The General Linear Model (GLM)

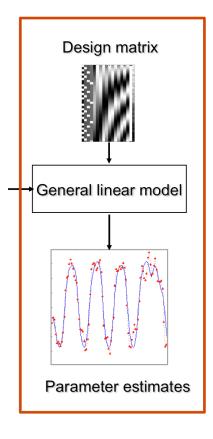
Dr. Frederike Petzschner

petzschner@biomed.ee.ethz.ch

Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering, University of Zurich & ETH Zurich

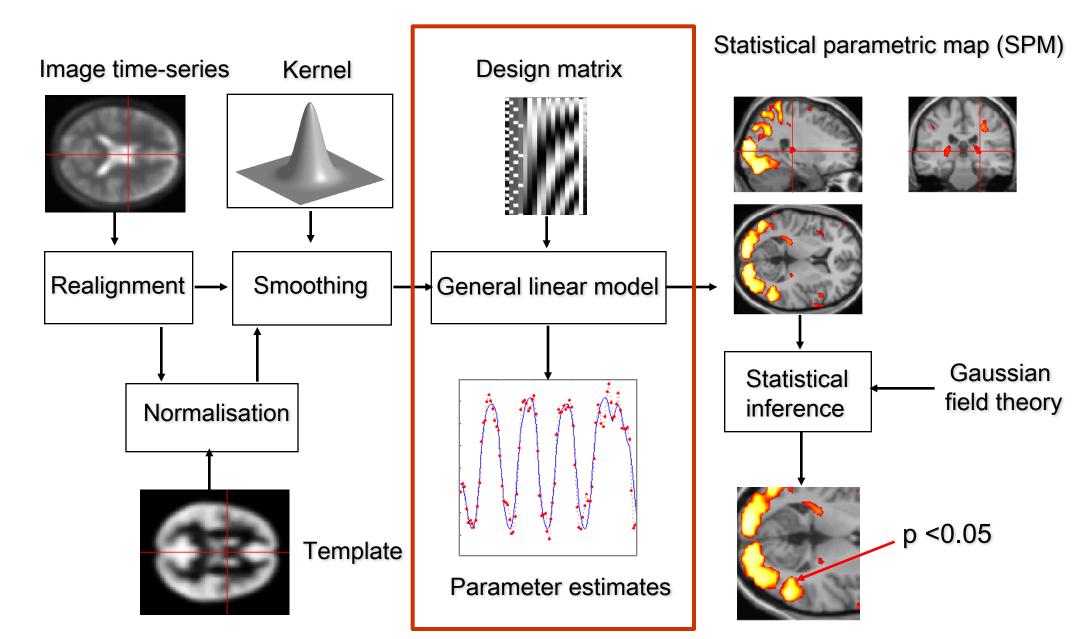
With many thanks for slides & images to:

FIL Methods group, Virginia Flanagin and Klaas Enno Stephan



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

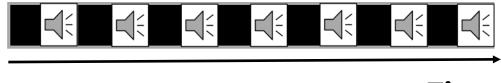
Overview of SPM

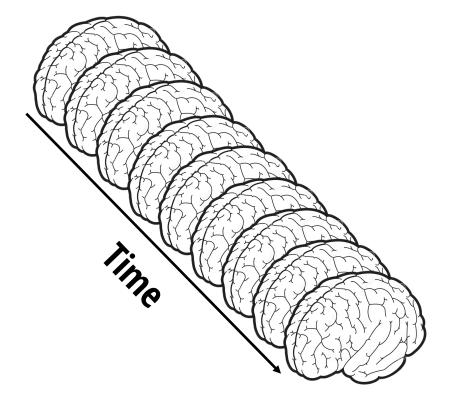


Research Question:

Where in the brain do we represent listening to sounds?

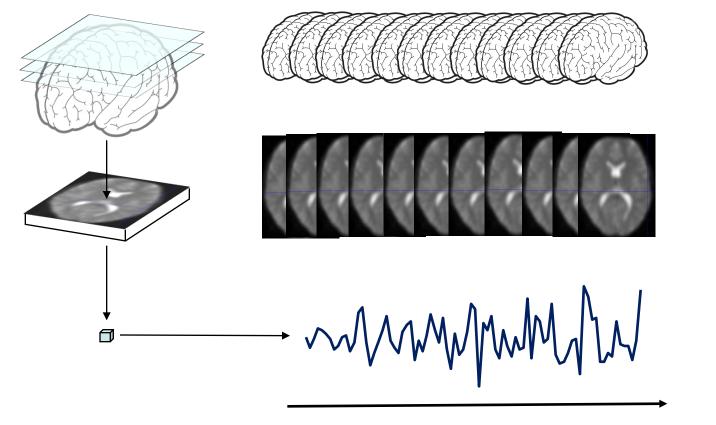
Image a very simple experiment...

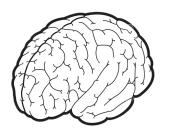




Time

SINGLE VOXEL TIME SERIES...

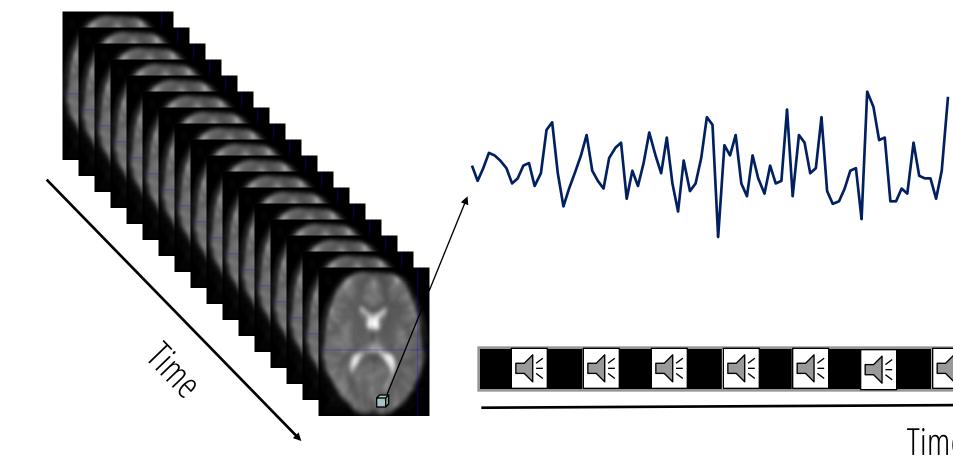




TIME

Image a very simple experiment...

