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rocessmg Aims VU \V
reproc

Smooth

Temporal Spatial

General , Realign Normalise

" Broadly speaking, preprocessing does one of three things:

Transforms our data so that it is more useful, but without fundamentally

changing its properties (e.g. registration).

Increases the sensitivity of our analyses, either by boosting signal or removing

noise (e.g. motion correction).

Adjusts the data such that it fits our modelling assumptions (e.g. smoothing).
* The aim of this lecture is therefore that:

You understand why the different preprocessing steps are important.
You’re realistic about what it can, and more importantly can’t, do.

See e.g. Eklund et al., PNAS, 2016 or Deen & Pelphrey, Nature, 2012 for why
it’s important to get this right!
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fMRI = Acquiring Movies 5§

SNR & Preproc Normalise [Smooth

...of 3D Blood-
Oxygen-Level
Dependent (BOLD)

contrast images

typically Echo-
Planar Images (EPI)

= Run/session:
time-series of

images

scan 1
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" The localized time-series is

the fundamental information

unit of tMRI

Signal: fluctuation through
Blood-Oxygen-Level
Dependent (BOLD) contrast

BOLD signal change (%)

Noise: all other fluctuations 100

= Run/session:
time-series of

images

scan 1

Sam Harrison fMRI Preprocessing



The Golden Rule = £

SNR & Preproc

Temporal Spatial "General, Realign . Coreg

L.ook at

fMRI Preprocessing



SNR & Preproc Temporal Spatial "General

0.0 signal channa (%)
o -

fMRI Preprocessing
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" Interested in

fluctuations only
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SNR & Preproc

Spatial

Temporal

Before

BOLD time course in the presence of 50 % noise
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Sources of Noise in fMRI :,Av

SNR & Preproc Temporal Spatial "General, Realign, Coreg ; Normalise {Smooth

" Acquisition Timing JElglelol=IRgd(CTelelel = Slice-Timing
" Subject Motion Yol Nt s ol - Realignment

" Anatomical Identity Spatial Preproc s Co-registration
" Inter-subject variability ST EIEINACI ol " Scgmentation

" Thermal Noise STOENEINSClol(elel ® Smoothing

" Physiological Noise

Temporal Preproc
Spaial Proproc
Spatal Proproc
Spaal Proproc
Spaial Proproc
Noise Modeling-

" PhysIO Toolbox

fMRI Preprocessing



fMRI Preprocessing



@ & <Student Version> : SPM12 (6225): Menu

o Preprocessing

Realign... : Slicetimng | |  Smooth Realignment

Coregis. a v Normak...

Slice-Timing Correction

Unified Segmentation &

Normalisation

Smoothing

" Noise Modeling

Physiological Confound Regressors

Sam Harrison fMRI Preprocessing



Sources of Noise in fMRI - f\v

SNR & Preproc Temporal Spatial “General, Realign . Coreg ; Normalise }Smooth
" Acquisition Timing " Slice-Timing
" Subject Motion " Realignment
" Anatomical Identity " Co-registration
" Inter-subject variability " Segmentation
" Thermal Noise O Smoothing

" Physiological Noise O PhysIO Toolbox

fMRI Preprocessing
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S-tlmlng correction (STC) \J
reproc

Smooth

Temporal Spatial

General , Realign Normalise

" Slices of 1 scan volume are not acquired simultaneously

(60 ms per slice)

= Creates shifts of up to 1 volume repetition time (TR),

so typically several seconds

= This acquisition delay reduces sensitivity for time-locked effects

(i.e. a smaller correlation with a temporally fixed model)

True 2D Acquisition Same-Timepoint Assumption

Sam Harrison fMRI Preprocessing



Sam Harrison

Slice-timing correction: all voxel

time series are aligned to

acquisition time of 1 slice

Missing data is sinc-interpolated R i,
(band-limited signal) | il . S0

Slices
P
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Sladky et al, Neurolmage 2011
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Interpolation -

