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What is it all about?

§ Why do we use functional magnetic resonance imaging?
§ To measure brain activity

§ When does the brain become active?
§ When it learns 

i.e., when its predictions have to be adjusted

§ Where do these predictions come from?
§ A model
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How to build a model

Sensory Input

Predictions
Inferred 

Hidden States
True

Hidden States

“Prediction Error”



Computational Neuroimaging

Iglesias et al., 2016
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Advantages of computational 
neuroimaging

§ Computational neuroimaging permits us to:
§ Infer the computational mechanisms underlying brain 

function

§ Localize such mechanisms

§ Compare different models
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Explanatory Gap

Biological
• Molecular
• Neurochemical

Cognitive
• Computational
• “cognitive/
• computational 

phenotyping”

Phenomenological
• Performance Accuracy
• Reaction Time
• Choices, preferences

Computational 
Models
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§ Computational Level: predictions, prediction errors
§ Algorithmic Level: reinforcement learning, hierarchical 

Bayesian inference, predictive coding
§ Implementational Level: Brain activity, neuromodulation

§ 3 ingredients:

1. Experimental 
paradigm:

2. Computational model of 
learning:

3. Model-based fMRI 
analysis:

David Marr, 1982

Three Levels of Inference
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Outline
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1. Computational

2. 
Algorithmic

4. Application to 
Psychiatry

3. 
Implementational



Example of a simple model
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Rescorla-Wagner Learning:

!(#) = !(#&') + )(* # − ! #&' )

Inferred States New Input

Prediction Error



Example of a simple model
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Rescorla-Wagner Learning:

Δ"($) ∝ '(Belief Update

Learning Rate
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Computational Variables

Sensory Input

Predictions
Inferred 

Hidden States
True

Hidden States

Prediction Error

Learning Rate



Example of a simple model
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Rescorla-Wagner Learning:

Δ"($) ∝ '(Belief Update

Learning Rate



Example of a hierarchical model
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Hierarchical Gaussian Filter :

Δ"($) ∝ (̂)*+($)

()
($) ,Belief Update

Weight

= -./012- /3453 63758)89 -353
-./012- /3 76537:; $8./
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Bayesian Models

! Θ #,% = ! Θ|% !(#|Θ,%)
∫ ! Θ|% ! # Θ,% +Θ

Sensory DataPrediction 
Errors

Predictions

The Bayesian Brain

• The brain is an inference machine
• Conceptualise beliefs as probability 

distributions
• Updates via Bayes’ rule:

Posterior 
Belief Evidence

Prior
Belief
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Hierarchical Gaussian Filter

Prediction 
Errors

Predictions
Belief
Precision

Sensory
Precision

Hierarchy

• Updates as precision-weighted 
prediction errors

Δ"#
(%) ∝ ()*+,

(%)

)#
(%) -#+,

(%)

Sensory
Precision

Belief
Precision

Belief
Update

PE

Mathys et al., Frontiers Human Neurosci 2011
Mathys et al., Frontiers Human Neurosci 2014



Outline
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Perception (learning) via hierarchical 
interactions

Top-down;
Predictions

Bottom-up;
Sensations/Prediction Error

Filter

Update
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From perception to action
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From perception to action
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Inversion of 
Perceptual Model

Generative Model

Inversion of 
Response Model



From perception to action to observation

24/10/2018 20

Inversion of Perceptual 
Model

Generative Model

Inversion of Response 
Model

Experimenter



Observing the observer

Daunizeau et al., PONE, 2011

• The observer obtains 
input from the world 
via the sensory 
systems

• He/she has prior 
beliefs about the state 
of the world and how 
it is changing.

• Based on these prior 
beliefs and the sensory 
inputs, he/she makes 
predictions. 
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Observing the observer

• The observer obtains 
input from the world 
via the sensory 
systems

• He/she has prior 
beliefs about the state 
of the world and how 
it is changing.

• Based on these prior 
beliefs and the sensory 
inputs, he/she makes 
predictions. 

• As the experimenter, we want 
to infer on what the observer 
is thinking …

• But all we can observe is 
his/her behaviour.