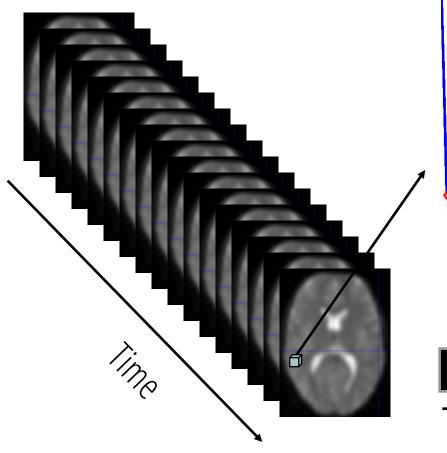
Question: Is there a change in the BOLD response between listening and rest?

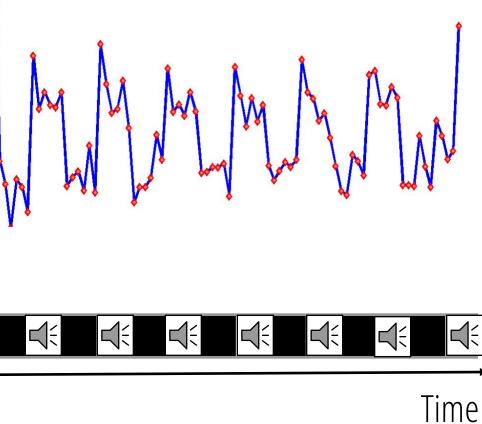


Time

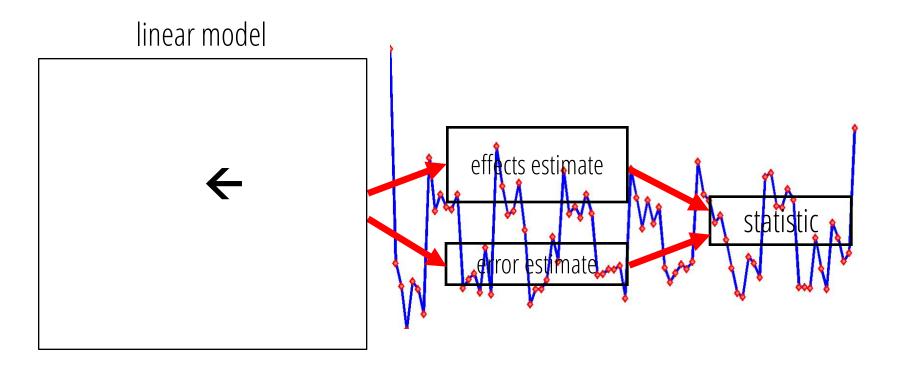
Image a very simple experiment...

Question: Is there a change in the BOLD response between listening and rest?



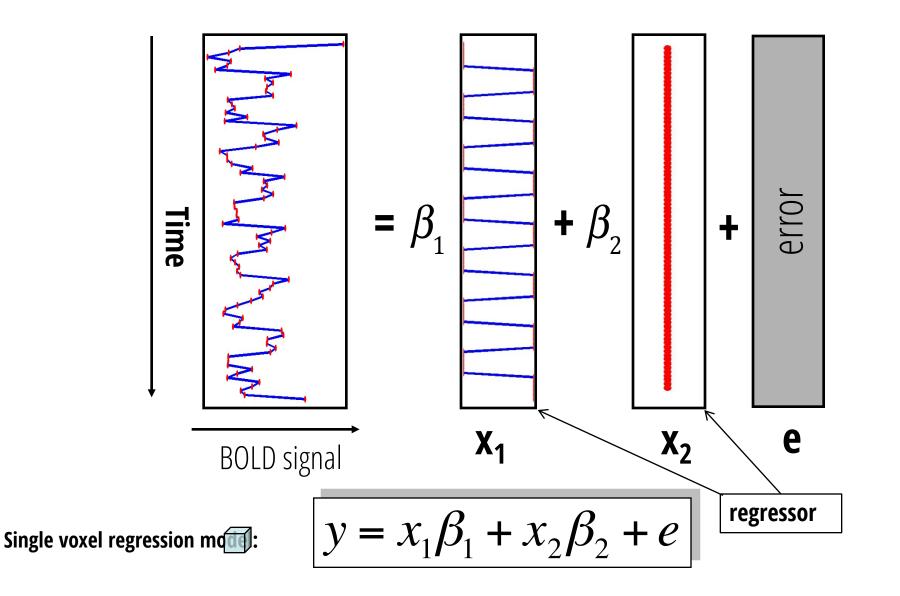


You need a model of your data...



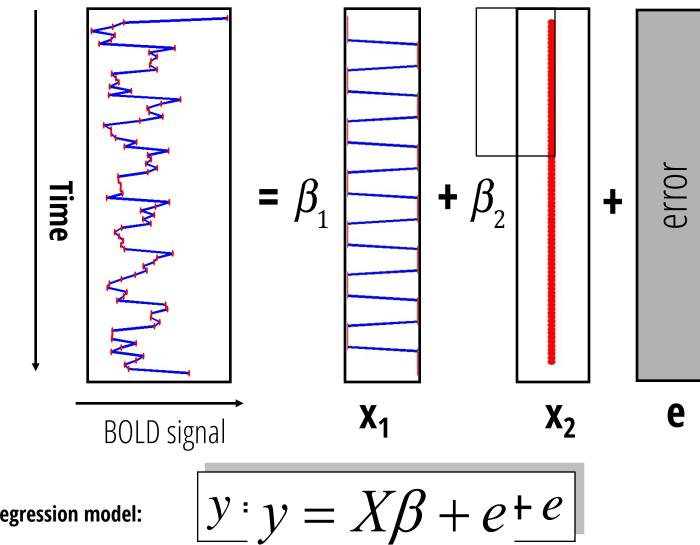
Explain your data...

