The General Linear Model (GLM)

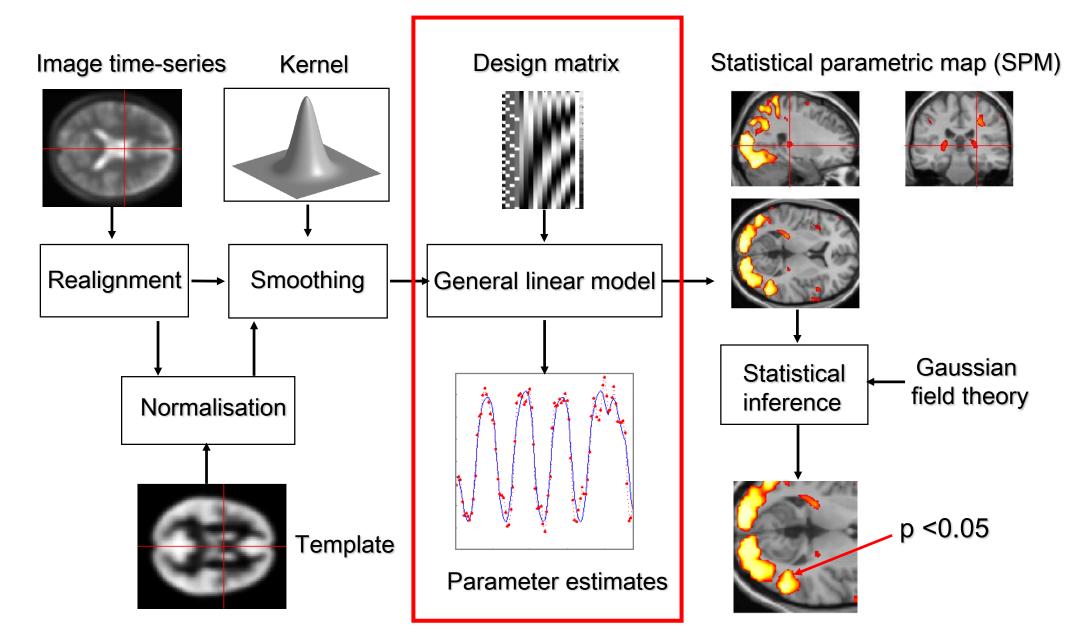
Klaas Enno Stephan

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Methods & models for fMRI data analysis 15 October 2019

With many thanks for slides & images to: FIL Methods group

Overview of SPM



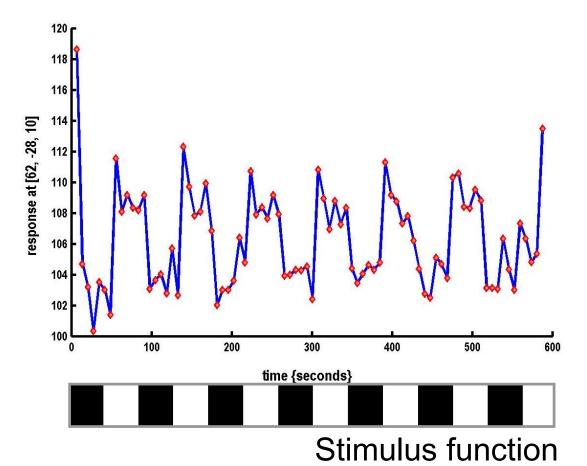
A very simple fMRI experiment

One session

Passive word listening versus rest

7 cycles of rest and listening

Blocks of 6 scans with 7 sec TR



Question: Is there a change in the BOLD response between listening and rest?