• We invert the observer’s 
beliefs from his/her 
behaviour: computational 
model
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Daunizeau et al., PONE, 2011



Generative Model
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• The joint distribution for observations and perceptual model 
parameters takes the form: 

! ", $, % & , ' ( = ! $, % & , ' *
+,-

.
!(" + |% + $, % & , ( , ')

Mathys et al., Frontiers Human Neurosci 2011
Mathys et al., Frontiers Human Neurosci 2014

( ≝ {( - ,… , ( . }
" ≝ " - ,… , " .

% + ≝ {6-- , 7-+ , … , 6-. , 7-. }



Dark Room Experiment
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The hierarchical Gaussian filter (HGF): a 
computationally tractable model for individual 
learning under uncertainty 

Mathys et al., Front Hum Neurosci, 2011
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Level 1: Stimulus category 

! "# = 1 = 1
1 + '()*

Level 3: Phasic volatility

! "+(-) ~0("+-(# , 2)

Level 2: Tendency towards category 1 

! "3(-) ~0("3-(# , '(4)5
678 9:))



The hierarchical Gaussian filter (HGF): a 
computationally tractable model for individual 
learning under uncertainty 
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Mathys et al., Front Hum Neurosci, 2011



The hierarchical Gaussian filter (HGF): a 
computationally tractable model for individual 
learning under uncertainty 
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Mathys et al., Front Hum Neurosci, 2011

Beliefs (probability distributions over 
states and inputs) 

!(#$% , '$% )

!(#)% , ')% )

Level 3: Belief about volatility

Level 2: Belief about tendency

*+,-(#̂/% )
Level 1: Prediction of inputs



Hierarchical Learning
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Simulations:



From perception to action
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• In behavioural tasks, we observe actions !
• How do we use them to infer on beliefs "?
• Answer: we invert (estimate) a response model



Example of a simple response model

§ Options A, B and C have values: !" = 8, !& = 4, !( = 2

§ We translate these values into action probabilities via a Softmax
function:
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* + = , = -./0
-./0 + -./2 + -./3

§ Parameter 4 determines sensitivity to value differences:

low 4 high 4



All the necessary ingredients

§ Perceptual model (updates based on prediction errors)

§ Value function (inferred state to action value)

§ Response model (action value to response probability)
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Generative Model
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• The joint distribution for observations and perceptual model 
parameters takes the form: 

! ", $, % & , ' ( = ! $, % & , ' *
+,-

.
!(" + |% + $, % & , ( , ')

Mathys et al., Frontiers Human Neurosci 2011
Mathys et al., Frontiers Human Neurosci 2014

( ≝ {( - ,… , ( . }
" ≝ " - ,… , " .

% + ≝ {6-- , 7-+ , … , 6-. , 7-. }



Computational hierarchy

24/10/2018 33

Volatility PE  

Volatility Precision

Advice PE

Advice Precision
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Outline
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Computational fMRI: The advantage

The question event-related/block designs answer:

- Where in the brain do particular experimental conditions 

elicit BOLD responses?

The question model-based fMRI answers:

- How (i.e., by activation of which areas) does the brain 

implement a particular cognitive process?

It is able to do so because its regressors correspond to 

particular cognitive processes instead of experimental 

conditions.
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Computational fMRI analyses 
of neuromodulation 

Iglesias et al., 2016
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Computational fMRI analyses 
of neuromodulation 

Iglesias et al., 2016
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Dopamine

Serotonin

Acetylcholine

Noradrenaline



Application of the HGF: Two types of PEs

1. Outcome PE

2. Cue-Outcome Contingency  PE
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!"

!#

Iglesias et al., Neuron, 2013



Application of the HGF: Sensory Learning

0 50 100 150 200 250 300
0

0.5

1

prediction
800/1000/1200 ms

target
150/300 ms

cue
300 ms

or

ITI
2000 ± 500 ms

time

Changes in cue strength (black), and 
posterior expectation of visual category (red)
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Iglesias et al., Neuron, 2013



Application of the HGF: Representation of 
precision-weighted PEs

Iglesias et al., Neuron, 2013

1. Outcome PE

z = -18

• right VTA
Dopamine

• left basal forebrain
Acetycholine

2. Probability PE
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Application of the HGF: Social Learning
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Changes in advice accuracy (black), and 
posterior expectation of adviser fidelity (red)

