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Research Question: 

Where in the brain do we represent listening to sounds?



Image a very simple experiment…

Time



SINGLE VOXEL TIME SERIES…

TIME



Image a very simple experiment…
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Question: Is there a change in the BOLD response between listening and rest?
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linear model

effects estimate

error estimate
statistic

You need a model of your data…
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BOLD signal
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Explain your data… 
as a combination of experimental manipulation, confounds and errors

Single voxel regression model:
regressor
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y = x1β1 + x2β2 + e
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n: number of scans
p: number of regressors

The black and white version in SPM
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GLM: mass-univariate parametric analysis

• One sample t-test
• Two sample t-test
• Paired t-test
• Analysis of Variance (ANOVA)
• Factorial designs
• Correlation
• Linear regression
• Multiple regression
• F-tests
• fMRI time series models
• Etc…



The design matrix embodies all available knowledge about experimentally 
controlled factors and potential confounds. 

Model assumptions

Designmatrix

error
You want to estimate your parameters such that you minimize:

This can be done using an Ordinary least squares estimation (OLS) 
assuming an i.i.d. error
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error

GLM assumes identical and 
independently distributed errors

i.i.d. = error covariance is a scalar multiple of the identity matrix
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„Option 1“: Per hand

How to fit the model and estimate the parameters?
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How to fit the model and estimate the parameters?
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ŷ = Xβ̂
e = y− ŷ

e = y− Xβ̂

min(eTe) =min((y− Xβ̂)T (y− Xβ̂))

Data predicted by our model

Error between predicted and 
actual data

Goal is to determine the betas 
such that we minimize the 
quadratic error

OLS (Ordinary Least Squares)



eTe = (y− Xβ̂)T (y− Xβ̂)

eTe = (yT − β̂T XT )(y− Xβ̂)

eTe = yT y− yTXβ̂ − β̂T XT y+ β̂T XTXβ̂

eTe = yT y− 2β̂T XT y+ β̂T XTXβ̂
∂eTe
∂β̂

= −2XT y+ 2XTXβ̂

0 = −2XT y+ 2XTXβ̂

β̂ = (XTX)−1XT y

OLS (Ordinary Least Squares)
The goal is to minimize 
the quadratic error 
between data and model
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A geometric perspective on the GLM
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Correlated and orthogonal regressors

When x2 is orthogonalized with regard to x1, 
only the parameter estimate for x1 changes, 
not that for x2!

Correlated regressors = 
explained variance is shared between 
regressors
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linear model

effects estimate

error estimate
statisticß

…but we are dealing with fMRI data

We are nearly there…





What are the problems?
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The response of a linear time-invariant (LTI) system is the convolution of the input with the system's response to an 
impulse (delta function).

Problem 1: Shape of BOLD response



Solution: Convolution model of the BOLD response

expected BOLD response 
= input function x impulse response 

function (HRF) ò -=Ä
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dtgftgf
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blue = data
green = predicted response, taking convolved with HRF
red = predicted response, NOT taking into account the HRF



Problem 2: Low frequency noise

blue = data
black = mean + low-frequency drift
green = predicted response, taking into account low-frequency drift
red = predicted response, NOT taking into account low-frequency drift



Problem 2: Low frequency noise
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Linear model



discrete cosine transform 
(DCT) set

Solution 2: High pass filtering



Problem 3: Serial correlations

non-identity non-independence
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Problem 3: Serial correlations

• Transform the signal into a space where the error is iid

• Pre-whitening: 

1. Use an enhanced noise model with multiple error covariance 
components, i.e. e ~ N(0,σ2V) instead of e ~ N(0, σ2I).

2. Use estimated serial correlation to specify filter matrix W for whitening the 
data.

WeWXWy += b

This is i.i.d



Problem 3: How to find W à Model the noise

Cov(e)

n: number of scans
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1st order autoregressive process: AR(1)



Model the noise:  Multiple covariance components
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Estimation of hyperparameters with EM (expectation maximisation) or ReML (restricted 
maximum likelihood).
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enhanced noise model error covariance components Q
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How do we define W ?

• Enhanced noise model

• Remember linear transform 
for Gaussians

• Choose W such that error 
covariance becomes spherical

• Conclusion: W is a simple function of V

WeWXWy += b
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We are there…

• the GLM models the effect of your experimental manipulation on the acquired data

• GLM includes all known experimental effects and confounds

• estimates effects an errors on a voxel-by-voxel basis

Because we are dealing with fMRI data there are a number of problems we need to take care of:

• Convolution with a canonical HRF

• High-pass filtering to account for low-frequency drifts

• Estimation of multiple variance components (e.g. to account for serial correlations)



linear model

effects estimate

error estimate
statisticß

We are there…
c = 1 0 0 0 0 0 0 0 0 0 0

Null hypothesis: 01 =b
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à Lecture:  Classical  (frequentist)  inference



linear model

ß

We are there…
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So far we have looked at a single voxel…

single voxel 
time series

• Mass-univariate
approach: 
GLM applied to > 100,000
voxels

• Threshold of p<0.05 more 
than 5000 voxels 
significant by chance!

• Massive problem with multiple 
comparisons! 

• Solution: Gaussian random field 
theory



How to build in physiological confounds?

- Head movements
- Aterial pulsations (particularly in the brain stem)
- Breathing
- Eye blinks
- Adaptation effects, fatigue, fluctuations in concentration etc.

- à Lecture: Noise models on fMRI and noise correction



Outlook: further challenges

• correction for multiple comparisons
• variability in the HRF across voxels
• slice timing
• limitations of frequentist statistics

•à Bayesian analysis
• GLM ignores interactions among voxels 



Thank you for listening!
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