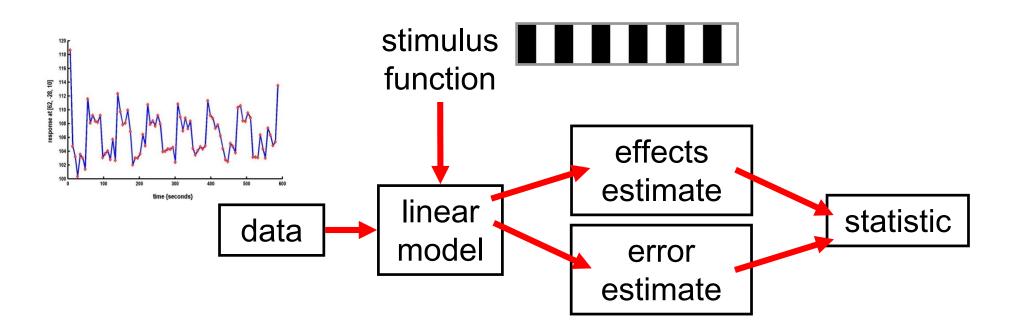
Modelling the measured data

Why? Make inferences about effects of interest

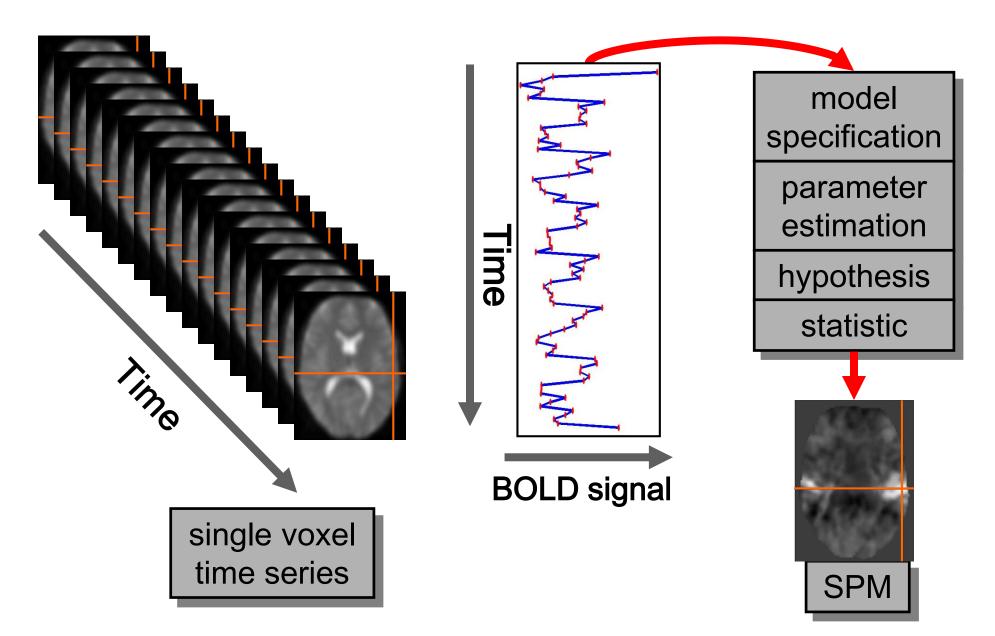
1. Decompose data into effects and

How?

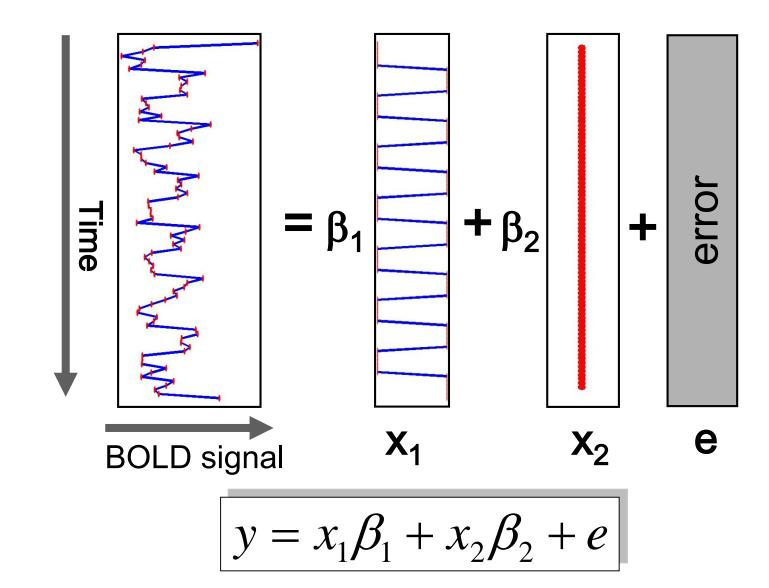
- error
- 2. Form statistic using estimates of effects and error