as a combination of experimental manipulation, confounds and errors



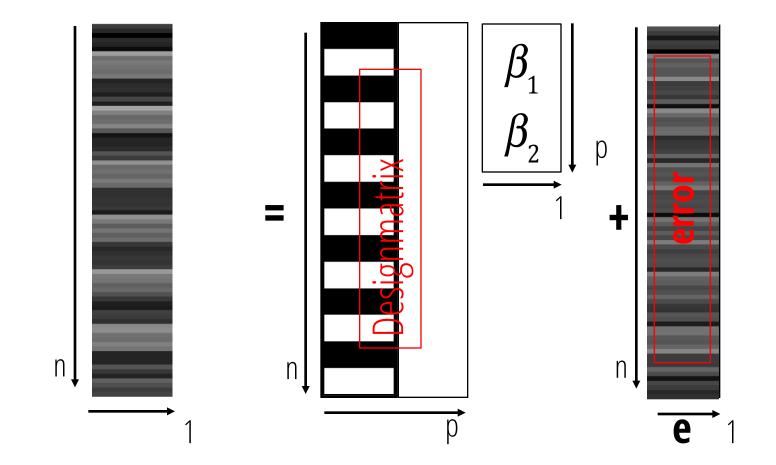
Explain your data...

as a combination of experimental manipulation, confounds and errors



Single voxel regression model:

The black and white version in SPM



n: number of scans*p*: number of regressors

 $y = X\beta + e$

GLM: mass-univariate parametric analysis

- One sample t-test
- Two sample t-test
- Paired t-test
- Analysis of Variance (ANOVA)
- Factorial designs
- Correlation
- Linear regression
- Multiple regression
- F-tests
- fMRI time series models
- Etc...

Model assumptions

error

Designmatrix

The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds.

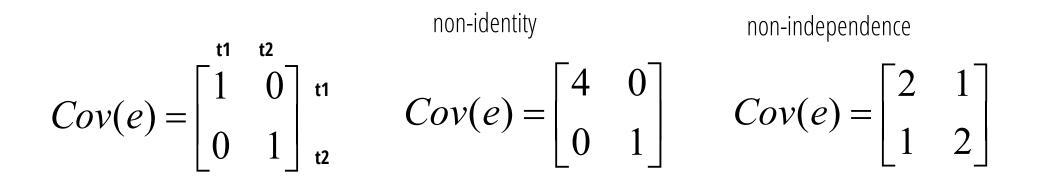
You want to estimate your parameters such that you minimize:

This can be done using an **Ordinary least squares** estimation (OLS) assuming an i.i.d. error

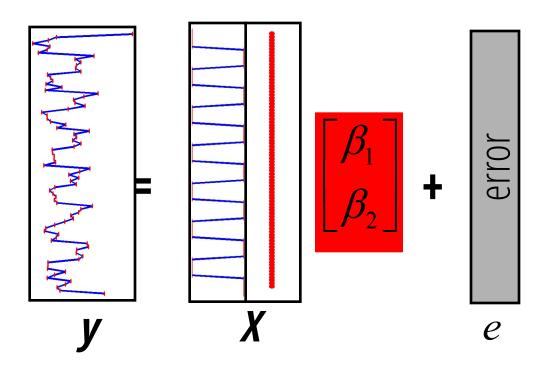
error

GLM assumes identical and independently distributed errors

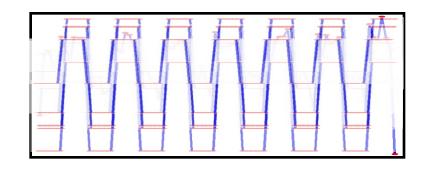
i.i.d. = error covariance is a scalar multiple of the identity matrix $e \approx N(0, \sigma^2 I)$



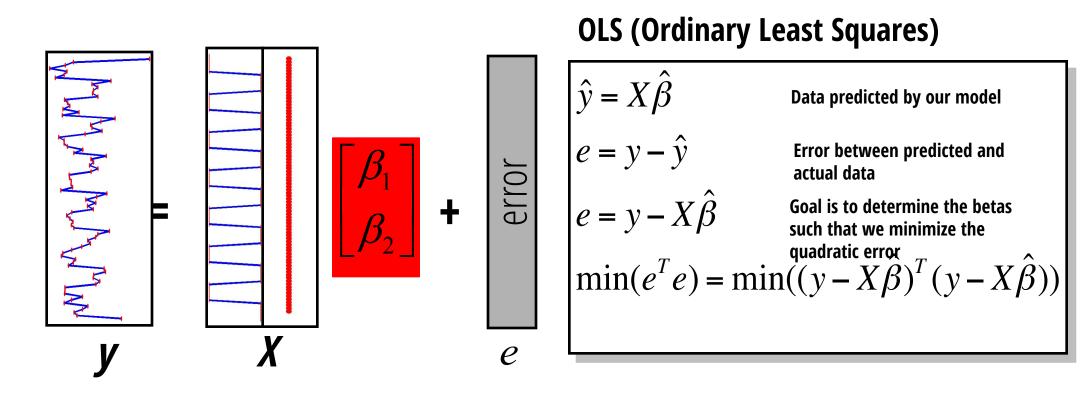
How to fit the model and estimate the parameters?