= Interpolation: estimate missing data between existing data via

certain regularity assumptions

Z1 - s =
> \ /f S b
‘V . .
L=l ‘-__‘A.._.—‘ ~.' QR
L . 1 1 d 2 1 | 8 1 L L
3 4 5 (3 7 8 9 10 1 12
Time [TRs]

= Signal at missing point is weighted average of neighbors
) Weighting function = interpolation “kernel”

= Here: assumption of limited frequency range of signal:

.rz'm—interpolation

Sam Harrison fMRI Preprocessing
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Slice-timing correction: all voxel

time series are aligned to

acquisition time of 1 slice

SO . . g 5 - " —e ®
Missing data is sinc-interpolated oy :
dr e S
(band-limited signal) | E, S S
* e
. I 22 n ~ ~.
Before or after realignment? | ~— ~—_
8
before: dominant through-slice motion 3 l 1 i l l
after: dominant within-slice motion 5} i ki o3
4r - e o, il > =
At aﬂ? 3% . ' 2 : - T
3 e J & § ;(l " 1
Time [TRs]
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STC Results: Simulation 5§

SNR & Preproc Tempora| Spatla| General Realign Normalise
Slice-timing Temporal-Derivative
Correction Modelling
T = ' "
BlOCk 100'»;——*:» TR T |k : 100% . : i — -
95% . el hi - (W rat a5 3ol m— > ve ..,....._J
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STC Issues: Motion = AN

SNR & Preproc Temporal Spatial "General Realign

Scanner spiking issues

T1 settling

time Subject movement

n:

Shce Time Ceusetee . j Interpolation from
Sl Slice timing
correction

“spreads” artifacts
over timel

Global signal
(mean over
space): a good
indicator of
large scale
changes in
signal

Coartesy of Derck Noe

Power et al., PLoS One, 2017
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Slice-timing correction: all voxel

time series are aligned to

acquisition time of 1 slice

Missing data is sinc-interpolated
(band-limited signal)
Before or after realignment?

before: dominant through-slice motion

after: dominant within-slice motion

At all?

block design: for long TR (3s+) & short
blocks (10s) improves estimates > 5 %

event-related: for normal TRs (2s+)

improves estimates > 5 %

fMRI Preprocessing
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STC Results: Experiment

SNR & Preproc Temporal Spatial " General , Realign, Coreg , Normalise

Paired t-Test: orginal vs

onginal wiginal+TD STC+TD onginal+ToD ST1C STC+TD

Ed
EY
E-U
NE

Z2=-4mm
visual cortex

I=-24mm
corebeallum

Sladky et al, Neurolmage 2011
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Sces of Noise in fMRI VU \V
reproc

Normalise

Temporal Spatial "General, Realign . Coreg

" Acquisition Timing " Slice-Timing

" Subject Motion STeIEINGClolfelel ® Realionment

" Anatomical Identity Spatial Preproc s Co-registration
" Inter-subject variability ST EIEINACI ol " Scgmentation

" Thermal Noise STOENEINSClol(elel ® Smoothing

" Physiological Noise O PhysIO Toolbox
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Finite Resolution and Voxel Identity = f\v

SNR & Preproc Temporal Spatial  "General Realign T | FEM——r

® yvoxel = volume

element (3D pixel)

,.;lIll
L7
| ]

fMRI Preprocessing



Preproc = Correct Voxel Mismatch =~ = f\v

SNR & Preproc Temporal Spatial  "General, Realign . Coreg . Normalise {Smooth

Voxel Mismatch Between

: Inter-Modal Normalisation/
Realignment

Coregistration Segmentation

fMRI Preprocessing



Spatial Preprocessing nput 3 |
SNR & Preproc Output
fMRI time-series
Segmentation

Deformation Fields

(y_struct.nii)

