxels
* slice timing
* [imitations of frequentist statistics
*—> Bayesian analysis
* GLM ignores interactions among voxels



Thank you for listening!
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