"Option 1": Per hand



How to fit the model and estimate the parameters?



$$e^{T}e = (y - X\hat{\beta})^{T}(y - X\hat{\beta})$$

The goal is to minimize the quadratic error between data and model

$$e^{T}e = (y - X\hat{\beta})^{T}(y - X\hat{\beta})$$
$$e^{T}e = (y^{T} - \hat{\beta}^{T}X^{T})(y - X\hat{\beta})$$

The goal is to minimize the quadratic error between data and model

$$e^{T}e = (y - X\hat{\beta})^{T}(y - X\hat{\beta})$$
$$e^{T}e = (y^{T} - \hat{\beta}^{T}X^{T})(y - X\hat{\beta})$$

The goal is to minimize the quadratic error between data and model

This is a scalar and the transpose of a scalar is a scalar ©

$$e^{T}e = y^{T}y - y^{T}X\hat{\beta} - \hat{\beta}^{T}X^{T}y + \hat{\beta}^{T}X^{T}X\hat{\beta}$$

$$e^{T}e = (y - X\hat{\beta})^{T}(y - X\hat{\beta})$$

$$e^{T}e = (y^{T} - \hat{\beta}^{T}X^{T})(y - X\hat{\beta})$$

$$e^{T}e = y^{T}y - y^{T}X\hat{\beta} - \hat{\beta}^{T}X^{T}y + \hat{\beta}^{T}X^{T}X\hat{\beta}$$

$$e^{T}e = y^{T}y - 2\hat{\beta}^{T}X^{T}y + \hat{\beta}^{T}X^{T}X\hat{\beta}$$

The goal is to minimize the quadratic error between data and model

→ This is a scalar and the transpose of a scalar is a scalar ☺

OLS (Ordinary Least Squares)

$$e^{T}e = (y - X\hat{\beta})^{T}(y - X\hat{\beta})$$
The goal is to minimize the quadratic error between data and model

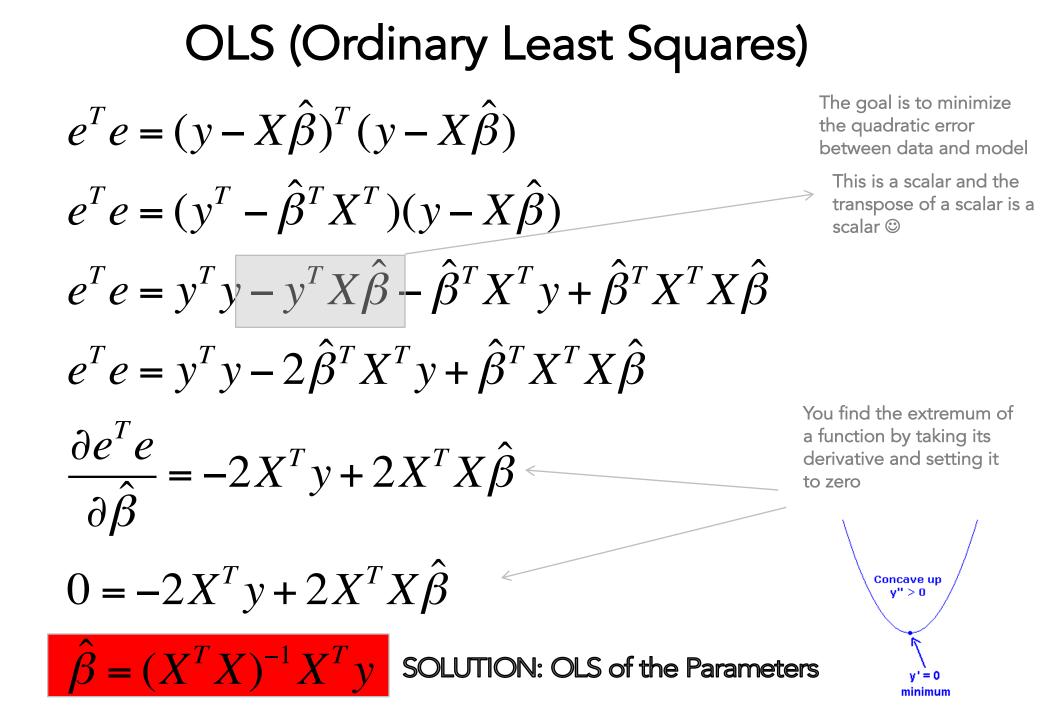
$$e^{T}e = (y^{T} - \hat{\beta}^{T}X^{T})(y - X\hat{\beta})$$
This is a scalar and the transpose of a scalar is a scalar \textcircled{O}

$$e^{T}e = y^{T}y - y^{T}X\hat{\beta} - \hat{\beta}^{T}X^{T}y + \hat{\beta}^{T}X^{T}X\hat{\beta}$$

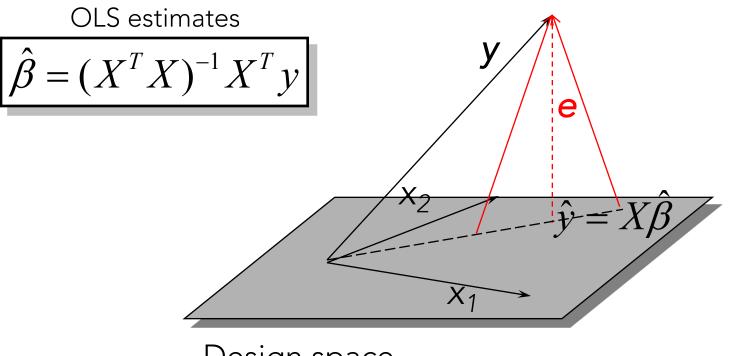
$$e^{T}e = y^{T}y - 2\hat{\beta}^{T}X^{T}y + \hat{\beta}^{T}X^{T}X\hat{\beta}$$
Vou find the extremum of a function by taking its derivative and setting it to zero

$$0 = -2X^{T}y + 2X^{T}X\hat{\beta}$$
The goal is to minimize the quadratic error between data and model.
This is a scalar and the transpose of a scalar is a scalar \textcircled{O}
The goal is to minimize the quadratic error between data and model.
This is a scalar and the transpose of a scalar is a scalar \textcircled{O}
The goal is to minimize the quadratic error between data and model.
This is a scalar and the transpose of a scalar is a scalar \textcircled{O}
 $e^{T}e = y^{T}y - 2\hat{\beta}^{T}X^{T}y + \hat{\beta}^{T}X^{T}X\hat{\beta}$
The goal is to minimize the quadratic error between data and model.
This is a scalar and the transpose of a scalar is a scalar \textcircled{O}
 $e^{T}e = y^{T}y - 2\hat{\beta}^{T}X^{T}y + \hat{\beta}^{T}X^{T}X\hat{\beta}$
The goal is to minimize the quadratic error between data and model.
This is a scalar \textcircled{O}