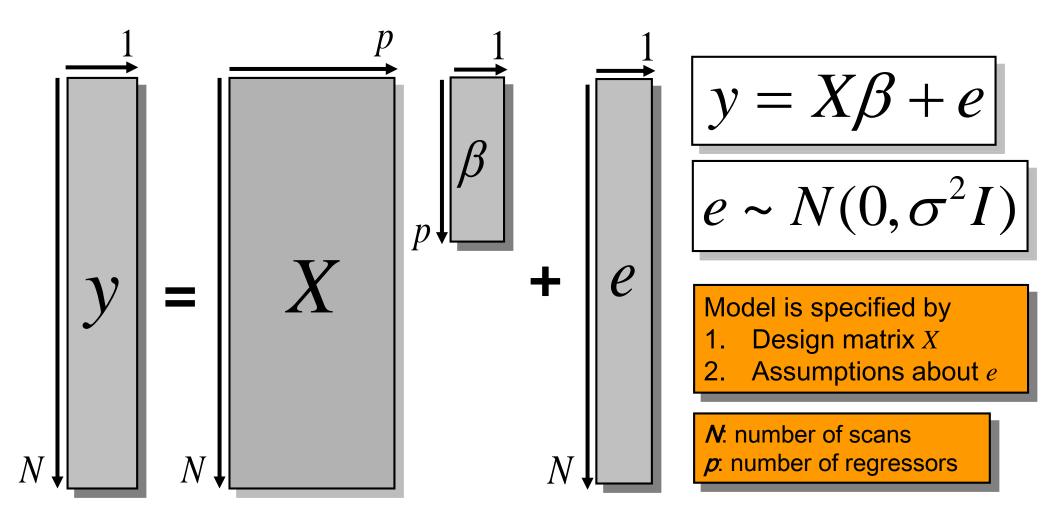
Voxel-wise time series analysis



Single voxel regression model



Mass-univariate analysis: voxel-wise GLM

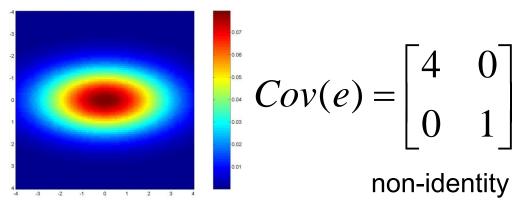


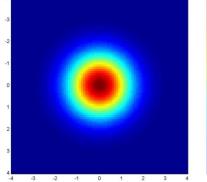
The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds.

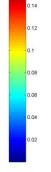
GLM assumes Gaussian "spherical" (i.i.d.) errors

sphericity = i.i.d.
error covariance is
scalar multiple of
identity matrix:
Cov(e) = σ²I

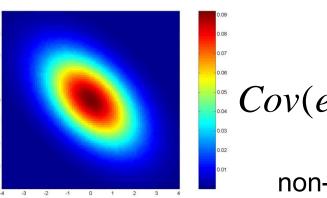
Examples for non-sphericity:

