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Passive word 

listening

versus rest

7 cycles of 

rest and listening

Blocks of 6 scans

with 7 sec TR

Question: Is there a change in the BOLD response 

between listening and rest?

Stimulus function

One session

A very simple fMRI experiment
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1. Decompose data into effects and 

error

2. Form statistic using estimates of 

effects and error

Make inferences about effects of interestWhy?

How?
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Modelling the measured data
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Mass-univariate analysis: voxel-wise GLM
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Model is specified by

1. Design matrix X

2. Assumptions about e

N: number of scans

p: number of regressors

eXy  

The design matrix embodies all available knowledge about 

experimentally controlled factors and potential confounds.
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GLM assumes Gaussian “spherical” (i.i.d.) errors

sphericity = i.i.d.

error covariance is 

scalar multiple of 

identity matrix:

Cov(e) = 2I
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Examples for non-sphericity:

non-identity

non-independence



Parameter estimation
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Ordinary least squares

estimation (OLS) 

(assuming i.i.d. error):

yXXX TT 1)(ˆ 

Objective:

estimate parameters 

to minimize
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A geometric perspective on the GLM
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Residual forming 

matrix R

Projection matrix P

OLS estimates



Deriving the OLS equation (option I)
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"least squares": 

goal is to minimize squared

error

yTX is a scalar, so we can

transpose it without

changing anything

find the  estimate that

minimizes the squared

error



Deriving the OLS equation (option II)
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Correlated and orthogonal regressors

When x2 is orthogonalized with 

regard to x1, only the parameter 

estimate for x1 changes, not that 

for x2!

Correlated regressors = 

explained variance is shared 

between regressors
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What are the problems of this model?

1. BOLD responses have a delayed 

and dispersed form. HRF

2. The  BOLD signal includes substantial amounts of low-
frequency noise.

3. The data are serially correlated (temporally autocorrelated) 
 this violates the assumptions of the noise model in 

the GLM
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The response of a linear time-invariant (LTI) system is the convolution of the input 

with the system's response to an impulse (delta function).

Problem 1: Shape of BOLD response

Solution: Convolution model

hemodynamic 

response 

function 

(HRF)

expected BOLD response 

= input function impulse response function (HRF)



Convolution model of the BOLD response

Convolve stimulus function with 

a canonical hemodynamic 

response function (HRF):

 HRF
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Problem 2: Low-frequency noise 

Solution: High pass filtering

SeSXSy  

discrete cosine 

transform (DCT) set

S = residual forming matrix of DCT set



High pass filtering: example

blue = data

black = mean + low-frequency drift

green = predicted response, taking into account 

low-frequency drift

red = predicted response, NOT taking into 

account low-frequency drift
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1st order autoregressive process: AR(1)
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Problem 3: Serial correlations



Dealing with serial correlations

• Pre-colouring: impose some known autocorrelation structure on 

the data (filtering with matrix W) and use Satterthwaite correction 

for df’s.

• Pre-whitening: 

1. Use an enhanced noise model with multiple error covariance 

components, i.e. e ~ N(0, 2V) instead of e ~ N(0, 2I).

2. Use estimated serial correlation to specify filter matrix W for 

whitening the data.
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How do we define W ?

• Enhanced noise model

• Remember linear transform 
for Gaussians

• Choose W such that error 
covariance becomes spherical

• Conclusion: W is a simple function of V
 so how do we estimate V ?
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Estimating V:

Multiple covariance components
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Estimation of hyperparameters  with ReML (restricted maximum 

likelihood).

V

enhanced noise model error covariance components Q

and hyperparameters 



Contrasts &

statistical parametric maps

Q: activation during 

listening ?

c = 1 0 0 0 0 0 0 0 0 0 0

Null hypothesis: 01 
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ReML-

estimates
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t-statistic based on ML estimates
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For brevity:



• head movements

• arterial pulsations (particularly bad in brain stem)

• breathing

• eye blinks (visual cortex)

• adaptation effects, fatigue, fluctuations in concentration, etc.

Physiological confounds



Outlook: further challenges

• correction for multiple comparisons

• variability in the HRF across voxels

• slice timing

• limitations of frequentist statistics

 Bayesian analyses

• GLM ignores interactions among voxels

 models of effective connectivity

These issues are discussed in future lectures.



Correction for multiple comparisons

• Mass-univariate approach: 
We apply the GLM to each of a huge number of voxels (usually > 
100,000).

• Threshold of p<0.05  more than 5000 voxels significant by 

chance!

• Massive problem with multiple comparisons! 

• Solution: Gaussian random field theory



Variability in the HRF

• HRF varies substantially across voxels and subjects

• For example, latency can differ by ± 1 second

• Solution: use multiple basis functions

• See talk on event-related fMRI



Summary

• Mass-univariate approach: same GLM for each voxel

• GLM includes all known experimental effects and confounds

• Convolution with a canonical HRF

• High-pass filtering to account for low-frequency drifts

• Estimation of multiple variance components (e.g. to account for 

serial correlations)



Bibliography

• Friston, Ashburner, Kiebel, Nichols, Penny (2007) 
Statistical Parametric Mapping: The Analysis of Functional 
Brain Images. Elsevier.

• Christensen R (1996) Plane Answers to Complex Questions: The Theory of 
Linear Models. Springer.

• Friston KJ et al. (1995) Statistical parametric maps in functional imaging: a 
general linear approach. Human Brain Mapping 2: 189-210.



Supplementary slides



1. Express each function in 

terms of a dummy variable τ.

2. Reflect one of the functions: 

g(τ)→g( − τ).

3. Add a time-offset, t, which 

allows g(t − τ) to slide along 

the τ-axis.

4.Start t at -∞ and slide it all the way to +∞. Wherever the 

two functions intersect, find the integral of their product. In 

other words, compute a sliding, weighted-average of 

function f(τ), where the weighting function is g( − τ).

The resulting waveform (not shown here) is the convolution 

of functions f and g. If f(t) is a unit impulse, the result of this 

process is simply g(t), which is therefore called the impulse 

response.

Convolution step-by-step (from Wikipedia):