Kernel

SEGMENT 4
SMOOTH

mi mp  NMis Mia

mai Mx M2z Mo

ms: M3 Mz M3

O 0 0 1

Motion corrected

Mean functional (Headers changed) MNI Space

Sam Harrison fMRI Preprocessing
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General Remarks: Image Registration g

Normalise

SNR & Preproc Temporal Spatial "General Realign

= Realignment, Co-Registration and Normalisation (via Unified

Segmentation) are all zzage registration methods

" Goal: manipulate one set of images to arrive in same coordinate

system as a reference image

= Key ingredients for image registration
Voxel-to-world mapping
Transformation
Similarity Measure
Optimisation

Interpolation

Sam Harrison fMRI Preprocessing



A. Voxel-to-World Mapping 5§

Temporal Spatial Normalise

SNR & Preproc

General, Realign

= 3D images are made up of voxels.
= Voxel intensities are stored on disk as lists of numbers.

" Meta-information about the data:

image dimensions

conversion from list to 3D array

“voxel-to-world mapping”

Spatial transformation that maps
from: data coordinates (voxel column i, row j, slice k)
to: a real-world position (x,y,z mm) in a coordinate system e.g.:

Scanner coordinates

T&T/MNI coordinates

Sam Harrison fMRI Preprocessing



Talairach Atlas
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" Definition of coordinate system: o
Origin (0,0,0): anterior commissure

Right = +X; Anterior = +Y; Superior = +7Z

Sam Harrison fMRI Preprocessing

Actual brain dimensions

European brains,

a bit dilated (bug)




B. Transformations = AN

SNR & Preproc Temporal Spatial

" Transformations describe the Translation Rotation

mapping of all image voxels from

[ Rt
-

one coordinate system into ;

another

= Types of transformations

rigid body = translation + rotation

affine = rigid body + scaling + shear
non-linear = any mapping
(x,y,z) to new values (xX,y’, z)

described by deformation fields

Sam Harrison fMRI Preprocessing



Spatial Preproc: SPM vocabulary g ’\v

SNR & Preproc

Temporal Spatial

General, Realign Normalise [ Smooth

= SPM uses different names for different modes of image

registration

" depending on input images and allowed transformations

Realignment Co-Registration Normalisation
Intra-modal image Inter-modal registration Multi-modal registration
registration e.g. T1/T2 contrast e.g. T1 and/or T2

e.g. functional images tunctional to structural structural image(s) to

image template
rigid body transformations affine transformations non-linear transformations
translation /rotation rigid body voxel-wise mapping
stretching/shearing (deformation fields)

Sam Harrison fMRI Preprocessing



Temporal

SNR & Preproc

Spatial

General, Realign

Normalise

= Similarity measure summarizes resemblance of (transformed) image

and reference into 1 number

mean-squared difference

Objective d (glcpal oplimum)
function

correlation-coefficient

mutual information

R | L] T
Most probable solution

Local oplmlu‘l

Local oplimurm

Value of parameter

" Automatic image registration uses an optimisation algorithm to

maximise/minimise an “objective function”

Similarity measure is part of objective function

Algorithm searches for transformation that maximises similarity of

transformed image to reference

Also includes constraints on allowed transformations (priors)

Sam Harrison

fMRI Preprocessing
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Preprocessing Step Categorisation Y \v

Smooth

SNR & PreprOC Tempora| Spatla| General Realign Normalise

B. Allowed Transformations

Rigid-Body Affine Non-linear

SEGMENT NORM
WRITE

REALIGN

COREG

C. Similarity Measure

Mean-squared Mutual Tissue Class

Difference Information Probability

D. Optimisation

Exact Linearized = Conjugate Direction Iterated Conditional Modes
Solution Line Search (EM/Levenberg-Marquardt)

Sam Harrison fMRI Preprocessing



E. Reslicing/Interpolation - f\v

Smooth

SNR & Preproc

Temporal Spatial

General , Realign Normalise

= Finally, images have to be saved as voxel intensity list on disk again

= After applying transformation parameters, data 1s re-sampled onto

same grid of voxels as reference image

Reoriented Resliced

.