y' = 0 minimum

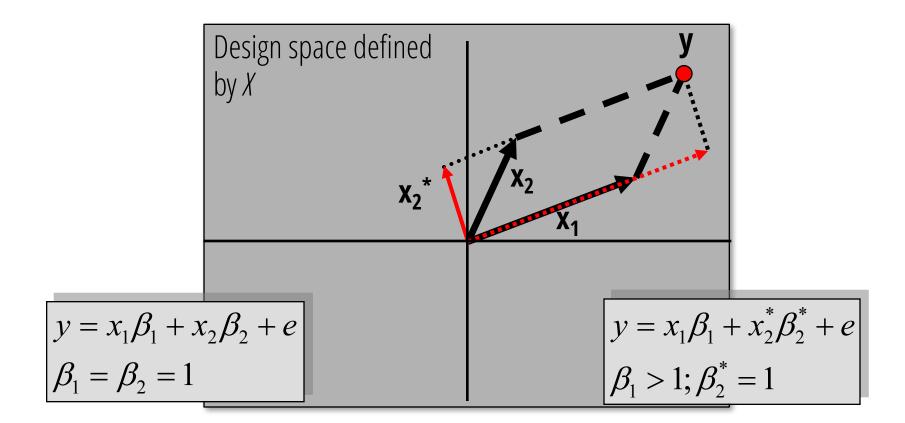


A geometric perspective on the GLM



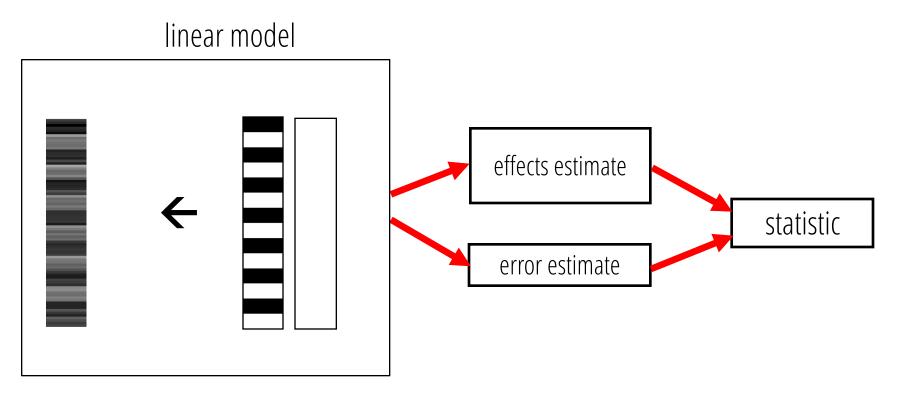
Design space defined by X

Correlated and orthogonal regressors



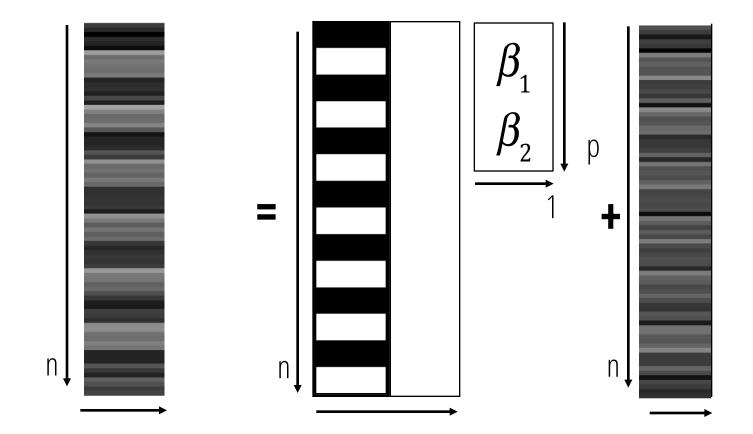
Correlated regressors = explained variance is shared between regressors When x_2 is orthogonalized with regard to x_1 , only the parameter estimate for x_1 changes, not that for x_2 !

We are nearly there...

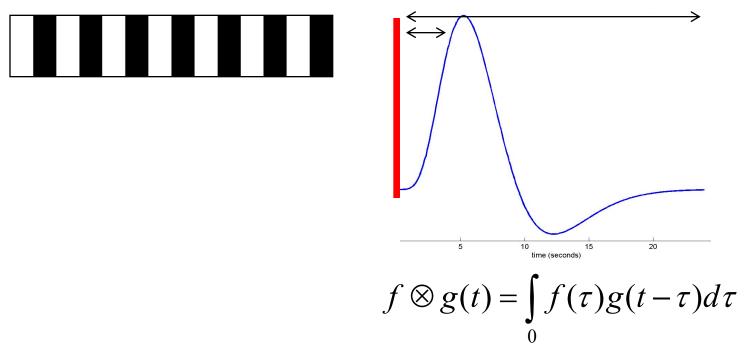


...but we are dealing with fMRI data

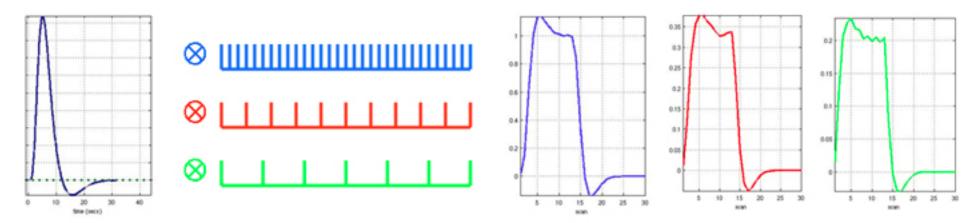
What are the problems?