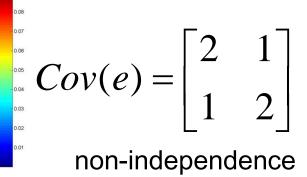




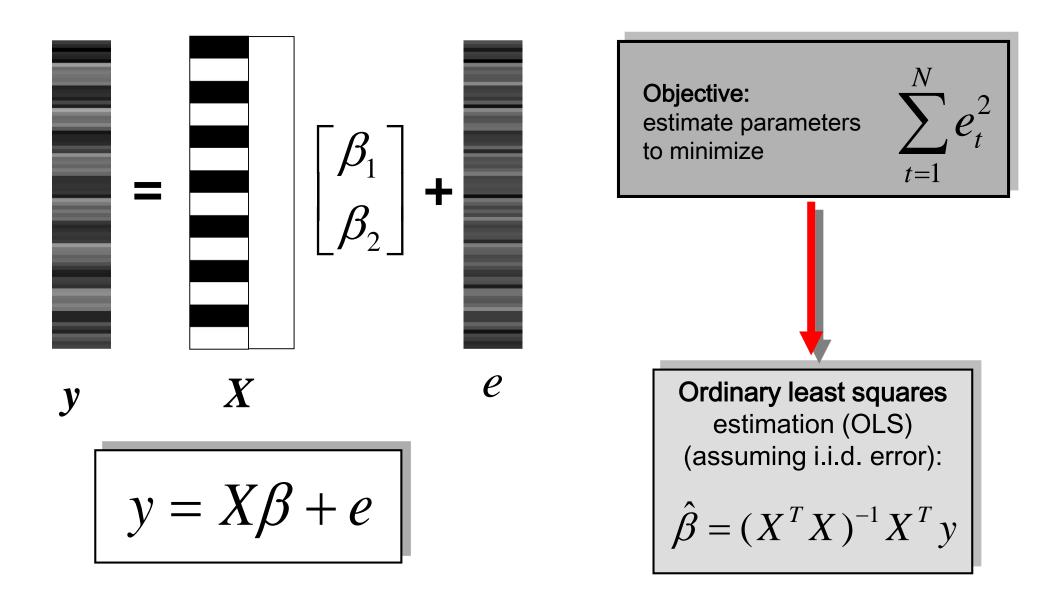


$$Cov(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

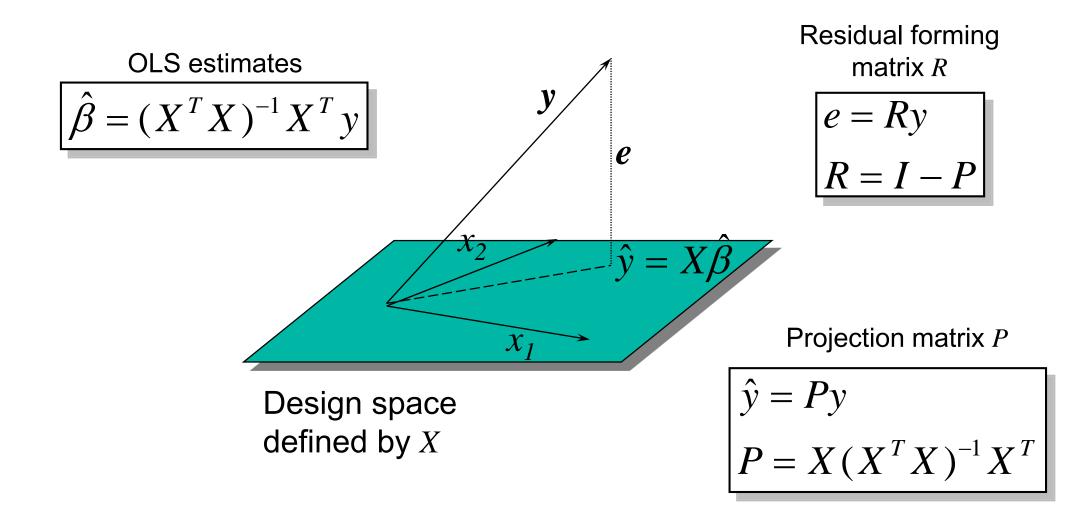




Parameter estimation



A geometric perspective on the GLM



Deriving the OLS equation (option I)

$$e^{T}e = \left(y - X\hat{\beta}\right)^{T}\left(y - X\hat{\beta}\right) \xleftarrow{} e^{T}e = \left(y^{T} - \hat{\beta}^{T}X^{T}\right)\left(y - X\hat{\beta}\right)$$

$$e^{T}e = \left(y^{T} - \hat{\beta}^{T}X^{T}\right)\left(y - X\hat{\beta}\right)$$

$$e^{T}e = y^{T}y - y^{T}X\hat{\beta} - \hat{\beta}^{T}X^{T}y + \hat{\beta}^{T}X^{T}X\hat{\beta} \xleftarrow{} y^{T}X\beta \text{ is a scalar, so we can transpose it without changing anything}$$

$$e^{T}e = y^{T}y - 2\hat{\beta}^{T}X^{T}y + \hat{\beta}^{T}X^{T}X\hat{\beta} \xleftarrow{} p^{T}X\beta \xleftarrow{} p^{T}X\beta = 0 \xleftarrow{} p^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = e^{T}e = -2X^{T}y + 2X^{T}X\hat{\beta} = 0 \xleftarrow{} p^{T}e = -2X^{T}y + 2X^{T}X\hat$$

Deriving the OLS equation (option II)

$$X^{T}e = 0$$

$$X^{T}(y - X\hat{\beta}) = 0$$

$$X^{T}y - X^{T}X\hat{\beta} = 0$$

$$X^{T}X\hat{\beta} = X^{T}y$$

$$\hat{\beta} = (X^{T}X)^{-1}X^{T}y$$

Correlated and orthogonal regressors

$$x_{2}^{*} = x_{1}\beta_{1} + x_{2}\beta_{2} + e$$

$$y = x_{1}\beta_{1} + x_{2}\beta_{2} + e$$

$$\beta_{1} = \beta_{2} = 1$$

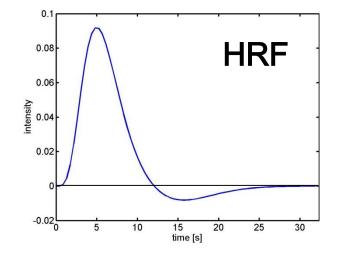
$$y = x_{1}\beta_{1} + x_{2}^{*}\beta_{2}^{*} + e$$