w
7l

1x1x3 mm ' 2x2x2 mm
voxel size m voxel size

Sam Harrison fMRI Preprocessing



E. B-spline Interpolation y Av

SNR & Preproc Temporal Spatial “General Realign, Coreg . Normalise §Smooth
A continuous function is represented by 2D B-spline basis functions

a linear combination of basis functions of degrees 0,1, 2 and 3

-4 z 3 4 = G 7 8 o

B-splines are piecewise polynomials ;
P P 7 ot 7 Nearest neighbour and
| { trilinear interpolation are
~ the same as B-spline
“ interpolation with degrees
; Oand 1.

Sam Harrison fMRI Preprocessing



Spatial Preprocessing nput 3 |
SNR & Preproc Output
fMRI time-series
Segmentation

Deformation Fields

(y_struct.nii)

Kernel

SEGMENT 4
SMOOTH

mi mp  NMis Mia

mai Mx M2z Mo

ms: M3 Mz M3

O 0 0 1

Motion corrected

Mean functional (Headers changed) MNI Space

Sam Harrison fMRI Preprocessing



Realignment = AN

fMRI time-series 4

Aligns all volumes of all runs
spatially
= Rigid-body transformation: three

translations, three rotations

= Objective function: mean squared
error of corresponding voxel

intensities

= Voxel correspondence via

interpolation

Motion corrected Mean functional

Sam Harrison fMRI Preprocessing
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hgnment Output: Parameters S\,
reproc

Temporal Spatial

General , Realign Normalise

translation

X transliatioh
Yy transiationp

-0.25} : transiatioh

o 10 20 32 &0 50 60 70 8@ L 4 190

ImaTe

rotation

0.3} > s s pitch

2 - v - v rol
~ v ~02a
B.."‘ 4 . £ - AP v .

yaw

degroos

=]
N
(=)
-
o

SO &0 70 8¢ 0 100

image
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fMRI Run after Realighment ~» "v

SNR & Preproc Temporal Spatial " General, Realign Normalise |Smooth

Sam Harrison fMRI Preprocessing



Co-Registration = £

SNR & PreprOC Tempora| Spatla| General Realign Normalise
Structural MRI -

Aligns structural image to

mean functional image

=  Affine transformation:
translations, rotations,

scaling, shearing

* Objective function: mutual

information (diff. contrast!)

Optimisation via Powell’s

method: conjugate directions,
mua M2 Nz Na

line seach along parameters
mx M2 M2s Mo

ms: M3 Mz M3

= Typically onl f '
0o 0 o0 1 ypically only trato matrix

(“header”) changed

Motion corrected = Mean functional (Headers changed)

Sam Harrison fMRI Preprocessing



Co-Registration: Mutual Information = #%

120
100
80
60
40
Mean functional ~ Anatomical MRI %
20 40 60 &80 100 120 0
Voxels of same tissue identity have 147
same intensity in an MR-contrast =
10} —
In a 274 MR contrast, intensity might 8 N
: : 6 .
be different, but still the same among | .
all voxels of the same tissue type 2 1‘.{
0

|
: - o 20 40 60 &80 100 120
Therefore, aligned voxels in 2 images . ]|
. . o _ intensity bins
induce crisp peaks in joint histogram
structural

Sam Harrison fMRI Preprocessing
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Marginal Histogram

intensity bins

functional

Joint Histogram:
h(ipis)
Count of voxels who
have intensity igin
functional and ig in

structural image




- ' ion: ' m f
Co-Registration: Mutual Information &F3

SNR & Preproc Temporal Spatial "General Normalise

Joint histogram
T1 (structural) T2 (functional) 100

a0

€0

N

—
40
20

20 40 22 80 100 20 4C €0 g0 100
intensity = 0.00 (bin 1) ntensity = 0.00 (bin 1) 20 40 GO 30 100
T1
Joint histogram
T1 (structural) T2 (functional)