Problem 1: Shape of BOLD response



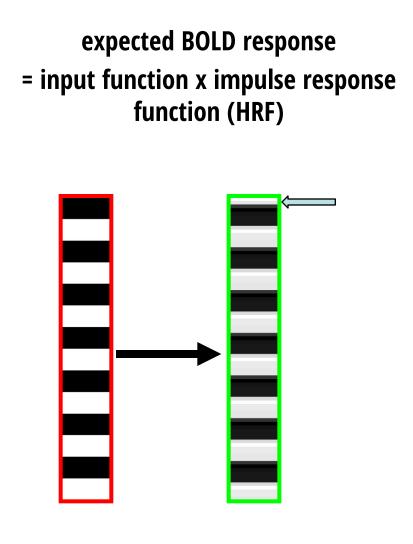
The response of a linear time-invariant (LTI) system is the convolution of the input with the system's response to an impulse (delta function).

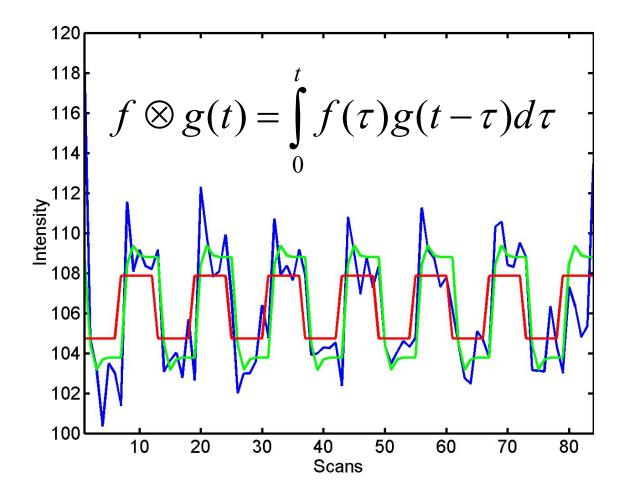


Solution: Convolution model of the BOLD response

blue =

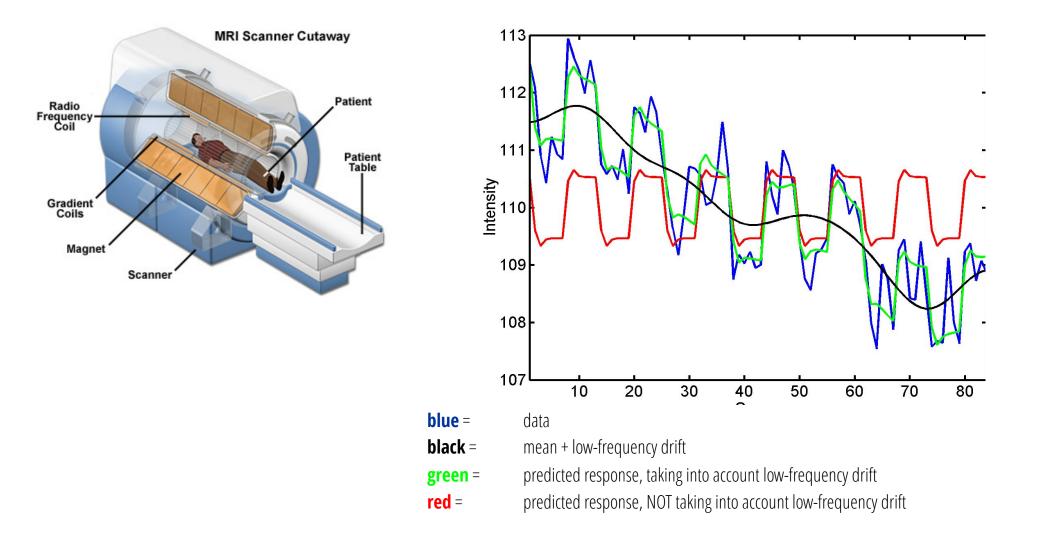
red =





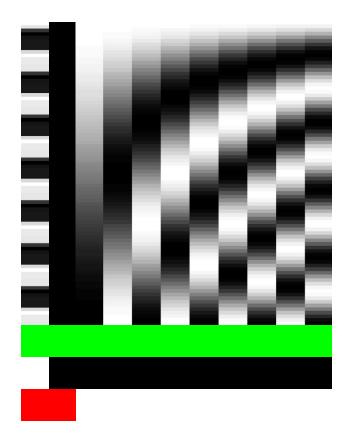
data predicted response, taking convolved with HRF green = predicted response, NOT taking into account the HRF