$$\beta_{1} > 1; \beta_{2}^{*} = 1$$

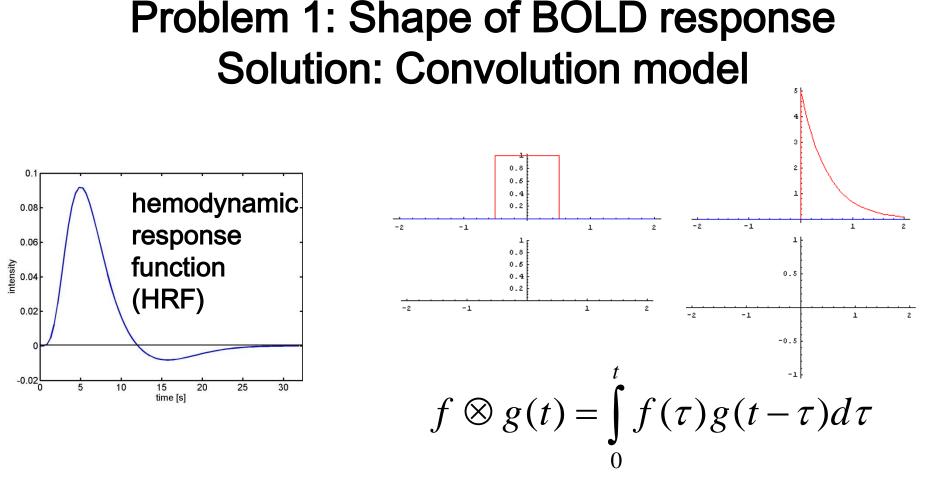
Correlated regressors = explained variance is shared between regressors When x_2 is orthogonalized with regard to x_1 , only the parameter estimate for x_1 changes, not that for x_2 !

What are the problems of this model?

1. BOLD responses have a delayed and dispersed form.



- 2. The BOLD signal includes substantial amounts of lowfrequency noise.
- 3. The data are serially correlated (temporally autocorrelated) \rightarrow this violates the assumptions of the noise model in the GLM



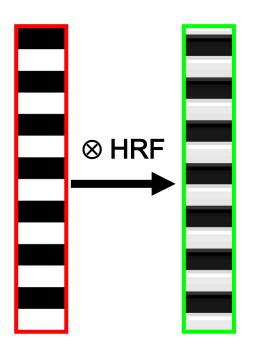
The response of a linear time-invariant (LTI) system is the convolution of the input with the system's response to an impulse (delta function).

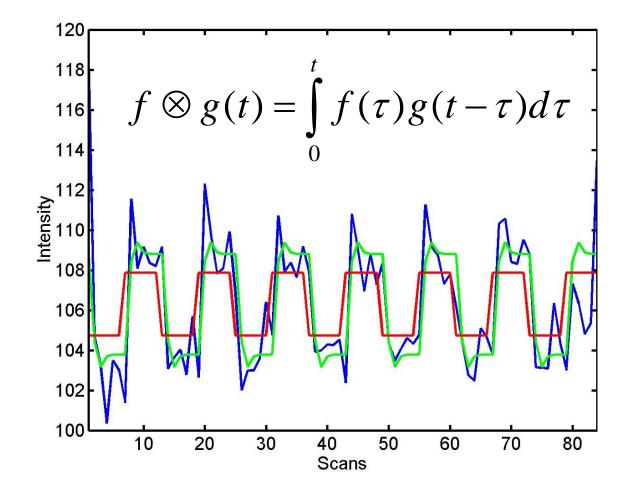
expected BOLD response

= input function \otimes impulse response function (HRF)