‘ ~

20 40 60 60 10C 20 40 6l 80 100
intensity = 0.00 {oin 1) intensity = 0.00 (bin 1)




= Aligned voxels in 2 images

Normalise

induce Crisp peaks 1n ]Olnt Normalised Mutual Information Coregistration

histogram

Orghal Jalnt Histogram

damSathanary s

o Optimization criterion:

e et

Joint histogram: quantify how well
voxel intensity in one image predicts

the intensity in the other

how much shared (=mutual)

information

Joint histogram: proxy to joint .

probability distribution

Sam Harrison fMRI Preprocessing
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Sources of Noise in fMRI - f\v
SNR & Preproc

Temporal Spatial "General, Realign, Coreg ; Normalise {Smooth
" Acquisition Timing - SliCC—Timing
" Subject Motion " Realignment
" Anatomical Identity " Co-registration
" Inter-subject variability " Segmentation
" Thermal Noise O Smoothing

" Physiological Noise O PhysIO Toolbox

fMRI Preprocessing



Spatial Normalisation: Reasons g\,

SNR & Preproc

Temporal Spatial “General, Realign Normalise |Smooth

= Inter-Subject Variability » = Inter-Subject Averaging

Increase sensitivity with more

subjects (fixed-effects)

Generalise findings to population

as a whole (mixed-effects)

" Ensure Comparability between
studies (alignment to standard
space)

Talairach and Tournoux (T&T)

convention using the Montreal

Neurological Institute (MNI) space

Templates from 152/305 subjects

Sam Harrison fMRI Preprocessing 46
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Unified Segmentation I p O

= Warps structural

SNR & Preproc Temporal Spatial  "General Realign N fae

Deformation Segmented

Images

image to standard
space (MNI)

" Non-linear

transformation:
discrete cosine

SEGMENT ¢} transforms

(~1000)

= Objective

mi miz mis M

S function: Bayes

nmst Mz MmMs Msa
0 0 0 1

probability of

voxel intensity

d (Headers changed) MNI Space

Sam Harrison fMRI Preprocessing



: i isation = M
Theory: Segmentation/Normalisation g/

Normalise

SNR & Preproc Temporal Spatial " General, Realign
" Why is normalisation difficult?

No simple similarity measure, a lot of possible transformations...
Different imaging sequences (contrasts, geometry distortion)
Noise, artefacts, partial volume effects

Intensity inhomogeneity (bias field)

= Normalisation of segmented tissues is more robust and precise

than of original image

= Tissue segmentation benefits from spatially aligned tissue

probability maps (of prior segmentation data)

» Motivates a unified model of segmentation/normalisation

Sam Harrison fMRI Preprocessing



Summary of the unified model - "v

SNR & Preproc

Temporal Spatial Normalise |Smooth

General, Realign
= SPM12 implements a generative model of voxel intensity from

tissue class probabilities

Principled Bayesian probabilistic formulation

Gaussian mixture model: segmentation by tissue-class dependent Gaussian

intensity distributions

Voxel-wise prior mixture proportions given by tissue probability maps

" Deformations of prior tissue probability maps also modelled
Non-linear deformations are constrained by regularisation factors

Inverse of estimated transformation for TPMs normalises the original image

=  Bias field correction is included within the model

Sam Harrison fMRI Preprocessing



Theory: Unified Model Segmentation bﬁv

Normalise
I / K 2
) ) , ) - ) | e
£= - Znog( e 3 wba(e) (2n0?) ¢ xexp| — 22D Mo
: 2k =%

l  Yeba () =

SNR & Preproc Temporal Spatial "General Realign

(2005), Neuroimage
Objective function: log joint probability of all voxel intensities y

