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FROM FUNCTIONAL SEGREGATION TO FUNCTIONAL INTEGRATION

“Where in the brain does my 
experimental manipulation 

have an effect?”

“How do brain regions interact 
with each other? How does my 

experimental manipulation 
propagate through the network?”

localization of brain activity
functional segregation

analysis of brain connectivity
functional integration

u1 u1 x u2
https://team.inria.fr/parietal/files/2013/02/pc_dag.jpg



DIFFERENT FORMS OF BRAIN CONNECTIVITY

adapted from: Sporns, 2007, Scholarpedia

structural connectivity functional connectivity effective connectivity

– presence of anatomical/
physical connections

– Diffusion weighted imaging 
(DWI), tractography, tracer 
studies

– statistical dependencies 
between regional time 
series

– correlations, Independent 
Component Analysis (ICA)

– directed influences between 
neuronal populations

– Dynamic causal modeling 
(DCM)

https://team.inria.fr/parietal/files/2013/02/pc_dag.jpghttps://optimalsurgerytle.weebly.com/imaging-and-dataset.html http://www.clker.com/cliparts/e/5/Q/i/e/o/brain-line-drawing-md.png



DYNAMIC CAUSAL MODELING

Friston et al., 2003, NeuroImage

• Dynamic causal modeling (DCM) for functional magnetic resonance imaging (fMRI) data was 
introduced in 2003 by Karl Friston, Lee Harrison and Will Penny (NeuroImage 19:1273-1302)

• Allows effective connectivity analyses based on fMRI data



DYNAMIC CAUSAL MODELING

Friston et al., 2003, NeuroImage; David et al., 2006, NeuroImage

fMRTEEG, MEG

Forward model:
Predicting measured 
activity
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Model inversion:
Estimating neuronal 
mechanisms 
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http://sites.bu.edu/guentherlab/



1. enforces mechanistic thinking: how could the data have been caused?
2. generate synthetic data (observations) by sampling from the prior – can the model explain 

certain phenomena at all? 
3. inference about model structure: formal approach to disambiguating mechanisms → ! " #
4. inference about model parameters → ! $ #,"

GENERATIVE MODEL

Stephan et al., 2016, Front. Hum. Neurosci.; Frässle et al., in press, Wiley Interdiscip. Rev. Cogn. Sci.



THEORY



DCM FOR FMRI (OVERVIEW)

Friston et al., 2003, NeuroImage; Stephan et al., 2015, Neuron



NEURONAL STATE EQUATION

Friston et al., 2003, NeuroImage; Stephan et al., 2008, NeuroImage
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NEURONAL STATE EQUATION

Friston et al., 2003, NeuroImage; Stephan et al., 2008, NeuroImage
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NEURONAL STATE EQUATION

Friston et al., 2003, NeuroImage

DCM effective connectivity parameters are rate constants

x1
!"#
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&##

x1 x2
0.10 If region1 à region2 is 0.10s-1, this means 

that, per unit time, the increase in activity 
in region2 corresponds to 10% of the 
current activity in region1

0.5"# 0 - = ln 2
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NEURONAL STATE EQUATION

Friston et al., 2003, NeuroImage

Interim summary: bilinear neuronal state equation
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HEMODYNAMIC MODEL

Huettel et al., 2004, NeuroImage

Neuronal dynamics only indirectly observable via hemodynamic response

Re
st

Ac
tiv

ity

neuronal activity

blood flow

oxygenated Hb

T2*

fMRI signal

Brief stimulus

Peak

Undershoot
Initial dip (?)



HEMODYNAMIC MODEL

Friston et al., 2003, NeuroImage; Stephan et al., 2007, NeuroImage
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Balloon model

BOLD signal change 
equation

6 hemodynamic parameters:

Important for model fitting, but 
typically of no interest for 
statistical inference.

Hemodynamic parameters are 
computed separately for each 
region à region specific HRFs!

!" = $, &, ', (, ), *



BOLD SIGNAL CHANGE EQUATION

Friston et al., 2003, NeuroImage; Stephan et al., 2007, NeuroImage
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HEMODYNAMICS ARE IMPORTANT

David et al., 2008, PLoS Biol.