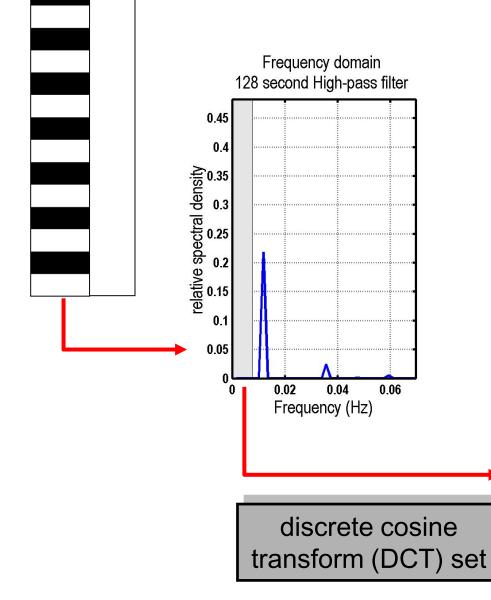
Convolution model of the BOLD response

Convolve stimulus function with a canonical hemodynamic response function (HRF):



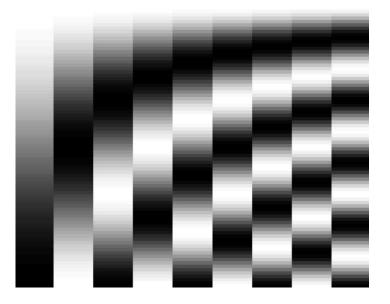


Problem 2: Low-frequency noise Solution: High pass filtering

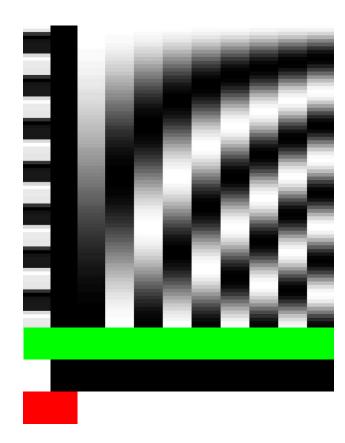


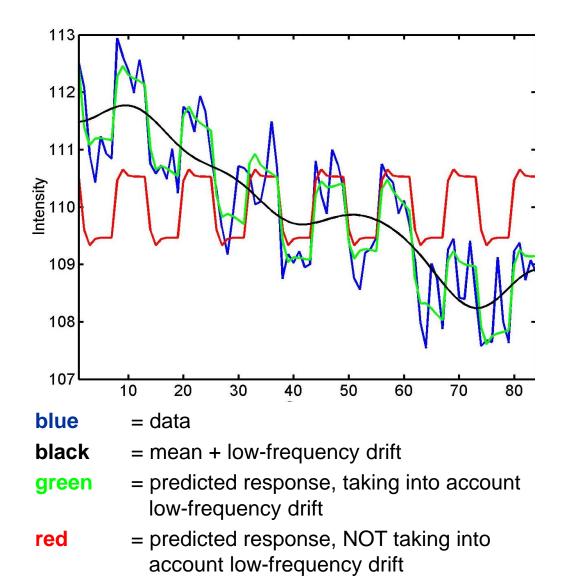
$$Sy = SX\beta + Se$$

S = residual forming matrix of DCT set



High pass filtering: example

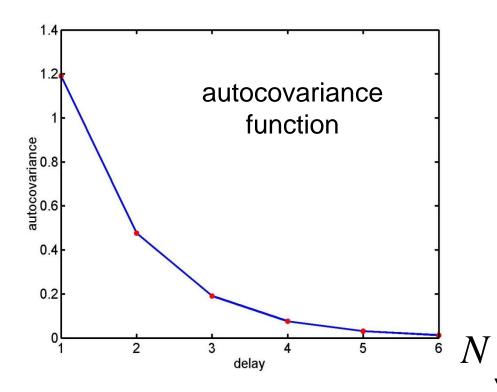


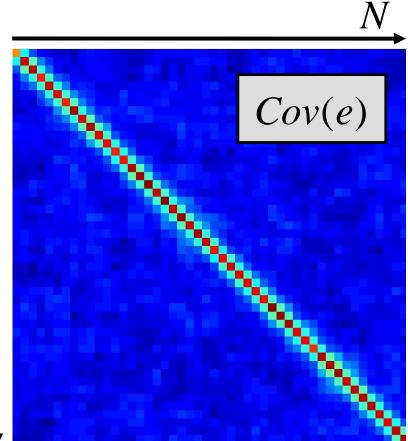


Problem 3: Serial correlations

$$e_t = ae_{t-1} + \varepsilon_t$$
 with $\varepsilon_t \sim N(0, \sigma^2)$

1st order autoregressive process: AR(1)





Dealing with serial correlations

• **Pre-colouring**: impose some known autocorrelation structure on the data (filtering with matrix *W*) and use Satterthwaite correction for df's.