€ = lOgP(yl )bl...KJarﬁ)
Prior: Tissue probability maps

N WM pixel
probab1hty of CSF o e
intensity in '
given voxel for ' I
tissue class il T (N A
4 did e a }
image Intensity y
[ ] [ ] [ ] L ]
Bias Field Deformation Fields
. ~1000
coil .
. discrete
inhomo- .
o cosine
geneities |
transforms

Sam Harrison fMRI Preprocessing 50
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Segmentation results Y \v

SNR & Preproc Temporal Spatial "General Realign

= Segmentation works irrespective of image contrast
T1 T2 PD

Spatially '

normalised

BrainWeb
phantoms

Estimated
Tissue
Probability
Maps (TPMs)

Cocosco, Kollokian, Kwan &
Evans. “BrainWeb: Online Interfac
to a 3D MRI Simulated Brain

Database”. Neurolmage

5(4):5425 (1997)

Sam Harrison fMRI Preprocessing
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Benefits of Unified Segmentation gJ\,

SNR & Preproc Temporal Spatial ' General  Realign, Coreg , Normalise

Affine registration Non-linear registration

Sam Harrison fMRI Preprocessing 52



Spatial normalisation — Limitations — = #\
SNR & Preproc

Temporal Spatial “General, Realign Normalise

= Seek to match functionally homologous regions, but...
Challenging high-dimensional optimisation
many local optima
Different cortices can have different folding patterns

No exact match between structure and function

See e.g. Amiez et al. (2013), PMID:23365257

Sam Harrison fMRI Preprocessing



UK Biobank data: eventually, 100,000 subjects and 80 mins!

Sam Harrison fMRI Preprocessing



Spatial normalisation — Limitations — = #\
SNR & Preproc

Temporal Spatial “General, Realign Normalise

= Seek to match functionally homologous regions, but...

Challenging high—dimensional optimisation
many local optima

Different cortices can have different folding patterns

No exact match between structure and function

See e.g. Amiez et al. (2013), PMID:23365257

= Compromise
Correct relatively large-scale variability

Smooth over finer-scale residual differences

Sam Harrison fMRI Preprocessing



Smoothing — Why blurring the data? m f\v

Smooth

SNR & Preproc Temporal Spatial

General , Realign Normalise

= Intra-subject signal quality

Suppresses thermal noise (averaging)

Increases sensitivity to effects of similar scale to kernel Kernel
(matched filter theorem)

= Single-subject statistical analysis

Makes data more Gaussian (central limit theorem) SMOOTH

Reduces the number of multiple comparisons

= Second-level statistical analysis

Improves spatial overlap by blurring

anatomical differences

MNI Space

Sam Harrison fMRI Preprocessing
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Smoothing — How is it implemented: IR

SNR & Preproc Temporal Spatial ~General, Realign , Coreg . Normalise

= Convolution with a 3D Gaussian kernel, of specified full-width at
half-maximum (FWHM) in mm

* Mathematically equivalent to slice-timing operation or reslicing, but different

kernels there (sinc, b-spline)

= (Gaussian kernel 1s separable, and we can smooth 2D data with 2

separate 1D convolutions

A 2D
Gaussian
Kernel

Sam Harrison fMRI Preprocessing



fMRI Run after Smoothing X

Smooth

Sam Harrison fMRI Preprocessing



Spatial Preprocessing nput 3 |
SNR & Preproc Output
fMRI time-series
Segmentation

Deformation Field

(y_struct.nii)

Kernel

SEGMENT 4
SMOOTH

mi mp  NMis Mia

mai Mx M2z Mo

ms: M3 Mz M3

O 0 0 1

Motion corrected

Mean functional (Headers changed) MNI Space
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Sources of Noise in fMRI :,Av

SNR & Preproc Temporal Spatial "General, Realign, Coreg ; Normalise {Smooth

" Acquisition Timing JElglelol=IRgd(CTelelel = Slice-Timing
" Subject Motion Yol Nt s ol - Realignment