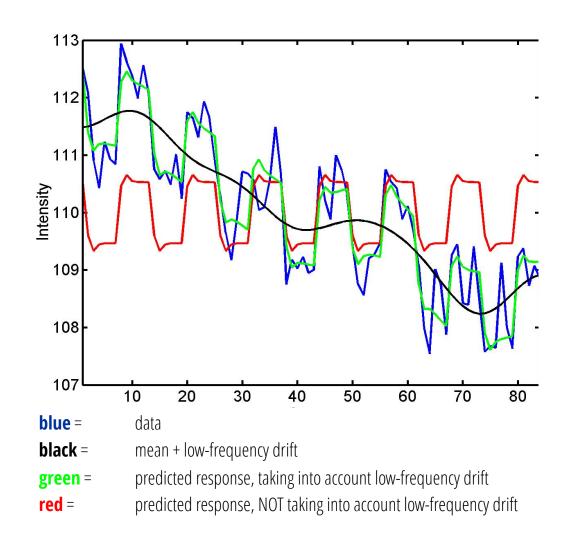
Problem 2: Low frequency noise



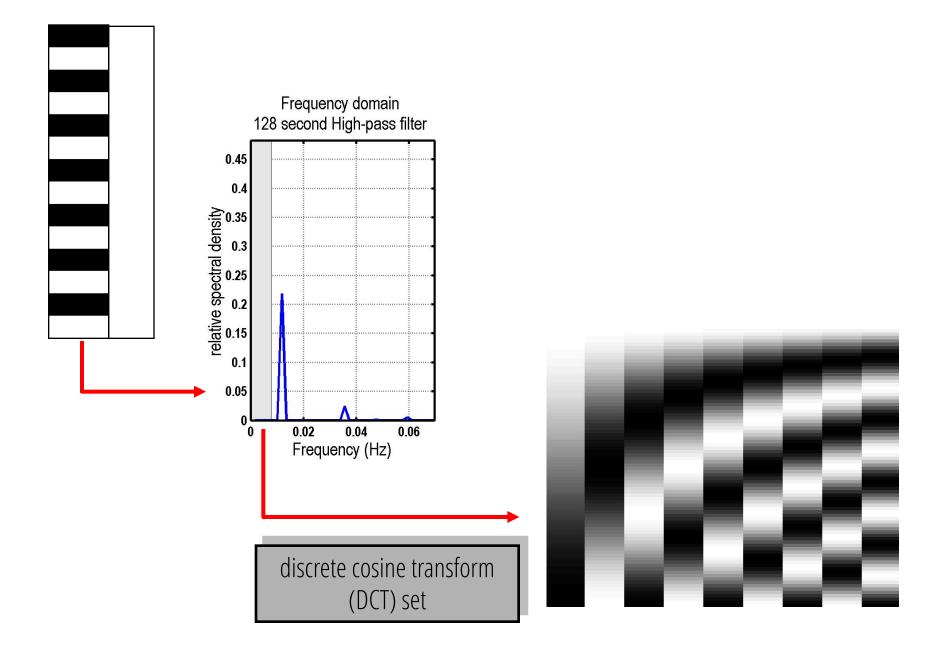
Problem 2: Low frequency noise

Linear model

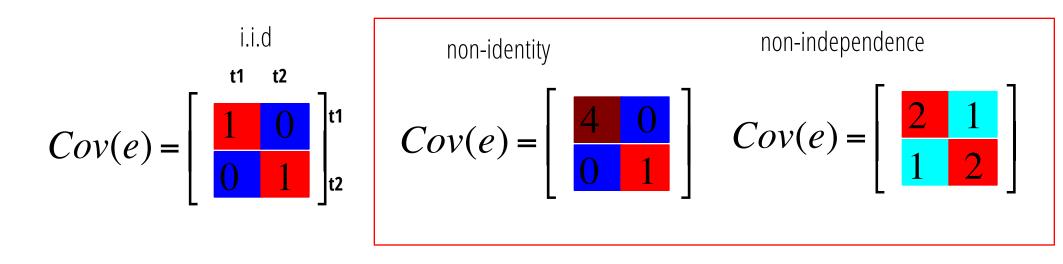


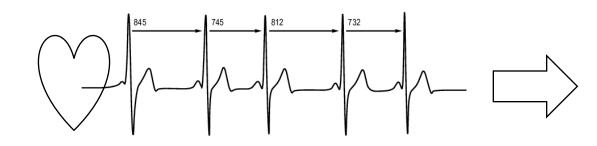


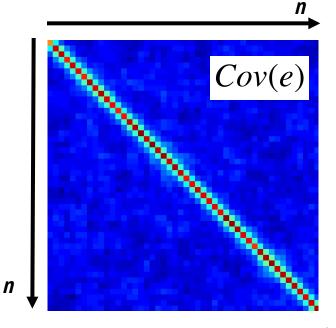
Solution 2: High pass filtering



Problem 3: Serial correlations



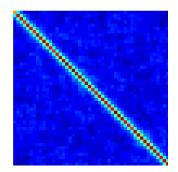


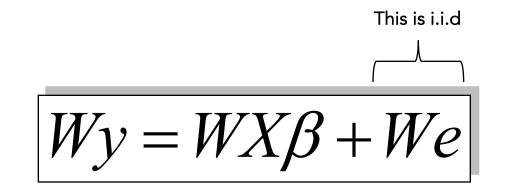


n: number of scans

Problem 3: Serial correlations

• Transform the signal into a space where the error is iid





• Pre-whitening:

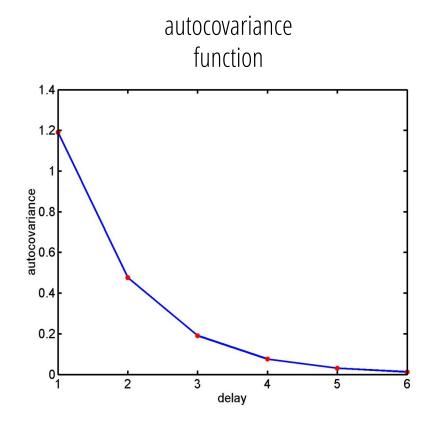
1. Use an enhanced noise model with multiple error covariance components, i.e. e ~ $N(0, \sigma^2 V)$ instead of e ~ $N(0, \sigma^2 I)$.

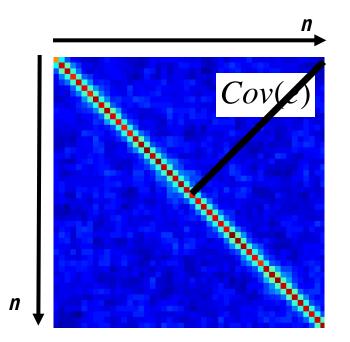
2. Use estimated serial correlation to specify filter matrix *W* for whitening the data.

Problem 3: How to find W \rightarrow Model the noise

$$e_t = ae_{t-1} + \varepsilon_t$$
 with $\varepsilon_t \sim N(0, \sigma^2)$

1st order autoregressive process: AR(1)





n: number of scans

Model the noise: Multiple covariance components

 $e \sim N(0, \sigma^2 V)$

enhanced noise model

 $V \propto Cov(e)$ $V = \sum \lambda_i Q_i$

error covariance components *Q* and hyperparameters



Estimation of hyperparameters with EM (expectation maximisation) or ReML (restricted maximum likelihood).

How do we define *W*?