Pre-whitening:

1. Use an enhanced noise model with multiple error covariance components, i.e. $e \sim N(0, \sigma^2 V)$ instead of $e \sim N(0, \sigma^2 I)$.

2. Use estimated serial correlation to specify filter matrix *W* for whitening the data.

$$Wy = WX\beta + We$$

How do we define *W*?

- Enhanced noise model
- Remember linear transform
 for Gaussians

- Choose *W* such that error covariance becomes spherical
- Conclusion: W is a simple function of V
 ⇒ so how do we estimate V?

$$e \sim N(0, \sigma^2 V)$$

$$x \sim N(\mu, \sigma^2), y = ax$$
$$\Rightarrow y \sim N(a\mu, a^2\sigma^2)$$

$$We \sim N(0, \sigma^2 W^2 V)$$
$$\Rightarrow W^2 V = I$$
$$\Rightarrow W = V^{-1/2}$$

$$Wy = WX\beta + We$$

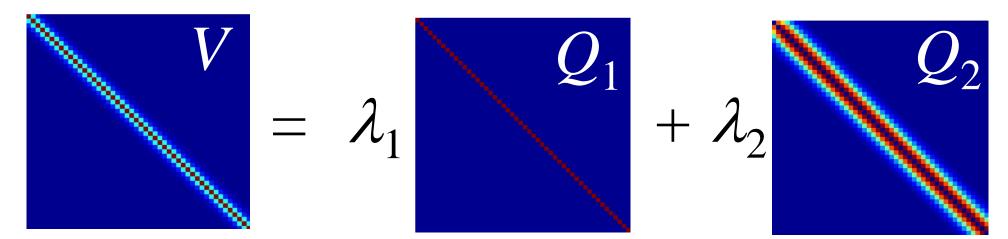
Estimating V: Multiple covariance components

 $e \sim N(0, \sigma^2 V)$

enhanced noise model

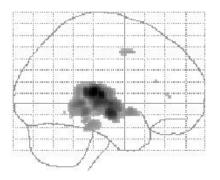
 $V \propto Cov(e)$ $V = \sum \lambda_i Q_i$

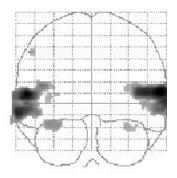
error covariance components Qand hyperparameters λ

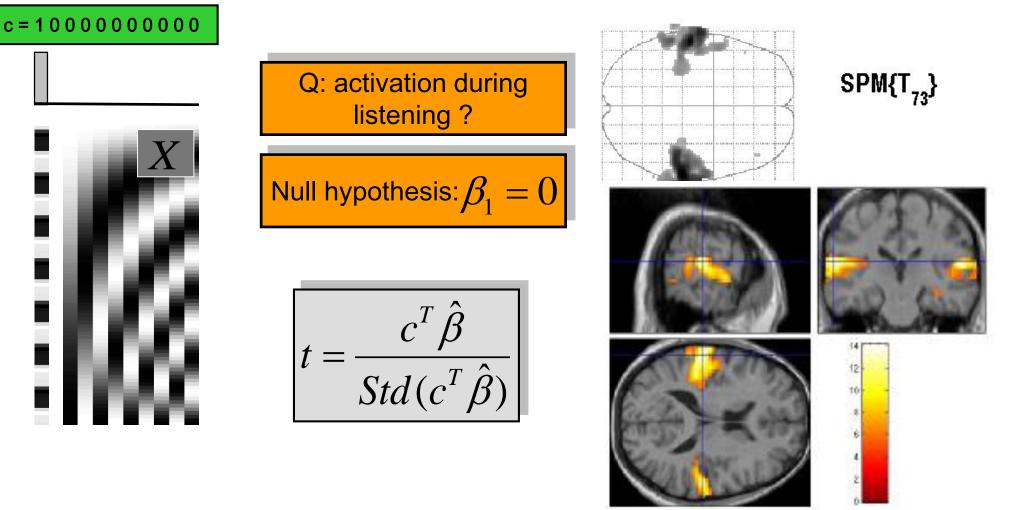


Estimation of hyperparameters λ with ReML (restricted maximum likelihood).

