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Mass-univariate analysis: voxel-wise GLM
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Model is specified by

1. Design matrix X

2. Assumptions about e

N: number of scans

p: number of regressors

eXy  

The design matrix embodies all available knowledge about 

experimentally controlled factors and potential confounds.
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Ordinary least squares (OLS) parameter estimation
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Ordinary least squares

estimation (OLS) 

(assuming i.i.d. error):
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Objective:

estimate parameters 

to minimize
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OLS parameter estimation

These estimators minimise                            .  They are found solving either  

yXXX TT 1)(ˆ The Ordinary Least Squares (OLS) estimators are:

Under i.i.d. assumptions, the OLS estimates correspond to ML estimates:
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NB: precision of our estimates 

depends on design matrix!



Maximum likelihood (ML) estimation
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probability density function ( fixed!)

likelihood function (y fixed!)

ML estimator

For cov(e)=2V, the ML estimator is

equivalent to a weighted least

squares (WLS) estimate (with W=V-1/2):

1ˆ ( )T TX WX X Wy 

For cov(e)=2I, the ML estimator is

equivalent to the OLS estimator: yXXX TT 1)(ˆ  OLS

WLS



Recap: Dealing with non-sphericity by defining a filter 

matrix W

• Enhanced noise model

• Remember linear transform 
for Gaussians

• Choose W such that error 
covariance becomes spherical

• Conclusion: W is a simple function of V
 so how do we estimate V ?
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Recap: Estimating V: Multiple covariance components
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Q1 Q2

Estimation of hyperparameters  with ReML (restricted maximum 

likelihood).

V

enhanced noise model error covariance components Q

and hyperparameters 
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ReML-
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Bonus material: t-statistic based on ML estimates in SPM
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For brevity:



Terminology

• A statistic is the result of applying a mathematical function to a sample (set 

of data).

• (More formally, a statistic is a function of a sample where the function itself is 

independent of the sample's distribution. The term is used both for the 

function and for the value of the function on a given sample.)

• A statistic is distinct from an unknown statistical parameter, which is a 

population property and can only be estimated approximately from a sample.

• A statistic used to estimate a parameter is called an estimator.  

For example, the sample mean is a statistic and an estimator for the 

population mean, which is a parameter.



Hypothesis testing

• “Null hypothesis” H0 = “there is no effect”   cT = 0

This is what we want to disprove.

 The “alternative hypothesis” H1 represents the outcome of interest.

To test an hypothesis, we construct a “test statistic”.

• The test statistic T

The test statistic summarises the evidence for 

H0.

 We need to know the distribution of T under 

the null hypothesis.

Null Distribution of T



• Observation of test statistic t, a realisation of T:

A p-value summarises evidence against H0.

This is the probability of observing t, or a more 

extreme value, under the null hypothesis:

Null Distribution of T
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• Type I Error α:

Acceptable false positive rate α.

Threshold u controls the false positive rate 

t

p

Null Distribution of T



u

• The conclusion about the hypothesis:

We reject H0 in favour of H1 if t > u
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Hypothesis testing



Types of error
Actual condition
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Reject H0

Failure to 

reject H0

H0 true H0 false

True negative

(TN)

True positive

(TP)

False positive (FP)

Type I error 

False negative (FN)

Type II error β

specificity: 1-

= TN / (TN + FP)

= proportion of actual 

negatives which are 

correctly identified

sensitivity (power): 1-

= TP / (TP + FN)

= proportion of actual 

positives which are 

correctly identified



One cannot accept the null hypothesis

(one can only fail to reject it)

Absence of evidence is not evidence of absence!

If we do not reject H0, then all can we say is that there is not enough evidence in the

data to reject H0. This does not mean that we can accept H0.

What does this mean for neuroimaging results based on classical statistics?

A failure to find an “activation” in a particular area does not mean we can conclude

that this area is not involved in the process of interest.



Contrasts

• A contrast cT selects a specific effect of interest:

 a contrast vector c is a vector of length p

 cT is a linear combination of regression coefficients 

2 1ˆ ~ ( , ( ) )T T T Tc N c c X X c   

• Under i.i.d assumptions:

• We are usually not interested in the whole  vector.

cTβ = 11 + 02 + 03 + 04 + 05 + . . . 

cT = [1 0 0 0 0 …]

cTβ = 01 + -12 + 13 + 04 + 05 + . . . 

cT = [0 -1 1 0 0 …]

NB: the precision of our 

estimates depends on design 

matrix and the chosen contrast !



Bonus material: Estimability of parameters

• If X is not of full rank then different parameters 
can give identical predictions, i.e. X1 = X2 with 
1≠ 2.

• The parameters are therefore ‘non-unique’, ‘non-
identifiable’ or ‘non-estimable’.

• For such models, XTX is not invertible so we must 
resort to generalised inverses (SPM uses the 
Moore-Penrose pseudo-inverse).

• This gives a parameter vector that has the 
smallest norm of all possible solutions.