Granger 
causality

DCM



SIMULATIONS



WHAT CAN DCM EXPLAIN?

x2 x1 stimuli u1

context u2
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WHAT CAN DCM EXPLAIN?

x2 x1 stimuli u1

context u2
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WHAT CAN DCM EXPLAIN?

x2 x1 stimuli u1

context u2
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WHAT CAN DCM EXPLAIN?

x2 x1 stimuli u1

context u2
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MODEL INVERSION / INFERENCE



DYNAMIC CAUSAL MODELING

Friston et al., 2003, NeuroImage; David et al., 2006, NeuroImage

fMRTEEG, MEG

Forward model:
Predicting measured 
activity

! " #,%

Model inversion:
Estimating neuronal 
mechanisms 
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BAYES THEOREM

Reverend Thomas Bayes
(1702-1761)

! " #,% = ! # ",% ! " %
! # %

Bayes theorem gives a recipe for evaluating the posterior density 
by combining new data (likelihood) and prior knowledge

likelihood prior
posterior

model evidence

The posterior probability of the parameters is an 
optimal combination of our prior knowledge and the 
new data that we have acquired

prior

0.7

0
15 30

likelihood
posterior



LIKELIHOOD FUNCTION

Assume data is normally distributed around the prediction from the dynamical model 
(Gaussian noise):

! " # $,& = ( " # ; * $+, $,, - , $.
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LIKELIHOOD FUNCTION

Assume data is normally distributed around the prediction from the dynamical model 
(Gaussian noise):

! " # $,& = ( " # ; * $+, $,, - , $.



PRIORS

Neuronal parameters:
– self-connections: principled (to ensure that the system is stable)
– other parameters (between—region connections, modulation, inputs): shrinkage priors

Hemodynamic parameters:
– empirical

! " #,% = ! # ",% ! " %
! # %

Bayes theorem gives a recipe for evaluating the posterior density 
by combining new data (likelihood) and prior knowledge

prior



PRIORS

Types of priors:
– Explicit priors on model parameters (e.g., connection strengths)
– Implicit priors on model functional form (e.g., system dynamics)
– Choice of “interesting” data features (e.g., regional time-series vs. ICA analysis)

Role of priors (on model parameters):
– Resolving the ill-posedness of the inverse problem
– Avoiding overfitting (cf. generalization error)

Impact of priors:
– On parameter posterior distributions (cf. “shrinkage to the mean” effect)
– On model evidence (cf. “Occam’s razor”)
– On free-energy landscape (cf. Laplace approximation)



BAYES THEOREM

Reverend Thomas Bayes
(1702-1761)

! " #,% = ! # ",% ! " %
! # %

Bayes theorem gives a recipe for evaluating the posterior density 
by combining new data (likelihood) and prior knowledge

likelihood prior
posterior

model evidence

The posterior probability of the parameters is an 
optimal combination of our prior knowledge and the 
new data that we have acquired

prior
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VARIATIONAL BAYES (VB)

best proxy
! "

true
posterior
# " $

hypothesis
class

divergence
KL !||#

Idea: find an approximate density ! " that is maximally similar to the true posterior 
# " $ . This is often done by assuming a particular form for ! (fixed form VB) and then 
optimizing its sufficient statistics.

Bishop, 2006; Friston et al., 2007, NeuroImage



NEGATIVE FREE ENERGY

ln!(#) = KL[)| ! + , ), #
divergence ≥ 0

(unknown)
neg. free energy

(easy to evaluate 
for a given )) KL[)| !

ln ! # ∗

, ), #

initialization …

KL[)| !
ln ! #

, ), #

… convergence

, ), # is a functional with respect to the 
approximate posterior ) 3 .

Maximizing , ), # is equivalent to: 
– minimizing 45 )‖!
– tightening , ), # as a lower bound on the 

log model evidence

When , ), # is maximized, ) 3 is our best 
estimate of the true posterior.
Bishop, 2006; Friston et al., 2007, NeuroImage 



NEGATIVE FREE ENERGY – A CLOSER LOOK

The negative free energy represents a trade-off between the accuracy and complexity 
of a model:

accuracy
(expected log likelihood)

complexity
(KL divergence between 
approximate posterior and prior)

Bishop, 2006; Friston et al., 2007, NeuroImage 

! = log & ' (,* + − -. / ( ‖& ( *



NEGATIVE FREE ENERGY – A CLOSER LOOK

The negative free energy represents a trade-off between the accuracy and complexity 
of a model:

In contrast to “simple” criteria (e.g., AIC & BIC), the complexity term of the negative free 
energy accounts for parameter interdependencies and is a much richer description:

!" # $ ‖& $ ' = 1
2 ln -. − 12 ln -.|1 + 12 3.|1 − 3.