0 20 40 60 80 100 120 140 160 180

0.2

0.4

0.8

1

Trials

 

 

Diaconescu et al., SCAN, 2017



Representation of precision-weighted PEs 
in the social domain
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Diaconescu et al., SCAN, 2017

Dopamine System:
low-level PEs about adviser fidelity

first fMRI 
study

3 4 4

second
fMRI study

conjunction

Cholinergic System:
high-level PEs about intentions

first fMRI 
study

conjunction

3 4

second fMRI 
study

4



Computational hierarchy & its neural signature
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Volatility PE  

Volatility Precision

Outcome PE

Advice PE

Cue-related PE

Advice Precision
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Computational hierarchy & its neural signature
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x = -6 z = -11y = -14

x = -8 z = 5y = 6

x = -8 z = 1y = -14

x = -8 z = -11y = 10

x = 5 z = 23y = 36

x = -3 z = 34y = 2

F(46)

50
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40
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30

40

Outcome PE 

Cue-Related PE

Advice  PE 

Volatility PE  

Advice Precision
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Outline

24/10/2018 45

1. Computational

2. 
Algorithmic

4. Application to 
Psychiatry

3. 
Implementational



“My senses are sharpened.”

“Sights and sounds possess a 
keenness that I have never 
experienced before.”

“I had to make sense - any sense - out of all 
these uncanny coincidences. 

I did it by radically changing my conception 
of reality.”

Kapur, 2003 Chadwick, 2009
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“My senses are sharpened.”

“Sights and sounds possess a 
keenness that I have never 
experienced before.”

“I had to make sense - any sense - out of all 
these uncanny coincidences. 

I did it by radically changing my conception 
of reality.”

“My senses are 
sharpened.” “I had to make sense - any 

sense - out of all these 
uncanny coincidences.” 
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The Burden of Schizophrenia
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“My senses are 
sharpened.” “I had to make sense - any 

sense - out of all these 
uncanny coincidences.” 

Psychosis Treatment

Symptom 
Severity

Phase
At-risk 

§ Life-long disease



Prediction 
Errors

Models of Psychosis
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“My senses are 
sharpened.”

Phase
Psychosis TreatmentAt-risk 

Prediction 
Errors

Predictions
Belief
Precision

Sensory
Precision



Models of Psychosis
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“My senses are 
sharpened.”

Phase
Psychosis TreatmentAt-risk 

Prediction 
Errors

Sensory 
Precision

+

Predictions
Belief
Precision
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“My senses are 
sharpened.”

Models of Psychosis: At-Risk Phase

Phase
Psychosis TreatmentAt-risk 

-
Belief
Precision

Sensory 
Precision

+
Prediction 

Errors

Predictions
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Models of Psychosis: Delusions

Phase
Psychosis TreatmentAt-risk 

“My senses are 
sharpened.”

“I had to make sense - any 
sense - out of all these 
uncanny coincidences.” 

Prediction 
Errors

Predictions Belief 
Precision

Sensory 
Precision

-
Belief
Precision

Sensory 
Precision

+
Prediction 

Errors

Predictions



Tutorial

HGFtutorial_generate_task.m
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How do we construct regressors that 
correspond to cognitive processes and use 
them in SPM? 

1. Pass individual subject trial history into SPM:
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How do we construct regressors that 
correspond to cognitive processes and 
use them in SPM? 

2. Estimated subject-by-subject model parameters:
§ Model Inversion:
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How do we construct regressors that 
correspond to cognitive processes and 
use them in SPM? 

3. Generate model-based time-series:

3. Convolve them with HRF:

Adapted from O’Doherty et al., 2007
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How do we construct 
regressors that correspond to 
cognitive processes and use 
them in SPM? 

5. Construct your GLM:

Adapted from Behrens et al., 2010
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Estimate: single subject
6. First-level analysis:

§ Load your regressors:
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Estimate: single subject
6. First-level analysis:

§ Open SPM: Specify first 
level analysis
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Estimate: single subject
6. First-level analysis:

§ Load Design matrix into 
Batch editor
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Estimate: single subject
6. First-level analysis:

§ Examine results:
§ PE
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