" Anatomical Identity Spatial Preproc s Co-registration
" Inter-subject variability ST EIEINACI ol " Scgmentation

" Thermal Noise STOENEINSClol(elel ® Smoothing

" Physiological Noise

Temporal Preproc
Spaial Proproc
Spatal Proproc
Spaal Proproc
Spaial Proproc
Noise Modeling-

" PhysIO Toolbox

fMRI Preprocessing



Teaser: PhysIO Noise Modelling g\,

" We can model time series of non-BOLD physiological fluctuations

Temporal Spatial

General , Realign Normalise
from prior knowledge (locations, dominant frequencies) or

peripheral recordings (ECG, breathing belt)

= “Filter” these out via incorporation into general linear model

Subjects with Significant Noise Reduction
See the next two GLM lectures! : o .- ;

= Result:

Cardiac (red), respiratory (blue)
physiological time courses, and their
interaction (green) contribute severely to

remaining non-Gaussian voxel fluctuations

= For more details: See Matthias’ talk on 19" November...

Sam Harrison fMRI Preprocessing



Thank you... -

SNR & Preproc Temporal Spatial  "General Normalise

= ...and:
TNU
Lars Kasper

Everyone Lars borrowed slides from ©

Sam Harrison fMRI Preprocessing



Further Reading 5§
SNR & Preproc

Smooth

Temporal Spatial “General, Realign Normalise

" Good Textbook: Karl Friston, J.A., Willlam Penny (Eds.), Statistical

Parametric Mapping, Academic Press, London, in particular

Ashburner, J., Friston, K., 2007a. Chapter 4 - Rigid Body Registration, pp. 49—
62.

Ashburner, J., Friston, K., 2007b. Chapter 5 - Non-linear Registration, pp. 63—
80.

Ashburner, J., Friston, K., 2007c. Chapter 6 - Segmentation, pp. 81-91.

* For mathematical/engineering connoisseurs: (see also extra slides

here):

Ashburner, J., Friston, K.J., 2005. Unified segmentation. NeuroIlmage 26,
839—851. doi:10.1016/j.neuroimage.2005.02.018

Sam Harrison
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Mixture of Gaussians - f\v

SNR & Preproc

Temporal Spatial Normalise |Smooth

General, Realign

= (lassification is based on a Mixture of Gaussians model, which
represents the intensity probability density by a number of

Gaussian distributions.

= Multiple Gaussians per tissue class allow non-Gaussian intensity

distributions to be modelled

e.g. partial volume effects

; ! Frequency
(number
— Nq | of pixels)
‘  l | 1] . rw.;_l_ T AL | g

" Image Intensity —
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Tissue Probability Maps -

= Tissue probability maps (TPMs) are used as the prior, instead of the

SNR & Preproc Temporal Spatial

General , Realign Normalise

proportion of voxels in each class

ICBM Tissue Probabilistic Atlases. These tissue probability maps were
kindly provided by the International Consortium for Brain Mapping

Sam Harrison fMRI Preprocessing



Deforming the Tissue Probability Maps = #%
W \J

Normalise

SNR & Preproc Temporal Spatial

General, Realign

= Tissue probability maps
images are warped to

match the subject

" The inverse transform

warps to the TPMs

—

——— e L
==oOME
=X
oo n
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° ° D _ ° n
Why regularisation? — Overfitting g\,

o Regularisation

. Affine
constrains registration
deformations to (error =
realistic range i
(implemented as
priors)

B Non-linear
Template - :
| . registration
Non-linear image . thout
registration T
St regularisatior
usin
| g | (error =
regularisation \ 287.3)

(error = 302.7)
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Modelling inhomogeneity