4-.56 3.|1 − 3.

complexity higher the more independent prior parameters 
Bishop, 2006; Friston et al., 2007, NeuroImage 

7 = log & : $,' < − !" # $ ‖& $ '



NEGATIVE FREE ENERGY – A CLOSER LOOK

The negative free energy represents a trade-off between the accuracy and complexity 
of a model:

In contrast to “simple” criteria (e.g., AIC & BIC), the complexity term of the negative free 
energy accounts for parameter interdependencies and is a much richer description:
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NEGATIVE FREE ENERGY – A CLOSER LOOK

The negative free energy represents a trade-off between the accuracy and complexity 
of a model:

In contrast to “simple” criteria (e.g., AIC & BIC), the complexity term of the negative free 
energy accounts for parameter interdependencies and is a much richer description:

!" # $ ‖& $ ' = 1
2 ln -. − 12 ln -.|1 + 12 3.|1 − 3.

4-.56 3.|1 − 3.

complexity higher the more posterior deviates from prior mean
Bishop, 2006; Friston et al., 2007, NeuroImage 

7 = log & : $,' < − !" # $ ‖& $ '



BAYESIAN SYSTEM IDENTIFICATION
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The negative free energy as a lower bound approximation to the log model evidence 
is the current gold standard for Bayesian model selection (BMS).

BAYESIAN MODEL SELECTION (BMS)

Note: Model selection is not equal to model validation and only allows to compare 
the relative goodness of competing hypotheses within the pre-specified model space!

à Model validation requires external criteria (external to the measured data).

Generative modeling: comparing competing hypotheses about the mechanisms 
underlying observed data. 

– a priori definition of hypothesis set (model space) is crucial
– determine the most plausible hypothesis (model), given the data



OVERFITTING AT THE LEVEL OF MODELS

But: There is an infinite number of possible models for a given dataset. Wouldn’t we 
need to search the entire model space and test all possible models?

No! With more models included in the model space, the risk of overfitting (at the level 
of models) increases, too.

Ghahramani, 2004



OVERFITTING AT THE LEVEL OF MODELS

But: There is an infinite number of possible models for a given dataset. Wouldn’t we 
need to search the entire model space and test all possible models?

No! With more models included in the model space, the risk of overfitting (at the level 
of models) increases, too.

Solutions:
– regularization: definition of model space (i.e., specify priors ! " over models)
– family-level Bayesian model selection
– Bayesian model averaging (BMA)

Ghahramani, 2004



NOTE: GLM VS. DCM

DCM tries to model the same phenomena (i.e., local 
BOLD responses) as a GLM, just in a different way (via 
connectivity and its modulations).

No activation detected by a GLM à no motivation to 
include this region in a deterministic DCM.

However, a stochastic DCM (that incorporates a noise term
in the neuronal state equation and can thus accounts for 
endogenous fluctuations) could be applied despite the 
absence of a local activation.

Stephan, 2004, J. Anat.



APPLICATIONS



SIMPLE EXAMPLE: ATTENTION TO MOTION

Büchel and Friston, 1997, Cerebral Cortex; Friston et al., 2003, NeuroImage

Stimuli: radially moving dots were presented. 

Pre-scanning: 5x30s trials with 5 speed changes. 
Subjects were asked to detect the change in 
radial velocity.

Scanning: No actual speed changes. Conditions:
– F: fixation
– S: static dots
– M: moving dots
– A: attend moving dots



SIMPLE EXAMPLE: ATTENTION TO MOTION

Büchel and Friston, 1997, Cerebral Cortex; Friston et al., 2003, NeuroImage

Linear contrast: attention > no attention 

V5

SPC

V1 V5 SPC

photic
motion
attention

Single-subject results: BOLD activation patterns



SIMPLE EXAMPLE: ATTENTION TO MOTION

Büchel and Friston, 1997, Cerebral Cortex; Friston et al., 2003, NeuroImage

V1 V5 SPC

Model space definition – which models can explain the data (Quiz)?

V1 V5

SPC

photic

attentionmotion

M1
photic

attentionmotion

M2

V1 V5

SPC

photic

attentionmotion

M3

V1 V5

SPC

photic

attention

motion

M6

V1 V5

SPC

photic

attention

M5 motion

V1 V5

SPC

photic

attention

motion

M4

V1 V5

SPC



SIMPLE EXAMPLE: ATTENTION TO MOTION

Büchel and Friston, 1997, Cerebral Cortex; Friston et al., 2003, NeuroImage; Stephan et al., 2008, NeuroImage

Single-subject results: DCM effective connectivity



APPLICATIONS OF BMS AND BMA

Individuals with different forms of color-
grapheme synesthesia were tested and 
effective connectivity in the relevant 
neural circuits was assessed using DCM. 

Bayesian model selection (BMS) as a 
formal approach to differential diagnosis 
in clinical applications

(Note: Here, different forms of synesthesia were 
tested. This is not a clinical condition, but simply 
a specific cognitive trait)

Van Leeuwen et al., 2011, J. Neurosci.