1  0  1

1  0  1

1  0  1

1  0  1

0  1  1

0  1  1

0  1  1

0  1  1

One-way ANOVA
(unpaired two-sample t-test)

Rank(X)=2

• However, even when parameters are non-
estimable, certain contrasts may well be!  
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 not uniquely specified)

Bonus material: Estimability of parameters

• If X is not of full rank then different parameters 
can give identical predictions, i.e. X1 = X2 with 
1≠ 2.

• The parameters are therefore ‘non-unique’, ‘non-
identifiable’ or ‘non-estimable’.

• For such models, XTX is not invertible so we must 
resort to generalised inverses (SPM uses the 
Moore-Penrose pseudo-inverse).

• This gives a parameter vector that has the 
smallest norm of all possible solutions.

• However, even when parameters are non-
estimable, certain contrasts may well be!  



Bonus material: Estimability of contrasts

• Linear dependency: there is one contrast vector q for which 

Xq = 0.

• Thus: y = X+Xq+e = X( +q)+e

• So if we test cT for a design matrix with linear dependencies, 

we implicitly also test cT(+q), thus an estimable contrast has to 

satisfy cTq = 0.

• In the above ANOVA example (unpaired t-test), any contrast 

vector that is orthogonal to q=[1 1 -1] is estimable:

[1  0  0], [0  1  0], [0  0  1] are not estimable.

[1  0  1], [0  1  1], [1  -1  0], [0.5  0.5  1] are estimable.



Student's t-distribution

• first described by William Sealy Gosset, a statistician at the Guinness brewery at Dublin

• t-statistic is a signal-to-noise measure:  t = effect / standard deviation

• t-distribution is an approximation to the normal distribution for small samples 

• t-contrasts are simply linear combinations of the betas

 the t-statistic does not depend on the scaling of the regressors or on the scaling of 

the contrast

• Unilateral test in SPM: vs.
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cT = 1 0 0 0 0 0 0 0

t = 

contrast of

parameter

estimates

variance

estimate

box-car amplitude > 0 ?

=

H1 = cT> 0 ?

1 2 3 4 5 ...

t-contrasts – SPM{t}

Question:

Null hypothesis: H0: c
T=0 

Test statistic:
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t-contrasts in SPM

ResMS image
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beta_???? images

spmT_???? image

SPM{t}

For a given contrast c:



t-contrast: a simple example

Q: activation during 

listening ?

cT = [ 1        0  ]

Null hypothesis: 01 
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Passive word listening versus rest

SPMresults:

Height threshold T = 3.2057  {p<0.001}

Statistics:  p-values adjusted for search volume

set-level

c p 

cluster-level

p corrected p uncorrectedk E

voxel-level

p FWE-corr p FDR-corr p uncorrectedT (Z

)

mm mm mm

0.000 10 0.000 520 0.000 0.000 0.000 13.94 Inf 0.000 -63 -27  15

0.000 0.000 12.04 Inf 0.000 -48 -33  12

0.000 0.000 11.82 Inf 0.000 -66 -21   6

0.000 426 0.000 0.000 0.000 13.72 Inf 0.000 57 -21  12

0.000 0.000 12.29 Inf 0.000 63 -12  -3

0.000 0.000 9.89 7.83 0.000 57 -39   6

0.000 35 0.000 0.000 0.000 7.39 6.36 0.000 36 -30 -15

0.000 9 0.000 0.000 0.000 6.84 5.99 0.000 51   0  48

0.002 3 0.024 0.001 0.000 6.36 5.65 0.000 -63 -54  -3

0.000 8 0.001 0.001 0.000 6.19 5.53 0.000 -30 -33 -18

0.000 9 0.000 0.003 0.000 5.96 5.36 0.000 36 -27   9

0.005 2 0.058 0.004 0.000 5.84 5.27 0.000 -45  42   9

0.015 1 0.166 0.022 0.000 5.44 4.97 0.000 48  27  24

0.015 1 0.166 0.036 0.000 5.32 4.87 0.000 36 -27  42

Design matrix
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F-test: the extra-sum-of-squares principle

Model comparison: Full vs. reduced model

Full model (X0 + X1)? 

Null Hypothesis H0: True model is X0 (reduced model)

X1X0

RSS

Or reduced model? 

X0

RSS0 RSS

RSSRSS
F


 0
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RSS

ESS
F 

F-statistic: Extra-sum-of-squares 

(ESS: how much worse the reduced 

model is) divided by residual sum of 

squares of full model (RSS)

n1 = rank(X) – rank(X0)

n2 = N – rank(X)

 2ˆ
fulle  2ˆ

reducede



F-test: multidimensional contrasts – SPM{F}

Tests multiple linear hypotheses:

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

cT =

H0: 3 = 4 = ... = 9 = 0

X1 (3-9)X0

Full model? Reduced model?

H0: True model is X0

X0

test H0 :  c
T = 0 ?

SPM{F6,322}



F-test: a few remarks

• F-tests can be viewed as testing for the additional variance explained by a 
larger model wrt. a simpler (nested) model  model comparison
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• F-tests are not directional:
When testing a uni-dimensional contrast with an F-test, for example 1 – 2, the 
result will be the same as testing 2 – 1. 