- Enhanced noise model
- Remember linear transform for Gaussians

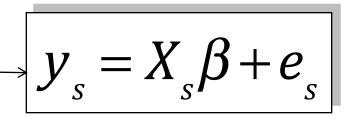
- Choose *W* such that error covariance becomes spherical
- Conclusion: *W* is a simple function of *V*

 $v = WX\beta + We$

$$e \sim N(0, \sigma^2 V)$$

$$\begin{vmatrix} x \sim N(\mu, \sigma^2), y = ax \\ \Rightarrow y \sim N(a\mu, a^2\sigma^2) \end{vmatrix}$$

$$We \sim N(0, \sigma^2 W^2 V)$$
$$\Rightarrow W^2 V = I$$
$$\Rightarrow W = V^{-1/2}$$



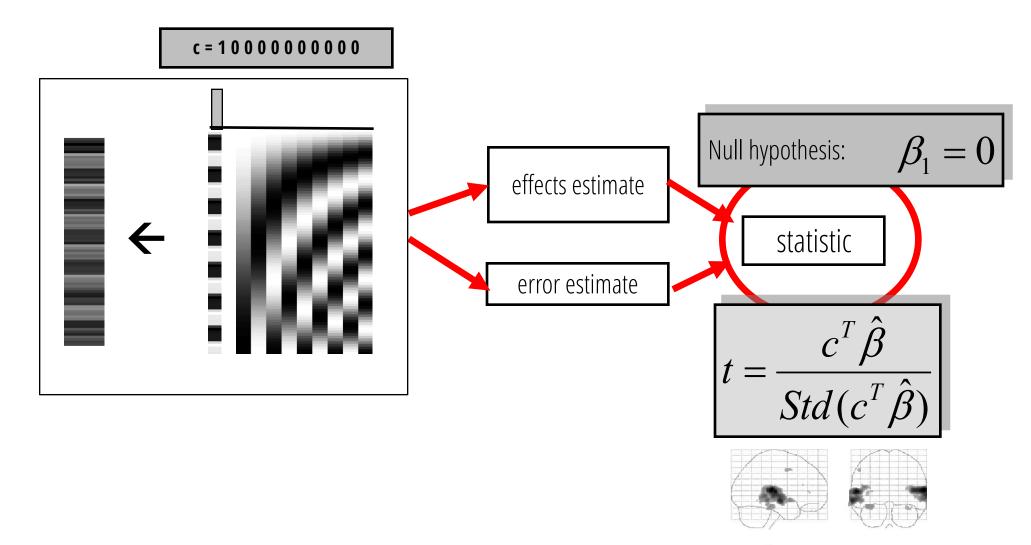
We are there...

- the GLM models the effect of your experimental manipulation on the acquired data
- GLM includes all known experimental effects and confounds
- estimates effects an errors on a voxel-by-voxel basis

Because we are dealing with fMRI data there are a number of problems we need to take care of:

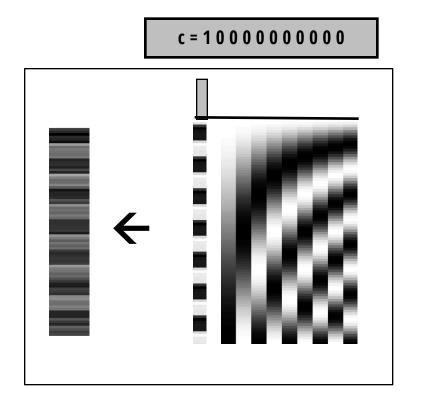
- Convolution with a canonical HRF
- High-pass filtering to account for low-frequency drifts
- Estimation of multiple variance components (e.g. to account for serial correlations)

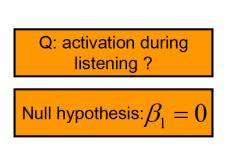
We are there...

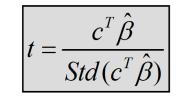


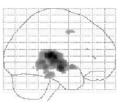
→ Lecture: Classical (frequentist) inference

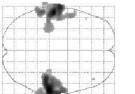
We are there...

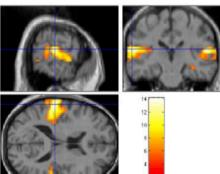








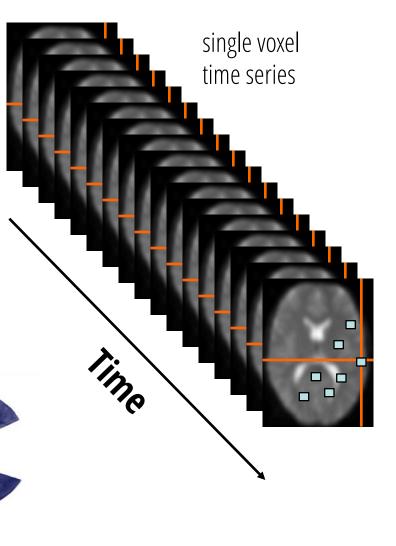




 \rightarrow Lecture: Classical (frequentist) inference

So far we have looked at a single voxel...

- Mass-univariate approach: GLM applied to > 100,000 voxels
- Threshold of p<0.05 more than 5000 voxels significant by chance!



- Massive problem with multiple comparisons!
- Solution: Gaussian random field theory

How to build in physiological confounds?

- Head movements
- Aterial pulsations (particularly in the brain stem)
- Breathing
- Eye blinks
- Adaptation effects, fatigue, fluctuations in concentration etc.

- \rightarrow Lecture: Noise models on fMRI and noise correction

Outlook: further challenges

- correction for multiple comparisons
- variability in the HRF across voxels
- slice timing
- limitations of frequentist statistics
 - \rightarrow Bayesian analysis
- GLM ignores interactions among voxels

Thank you for listening!

- Friston, Ashburner, Kiebel, Nichols, Penny (2007) Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier.
- Christensen R (1996) *Plane Answers to Complex Questions: The Theory of Linear Models*. Springer.
- Friston KJ et al. (1995) Statistical parametric maps in functional imaging: a general linear approach. *Human Brain Mapping* 2: 189-210.