GENERATIVE EMBEDDING: APHASIA

Schofield et al., 2012, J. Neurosci.; Brodersen et al., 2011, PLoS Comp. Biol.

Dissociating aphasic patients (N=11) and healthy controls (N=26)



GENERATIVE EMBEDDING: APHASIA

Schofield et al., 2012, J. Neurosci.; Brodersen et al., 2011, PLoS Comp. Biol.

Dissociating aphasic patients (N=11) and healthy controls (N=26)

support vectors frequency



GENERATIVE EMBEDDING: APHASIA

Schofield et al., 2012, J. Neurosci.; Brodersen et al., 2011, PLoS Comp. Biol.

Dissociating aphasic patients (N=11) and healthy controls (N=26)



Detecting subgroups of patients in schizophrenia (N=41)

Deserno et al., 2012, J. Neurosci.; Brodersen et al., 2014, NeuroImage: Clinical

GENERATIVE EMBEDDING: SCHIZOPHRENIA



ALL MODELS ARE WRONG

BUT SOME ARE USEFUL

George Edward Pelham Box
(1919-2013)



Stephan et al., 2010, NeuroImage

SCHEMATIC OVERVIEW
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EVOLUTION OF DCM

Different variants and extensions within SPM
– bilinear vs. nonlinear
– single-state vs. two-state (per region)
– deterministic vs. stochastic
– time-series vs. cross-spectra

Different variants and extensions outside SPM
– biologically plausible hemodynamic models
– DCM for layered BOLD
– Global optimization schemes for model inversion
– regression DCM (rDCM)

Friston et al., 2003, NeuroImage; Stephan et al., 2009, NeuroImage; Marreiros et al., 2008, NeuroImage; Daunizeau et al., 2009, NeuroImage; Friston et al., 2014, NeuroImage; 
Havlicek et al., 2017, NeuroImage; Heinzle et al., 2016, NeuroImage; Sengupta et al, 2015, NeuroImage; Lomakina et al., 2015, NeuroImage; Aponte et al., 2015, J. Neurosci. 
Meth.; Friston et al., 2016, NeuroImage; Raman et al., 2016, J. Neurosci. Meth; Frässle et al., 2017, 2018, NeuroImage



DATASET: BUTTON PRESSES

Experimental Paradigm:

Stimuli: Arrows pointing to the left or right. 

Scanning: Button presses with respective hand. 
– F: fixation
– LH: button press with left hand
– RH: button press with right hand

6 LH- and 6 RH-blocks (10 button presses per block)
Each block lasted roughly 14 s
TR = 2.2 s, TE = 36 ms



RESULTS: BOLD ACTIVITY

Exemplary single-subject (Sub003) results:

right M1 left M1 V1

p < 0.001, uncorrected

(left hand > right hand) (right hand > left hand) (left + right hand > baseline)

3 8 3 10



DYNAMIC CAUSAL MODELING

Ingredients for DCM analysis:

• Specific hypothesis/question

• Model: based on hypothesis

• Time-series: extract from the SPM

• Inputs: experimental conditions from 
the design matrix



DYNAMIC CAUSAL MODELING

Recipe for DCM analysis (using the GUI in SPM):

1. extract the time series from all regions of interest (eigenvariate of all voxels in the regions of 
interest)

2. specify the model according to your hypotheses about the underlying network architecture



Model 1 

DYNAMIC CAUSAL MODELING

Is there interhemispheric inhibition during motor responses ?

l_M1 r_M1

V1

all stimuli

right hand left hand

Model 2 

l_M1 r_M1

V1

all stimuli

right hand left hand

right hand left hand



DYNAMIC CAUSAL MODELING

Recipe for DCM analysis (using the GUI in SPM):

1. extract the time series from all regions of interest (eigenvariate of all voxels in the regions of 
interest)

2. specify the model according to your hypotheses about the underlying network architecture

3. estimate the model

4. repeat steps 2 and 3 for all models in your model space

5. perform Bayesian model selection (BMS) or Bayesian model averaging (BMA)

6. inspect posterior parameter estimates of effective connectivity parameters (A, B, and C-matrix)



DYNAMIC CAUSAL MODELING

Bayesian model selection and Bayesian model averaging results:

-0.42
l_M1 r_M1

V1 V1

l_M1 r_M1
-0.14

0.67 1.05

1.34 1.34
all stimuli 

(driving inputs)
all stimuli 

(driving inputs)

right hand 
(modulatory influences)

left hand 
(modulatory influences)
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