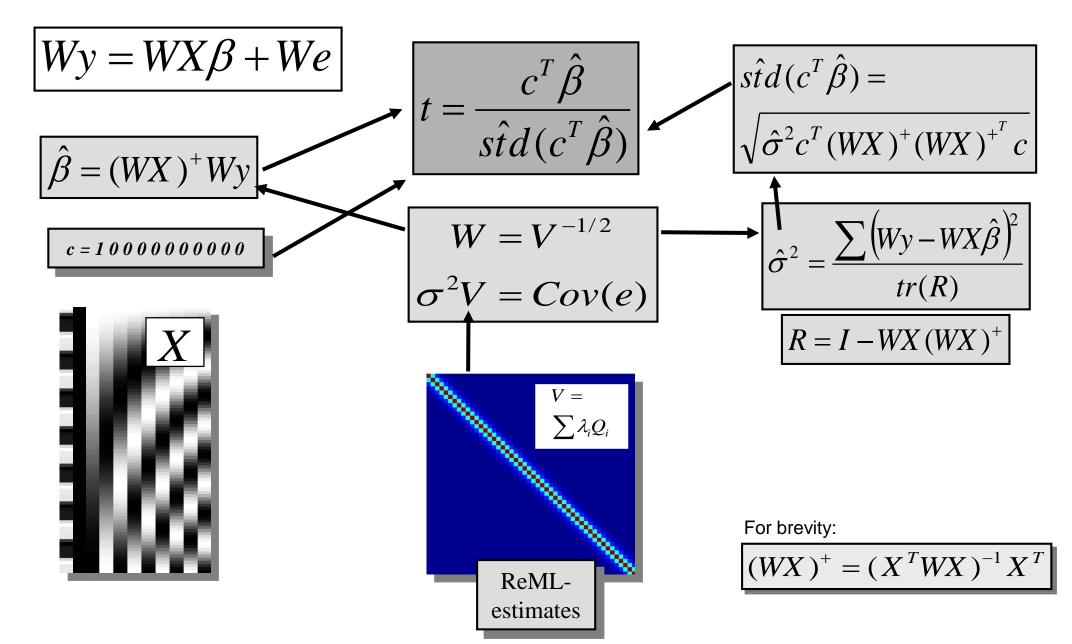
Contrasts & statistical parametric maps







t-statistic based on ML estimates



Physiological confounds

- head movements
- arterial pulsations (particularly bad in brain stem)
- breathing
- eye blinks (visual cortex)
- adaptation effects, fatigue, fluctuations in concentration, etc.

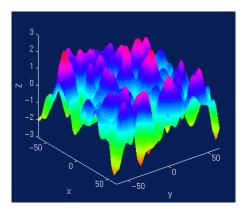
Outlook: further challenges

- correction for multiple comparisons
- variability in the HRF across voxels
- slice timing
- Imitations of frequentist statistics
 → Bayesian analyses
- GLM ignores interactions among voxels
 → models of effective connectivity

These issues are discussed in future lectures.

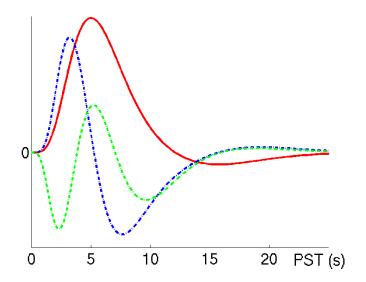
Correction for multiple comparisons

- Mass-univariate approach: We apply the GLM to each of a huge number of voxels (usually > 100,000).
- Threshold of p<0.05 \rightarrow more than 5000 voxels significant by chance!
- Massive problem with multiple comparisons!
- Solution: Gaussian random field theory



Variability in the HRF

- HRF varies substantially across voxels and subjects
- For example, latency can differ by ± 1 second
- Solution: use multiple basis functions
- See talk on event-related fMRI

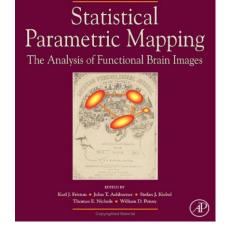


Summary

- Mass-univariate approach: same GLM for each voxel
- GLM includes all known experimental effects and confounds
- Convolution with a canonical HRF
- High-pass filtering to account for low-frequency drifts
- Estimation of multiple variance components (e.g. to account for serial correlations)

Bibliography

 Friston, Ashburner, Kiebel, Nichols, Penny (2007) Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier.



- Christensen R (1996) Plane Answers to Complex Questions: The Theory of Linear Models. Springer.
- Friston KJ et al. (1995) Statistical parametric maps in functional imaging: a general linear approach. *Human Brain Mapping* 2: 189-210.

Supplementary slides

Convolution step-by-step(from Wikipedia):