SNR & Preproc Temporal Spatial " General Realign . Comma

= A multiplicative bias field is modelled as a linear :smm%m

combination of basis functions. :iS&@ﬁ%
e e A

Corrupted image Bias Field Corrected image

fMRI Preprocessing



Unified segmentation: The maths ¢S\,
Smooth

Normalise

Spatial

SNR & Preproc Temporal

General, Realign

= Mixture of Gaussians: probability of voxel 7 having intensity y,

given it is from a specific cluster £ (e.g. tissue class gray matter)

2
¢ : | (l" ll.‘)“ {
Piyile; = k.py,04) = ——exp —‘—iq—’;ﬁ— (1)
4 - > ), -

Prior probability of voxel’s tissue class (e.g. voxel proportion) Yy
Ple; = ki) = W
Joint Probability: P(yi,c;i = k|, Gk, ) P(vilci k, wy. o) P(c; k|vi)
Marginal probability of voxel intensity:
P(yijp.o,y) = 21\: Plyivci =kl ox %)

k'=:-1

Joint probability all voxels’ intensity:

/ I K , \2
A : , . =3i 9 (v, — jt )"
Pi¥|p. 0. %) I I Plyip.o.vy) — | | 2 X mip| = s (5)
. ' P | 26} '

=1 \k=1 (2ro%)?
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US Maths: Bias Field -

SNR & PreprOC Tempora| Spatla| Genera' Rea“gn Normanse

" Implemented by adjusting the Means and Variances of the

Gaussians on a pixel-by-pixel basis by a function smoothly varying

in space, p; (f):

2
He 2 ( Ok )
- ,0F P
e ™ oy %k T \ous)
pi 1s the exponential of a linear combination of low frequency basis functions

Parameters to be estimated: vector 8

" intensity probability Plyile: — k. . ox, )
.. l Wi — e/ p3 }')2
conditioned on cluster = TexXp oy —
9. ! o a2 e/ p([3))
: : (-n(m,;p,-(,dn ) i
identity: )

. | (p:(B)yi — 1y ‘;:
L e ~ 52
(2roy ) =%k
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US Maths: Spatial Priors by TPMs g\,

= Replacing stationary mixing proportions Y by voxel-dependent

SNR & Preproc Temporal Spatial

General , Realign Normalise

proportions which are informed by the prior tissue probabilities Djp,

for this voxel i and different tissue types k

blk

" Y 2 V() =y vK

j= 1)/] ij

" Note: K can be larger than the number of tissue classes, since each
class can be reflected by a mixture of Gaussians, e.g. 3 Gaussians
for gray matter (to allow for non-Gaussian distributions per tissue

class)

E.g. partial volume effects

Sam Harrison fMRI Preprocessing



US Maths: Deformation Fields - ’\v

SNR & Preproc Temporal Spatial "General, Realign . Coreg . Normalise {Smoo

" Deformation (and thereby normalisation) 1s implemented by
allowing the prior TPMs (which are in MNI-space) to be spatially
transformed by a parameterised mapping

b;
by > bye(@) = Ple = kly, @) = L5

Parameter vector to be estimated: &

about 1000 discrete cosine transforms

=mExXEi
oo n
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US Maths: Regularisation - f\v

Smooth

SNR & PreprOC Tempora| Spatla| General Realign Normalise

= Linear Regularisation of Bias Field and Deformation Field Estimates
By including prior distributions for a and f as zero-mean multivariate Gaussians
Covariance: a! Cya = bending energy; p(B) = exp(K79mm * N (0, 8))

= Thus, the final objective function to be maximised 1s the log-joint

probability of intensity, bias and deformation field parameters:

P(v.B, aly.n,a’) = P(v|B,a,v,.u 0" )P(B)P(a)

" Equivalently, the negative free energy is minimised:

F = —logPl(y,p. a|‘7.u.crz) = & —logP(B) —logPa)
I , K
[)“,3) Ay ——
E= — log — vebu () (2no;) 2
,Z. (Z: oy wba(e) kZl & ;

(/)1(6'.‘3 = Hi ,]:
< exp| — =
A = ". 4
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