• Hypotheses:

Null hypothesis H0: β1 = β2 = ... = βp = 0

Alternative hypothesis H1: At least one βk ≠ 0



Bonus material: Differential F-contrasts

• equivalent to testing for effects that can

be explained as a linear combination of

the 3 differences

• useful when using informed basis

functions and testing for overall shape

differences in the HRF between two

conditions



F-contrast in SPM

ResMS image
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( RSS0 - RSS )



F-test example: movement related effects

To assess movement-related
activation:

There is a lot of residual
movement-related artifact in the
data (despite spatial realignment),
which tends to be concentrated
near the boundaries of tissue
types.

By including the realignment
parameters in our design matrix,
we can “regress out” linear
components of subject
movement, reducing the residual
error, and hence improve our
statistics for the effects of interest.



True signal (--) and observed signal

Fitting (1 = 0.2, 2 (const.) = 0.11); 
(here: blue solid line = total fit)

 Test for the green regressor not significant

Residuals (still contain some signal) 

Example: a suboptimal model



e

= +

Y X 

1 = 0.22

2 = 0.11 Residual Var.= 0.3

p(Y| b1 = 0) 

p-value = 0.1 

(t-test)

p(Y| b1 = 0) 

p-value = 0.2 

(F-test)

Example: a suboptimal model



 t-test of the green regressor almost significant

 F-test very significant

 t-test of the red regressor very significant

A better model

True signal + observed signal 

Model (green and red)

and true signal (blue ---)
Red regressor: temporal derivative of 

the green regressor

Total fit (blue)

and partial fit (green & red)

Adjusted and fitted signal

Residuals (less variance & structure) 
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1 = 0.22

2 = 2.15

3 = 0.11

Residual Var. = 0.2

p(Y| b1 = 0) 

p-value = 0.07

(t-test)

p(Y| b1 = 0, b2 = 0) 

p-value = 0.000001  

(F-test)

A better model
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Recap from previous lecture: 

Correlation among regressors

When x2 is orthogonalized with 

regard to x1, only the parameter 

estimate for x1 changes, not that 

for x2!

Correlated regressors = 

explained variance is shared 

between regressors
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Design orthogonality

• For each pair of columns of the design 
matrix, the orthogonality matrix depicts the 
magnitude of the cosine of the angle
between them, with the range 0 to 1 mapped 
from white to black.

• The cosine of the angle between two vectors 
a and b is obtained by:

ba

ab
cos

• For zero-mean vectors, the cosine of the 

angle between the vectors is the same as 

the correlation between the two variates:

,cos a bcorr 



True signal

Fit (blue: total fit)

Residual

Model (green and red) 

Correlated regressors
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1  = 0.79

2  = 0.85

3 = 0.06 

Residual var. = 0.3

p(Y| b1 = 0) 

p-value = 0.08

(t-test)

P(Y| b2 = 0) 

p-value = 0.07

(t-test)

p(Y| b1 = 0, b2 = 0) 

p-value = 0.002

(F-test)

Correlated regressors

1 2

1

2



True signal 

Residuals (do not change)

Fit (does not change)

Model (green and red)

red regressor has been 

orthogonalised with respect to the green

one

 remove everything that correlates with 

the green regressor 

After orthogonalisation



e

= +

Y X 

Residual var. =  0.3

p(Y| b1 = 0)

p-value = 0.0003

(t-test)

p(Y| b2 = 0)

p-value = 0.07

(t-test)

p(Y| b1 = 0, b2 = 0)

p-value = 0.002

(F-test)

(0.79)

(0.85)

(0.06) 

1  = 1.47

2  = 0.85

3 = 0.06 

1 2

1

2

After orthogonalisation

does 

change

does 

not

change

does 

not

change



Bonus material: Design efficiency
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• The aim is to minimize the standard error of a t-contrast 

(i.e. the denominator of a t-statistic).

cXXcc TTT 12 )(ˆ)ˆvar( 

• This is equivalent to maximizing the efficiency ε:

Noise variance Design variance

• If we assume that the noise variance is independent of the specific design:

11 ))((),(  cXXcXc TTe

• This is a relative measure: all we can say is that one design is more efficient than 

another (for a given contrast).

NB: efficiency 

depends on design 

matrix and the chosen 

contrast !



Bonus material: Design efficiency

• XTX is the covariance matrix of the regressors in the design matrix

• efficiency decreases with increasing covariance 

• but note that efficiency differs across contrasts
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9.01
XX T

cT = [1 0] → ε = 0.19

cT = [1 1] → ε = 0.05

cT = [1 -1] → ε = 0.95

11 ))((),(  cXXcXc TTe

blue dots:

noise with the covariance structure of XTX



Bonus material: Example: working memory

• A: Response follows each stimulus with (short) fixed delay.

• B: Jittering the delay between stimuli and responses.

• C: Requiring a response only for half of all trials (randomly chosen).

Stimulus Response Stimulus Response Stimulus Response

A B C

T
im

e
 (s

)

Correlation = -.65

Efficiency ([1 0]) = 29

Correlation = +.33

Efficiency ([1 0]) = 40

Correlation = -.24

Efficiency ([1 0]) = 47
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